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Abstract

While manifold learning from images itself has become widely used in medical image analysis, 

the accuracy of existing implementations suffers from viewing each image as a single data point. 

To address this issue, we parcellate images into regions and then separately learn the manifold for 

each region. We use the regional manifolds as low-dimensional descriptors of high-dimensional 

morphological image features, which are then fed into a classifier to identify regions affected by 

disease. We produce a single ensemble decision for each scan by the weighted combination of 

these regional classification results. Each weight is determined by the regional accuracy of 

detecting the disease. When applied to cardiac magnetic resonance imaging of 50 normal controls 

and 50 patients with reconstructive surgery of Tetralogy of Fallot, our method achieves 

significantly better classification accuracy than approaches learning a single manifold across the 

entire image domain.

Index Terms

Abnormality detection; cardiac magnetic resonance imaging (MRI); manifold learning; 
morphological classification; tetralogy of Fallot (TOF)

I. Introduction

Identifying and classifying the impact of a disease from high-dimensional medical images 

generally relies on accurately describing the shape of the displayed anatomy. For example, 

clinicians measure the volume of the ventricles in cardiac magnetic resonance images (MRI) 
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to assess the impact of reconstructive surgery for Tetralogy of Fallot (TOF) [1], [2]. To 

improve the timing of follow-up surgery (prosthetic pulmonary valve placement), 

researchers are seeking more refined measurements as, the volumetric scores are insensitive 

towards the subtle residual impact of the reconstructive surgery [3]–[8]. Many morphometric 

group studies refine volumetric measurements via deformation-based encodings [9]–[14], 

which quantify shapes relative to each location in the image domain. The encoding enables 

these studies to investigate the entire image domain for the impact of disease without prior 

domain knowledge, i.e., the analysis is performed without experts initially narrowing down 

the search to specific regions. Using these high-dimensional (on the order of the number of 

image voxels) encodings, automatically detecting a disease in individual subjects is difficult. 

It requires complex classifiers, such as [15], [16], to identify the few disease-impacted 

measurements, e.g., those of a specific anatomical region [17], [18]. To avoid over-fitting, 

these classifiers require many more samples than provided by typical medical imaging 

studies. In this paper, we instead reduce the encoding to a set of compact descriptors, which 

are sensitive towards the disease of interest according to the samples of the imaging study. 

We do so by introducing the concept of regional manifold learning. We then identify the 

local impact of disease in an individual image by training a simple classifier [19] for each 

descriptor and classify the image by fusing those results to a single label.

Manifold learning as the means of reducing the complexity of high dimensional descriptors 

has been applied to a wide variety of medical imaging applications. For example, linear 

methods, such as principal component analysis (PCA) and independent component analysis 

(ICA), are used for image segmentation [22], [23], shape analysis [24], and the registration 

of perfusion images [25]. A limiting factor of the resulting linear manifold is the underlying 

assumption of the image data being on, or close to, a linear subspace, which is often not the 

case in the medical domain. Nonlinear manifold learning techniques, such as [20], [26], 

[27], overcome these limitations by assuming that a set of images lies on a sub-manifold of 

much lower dimension. They determine the sub-manifold by first arranging the images 

according to a graph. Each vertex of the graph represents a scan and the weighted edges 

represent similarity/dissimilarity between the scans. This graph is then embedded into a low-

dimensional Euclidean space, preserving the relationship between images as defined by the 

graph. Thus, if one constructs the graph by measuring shape differences between images, 

then the coordinates of the resulting low-dimensional embedding can be viewed as a 

compact descriptor of anatomical variations. Unlike other dimensionality reduction methods, 

such as [28], the coordinates can also reflect specific anatomical properties and the 

continuous progression from normal controls to the diseased population.

Examples of nonlinear manifold learning in medical imaging are cardiac segmentation [29], 

brain registration [30], automatic detection of neurological diseases [31], [32], and the 

analysis of neonatal brain images [33]. These methods use a single metric to determine the 

similarity between images. If the metric accounts for anatomical variation across the entire 

image domain, then disease inflicted changes confined to small regions are most likely 

obscured by the normal variation in the remainder of the image domain. In addition, the 

resulting manifold is generally an inaccurate approximation of the true data structure, as the 

dense-sampling assumption of manifold learning requires a very large number of images, 

which typical medical studies lack [34]. Most methods, which use manifold learning as a 
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compact descriptor of high-dimensional encodings, thus rely on an expert to confine the 

manifold to the image region most likely impacted by disease [35]. To avoid expert 

intervention, recent publications propose to learn manifolds of multiple image regions and 

combine their results [36]–[38]. For example, Bhatia et al. [39] divide an image into regular 

patches to learn the manifold of the cardiac and respiratory cycle associated with each patch. 

These methods require the manifold of a specific patch to be consistent with the manifold 

trained on the entire image domain. Due to the issues related to learning the manifold of the 

image domain, these consistency constraints most likely reduce the accuracy of the patch-

specific manifolds in capturing the local impact of a disease. In this paper, we avoid this 

constraint by relying on a bottom-up approach: we separately learn the manifolds for each 

image region, which we call regional manifold, and then perform disease classification by 

combining their results. Relatively small regions also contain small anatomical variation. 

Our regional manifolds thus only require a small training set of normal and diseased subjects 

to accurately capture the shape variations within their corresponding regions.

As outlined in Fig. 1 and Section II, our bottom-up approach automatically identifies cardiac 

disease, such as TOF, from MRIs by applying a deformation-based descriptor to each region, 

extracting the disease-relevant information from the descriptor, and finally classifying first 

each region and then the entire image. Deformation-based descriptors targeted towards 

describing the anatomy of small image regions, such as RAVENS [14], separately segment 

the structure in each training case and then nonlinearly register the training case to a 

template. The resulting deformation encodes the expansion or contraction of the anatomy 

within this region with respect to the template. In order for the descriptor to be meaningful, 

the segmentations need to be consistent and accurate across the patient population. While 

one can parcellate the complex shape of the gray matter in the brain into a set of small 

regions, the same task is extremely difficult for the ventricles of the heart due to their 

smooth and simple shapes. Our shape encoding, called inverse RAVENS or iRAVENS, 

circumvents this issue by only parcellating the template into regions of interest (ROI). 

Similar to atlas-based segmenters [40] but unlike existing deformation-based encodings, 

iRAVENS then nonrigidly registers the template to the subject’s scan. It uses the resulting 

deformation map to describe the ROI-specific anatomy of a subject but unlike existing 

deformation based encodings for small anatomical regions, such as [14], does not require a 

detailed segmentation of each scan, is not impacted by the variability introduced by inter-

subject segmentation, and allows us to freely choose the definition of the ROIs as they are 

not confined by visible landmarks in the image. All of these benefits of iRAVENS are 

important aspects in identifying and classifying disease based on regional manifold learning. 

However, one can easily replace iRAVENS with many other encodings of local shape 

characteristics.

For each ROI, we then derive a disease sensitive descriptor by first mapping the iRAVENS 

maps of the subject to the lower-dimensional embeddings of the regional manifolds, which 

were created via ISOMAP [20]. Unlike other nonlinear manifold learning techniques, such 

as [26], [34], ISOMAP preserves the original distance measured across all training image 

samples when positioning those samples in the lower-dimensional coordinate system. This 

coordinate system thus protects the anatomical variation captured by the distance score. To 

transform the compact encoding into a disease sensitive one, we carefully select embedding 
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coordinates. Most medical image analysis based on manifold learning only keeps the first n 
embedding coordinates [31], [41], [42] for some fixed n. This strategy ignores the relative 

importance of individual coordinates for identifying the disease so that some of them may be 

irrelevant for discriminating TOF from normal scans. We instead only keep the most 

informative embeddings by identifying them during training phase via minimum redundancy 

maximum relevance (mRMR) algorithm [21]. The algorithm selects the embedding 

coordinates which have the highest relevance for distinguishing the two groups while 

minimizing the dependency between selected embedding coordinates.

The compact and disease-sensitive encoding is passed on to a linear support vector machine 

(SVM) [19], such as also in [39], to assign each ROI of an image to one of the two 

populations. We then visualize the outcome across all regions, which we call abnormality 

maps, by computing the weight of each region according to the outcome of the 

corresponding classifier and the accuracy of that classifier in identifying the disease on the 

training data set. We color the region according to the weights and map the corresponding 

image back to the subject space. The final step of our approach described in Section II 

combines the weights into a single image label via late fusion [43]. Unlike early fusion, 

which equally weighs the importance of the regions in the final labelling, our late fusion 

approach models the impact of diseases on specific regions by weighing the importance of 

each image region based on the accuracy of the corresponding classifier in identifying the 

disease during training [44].

Section III summarizes the results of our experiment, in which we measure the accuracy of 

different classifiers on distinguishing the MRIs of 50 normal controls and 50 TOF patients 

via ten-fold cross validation. We specifically chose this data set due to the presence of 

ground-truth diagnosis, i.e., each patient received corrective surgery during infancy or not, 

and the fact that the right ventricle is abnormal in all TOF patients. On this data set, we first 

demonstrate that our regional manifolds are more accurate in describing disease related 

anatomical changes than ventricular volume, the shape descriptor commonly extracted from 

cardiac MRIs by clinicians. We then show that our labelling based on the regional manifolds 

is significantly more accurate than classifiers based on manifold learning over the entire 

image domain. Furthermore, our method identifies specific regions that may be affected by 

TOF. These are predominantly in the right ventricle but also include parts of the left 

ventricle, which echoes recent clinical findings [45].

In summary, the main novelty of this paper is the introduction of regional manifold learning 

based on the bottom-up principle, i.e. our approach separately learns the manifold for each 

ROI and then combines the result to a single decision without requiring any prior 

information about the disease. All important parameters of the approach are automatically 

determined via well-tested criteria or parameter exploration. While we focus this article on 

the identification of TOF from cardiac MRI, our regional manifold based classifier is not 

specific to this disease or organ. Thus, we expect our findings related to regional manifold 

learning to translate to many other medical imaging applications.
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II. Regional Manifold-Based Classification

Following the outline of Fig. 1, we now construct our regional manifold based classifier, 

which labels images without prior disease information. We first introduce iRAVENS, the 

high dimensional shape encoding extracted from each image region of the input MRI 

(Section II-A).We then train a manifold learning approach to transform iRAVENS into a 

compact and disease-sensitive descriptor (Section II-B). Based on these descriptors, we train 

a classifier for each region and define the fusion of the results of the classifiers to a single 

label (Section II-C). We automatically determine the optimal setting of the components 

described in Sections II-A, II-B, and II-C via parameter exploration and well-tested criteria 

on the training data T. This training data consist of N cardiac MRI scans such that T : = {Ii : 

i = 1, . . . , N}.Our method assumes that each MRI Ii only shows the left ventricle and right 

ventricle with the remaining parts being blacked out. The purpose of omitting noncardiac 

structures, which is similar to skull stripping in brain imaging, is to ensure that our approach 

is solely influenced by cardiac tissue and not by neighboring anatomies, such as the lung and 

liver. After completing the training phase of our approach, we automatically classify new 

MRIs according to Section II-D.

A. iRAVENS: A Deformation-Based Encoding

To define our high-dimensional shape descriptor of the image domain, we automatically 

select a template image IT from the training set T, parcellate the image domain of IT into a 

grid of disjoint ROIs, and then specify the process of extracting the ROI-specific iRAVENS 

maps.

We carefully choose the template IT, as a bad selection can negatively influence the accuracy 

of our classification framework. If IT is very different from the other scans, its ROIs are 

difficult to match to the other subjects. This lowers the quality of the iRAVENS maps, which 

rely on accurate nonrigid registration. We reduce this risk by performing unbiased template 

selection via GRAM [30]. GRAM selects as template, called IT, the scan that is closest to 

the geodesic mean [46] of all scans in T. IT is thus the scan most similar, and likely easiest to 

register, to all the other scans in the training set.

After selecting the template IT, we linearly align each image Ii ∈ T to IT. Furthermore, we 

separate the domain Ω of IT into R disjoint ROIs

Keeping the regions disjoint, such as in the examples of Fig. 2, allows our framework to 

independently analyze each region for impact of disease.

Inspired by RAVENS maps [14] and atlas-based segmentation [40], we compute the 

iRAVENS map of the image Ii ∈ T with respect to Ωr by first registering IT to Ii via the 

diffeomorphic demons algorithm [47]. This results in the deformation map ϕ : x → x + ϕi 

(x) at voxel x ∈ Ω. Now let J(ϕi) be the Jacobian determinant of ϕi, Br be the binary map 

representing the region Ωr on the image domain Ω, and Br(ϕi) the template region warped to 
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the corresponding subject region. The iRAVENS map  represents the ROI Ωr with respect 

to image Ii by the product between Br(ϕi), which encodes the boundary of the aligned ROI, 

and J(ϕi), which encodes the changes in the shape between the original and aligned ROI with 

respect to each image location. At voxel x ∈ Ω, the iRAVENS map is thus defined as

Fig. 3(c) is an example of an iRAVENS map. The map was created by registering the 

template of Fig. 3(a), which is a MRI of a normal control, to the TOF subject in Fig. 3(b), 

whose right ventricle is dilated—a hallmark for the long term impact of TOF. The iRAVENS 

map captures the dilation of the right ventricle via local expansion (red) and by a ROI that 

has increased in size compared to its origin in the template space. Note that the boundary of 

the ROI in iRAVENS does not perfectly match the right ventricle in Fig. 3(b) as the 

underlying deformation ϕi is too stiff. While a more flexible deformation could perfectly 

match the boundaries, the corresponding iRAVENS map would be more susceptible to noise, 

which could negatively impact further analysis. Unlike RAVENS, who only encodes local 

shape information as the ROI of each subject is analyzed in the template space, iRAVENS 

approximates the true boundary of the ROI in the subject space, which provides important 

information for identifying disease inflicted changes in anatomy as our experiments of 

Section III indicate.

In summary, we compute the iRAVENS map for a specific Ii based on the Jacobian of the 

deformation from the template to Ii. Repeating this process for each image in T results in the 

set of iRAVENS maps { }.

B. Creating Compact and Disease-Sensitive Encodings

For each ROI Ωr, we now derive a compact and disease-sensitive encoding from the 

iRAVENS map. We first learn the regional manifold across the training set T, then use the 

resulting low-dimensional coordinate system to generate a compact encoding of the 

iRAVENS maps. Finally, we transform this compact representation into a disease-sensitive 

one by only keeping those coordinates that are most informative with respect to 

distinguishing the normal controls from the diseased population.

We create the regional manifolds via ISOMAP [20], which represents the manifold as a 

graph Gr. Each node of Gr denotes the ROI Ωr of an image, and the edge length between 

nodes represent the similarity between the corresponding image patches. ISOMAP then 

maps Gr into a low-dimensional Euclidean space so that the graph structure is locally 

preserved.

We construct Gr based on the pairwise distance dr (Ii, Ij) between Ii and Ij with respect to Ωr. 

We choose for dr (Ii, Ij) the L2 norm (Euclidean distance) of the corresponding iRAVENS 

maps  and 
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(1)

The L2-distance between iRAVENS maps Ωr confined to measures the structural difference 

between a pair of scans in that region. Two scans with similar shapes in the ROI have similar 

iRAVENS maps and the distance will be small. The opposite is true for the ROIs of two 

images with different anatomical shapes (see Fig. 4).

After computing dr for all pairs of images in T, we build the graph Gr by first assigning the 

edge length between two nodes a and b as the distance dr (a, b). We then apply the k nearest 

neighbor (kNN) algorithm [48], in which only k edges of each node are retained. According 

to [30], we set the neighborhood size k to the smallest values so that Gr is a connected graph. 

ISOMAP finds the low-dimensional embedding of this graph by first computing the 

geodesic distance for all pairs of nodes, which is the sum of the length of the edges along the 

shortest path between the two corresponding images. The results are stored in a matrix with 

the size corresponding to the number of images. The nr-dimensional embeddings are the 

results of applying multi-dimensional scaling (MDS) [49] on the distance matrix. As 

suggested in [30], nr is automatically set as the smallest number of embedding coordinates 

that conserve at least 90% of the original information, which we approximate by the 

normalized compactness [50], i.e., the sum of the eigenvalues associated with the first nr-

dimensional embedding coordinates divided by the sum of all eigenvalues as computed by 

MDS. Thus, the region Ωr of training image Ii ∈ T is now reduced to an nr-dimensional 

vector  of the embedding coordinates. Consequently, 

 are the compact encodings of all training images in T. Fig. 5 shows an 

example of the 2-D embedding of the right ventricle region. Red and green points represent 

images of TOF patients and normal controls, respectively. The blue lines are the edges 

between k-nearest neighbors, which connects images with similar right ventricular shapes. 

Interestingly, the first embedding coordinate captures right ventricular dilation with its 

tendency increasing for images further to the right. In addition, the graph is nicely separating 

most of the TOF subjects from the normal controls.

To turn the compact encoding into a disease-sensitive one, we now only keep the most 

informative embeddings with respect to distinguishing the normal controls from the diseased 

population by applying minimum redundancy maximum relevance (mRMR) [21] to the 

coordinates of Er. Specifically, let y := {yi ∈ {0, 1} : i = 1, . . . , N}be the set of labels 

associated with training data set, i.e., yi = 1 if image Ii is of a TOF patient and yi = 0 if it is 

normal. Given Er and y, mRMR selects the mr-dimensional embedding coordinates Êr ⊂ Er 

that minimize the mutual information between selected embedding coordinates Êr 

(redundancy) and maximize the average mutual information between Êr and y (relevance). In 

other words, mRMR selects the embedding coordinates with highest relevance to the disease 

labels y while minimizing the dependency between selected embedding coordinates. The 

corresponding indices of the selected coordinates are denoted as 

.
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The procedure for computing Er, Êr, and Sr is repeated independently for all regions Ωr ∈ Ψ, 

which results in {Ê1, . . . , ÊR} and {S1, . . . , SR}.

C. Training and Fusing Regional Classifiers

We identify the possible impact of a disease by training a classifier for each region and 

assign a single label to the input MRI by combing the output of the regional classifiers 

according to their accuracy in identifying the disease.

For each region Ωr, we train a linear support vector machine (SVM) [19] based on the 

disease-sensitive, regional embeddings Êr and the set of labels y. During training, SVM 

determines a linear hyperplane that separates the normal and diseased images. We repeat this 

process for each ROI Ωr resulting in the set of regional classifiers, which identify the 

possibly impact of TOF in individual regions.

To derive a single label y ∈ {0, 1} for a (training) image, we combine the results of the 

region-specific classification by weighing them according to importance of the 

corresponding region in identifying the disease. We define the importance of each regional 

classifier based on their confusion matrix during training, i.e., true positive (TPr), false 

negative (FNr), false positive (FPr), and true negative (TNr). Specifically, we compute the 

training accuracy

(2)

which we view as an indicator for the impact of a disease on the region and thus the 

importance of the region in distinguishing a normal control from a diseased subject.

Fig. 6 visualizes the “wr” accuracy maps of 100 subjects with respect to different image 

parcellations. In (B)–(F), regions of high importance ( 85%, orange or red) are near the 

septum (the wall separating left ventricle and right ventricle) area which are implicated by 

reconstructive TOF surgery [51], [52]. They also show regions of importance inside the left 

ventricle, which echoes recent clinical findings [45]. However, most regions in the left 

ventricle provide low accuracy, which may explain why volumetric image studies often only 

identify the impact of TOF in the right ventricle. Furthermore, most regional classifiers on 

the small grid shown in (G) are of low accuracy (blue) indicating that the size of each region 

is too small to reliably identify the disease. On the other hand, the regions of the coarse grid 

in (A) are too large, as none of the corresponding classifier are very accurate (red) in 

identifying the disease.

Based on the regional weights wr, we now turn the regional labels z := (z1, . . . , zR)of a 

specific image into a single label y via weighted majority voting, i.e., we compute the 

normalized sum across the regional weight scores
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then label the image as diseased wv(z) > 0.5 if and normal otherwise.

The product rule [53] is an alternative to fusing regional classifiers based on the confusion 

matrix. Unlike weighted majority voting, the product rule weights the importance of a 

regional classifier by separately computing a weight for each output of the classifier, i.e., 

{0,1}. In case the classifier of region Ωr was positive, zr = 1, then we weight region Ωr by the 

true- and false-positive values

In case it was not positive, zr = 0, then we weight the corresponding region according to the 

true and false negative values

Next, the product rule computes a weight for each possible image label y by the product 

across all the regional weights, i.e.,

(3)

Note that if the regional label zr agrees with the global label y, then the component is wr(zr)y 

(1 − wr (zr)y) the normalized “true” value, i.e., wr(0)0 · (1 − wr(0))1 = 1 − wr(0) = TNr/(FNr 

+ TNr). Finally, the product rule assigns the image to the label with the maximum weight, 

i.e., the image is labelled as diseased if wp(1, z) > wp(0, z) and normal otherwise. We expect 

the product rule to weight individual regions similar to the weighted majority Vote as both 

methods compute the weights based on the confusion matrix. However, the product rule 

infers the image label y by taking into account the sensitivity and specificity of each regional 

classifier. This is not the case for the weighted majority voting, which simply ignores 

regional classifiers that are not accurate in identifying the disease.

Having defined the mechanism for assigning a single label to an image completes the 

training of our approach, which was done without any prior information about the disease.
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D. Detecting Disease in New Scans

Our approach now classifies a new (test) image It, that is not part of the training set T, by 

following the workflow of Fig. 1, whose steps we now review for test cases.

After computing the iRAVENS maps for each region, our method determines the regional 

embedding  for It by first computing the distances dr (It, Ii) of It to the training images Ii ∈ 
T [see (1)]. Based on the distances dr(It, ·) It, is projected to the corresponding regional 

manifold via Landmark-ISOMAP [54]. This method first adds It to the existing kNN graph 

of the regional manifold by adding edges between It and the k most similar images in T 

according to dr(It, ·). Then, it computes the geodesic distances for It to all the training 

images and derives the regional embedding coordinates  for It. This 

approach thus preserves the regional embeddings Er for the images of T. Next, only those 

coordinates of  are kept that are listed in Sr, which results in the compact and disease-

sensitive embedding . Finally,  is fed into the corresponding 

regional classifiers. The process is repeated for all R ROIs, resulting in the set of regional 

labels .

To visualize the possible impact of disease on the individual subject, we multiply these 

labels zt (which we now assume to be {−1, +1}instead of {0,1}) with the training accuracy 

scores of the regional classifiers of (2), color the regions according to these values, and map 

the corresponding chart from the template to the subject space. Fig. 7 shows the resulting 

abnormality maps with grid size 15 × 15 × 8 mm [as in Fig. 6(d)] of three normal subjects 

and three TOF patients. The maps of the normal subjects misclassify a few regions as 

impacted by disease (red). However, they do so with relatively low confidence as the 

accuracy of the corresponding classifiers was low during training. In addition, most of the 

other regions clearly indicate that the subject is normal. The maps of the TOF patients are 

strikingly different: most of the regions indicate the presence of disease with high weights.

The final step of our approach reduces the abnormality map of image It into a single label 

according to the fusion approaches of Section II-C.

III. Classification Accuracy

We measure the accuracy of our regional manifold-based classifier on a data set consisting 

of cardiac MRIs of 50 healthy subjects and 50 TOF patients. We use ten-fold cross 

validation, i.e., we repeatedly train the classifiers on 90 subjects and measure on the 

remaining 10 subjects the accuracy of the classifier in distinguishing normal controls versus 

TOF patients. Our results on this data will show that regional manifolds are substantially 

more accurate in describing disease-related anatomical changes than conventional clinical 

measures. In addition, our labelling based on regional manifolds outperforms classification 

based on global manifold learning and detects abnormal regions impacted by TOF. The 

remainder of this section describes the experimental set up, reports the accuracy scores of 

our regional manifold-based classifier compared with current methods, and ends with visual 

inspection of our classification results.
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A. Experimental Setup

1) Data Set—Our data set consists of short-axis cine MR images at end-diastole of 50 

healthy adults and 50 TOF patients. All cases were selected based on their medical history. 

Healthy subjects were scanned for diagnostic purpose and confirmed as normal. In addition, 

their medical records did not list any other cardiac diseases. All TOF patients were 18 years 

or older, received reconstructive surgery during infancy, and were scanned as part of routine 

follow-up. In addition, we insured that the two groups were age-matched (normal group: 

35.24 ± 13.02 years; TOF group: 32.64 ± 8.91 years, two-sided unpaired t-test: p > 0.1).

Each scan was acquired as part of standard clinical care at the Hospital of the University of 

Pennsylvania. The acquisition consisted of a sequence of balanced steady state free 

precession (SSFP) short-axis images of the heart using breath holds in a 1.5T Siemens 

Avanto scanner with 1.25 mm in-plane resolution and 8 mm slice thickness. During 

preprocessing, each scan was anonymized, and we confined the spatial positions of these 

short-axis scans to the mid-portion of the ventricles (12 slices), where the pathologies are 

usually prominent.

An expert segmented the left ventricle and right ventricle using the software “SEGMENT” 

[55] and manually edited the results for quality control. We then used the segmentation to 

omit noncardiac structures from the scans. Furthermore, we corrected for slice misalignment 

due to breathing motion by detecting the center of LV via Hough transform [56] and then 

stacking the slices so that the center of the left ventricle aligns across the slices. Finally, each 

scan was bias field corrected via N4ITK [57] and linearly aligned to the Auckland Cardiac 

Atlas [58] using FSL flirt [59].

2) Parameter Exploration—There are four important parameters in our regional 

manifold based-classifier, which were not automatically determined in Section II. To begin 

with, Section II-A did not specify a criterion for the optimal ROI setting when partitioning 

the image domain. For each region Ωr, we also have to determine the smoothness parameter 

for Demons (the registration approach used by the deformation-based encoding iRAVENS in 

Section II-A), the optimal number of embedding coordinates generated by mRMR (Section 

II-B), and the penalty parameter of the linear SVM classifier (Section II-C). We determine 

the optimal values for these four parameters by simultaneously exploring their search spaces 

based on five-fold cross validation on the training data set. We now define the parameters 

and their search spaces in further detail.

The partitioning scheme of Fig. 2(b) parcellates the image domain into a regular grid. The 

definition of the grid depends on the grid size “g,” whose search space 75 × 75 × 32 mm 

(A), 37.5 × 37.5 × 16 mm (B), 18.75 × 18.75 × 8 mm (C), 15 × 15 × 8 mm (D), 12.5 × 12.5 

× 8 mm (E), 8.75 × 8.75 × 8 mm (F), 6.25 × 6.25 × 8 mm (G) covers a wide range of sizes as 

visible in Fig. 6. The optimal grid setting chosen by the parameter exploration switched 

between (D) and (E) depending on the experiment. The regions are confined to a regular grid 

to keep the cost low for determining the optimal parcellation, which, for example, is not the 

case for the irregular mesh proposed in [60].We do, however, also test the partitioning 

scheme of Fig. 2(a), for which an expert manually segmented the inter-ventricular septum 

(separating the right from the left ventricle) in the template. Unlike this expert-defined 
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partitioning scheme, the generic grid-partition does not require any prior knowledge and 

allows us to display the possible impact of TOF inside the ventricle, such as in Fig. 7.

In order to define the search space of s, the smoothness parameter of the deformation maps 

of region Ωr, we first generated the deformation maps for the entire image domain by 

running Demons with different global smoothing setting s. With respect to s, we then 

measured the accuracy of the regional manifold-based classifier, which monotonously 

dropped with increasing s from 92% for s = 0 down to 89% for s = 2.5. We note that s 
cannot be negative, and the smaller s the less Demons constrains the flexibility within the 

deformation map so that the resulting iRAVENS maps are better in capturing the subtle 

anatomical changes caused by TOF. Based on these results, we set the search space for to 

{0,0.5,1.5} and the optimal smoothness setting chosen by the parameter exploration varied 

between 0 and 0.5 across all experiments.

For each region Ωr, we also define the search space for the number of embeddings selected 

by mRMR, i.e., mr, with respect to the embedding dimension nr of ISOMAP. Specifically, 

we set the search space to {0.2nr, 0.4nr, 0.6nr, 0.8nr, nr}. According to [61], we define the 

search space of the fourth parameter, the penalty parameter Cr of the linear SVM classifier, 

as {2−3, 2−1, . . . , 27}. Across all regions and experiments, the histograms of the optimal 

setting of those two parameters mirrored hyperbolic functions, whose maxima were at the 

smallest values and then quickly tapered off.

B. Classification Results

The overall goal of this experiment is to report the accuracy of our classifier in correctly 

identifying scans as TOF or normal control, investigating the importance of the individual 

components of our approach, and compare the results with those of current methods. Using 

the grid partition and combining the regional classifier results via the product rule of Section 

II-C, the accuracy of our regional manifold-based classification is 92% according to the ten-

fold cross validation on the 100 data sets. We note that all important parameters were 

automatically determined in this experiment. However, the accuracy did not change when 

fixing the smoothing parameter sr to zero for all regions (see Section III-A2), so that we did 

not vary sr in the remaining experiments.

To further justify the approach of Section II, we compare its accuracy scores to simpler 

implementations, i.e., our approach by replacing iRAVENS with the intensity values of the 

MRIs (Accuracy: 85%), and by directly applying iRAVENS to the linear SVM (Accuracy: 

71%) and a nonlinear SVM [62] (Accuracy: 78%). In all three instances, the accuracy scores 

were well below the 92% achieved by our method. The accuracy of our method also dropped 

when we omitted mRMR (Accuracy: 89%) or replaced the late fusion strategies of Section 

II-C with the early fusion one (Accuracy: 79%), which first concatenates the disease-

sensitive encoding and then applies a linear SVM classifier to resulting vector. To further 

motivate the individual components of our approach, the remainder of this section compares 

our method to alternative implementations. We first show that the shape changes caused by 

TOF are better captured by our disease-sensitive encoding based on the regional manifolds 

of Section II-B than by the standard clinical shape representation (volume of the left and 

right ventricle). We then discuss the sensitivity of our approach to the grid size and compare 
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our findings with those achieved by alternative fusion strategies. Finally, we demonstrate the 

superiority of our regional manifolds compared to the manifold for the entire image domain.

1) Comparison to Clinical Score—The first experiment compares the accuracy of the 

disease-sensitive encoding based on the expert-defined partitioning of the ventricles [see 

also Fig. 2(a)] to the corresponding volumetric measurements. Specifically, we measure the 

accuracy of a linear SVM classifier applied to each encoding just based on the left ventricle 

(LV) alone, the right ventricle (RV) alone, as well as both together (LV & RV). 

Classifications based on both structures first concatenate the features extracted from each 

region into one vector and then label the scan based on that vector (early fusion). This 

deviates from the late fusion approach proposed in Section II-C, which first feeds the 

features into regional classifiers and then combines the results. We did so in order to directly 

link the accuracy of the classifier with the quality of the features in encoding anatomical 

changes caused by the disease. In addition, both encodings performed slightly worse when 

using late fusion as they ignored the information in the left ventricle. Finally, we note that 

the volumetric measurements for each ventricle require the segmentation of the inter 

ventricular septum in each individual case. The disease-sensitive encoding, on the other side, 

requires this segmentation only to be done on the template [see Fig. 2(a)]. Thus, the 

classification task based on the regional embeddings is slightly more difficult as it relies on 

less prior information than the volume scores.

Table I summarizes the accuracy scores. For each of the three experiments (classification 

based on LV, RV, or LV & RV), our disease-sensitive encoding produced higher 

classification accuracy than the ventricular volumes, i.e., our regional embeddings are more 

accurate in capturing the shape change induced by TOF. According to the McNemar’s test 

[63], our encoding was significantly better (χ2 > 3.84)than the volume measurements in case 

of RV and LV & RV, but not for LV (χ2 < 3.84). The McNemar’s test is a variant of χ2 test 

to analyze matched pairs of data. The test counts the number of cases where one of the 

classifiers is failed but the other succeeded. It then quantifies the statistical difference 

between the two classifiers by computing the z-score of these counts.

Looking at each ROI, we observe that both methods perform badly (around 50%) when the 

classification is confined to the LV. This is not the case for the RV, where both types achieve 

a classification accuracy above 80%. These results agree with the clinical finding that TOF 

mostly impacts the RV. Interestingly, both feature types achieve the highest accuracy when 

concatenating the features of LV and RV (volume: 83%; regional embedding: 89%). This 

implies that LV contains information useful for disease detection but only in combination 

with RV. Finally, we note that the accuracy of both encodings was lower than our regional 

manifold-based classifier, whose grid partitioning can detect the impact of disease in regions 

within each ventricle.

2) Accuracy of Combining Regional Classifiers—As a follow-up to the previous 

experiment, we now investigate the accuracy of regional manifold-based classifiers with 

respect to the grid size of the partitioning, i.e., before running our approach we fix the grid 

size to a value of the search space specified in Section III-A2 and visualized by Fig. 6. We 

Ye et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



then compare those accuracy to the ones achieved by our method, replacing the product rule 

of Section II-C with weighted majority voting and unweighted majority voting.

Fig. 8 summarizes the outcome of the experiment. The x-axis represents the grid size and the 

y-axis corresponds to the classification accuracy, with the results of the product rule shown 

in blue, weighted majority voting in green, and majority voting in red. In general, all 

combination strategies perform poorly with the largest ROI (A). There are two possible 

explanations. First, the largest regions have more shape variability and require more training 

samples to accurately learn the manifold. Given the fixed training size, the accuracy of the 

embeddings thus generally drops with the increase in size of the corresponding ROI. 

Second, reconstructive surgery generally impacts small regions of the heart, and therefore a 

large ROI can dilute information in the small region impacted by reconstructive surgery. In 

addition, we note that the classification accuracy is low for the smallest ROI (G). Its size is 

too small for the regional manifolds to capture meaningful anatomical information and thus 

mostly captures noise in the measurements. The remaining ROI settings (B–F) produce good 

(≥80%) to very high (≥90%) accuracy scores, which is consistent with our findings with 

respect to the training accuracy of each regional classifier shown in Fig. 6.

Out of the three ensemble strategies, unweighted majority voting generally performed worse. 

This finding supports our claim that classifiers should account for the fact that TOF impacts 

the anatomy of the heart differently in specific regions. Of the two weighted combination 

strategies, the Product Rule generally was better than weighted majority voting, with the 

peak accuracy of 92% for grid size (E), which is equivalent to the accuracy of the regional 

manifold-based classifier parametrized automatically. Weighted majority voting simply 

ignores regional classifiers that are not accurate in identifying the disease. This is not the 

case for the product rule, which determines the label of a scan by taking into account the 

sensitivity and specificity of each regional classifier. The difference in performance between 

the two strategies indicates that even regions with low accuracy are important for identifying 

TOF, which echoes our findings of Section III-B1.

3) Global Versus Regional Manifold Learning—In the final experiment, we compared 

our regional manifold learning approach to alternative manifold learning techniques by 

replacing ISOMAP with the linear approach called principle component analysis (PCA) [64] 

and learning a single manifold over the entire image domain, which we refer to as global 

manifold learning. For all experiments, we fix the grid size to (E) in addition to the regional 

smoothing parameter sr as it does no impact the accuracy of our approach according to the 

exploration in Section III-B2.

For both learning methods, the regional approach (ISOMAP: 92%, PCA: 90%) was 

significantly more accurate than the global one (ISOMAP: 76%, PCA: 74%) according to 

McNemar’s test (χ2 > 3.84). These results confirm our earlier observation that encodings of 

larger image regions tend to be insensitive towards the local changes caused by TOF. In 

addition, ISOMAP produced slightly higher classification accuracy than PCA for both 

global and regional manifold learning. We therefore conclude that the nonlinear model of 

ISOMAP is a better fit than the linear model of PCA for capturing the complex shape 

variations of the hearts in our data set.
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C. Visual Inspection

We complement the quantitative comparison above with a qualitative analysis of the results 

of our regional manifold-based classifier. Fig. 9 shows a sample slice of each misclassified 

case. We notice that the misclassified TOF cases only show minor residual effects from the 

reconstructive TOF surgery and thus look similar to the misclassified normal controls. The 

reconstructive TOF surgery involves expanding the narrowed right-ventricular outflow tract 

with a pericardial patch, repairing the septal defect, and dilating the narrowed pulmonic 

valve. This last part of the procedure invariably leaves the patient with regurgitation of the 

pulmonic valve. Over time, the increased volume load on the right ventricle leads to 

characteristic shape changes and dilation, which are shown in the misclassified cases as well 

as in Fig. 10. In Fig. 10, we sorted all cases according to their weight wp (1,z) defined by the 

product rule of (3), which is the weight of the image being labelled TOF, and then selected 

six representative samples from being most likely normal (left) to most likely TOF (right). 

The figure illustrates the progression of the shape of the right ventricle from being round in 

normal controls to the different degrees of dilation and irregularity in TOF patients. The 

results indicate that the overall weight computed by our regional manifold-based classifier 

reflects the shape abnormalities in the heart.

In summary, these experiments have not only validated our choices for the regional manifold 

based classifier, but also showed that this approach is more accurate in encoding the local 

anatomical impact of reconstructive TOF surgery than volumetric measurements and global 

manifold learning. Without depending on prior knowledge of the disease, the approach not 

only automatically classifies individual scans but also provides weight scores that can guide 

visual comparison of TOF cases. The weight scores might aid clinicians in improving the 

timing for follow-up surgery in individual TOF subjects, which is one of our long-term 

goals.

IV. Conclusion

Manifold learning is frequently used in medical image analysis. However, the accuracy of 

existing implementations suffers from viewing each image as a single data point. In this 

paper, we proposed an alternative to learning the manifold of the entire image domain by 

separately learning the manifold for each ROI. We then used the regional manifolds to 

capture changes in anatomy due to disease specific to each region. We trained a classifier for 

each disease-sensitive encoding allowing us to identify regions possibly affected by the 

disease even without any prior knowledge about the disease. We produced a single decision 

for each scan by combining the regional classification based on the accuracy of that region 

in identifying the disease. We demonstrated the superiority of the method by distinguishing 

TOF subjects from normal controls. Based on ten-fold cross validation, our method achieved 

92% accuracy, which is significantly better than the classification based on ventricular 

volume measurements or global manifold learning.

Though we focused herein on identifying scans of TOF patients, our classifier based on 

regional manifolds is not specific to this disease or the heart. It learns region-specific 

patterns characterizing the disease from features extracted for all voxels of the MRI. Our 

approach should thus be applicable to other data sets, such as brain MRIs of normal controls 
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and Alzheimer patients, where large anatomical shape variations are observed within the 

healthy population and the disease-inflicted anatomical changes are confined to specific, 

small image regions [65], [66]. Our regional classifier should also be applicable to diseases 

regionally impacting other cardiac properties, such as the movement of the heart in case of 

septal flash [35]. Assuming the feature is a good fit for the disease, we expect the classifier 

to be more accurate when learning the manifold of image regions instead of the entire image 

domain. In conclusion, classification based on regional manifolds should be beneficial to 

many other medical image applications.
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Fig. 1. 
An overview of the regional manifold-based classifier. Our approach first computes 

iRAVENS maps (see Section II-A) to encode regional anatomical variations shown in input 

MRI. From the high-dimensional descriptors, it then infers a low-dimensional encoding of 

the regional manifolds created by ISOMAP [20] and determines the disease-sensitive 

embeddings via mRMR [21]. Finally, our approach applies a separate classifier to each 

regional descriptor and combines the results by weighted fusion to label the input MRI as 

normal or diseased.
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Fig. 2. 
Examples of parcellations of the heart into nonoverlapping ROIs. (a) Divides the heart into 

the two ventricular regions while (b) is based on a regular grid.
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Fig. 3. 
Example of iRAVENS map: the template image (a) is registered to the scan of a TOF subject 

(b) resulting in the iRAVENS map (c) for the right ventricle region. Red indicates volume 

expansion while blue indicates shrinkage. Right ventricular dilation of the TOF subject is 

captured by the volume expansion shown in the iRAVENS map in the subject’s coordinate 

space.

Ye et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Examples of differences between iRAVENS maps from different subjects: First row shows 

the images and second row represents the corresponding iRAVENS map of the left ventricle 

(LV). Differences between iRAVENS maps are shown in the third row. For example, I2 

(normal) is less similar to I1 (TOF) than to I3 (normal) in the left ventricle, which results in a 

larger distance .
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Fig. 5. 
Example of 2-D embeddings based on iRAVENS in the right ventricular region. Red and 

green dots represent TOF and normal subjects, respectively. Blue lines connect the nodes 

with their k nearest neighbors (here: k = 2). Only a subset of images is shown to avoid 

clutter. Right-ventricular boundary of the image is highlighted in red. The neighboring 

images in the embedding have similar right ventricles in terms of shape and size. In addition, 

there is a tendency of right-ventricular dilation along the first embedding coordinate from 

left to right.
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Fig. 6. 
Training accuracy of the regional classifiers based on different region sizes: Regions of high 

weight (red) are around the septum area, which is impacted by reconstructive TOF surgery. 

Combining the results of the regional classifier based on these weights automatically 

emphasizes classification results of regions impacted by TOF.
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Fig. 7. 
Examples of abnormality maps for (a) normal subjects and (b) TOF subjects with the grid 

size being 15 × 15 × 8 mm. Red and blue indicate TOF and normal control (NC) regions, 

respectively. Maps of normal subjects (a) are generally shown in blue while the maps of 

TOF subjects (b) mostly indicate the presence of disease with high weights (red).
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Fig. 8. 
Classification accuracy on various size of grid ROIs with different combination strategies 

(refer Fig. 6 for grid size). There is a significant drop off in the classification accuracy at the 

largest grid ROI (A) and the smallest grid ROI (G). The product rule (blue circle) 

outperforms other combination strategies such as majority (red cross) or weighted majority 

voting (green triangle).
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Fig. 9. 
Sample slice from each subject that was misclassified by our approach. We note that the 

misclassified TOF cases are similar to the misclassified healthy subjects.
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Fig. 10. 
Examples of correctly classified scans. Scans were selected based on their overall weight wp 

(1, z) as determined by the product rule of (3). The figure illustrates the progression of the 

shape of the right ventricle from being round to severely dilated and irregular.
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Table I

Accuracy of the Disease-Sensitive Encoding Based on the Expert-Defined Partitioning is Much Higher Than 

the Ventricular Volumes. This Shows That Our Disease-Sensitive Encoding Can Better Describe the Shape 

Changes Caused by TOF. Encoding Just the Right Ventricle (RV) is Better in Identifying TOF Than Left 

Ventricle (LV), Which Agrees With the Clinical Understanding of Reconstructive TOF Surgeries Impacting 

the RV [1], [2]. Also Note That the Accuracy of the Expert-Defined Partitioning Scheme is Lower Then the 

Grid-Based Scheme, Which was 92%

Ventricular Volumes Expert-Defined Partitioning

LV 55% 56%

RV 82% 88%

LV & RV 83% 89%
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