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Multi-scale Segmentation and Surface Fitting
for Measuring 3D Macular Holes

Amar V. Nasrulloh, Chris G. Willcocks, Philip T. G. Jackson, Caspar Geenen, Maged S. Habib,
David H. W. Steel, and Boguslaw Obara”

Abstract—Macular holes are blinding conditions where a hole
develops in the central part of retina, resulting in reduced central
vision. The prognosis and treatment options are related to a
number of variables including the macular hole size and shape.
High-resolution spectral domain optical coherence tomography
(SD-OCT) allows precise imaging of the macular hole geometry
in three dimensions, but the measurement of these by human
observers is time consuming and prone to high inter- and
intra-observer variability, being characteristically measured in
2D rather than 3D. We introduce several novel techniques to
automatically retrieve accurate 3D measurements of the macular
hole, including: surface area, base area, base diameter, top area,
top diameter, height, and minimum diameter. Specifically, we
introduce a multi-scale 3D level set segmentation approach based
on a state-of-the-art level set method, and we introduce novel
curvature-based cutting and 3D measurement procedures. The
algorithm is fully automatic, and we validate our extracted
measurements both qualitatively and quantitatively, where our
results show the method to be robust across a variety of
scenarios. Our automated processes are considered a significant
contribution for clinical applications.

Index Terms—Macular holes, measurement of macular holes,
3D segmentation, multi-scale techniques, level set methods,
curvature-based surface fitting.

I. INTRODUCTION

MACULAR hole is a hole that develops in the central

part of the retina, and is most commonly caused by age
related vitreous traction on the central fovea [1], [2]. The
condition affects approximately 2 in every 1000 individuals
over the age of 40 [3], and can have a devastating impact on
the quality of life and on an individual’s independence [2].
Surgery offers a 90% likelihood of closing the hole but the
improvement in vision depends on the duration of the hole,
and is related to a number of variables including macular hole
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size and shape [4], [5]. Recently, [6] have proposed the first
approach to segment and measure the macular hole; however
their approach acquires the measurements of the 3D macular
hole by combining individual 2D graph-cuts segmentations of
slices in the 3D image, rather than considering the overall 3D
geometry.

Our approach includes a fully 3D segmentation algorithm
using a state-of-the-art level set method based on the local
Gaussian distribution fitting (LGDF) energy functional [7].
However, despite the high computational expense with level
sets, we achieve fast convergence without relying on high-end
hardware acceleration. This is accomplished by employing a 3D
multi-scale approach that exploits the fact that the macular holes
are considered large objects within the 3D image, processing
initial updates at lower spatial resolutions.

This is followed by a novel curvature-based surface cutting
procedure, which separates the macular hole from its back-
ground, allowing for fully-automatic measurement of the shape
and volume. The method is shown to be stable to the various
3D input images of different macular holes without requiring
retuning of the parameters, and is shown to be more accurate
than existing graph cuts segmentation approaches.

II. CONTRIBUTIONS

The objective of this paper is to develop an automatic
approach to efficiently extract precise and robust measurements
of 3D macular holes. To this purpose, we have developed a
level set segmentation approach that improves the efficiency of
the state-of-the-art LGDF energy by considering multiple scales.
Further, we have introduced a novel curvature-based surface
cutting procedure to separate the segmented hole from its
background, and proposed novel procedures for automatically
calculating the desired measurements robustly.

Specifically, we have:

o Composed an automatic pipeline for measuring 3D macu-
lar holes.

e Introduced a 3D multi-scale active surface which is 61
times faster than the original LGDF implementation.

« Introduced an automatic and novel curvature-based surface
cutting procedure to separate the 3D macular hole from
the vitreous body.

¢ Introduced automatic and novel procedures for capturing
specific macular hole measurements, based on our robust
centerline definition.
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o Provided quantitative and qualitative validation of the
algorithm’s robustness and performance accross a variety
of different 3D macular hole images.

III. RELATED WORK
A. Retinal imaging

The problem of analysis in retinal disease is a large multidis-
ciplinary research area with collaboration from researchers and
clinicians [8], [9]. A comprehensive review by [10] shows that
analysis in retinal disease has led to significant advances in
preventing blindness and visual loss, using 2D digital fundus
photography and 3D optical coherence tomography (OCT).
The macula refers to the central part of the retina with the
fovea, a specialized part of it with high photoreceptor density,
sited at its centre. It is responsible for fine detailed vision
including reading and facial recognition. OCT is considered
a powerful technique for imaging macular disease including
macular edema and macular holes [11]. In contrast, compared to
macular edema, research into automatic macular hole analysis
is very limited.

B. Macular hole imaging

Optical coherence tomography allows clinicians to charac-
terize the shape and volume of macular holes [12], leading to
new insights into the pathogenesis of macular hole formation
[13]. Spectral domain optical coherence tomography (SD-
OCT) provides higher resolution images with reduced artefacts
compared to time domain OCT [2]. Recently, [14] propose a
length-adaptive graph search metric that accurately segments
the retina/vitreous boundary of a 2D OCT image, whereas [15]
use auto-thresholding in ImageJ [16] and measure the binary
segmentation of the forward-facing view of a macular hole.

To calculate the volume of a macular hole, [17] propose
fitting a truncated cone to a 2D view of the macular hole, which
fails to capture irregularities and depth information. Alternative
3D methods apply 2D segmentation algorithms to each slice
in the 3D geometry [6] and then accumulate the results to
provide analysis of macular hole’s 3D shape and volume,
however the slice-by-slice approach requires verification by a
human operator to confirm the segmentation at each slice. The
minimum diameter measurement is also calculated based on
single 2D slice [6], [18], which may fail to consider profiles
that are elliptical in cross-section.

Similarly, [19] distinguish normal macula and multiple
macular pathologies which are macular edema, macular hole,
and age-related macular degeneration from the foveal slices in
retinal OCT images on a slice-by-slice basis. They employ a
simple edge-based technique with a canny edge-detector, which
has known limitations where edges are weak, blurred and/or
broken, however they apply a multi-scale spatial pyramid and
identify local binary patterns in texture and shape encoding
to efficiently infer geometric features at multiple scales and
spatial resolutions.

In contrast to these approaches, 3D level set methods are
able to enforce continuity along all three axes with subpixel
accuracy and smooth surfaces, while remaining robust to noise.
They can segment objects with weak, broken and/or distorted
edges by not relying on image gradients [20].

C. Active contours

The snakes active contour model, first introduced by [21], is
widely used in the image segmentation field to deform an initial
curve to lock onto edges, lines and endpoints interactively. This
concept was extended by [22], who considered the contour
neighbourhood as a region-based energy. Malladi et al. in [23]
formulated the energy update rule using level sets, which allows
a deformable implicitly defined region to surround or fill inside
the object of interest. By introducing a curvature term [24], the
evolving speed of the deformable region (contour or surface)
can be controlled such as to prevent leaking through small
gaps in the object boundary allowing for segmentation of more
complex shapes.

The Mumford-Shah energy functional [25], establishes an
optimal partitioning scheme to divide an image into parts, which
are piecewise-smooth within segments. Early active contour
models solved the Mumford-Shah under the assumption that
segments had piece-wise constant intensity [20], which was
later addressed by [26] who define a pixel’s energy based on
its local neighborhood within a predetermined scale rather than
the mean intensity of an entire segment. [7] improves on this by
modifying the data fitting term to consider the intensity variance,
through a maximum a posteriori probability formulation based
on Gaussian approximation of the intensity distribution, called
the local Gaussian distribution fitting (LGDF) energy. The
LGDF energy functional is considered a state-of-the-art in
the active contour segmentation literature, however it has
currently only been applied to small 2D images due to its high
computational requirements, in particular relying on multiple
Gaussian convolutions per update iteration.

Further, it is difficult for standard segmentation approaches
to automatically separate the macular hole from the vitreous
body. Previous work individually applies a 2D graph cuts
algorithm to each 3D slice of the macular hole, where the
graph cut boundaries are specified with morphological erosions
of adjacent slices. However this approach requires manual
verification of each slice by a human operator to check the
segmention is plausible [6]. We perform a fully automatic 3D
segmention algorithm with an automatic procedure to cut the
relevant volume of the hole from the background vitreous body
in order to obtain the required measurements.

IV. MATERIALS

In this paper, we used 30 images of macular hole cases that
were provided by the Sunderland Eye Infirmary, Sunderland,
UK. Patients underwent spectral domain optical coherence to-
mography (SD-OCT) on the Heidelberg Spectralis (Heidelberg
Engineering, Frankland, USA) immediately preoperatively as
part of routine care. A high density central horizontal scanning
protocol with 30 micrometers line spacing was used in the
central 10 by 15 degrees. All scans used a 25 automatic real
time (ART) setting enabling multisampling and noise reduction
over 25 images. The images were exported anonimised and
in a non-compressed format. All of our input images are
200 x 200 x 49 voxel sub-regions of the raw data, chosen
such that the macular hole is in the centre (see Fig. 1).
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Fig. 1. 2D view of a 3D SD-OCT image of the retina (left) and its 2D
cross-section along the green arrowed line. The region of interest is marked
by the red box (right). Scale bar: X = 11.58 [um] and Y = 3.87 [um].

V. METHOD

We present a novel segmentation approach based on level
set methods and regression analysis, for extracting specific
measurements of the 3D shape and volume of the macular
hole. The proposed approach consists of three main parts,
discussed in subsections V-B-C, V-D and V-E respectively.

A. Overview

Level set segmentation methods, including the LGDF energy
functional in [7], implicitly define the boundary of a segmen-
tation region as the zero level set of a scalar field ¢(Z). That
is, the interior of the region is defined as {Z : ¢(Z) < 0},
with ¢(Z) = 0 on the boundary. Given an input image I,
¢ is iteratively deformed using variational methods so as to
minimise the energy functional E(¢, I), resulting in a smooth
boundary that separates regions of different properties.

The initial value of ¢ is set automatically as a small spherical
seed region ¢(Z) = |& — Zo| —r, where Zp is (0.5,0.6,0.5) in
normalized image coordinates, slightly below the midpoint of
the image, so as to be close to the base of the macular hole
(Fig. 2a). This is then clamped with a binary step function using
a constant value ¢ = 2 outside the sphere and ¢ = —2 inside the
sphere. The segmentation process involves iteratively updating
¢ so as to minimise the LGDF functional E“CPF(¢, I) yielding
an implicit boundary between vitreous humor and retina tissues
(Fig. 2b-c)

To increase performance, we initially segment the cavity at
low-resolution, then when convergence is met we progressively
upscale both ¢ and I and iterate until ¢ and [ are at their
original resolution and fully converged (Fig. 2b-d). We then
cut the the segmented cavity from its opening in a separate
procedure (Fig. 2e) before extracting the final measurements.

B. 3D Local Gaussian Distribution Fitting (LGDF) Energy

We adopt the LGDF energy functional in [7] (originally
implemented in 2D) for a 3D active surface. The total energy
E(¢) is given by the summation of three terms: energy
E“6PF (¢, I) which drives the contour to fit along salient image
edges, a length term L£(¢) which penalizes the length of the
contour to ensure smoothness, and a regularization term P(¢)

which keeps ¢ approximating a signed distance function to
ensure numerical stability:

E(¢, 1) = aE"F (¢, I) + vL(9) + uP(9) (1)

where «, v, > 0 are weighting constants. ECPF (¢, T) is the
sum of the energy of each voxel E“CPF(¢, I, 7):

EYPF (. 1,3) = — /Q (i — &) log(pr.2 (1) M (6(7)d7

- / (i — ) log(pa.£(I(7) Ma ()47
2)

where w(Z — ) is a Gaussian weighting function centered
on Z, p1 z and py z are the likelihoods assigned to the pixel
intensities by Gaussian models of the intensity distributions
inside and outside the contour, and M; and M5 are indicator
functions separating the regions inside and outside the contour.
This is further elaborated in [7]. P(¢) penalizes the deviation
of ¢ from signed distance function [26]:

P@) = [ 5(Vo(a) -1 az

and L(¢) penalizes the length of the contour [27] for a smooth
surface:

3)

£(¢) = [ IvH(o(@)lez @
where ¥ = [x,y, 2] is a voxel in an image I. H is a Heaviside
function which we discretize by:

H(z) = + {1 + 2arctan(x)} )

2 T
The energy EYCPF(¢, 1) is able to segment objects with
inhomogenous local intensity mean (%) and variance o (&)>
(Eq.s 22-23 in [7]) allowing for slow changes in intensity
accross an object but penalizing sudden changes within it. The
image force term is calculated for both inside and outside
the contour 7 = 1, 2 respectively, by applying the calculus of

variations [7], yielding:
. L (i) — I(E))?
i(T) = =) |1 i e e—

i) = [ (i) ostos) + P2

This local energy is applied locally with the delta function
d(x) (derivative of Eq. 5) —d(¢)(e; — Aea) with a weighting
parameter A > 1 to give preference to external force eo and
hence the contour is preferable to grow to fill the hole cavity.
The functional can then be minimized by solving the gradient
descent flow equation [7] which yields the following update
rule:

dy (6)

0
87(f = —ad(¢)(er — Ae2) + vo(p)k + p (Vo — k) (7
where k is the curvature [24]:
. Vo
Kk = div <|V¢> (8)

To segment the image, we iteratively update the level set
function ¢ according to Eq. 7. However this is computationally
expensive, especially in the case of 3D OCT images requiring
tens of thousands of iterations before convergence.
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(a) Seed (b) Grow

(c) Coverage

(d) Multi-scale optimization (e) Cut

Fig. 2. The proposed 3D multi-scale approach iteratively deforms an initial region (a) to fill (b-c) the cavity of the hole at low-resolution, and then progressively
upscales (d) and reiterates until convergence. This is followed by a curvature-based cutting procedure (e).

C. 3D Multi-scale LGDF

We improve performance by initially segmenting the hole

cavity at a small scale, by downsampling I and ¢ (Fig. 3a).

Solving Eq. 7 at this small scale converges much more quickly
and captures the overall shape of the macular hole. However
the zero-crossing ¢ = 0 lacks the finer high-frequency surface
details. Therefore we progressively upscale ¢ and re-solve
Eq. 7, for multiple scale levels:

S = {5;}, Vi € [1,77,], 5 < §Z‘+1 9)

where §; = (sg,58y,5,) and s, sy, s, are scaling factors for
each the z,y, z image dimensions accordingly. Solving Eq. 7
for these subsequent scales now only takes a small number of
iterations given that ¢ = 0 is already near the object boundary
in each case (Fig. 3b). Finally we are able to process ¢ at
the original resolution (8,, = (1,1,1)) with a small number of
iterations, capturing the finer surface details (Fig. 3c).

(a) (b) (c)

Fig. 3. Result of 3D macular hole based on our multi-scale level set
segmentation approach. In our experiment, we choose n = 3 scale levels
with scale parameters: (a) 51 = (0.25,0.25,1), (b) 52 = (0.5,0.5,1), (c)
§3 = (1,1,1). We do not alter the z-dimension in our case, as it is already
shallow in the original OCT input images.

Downscaling ¢ and I for the initial multi-scale stage 3
is able to segment the macular hole, exploiting the fact that
the hole is a large object in the OCT image. However noise
introduced by OCT propagates through the downscaled I,
which may prevent the initial evolution from evolving to fill
the hole cavity. Therefore we denoise the I for the smallest
scale 57 using a Wiener filter by [28], [29], which is effective
at removing the speckle noise encountered in OCT imaging
[30], and the result is shown in Fig. 4a. In subsequent scales
§; where 2 < i < n, we do not denoise the image as (1)
we assume the contour is already filling the hole cavity at
this stage, and (2) we wish to capture the finer surface details
unhindered by the denoising process.

Implementation of E“CPF in 3D requires 6 x 3D Gaussian
convolutions per iteration, required for calculating intermediate

(b)

Fig. 4. (a) OCT image from red box in Fig. 1 downscaled by §1 =
(0.25,0.25,1), (b) Result of denoising using the Wiener filter with default
parameters [28], [29].

variables in Eq. 6. These convolutions are a performance
bottleneck, therefore we use an optimized implementation of
Gaussian convolution in the Fourier domain [31] which supports
arbitrarily large standard deviation o without impacting the
performance.

D. Curvature-based cutting surface

The problem of LGDF is that it will only separate the
vitreous humour from the retinal tissue, and cannot separate
the macular hole from the main body of vitreous humour. We
need to cut the previously segmented vitreous humour in such
a way as to only capture the macular hole shape (Fig. 2e). In
our approach, we initially attempted to cut the macular hole
based on intensity information in the image, but we found that
a curvature-based approach is more robust across the different
images.

We compute curvature  of the 3D active surface by using
an efficient integral invariant approach [32], [33] based on [34],
which uses a spherical kernel in 3D. We apply the signum
function to ¢ and then convolve with a spherical kernel of radius
r (Fig. 5a). This effectively computes the difference between
the inside and outside volume within a sphere centered at every
point on the surface. The radius of the kernel determines the
scale of the curves that it responds strongly to. In our case we
find that » = 116.10 um captures the lip of the macular hole
(in 200x200x49 [voxels] OCT images), while smoothing out
high-frequency surface noise.

The curvature x (Fig. 5b) is defined over all points in the
OCT image, however we are only interested in the surface
curvature at the lip of the macular hole. We therefore binarize ¢
and select only the surface voxels where x < 0 (brown voxels
in Fig. 5c). We then fit a two variable 2" order polynomial to
these voxels (Fig. 5d). In some pathalogical cases (e.g. Image
25, Table III), the curvature based cutting surface is too high,
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(a) (b)

(d)

Fig. 5. (a) Spherical kernel applied at the surface ¢ = 0, (b) Curvature x
on the 3D surface, (c) Surface voxels with negative x (brown), (d) Fitting a
274 order polynomial to these voxels.

and does not cleanly separate the macular hole. Therefore,
we translate the surface down by a fixed amount (we choose
154.80 pum), and then “re-grow” the macular hole up to a fixed
distance (we choose 100.62 um) on all images. We find that
these extra steps increase our overall accuracy.

E. Measurements

From a 2D side-view of the 3D macular hole, ophthal-
mologists require precise measurements of the minimum
diameter (most narrow point on the hole) and base diameter. To
compute these measurements robustly, we first extract a smooth
‘centerline’ of the macular hole, denoted C' = {¢;}, to act as a
frame of reference for our measurements (Fig. 6 red dashed
line). The centerline is calculated using the approach proposed
in [35], but extended to 3D. Specifically, each coordinate of
the ‘centerline’ is defined to be the centroid of the slice:

1
G = Z dr / df) = — z

where ¥; C Q C 2 is a set of the binary segmented pixels
for the i*" slice (in the y-axis) in the macular hole after the
cutting procedure. The centerline is then smoothed using robust
local regression [36], as in the paper [35], using a smoothing
parameter (in our case we choose 0.9 to represent a span of
90% of the signal). This is important as it ensures the centerline
acts as a descriptor for the overall shape and direction of the
hole (especially in the middle as we are not concerned about
the centerline veering off at the top and base of the hole) and
ensures that it remains highly insensitive to surface noise.
We compute the height measurement of the macular hole
as the length of C, and then take the normal of the middle
point along C' (shown by purple and yellow arrows in Fig. 6
left) to act as a basis for the three planes (Fig. 6 middle: pink,
blue, and green lines). The remaining measurements (top area,
base area, and smallest area) are inferred from these planes:
by examining the cross-section at distances 20% and 80%
along the curve, and then finding the minimal cross-sectional

(10)

area between these two planes accordingly. Since these cross-
sections are generally elliptical, rather than circular, we define
their diameters as their major axis lengths, as in [6].

View

lll Top Area
e p—
o Al

Minimum
-«

Middle Diameter

Point

(a) (b) (©)
Fig. 6. (a) We initially compute a smooth centerline (dashed red line), (b)
normal at the central point is used as a basis for finding the top region
and bottom region, as well as the minimal diameter between these two
regions, (c) we view orthogonal projections of the cropped 3D volumes
(striped regions) separately from above and below, giving us 2D areas (opaque
regions) measuring the top and bottom of the hole accordingly.

Ophthalmologists currently use the minimum diameter from
a 2D side view of the macular hole. Therefore we first find
the smallest cross-sectional area between the top and bottom
planes, and then calculate the diameter from this cross-section’s
centroid to act in place of the 2D measurement.

F. Method parameters and suggested default values

We found stable default level set evolution parameters
through both our own empirical tuning across 30 images
provided by the Sunderland Eye Infirmary, Sunderland, UK, and
also through an experiment by minimizing the mean Jaccard
Index across the 30 images with ground-truth segmentations
using the built-in MATLAB genetic algorithm implementation
[37]. We found that the results of the genetic algorithm coincide
with our own findings, whereby the default values are chosen
tobe: 0 =4, a =20, u=1, v =39, A = 1.04, across all images.
We conducted a cross-validation experiment to evaluate the
robustness of these suggested parameter values (o, «, u, v,
and )\) using leave-one-out validation [38] (suitable for such
small datasets). The leave-one-out cross-validation across all 30
images results in a mean Jaccard Index of 0.9644 and standard
deviation 0.0015. The small standard deviation values indicate
the stability of our proposed parameters.

VI. RESULTS AND DISCUSSION
A. Qualititive Validation

In this section, we present the results of our automatic
segmentation approach for 30 real-world OCT images provided
by the Sunderland Eye Infirmary, Sunderland, UK. Tables I to
IIT show the results of our multi-scale 3D segmentation after
the curvature cutting procedure for each patient, and also a
2D z-slice showing the maximal hole cross-section of the 3D
segmented hole. The results demonstrate that our approach
is able to successfully capture the macular hole in all the
images, in particular several challenging cases such as the
narrow hole in Image 8 and the complex scenario in Image 12.
Furthermore, our curvature-based cutting procedure is robust
and can correctly identify the lip of holes that are valley-shaped
(Image 2, Image 25), hill-shaped (Image 1, Image 8, Image 14,
...), flat (Image 6, Image 7, Image 16), and slanted (Image 9).
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The curvature cutting procedure is excluded for Image 30 as

the hole is fully enclosed and without any opening (Table III).

B. Quantitative Validation

In order to validate our method quantitatively, we compare
the shape of our automatically segmented macular hole with 3D
ground truth segmentations. These ground truth segmentations
were acquired by a clinical eye surgeon manually sketching
a 2D region for each slice of the macular hole for 10
images (Table I). The results in Table V show the accuracy,
sensitivty, Jaccard index (ratio of intersection and union
between our segmentation and ground truth) and the Dice
similarity coefficient (DSC), as defined in [39], [40]. These
metrics are calculated (1) between the 3D ground truth sketched
region, (2) for the same dataset of our 3D multi-scale LGDF
(MS-LGDF) segmentation, (3) for a 3D continuous max-flow
(CMF) graph cuts [41]-[43] based approach using a 5 X 5 X 5
[voxels] 3D median filter pre-processing as with [6]. Table V
also show a side-by-side comparison with the ground truth,
our method, and the existing approach in Fig. 7. In general,
we see that our method scores highly in all cases and that our
method more closely captures the shape of the macular hole,
in particular at the macular hole boundary.

TABLE V
VALIDATION OF MACULAR HOLE SEGMENTATION RESULTS
(MEAN 4+ S1ANDARD DEVIATION) WITH THE GROUND TRUTH BETWEEN
MS-LGDF AND 3D CMF

Segmentation Jaccard

Accuracy %  Sensitivity % DSC %
Method v v Index % ’
MS-LGDF 99.19400.56  85.18404.63 76.34+10.31 86.19+07.55
CMF 98.83+00.74 71.89407.61 66.31+10.51  79.27+08.33

NG s . P U MR M i N i

(a) Ground truth (b) MS-LGDF approach (c) CMF approach

Fig. 7. 2D cross-sections com52.26paring macular hole segmentations with the
ground truth by an expert, our method, and a 3D CMF graph-cuts approach.

We show the 3D measurements extracted with our approach
in Table IV. Pixels are converted to [mm] metric scaling
according to the OCT image metadata, yielding the real size
and form of the macular hole (volume, surface area, base area,
base diameter, top area, top diameter, height, and minimum
diameter). The Bland and Altman method [44], [45] was used
to calculate the mean difference (d) and standard error (se) for
the base diameter (BD) and minimum diameter (MD). This
includes 30 datasets (Table VI) and ground truths acquired from
the average of two manual measurements, taken by a clinical
eye surgeon at 4 month intervals (intra-observer validation). The
validation between the ground truth and MS-LGDF has smaller
difference than validation between the ground truth and CMF.

TABLE I

SEGMENTATION RESULTS

3D Segmentation

2D Cross-Section

Image 1

Image 2

Image 3

Image 4

Image 5

Image 6

Image 7

Image 8

Image 9

Image 10
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TABLE I

SEGMENTATION RESULTS

TABLE III

SEGMENTATION RESULTS

3D Segmentation

2D Cross-Section

3D Segmentation

2D Cross-Section

Image 11

Image 12

Image 13

Image 14

Image 15

Image 16

Image 17

Image 18

Image 19

Image 20

Image 21
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TABLE IV
MEASUREMENTS OF MACULAR HOLES
Volume Surface Base Base Top Top Height Minimum
3D Image A ) .
Data Area Area Diameter Area Diameter Diameter
[1073mm3]  [mm?]  [mm?] [mm] [mm?] [mm)] [mm)] [mm]
Image 1 148.55 2.72 0.266 0.97 0.141 0.69 1.43 0.46
Image 2 85.45 1.61 0.199 0.83 0.153 0.56 0.50 0.52
Image 3 82.63 1.73 0.164 0.70 0.128 0.66 0.98 0.46
Image 4 57.94 1.48 0.145 0.71 0.122 0.62 1.06 0.24
Image 5 95.95 1.97 0.219 0.86 0.118 0.65 1.27 0.39
Image 6 45.33 1.19 0.123 0.66 0.065 0.50 0.95 0.34
Image 7 20.25 0.79 0.036 0.34 0.073 0.52 0.97 0.13
Image 8 66.43 1.50 0.164 0.73 0.092 0.55 1.27 0.20
Image 9 61.99 1.35 0.175 0.74 0.098 0.55 0.92 0.31
Image 10 49.36 1.31 0.124 0.70 0.058 0.49 1.21 0.31
Image 11 99.61 2.12 0.247 0.92 0.109 0.69 1.11 0.39
Image 12 62.04 1.41 0.156 0.73 0.103 0.59 1.03 0.34
Image 13 59.46 1.54 0.108 0.54 0.107 0.73 1.19 0.34
Image 14 187.48 336 0374 126 0.125 0.67 1.52 0.43
Image 15 76.86 1.90 0.147 0.74 0.092 0.56 1.27 0.44
Image 16 48.72 1.26 0.067 0.49 0.096 0.58 1.08 0.32
Image 17 135.13 2.61 0.253 0.90 0.093 0.63 1.47 0.40
Image 18 54.84 1.29 0.239 1.05 0.086 0.63 0.63 0.52
Image 19 110.10 1.89 0221 0.64  0.166 0.52 1.12 0.32
Image 20 41.62 1.13 0.036 0.34 0.123 0.62 0.97 0.35
Image 21 64.17 1.58 0.163 0.84 0.121 0.63 0.95 0.31
Image 22 25.95 0.77 0.087 0.37 0.102 0.53 0.58 0.20
Image 23 24.11 0.83 0.043 0.39 0.091 0.56 1.18 0.15
Image 24 65.96 1.67 0.135 0.72 0.089 0.52 1.07 0.39
Image 25 38.80 1.07 0.011 0.20 0.265 1.10 0.70 0.20
Image 26 53.74 1.35 0.091 0.55 0.140 0.58 1.11 0.23
Image 27 59.82 1.43 0.085 0.52 0.138 0.69 1.07 0.28
Image 28 51.59 134 0.107 0.63  0.125 0.64 1.07 0.25
Image 29 56.02 1.44 0.160 0.73 0.085 0.52 1.03 0.35
Image 30 7.25 0.26 0.056 0.47 0.011 0.22 0.26 0.22
MS-LGDF is shown to be robust and stable, producing the same
results when run on the same data. The Bland and Altman plots 05 . ‘ 05 . ‘
in Fig. 8 - Fig. 10 from Table VI show the agreement between
the manual clinician measurements, our approach, and the graph 0.4 0.4l ]
cuts approach. The intraclass correlations two-way model Case
2, ICC(A,1) [46], was calculated to show correlation of intra- 03 03 1
observer, manual - MS-LGDF, and manual - CMF (Table VI). _ ° _
The correlation coefficient shows greater agreement between E 027 Mean + 1.96*SD. E 02 |
clinician measurements and our approach than with the CMF 2 o1l e £ o1lMean+1.96*D |
method. It is worth noting that the manual 2D measurements are § § o« g0
fundamentally limited by their assumption that the cross-section z or T oeMealt Lo %0 8%,
of the macular hole is circular. This assumption fails in cases o
where the cross-sections are elliptical. Therefore we expect R o R T R 1
to see some disagreement between the proposed automated
3D measurement, which is not limited to such cases, and the 02 02 ]
manual measurements. 03 . ‘ 03 . _
0 05 1 15 0 0.2 0.4 0.6

C. Performance

In our experiments, we measure the performance for all
input OCT images with size 200 x 200 x 49 [voxels] at all the
stages in our approach. In particular, the average segmentation

Mean of old and recent [mm] Mean of old and recent [mm]

Fig. 8. Bland-Altman plot of base diameter (left) and minimum diameter
(right) for intra-observer from Table VI.
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TABLE VI
VALIDATION OF THE BASE DIAMETER (BD) AND MINIMUM DIAMETER
(MD). FOR INTRA-OBSERVER COMPARISON, d IS THE OLD MEASUREMENT
MINUS THE RECENT. OTHERWISE, d IS THE MANUAL MEASUREMENT MINUS
OUR APPROACH OR THE GRAPH CUTS APPROACH.

Observer d [mm] se [mm] Confidence [mm] ICC
Intra-Observer BD 0.023 0.012 0.025 09539
MD -0.012 0.010 0.020 09153
Manual-MS-LGDF BD 0.033 0.018 0.036  0.9032
MD 0.023 0.014 0.028  0.7849
Manual-CMF BD 0.105 0.020 0.041 0.7744
MD 0.040 0.015 0.031 0.6778
0.5 T T 0.5 T -
.
0.4r 1 0.4r
Mean + 1.96*SD
0.3} o 03} %
E *
€ Mean +1.96*SD z .
= 02 £ 02t
5 ° £
°
9 XY E MeaRO. "
3 01l ° 4 S o1} .
= Mdan, & o IS ~ o
= e o 2
ot 0t
2 ° g8 . z o o .
° [
=
o1t | .
hd Mean - 1.96*SD
Mean - 1.86+5D
-0.2 ° -0.2
0.3 ‘ ‘ 0.3 ‘ ‘
0 0.5 1 1.5 0 0.5 1 1.5

Mean of manual and MS-LGDF [mm] Mean of manual and CMF [mm]

Fig. 9. Bland-Altman plot of base diameter for the manual measurement
minus our approach (left) and the graph cuts approach (right) from Table VI.

0.5 ‘ . ‘ 0.5 ‘ . ‘
0.4 1 0.4t
0.3} 1 0.3}
£ —_
E £ Mean + 1.96)SD
w 021 Mean +1.96*D E %% .
8 %, o ® o
| ° =
A 0.1f . O o1t e ,* e
= 0% o - o
K Means LA 4 g Mean4.“._
[ ]
§ 0F 4 ® o .:- é 0F oeq ¢
© ° ® °
s L] [
01 o 1 -0af
Mean - 1.96*SD Mean - 1.96*SD
] N | @
0.2 F ° 0.2
-0.3 - 1 : -0.3 . . .
0 0.2 0.4 06 0 0.2 04 06

Mean of manual and MS-LGDF [mm] Mean of manual and CMF [mm]

Fig. 10. Bland-Altman plot of minimum diameter for the manual measurement
minus our approach (left) and the graph cuts approach (right) from Table VI.

performance of our 3D MS-LGDF is 147.65 seconds (2.46
minutes), which is significantly faster than the original 3D
LGDF with a mean of 9122.87 seconds (2.5 hours) to converge.
The mean time for the surface cutting procedure is 19.84
seconds. While the timings in our unoptimized MATLAB
CPU implementation are considered acceptable, we believe
our method can be heavily optimized if rewritten in C/C++.
Additionally, the average segmentation performance of our
MATLAB GPU-Array [37] implementation is 91.70 seconds
for 3D MS-LGDF and 11.45 seconds for the surface cutting
procedure (significantly faster than manual segmentation, which
take 28.10 minutes in average).

The mean time for our automatic procedures to acquire all
of the measurements is 1.15 minutes per OCT image, which
is largely due to calculating volumetric analysis metrics in
Table IV such as volume, surface area, base area, base diameter,
top area, top diameter, height and minimum diameter. The
automatic minimum diameter calculation takes the longest
time due to finding the minimal cross-sectional area between
20% and 80% of these two planes. The average times to
measure base diameter and minimum diameter manually are
19.06 seconds and 22.73 seconds respectively (total for both is
41.79 seconds). This exclude calculating the areas, compared
to 1.15 minutes for calculating all the measurement using our
unoptimized automatic method.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we have proposed an automatic and robust
method to both segment and extract measurements from 3D
OCT images of macular holes. In particular, we found that
the lip or opening of the macular hole can be automatically
cut based on curvature information, and that a significant
performance increase can be obtained over state-of-the-art level
set methods for large objects through multi-scale techniques.
Furthermore, we have proposed a novel method to collect
various macular hole measurements through our definition of
a robust centerline, and the method has been validated both
quantitatively and qualitatively.

In the future, we would like to extend our approach to
automatically extract more recent measurements, such as the
area ratio factor (ARF) shown to be an effective predictive
factor for diagnostic and treatment outcomes [47].
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