
HAL Id: inria-00262117
https://inria.hal.science/inria-00262117v1

Submitted on 11 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three-Dimensional Motion Tracking of Coronary
Arteries in Biplane Cineangiogram

Guy Shechter, Frédéric Devernay, Ève Coste-Manière, Arshed Quyyumi,
Elliott R. Mcveigh

To cite this version:
Guy Shechter, Frédéric Devernay, Ève Coste-Manière, Arshed Quyyumi, Elliott R. Mcveigh. Three-
Dimensional Motion Tracking of Coronary Arteries in Biplane Cineangiogram. IEEE Transactions on
Medical Imaging, 2003, 22 (4), pp.493–503. �10.1109/TMI.2003.809090�. �inria-00262117�

https://inria.hal.science/inria-00262117v1
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 4, APRIL 2003 493

Three-Dimensional Motion Tracking of Coronary
Arteries in Biplane Cineangiograms

Guy Shechter*, Frédéric Devernay, Eve Coste-Manière, Arshed Quyyumi, and Elliot R. McVeigh

Abstract—A three-dimensional (3-D) method for tracking the
coronary arteries through a temporal sequence of biplane X-ray
angiography images is presented. A 3-D centerline model of the
coronary vasculature is reconstructed from a biplane image pair
at one time frame, and its motion is tracked using a coarse-to-fine
hierarchy of motion models. Three-dimensional constraints on the
length of the arteries and on the spatial regularity of the motion
field are used to overcome limitations of classical two-dimensional
vessel tracking methods, such as tracking vessels through pro-
jective occlusions. This algorithm was clinically validated in five
patients by tracking the motion of the left coronary tree over one
cardiac cycle. The root mean square reprojection errors were
found to be submillimeter in 93% (54/58) of the image pairs.
The performance of the tracking algorithm was quantified in
three dimensions using a deforming vascular phantom. RMS 3-D
distance errors were computed between centerline models tracked
in the X-ray images and gold-standard centerline models of the
phantom generated from a gated 3-D magnetic resonance image
acquisition. The mean error was 0.69( 0.06) mm over eight
temporal phases and four different biplane orientations.

Index Terms—Angiocardiography, geometric modeling, stereo
vision, tracking.

I. INTRODUCTION

X -RAY coronary angiography is the gold-standard imaging
technique for visualizing the morphology and motion of

the coronary arteries. A pair of images, obtained using a biplane
angiography system, can be used to reconstruct the three-dimen-
sional (3-D) structure of the vascular tree [1]–[6]. These 3-D
coronary reconstructions at multiple phases of the cardiac cycle
have been used to describe the motion and function of the left
ventricle epicardial surface [7]–[9], to quantify vessel lengths,
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volume, and flow [1], [10], and to quantify stenosis morphology
[2].

The classical method for recovering the motion of the
coronaries is to track the motion of the arterial centerlines in
the two-dimensional (2-D) projection images. For each cardiac
phase, a 3-D coronary tree is independently reconstructed.
Optical flow [11], binary image elastic registration [12],
Kalman snakes [13], and local space search and graph mini-
mization techniques [14] are some of the methods that have
been proposed for 2-D vessel tracking. However, tracking the
vessels in the projection image space has significant limitations.
Multiple vessel overlap is common due to the projective nature
of the imaging modality. Correctly tracking arteries through
these regions is a difficult problem, which can only be solved
with additional knowledge and regularizing constraints. Yet,
the use of true 3-D constraints on the shape and length of
the coronaries, as well as on the spatial regularity of the 3-D
motion of the coronary tree, is impossible when operating in
the 2-D image space.

Making the transition to tracking the motion of the arteries
in 3-D, Ruan [15] proposed combining optical flow derived
displacement information from two projection images to
displace an existing 3-D coronary tree model. A deformable
models approach for segmenting objects in a stereo image pair
using parametric curves was described by Bascle [16] and
applied to segmenting the coronary arteries with 3-D B-spline
curves by Radeva [17] and Cañero [18]. Toledo [19] extended
this work into the temporal dimension by tracking the motion
of the 3-D curves by allowing each B-spline control point to
move independently in 3-D. An energy minimization scheme,
using image derived forces and external constraint forces, is
used to update the position of the control points. Due to the
large number of degrees of freedom (DOFs) associated with
this formulation, a Kalman filter, initialized with the average
3-D structure and motion of the coronary tree defined over a
patient population, is used to constrain the procedure. Other
3-D knowledge based methods include the use of eigensnakes
[20], and Fourier descriptors [21] to track the arteries; recently,
an active contour method based on a biomechanical model was
used to track a pacemaker lead in biplane images [22].

This paper presents a novel 3-D method for tracking the mo-
tion of the coronary arteries through a biplane cineangiography
image sequence. A 3-D model of the coronary artery center-
lines is reconstructed at one time frame, and represented as
an ensemble of 3-D B-spline curves. An energy minimization
problem within a registration framework is formulated to de-
form the coronary tree consistently with the angiogram image
pairs at later time frames. Using 3-D constraints on the length
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changes of the coronary arteries and on the spatial regularity of
their motion, an hierarchical set of coarse-to-fine 3-D motion
models is used to recover the temporal evolution of the coro-
nary tree.

A description of the methods used for image preprocessing,
and for reconstruction of a 3-D coronary model from a biplane
image pair is presented first. The motion models and the mo-
tion tracking method is presented in Sections II-D and Sec-
tion II-E. The performance of this method is quantified in a
phantom and using clinical angiograms, and results are pre-
sented in Section III. Further analysis and remarks are offered
in Sections IV and Section V. A previous version of this work
can be found in [23].

II. M ETHODS

A. Imaging Protocol

Biplane images (Philips BH5000, 15 frames/s, 512512
pixels) of the left coronary tree were acquired for five patients
enrolled in a clinical research protocol approved by the NIH
safety review board. The patients were asked to suspend their
breathing immediately prior to the contrast injection. The ori-
entation of the imaging planes was unconstrained and selected
to maximize separation of the arteries on the projection images.
Later, the imaging system was reoriented to the same configura-
tions used during the acquisition of patient data, and images of a
calibration grid and a phantom were acquired. A calibration grid
of radio-opaque beads was imaged while affixed to the image
intensifier (II); the plastic rectangular phantom containing nine
metal beads was imaged at a location approximating the pa-
tient’s heart.

B. Geometric Distortion Correction and Validation of Imaging
Geometry

Images acquired on an X-ray system equipped with a con-
ventional II suffer from two independent geometric distortions:
1) the curved face of the II generates a pincushion distortion,
which is observable as a stretching in the periphery of images;
and 2) the interaction of the Earth’s magnetic field with the elec-
trons in the II generates an orientation dependent S-shaped dis-
tortion. Making accurate quantitative 3-D models of coronary
morphology and motion depends on eliminating these artifacts.

A detailed explanation of the two step distortion correction
method used for this study can be found in [23]. In summary,
high order geometric distortion is removed by least-squares fit-
ting of fifth degree polynomials to model the observed distortion
of the calibration grid. Corrected images are synthesized by bi-
linear interpolation of the distorted images using the recovered
polynomial functions. However, because the undistorted image
of the calibration grid is computed from the central region of
the distorted image, low-order distortion which affects the en-
tire image is not recoverable in this step.

Reconstruction of the phantom, and comparison to its known
geometry, is used to validate the imaging geometry, as recorded
by the angiography system at the time of imaging, and to re-
cover any low-order image distortion. A nonlinear least squares
method is used to find the in-plane rotations of the two imaging
planes and the 2-D in-plane translation of one imaging plane.

Fig. 1. (a) Example projection image of the left coronary tree (45RAO)
and (b) its corresponding maximum multiscale response map. The multiscale
analysis retains rectilinear structures and removes planar structures such as the
diaphragm and ribs.

The recovered parameters are used to correct the projection ma-
trices for patient studies which used the same imaging arm ori-
entation as a given phantom study.

C. Reconstruction of a 3-D Coronary Tree

The 3-D motion tracking method presented in this paper re-
quires ana priori 3-D model of the coronary tree. For each pa-
tient, this model is reconstructed from one pair of biplane im-
ages at end-diastole using the method described in [6]. The an-
giogram images are first processed with a set of multiscale fil-
ters which detect the centerlines of rectilinear structures [24].
The highest response over the set of filters is stored as the max-
imum response map for that image, which, by thresholding, pro-
vides a noisy segmentation of the coronary centerlines (Fig. 1).
A semi-interactive tool is then used to segment the arterial cen-
terlines on the projection images, using the maximum multiscale
response map to constrain the procedure.

The 2-D centerlines are represented as cubic B-splines, and
are hierarchically organized. A dynamic programming graph
search strategy defines point to point correspondences along the
lengths of the drawn arteries based on the epipolar constraint.
Finally, a discrete 3-D model of the coronary centerlines is re-
constructed by computing the least-squares intersections of rays
connecting matched projection points with their X-ray source
(Fig. 2).

To reduce storage and computational requirements for
tracking the motion of the coronaries, the discrete represen-
tation of the tree is converted to a parametric representation.
The use of B-spline basis functions provides a continuous and
compact representation both in 3-D and in the projected 2-D
images, and provides intrinsic smoothness to the curves [25].
The discrete coronary tree is first decomposed into a set of
arterial segments . Each segment, , is defined
as the ordered set of points describing a unique part of the
coronary tree so that: 1) the segment includes and is terminated
at both ends by a bifurcation point; or 2) is terminated by a
bifurcation point at one end, and at the other end, by a leaf
or root node of the tree. An approximating parametric curve

, is fit to each
using a chord length parameterization so that

(1)
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Fig. 2. (a) RAO and (b) LAO projections of the left coronary tree at end
diastole. In (c), a wide-eyed stereogram of the reconstructed arteries, where
the vessel diameters reflect the scale with the largest response in the artery
detection step.

Specifically, is a 3-D B-spline curve defined as

(2)

where the are the control points, and the
are the th-degree B-spline basis functions. Using the length

nonperiodic and nonuniform knot vector , where
, and

(3)

the values at the ends of the curve are constrained so that

(4)

(5)

This strategy allows continuity to be maintained between
a parent artery, , and a child artery, , by forcing them to
share a control point

if (6)

In practice, cubic B-spline basis functions (degree 3,con-
tinuity) are used for all artery segments, and continuity is
maintained across the bifurcations.

D. Motion Models

The goal of the motion tracking algorithm is to recover the
set of transformations , which map any point

on the coronary tree at time, to the point’s position at time
,

(7)

A hierarchical coarse-to-fine approach for recovering the trans-
formation is used [26]. In this section, a description of the
three motion models used to recover the motion of the coronary
arteries is presented. From global to local, the motion models
are a global 3-D rigid body transformation, a global 3-D affine
transformation, and a local 3-D tensor product B-spline (B-solid
[27]) transformation.

1) Three-Dimensional Rigid Body Transformation:The
class of 3-D rigid body transformations describes motion of
a nondeforming object in using six DOFs: three angles of
rotation, and three translation parameters. The transformation
of a point at time to its position at time can be
written as

(8)

where in , is a 3 3 rotation matrix with Euler angles (,
, ) and is a 3-D translation vector.

The use of Euler angles is justified because the magnitude of the
rotations are expected to be small. Since B-splines are invariant
under rigid transformation, the rigid body transformation func-
tional of the curve from (2) is expressed as

(9)

2) Three-Dimensional Affine Transformation:The class of
3-D affine transformations describes motion of a nonrigid object
in using 12 DOFs. The transformation of a pointat time

to its position at time can be written as

(10)

where in , is a 3 3 matrix with nine free parameters
and is a 3-D

translation vector. The matrix can be decomposed into three
rotations, three scale factors, and three shears. Since B-splines
are invariant under affine transformation, the 3-D affine trans-
formation functional of the curve from (2) is expressed as

(11)

3) B-solid Transformation:A B-solid transformation is
used to model local deformation of the coronary arteries. The
B-solid is the dimension three analog of the one-dimensional
B-spline curve, and the 2-D B-spline tensor product surface.
For a point on the coronary tree at, the B-solid :
gives the 3-D displacement vector to that point’s position at
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time . Given a point at time , its
displacement to time is expressed as

(12)

where the are the control points,
and the are the th-degree B-spline basis functions. The
control point density is directly proportional to the amount of
local deformation that can be represented by the B-solid. By
using cubic B-spline basis functions , continuity
of the deformation field is maintained over the B-solid volume.
Each B-spline basis function is defined on uniform knot vectors
aligned with the patient’s superior-inferior, right-left, and ante-
rior-posterior axes. The B-solid is defined over the volume of
the 3-D coronary tree, with a border on each side of 10% of the
range in that dimension. Finally, the B-solid transformation of a
point at time to its position at time is expressed as

(13)

The B-solid transformation functional for the curve from
(2) is expressed as

(14)

in order to simplify the motion recovery procedure. However,
the B-solid transformation of the control points of the coronary
artery B-splines is not strictly the same as the B-solid transfor-
mation ofevaluationsof the coronary artery B-splines. The use
of the formulation in (14) is justified when the control point den-
sity of the B-solid is much smaller than the control point density
of the coronary artery B-spline curve. Quantitative analysis sup-
porting the use of this formulation is presented in Section III.

E. Motion Tracking

A registration framework is adopted to recover the set of
transformations which deform and orient
the 3-D coronary tree reconstructed at time, to its configu-
ration at time , consistent with the observed angiogram
images at time . A closed system is defined, composed of
a 3-D coronary tree defined at time, the motion transforma-
tion , and a biplane angiogram image pair at time . An
energy measure describing the quality of the transformed coro-
nary tree’s fit to the angiogram images is expressed as

(15)

which is a weighted sum of an external angiographic image de-
rived energy term, an internal arterial energy term, and when
solving for the B-solid transformation, an internal B-solid en-
ergy term. The goal of the motion tracking procedure is to re-
cover the “best” transformation, , which minimizes the en-
ergy functional defined in (15) and nulls its derivative taken with
respect to the transformation parameters. Analytical derivatives
are computed and the solution is recovered with a Lagrangian
explicit numerical scheme, a gradient descent method [16], [28].

To solve for at time , the rigid transformation, ,
is recovered first using a multiresolution approach. The max-
imum multiscale response map corresponding to the angiogram
images at time is smoothed using a Gaussian kernel with
a standard deviation of . When the procedure for recovery of

converges at this resolution, the standard deviation of the
smoothing kernel is halved, and the procedure continues iter-
ating on a sharpened image. This procedure is repeated until the
standard deviation of the smoothing kernel reaches a stopping
condition.

The recovered rigid transformation is used to initialize
the multiresolution search for the affine transformation, .
When solving for the affine transformation, all 12 parameters
are treated as DOFs, which may cause the rotation and trans-
lation parameters to change from those recovered in the rigid
tracking step. Similarly, is used to initialize the multireso-
lution recovery of the B-solid transformation, which, after con-
vergence, is the desired final transformation . Fi-
nally, , the recovered transformation at time , is used
to initialize the search for .

This multiresolution tracking strategy is combined with the
set of hierarchical motion models, with increasing DOFs, in
order to overcome the local minimum sensitivity of the gradient
descent method.

1) External Energy:The external energy term is a measure
of how well the transformed coronary arteries project onto the
angiogram images. is calculated using a potential map,

, computed for the projection X-ray angiography image,,
using the multiscale response method described in Section II-C.
The gradient descent method attracts the arterial model’s pro-
jections into the valleys of the multiscale response map, without
having to explicitly extract and label vessel centerlines in the an-
giogram images.

For a given motion functional, , and a set of curves
defining the 3-D coronary tree at time, , the values
of the potential field of the projected transformed curves are
integrated along their 3-D arc-length and normalized by the
length of the coronary tree and the number of projections

(16)

where is the number of projection images, is the number
of arteries in the 3-D coronary tree model, and the transformed
coronary B-spline curve is itself a 3-D B-spline
curve with control points [see (9), (11), and
(14)]. The functional calculates the arc-length of a 3-D
B-spline curve defined over the parametric interval [0,1] by
evaluating

(17)

Finally, and are the projection coordinates of
on the th projection image. Given the 3 4 projection matrix,

, which defines the projection of the 3-D model coordinates to
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local image coordinates for image, the projected transformed
coronary 3-D B-spline can be written in homogeneous coordi-
nates as

(18)

The nonhomogeneous coordinates of the projected curve can be
expressed as two nonuniform rational B-splines (NURBS)

(19)

(20)

Making the assumption that the length of a coronary artery
changes minimally over the cardiac cycle, ,
[29], and writing the arc-length reparameterization of a B-spline
curve as

(21)

(22)

allows (16) to be written as

(23)

2) Arterial Energy: The internal arterial energy is a regu-
larizing term that prevents large changes in the lengths of the
arteries due to the transformation

(24)

where is the number of arteries in the 3-D coronary tree
model, and L is the arc-length functional defined in (17).

3) B-solid Energy: The internal B-solid energy term is used
to regularize the values at neighboring control points in the
B-spline grid. Therefore, the energy of the B-solid structure
is defined as a 3-D Laplacian operator, and normalized by the
number of control points in the B-solid

(25)

is a distance weighting function where
and

if

if
(26)

F. Validation of the Motion Tracking Algorithm

After recovering a transformation , an independent
quantitative assessment of the motion tracking method’s
performance is desired. As described in the next sections,
validation trials were performed on clinical angiogram images,
and on a deforming vascular phantom.

1) Clinical Angiograms: The ultimate goal of the proposed
algorithm is its application to tracking the coronary arteries in
clinical angiograms. Unfortunately, because the true 3-D motion
of the coronary tree is not known, the use of a 3-D metric is not
possible. Instead, the error is quantified in the space of the 2-D
projection images.

First, the projection angiogram images at time are
segmented using the semi-interactive method described in Sec-
tion II-C. This set of points representing the coronary center-
lines for projection is labeled . For the transformation ,
the transformed coronary tree is computed and sampled in 3-D
with an arc-length resolution of 1 mm. Each point of the sam-
pled transformed coronary tree is projected onto angiogram
using the 3 4 projection matrix . For each projected point,
a 2-D pixel distance is computed to the closest point in. In
order to standardize results between acquisitions, this distance
is converted to millimeters using the known intensifier size and
magnification factor for that acquisition. The reprojection error
for is computed as the root mean square (RMS) of the 2-D
norm distances in both projections.

In some patients, the distal coronary vessels disappear from
the images, presumably due to extravascular myocardial com-
pression during systole [30]. Therefore, any 3-D coronary point
whose distance to the closest point in both projection images is
greater than ten pixels is discarded. Visual inspection is used to
confirm that this procedure does not eliminate points which be-
long to mistracked arteries.

2) Vascular Phantom:A deforming vascular phantom
was constructed to facilitate a 3-D validation experiment. A
tree of Tygon tubes (inner diameters between 0.58–3.18 mm,
total length cm) was constructed, and filled with an
iodinated contrast agent. The tubes were arranged around a
compliant latex balloon which was inflated using a mechanical
ventilator. Sample biplane X-ray images of the phantom are
shown in Fig. 3.

The gold-standard reconstruction of the geometry and mo-
tion of this phantom was assessed with multislice gated mag-
netic resonance (MR) imaging. MR provided images with an
in-plane spatial resolution of 0.4 0.4 mm, a slice thickness of
2 mm, and a temporal resolution of 40 ms (25 cine phases/mo-
tion cycle). The gold-standard representation of the deforming
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Fig. 3. (a) RAO and (b) LAO projections of the vascular phantom. In (c), one
slice of the 3-D MR image volume of the phantom, and in (d) a maximum
intensity projection of the MR images.

phantom was generated by manually delineating the centerlines
in the MR images using a 3-D segmentation tool [31].

Because of the different temporal resolution and sampling
frequency of the MR and X-ray acquisitions (15 frames/s), eight
sets of X-ray/MR image groups that were most closely matched
temporally were identified. The phantom was reconstructed
from the first pair of X-ray images using the vascular recon-
struction method described in Section II-C. A rigid registration
procedure was used to align the centerline reconstructions
obtained from X-ray and MR at the first motion phase, and the
3-D reconstruction error was computed by calculating the RMS
of the closest point distances between these two modalities.

The motion of the reconstructed phantom was tracked
through the remaining seven biplane image pairs. The resulting
centerline models were then compared with the centerlines
segmented from the MR images at the corresponding motion
phase. The quality of the motion tracking algorithm was quan-
tified by computing the RMS of the 3-D closest point distances
between the two modalities at each phase of the tracked motion.
As a baseline error level, 3-D RMS errors were also measured
between the untracked X-ray reconstruction from the first pair
of X-ray images, and the MR reconstructions obtained at the
other seven motion phases.

III. RESULTS

A. Clinical Angiograms

Three-dimensional models of the left coronary tree were re-
constructed for five patients at end-diastole. The amount of the

TABLE I
CORONARY ARTERY SEGMENTSRECONSTRUCTED FOREACH PATIENT

LM: Left main.
LCX: Left circumflex.
LAD: Left anterior descending.
D: Diagonal.
OM: Obtuse marginal.
( Indicates additional unnamed daughter branches.)

coronary vasculature that was reconstructed varied between pa-
tients depending on the pathological state of the arteries, and
the ability to distinguish corresponding arterial segments in the
given projection image pairs. A list of the coronaries recon-
structed for each patient is provided in Table I.

The approximating 3-D B-spline curve representation of the
coronaries was constructed with knots spaced at 2-mm intervals
along the arc-length of the arteries. The maximum 3-D distance
error from the approximating B-spline to the discrete points was
0.6 mm in the five reconstructions. The static 3-D reconstruction
was reprojected onto the images and the RMS reprojection error
was calculated using the method described in Section II-F1. For
each of the five patients, the reconstruction’s reprojection RMS
error was 0.2 mm. This error can be partially attributed to the
semi-interactive arterial segmentation step where the centerline
positions are rounded to the nearest whole pixel.

Motion tracking was performed over one cardiac cycle, which
ranged between 9 and 15 frames in the five data sets. The mean
displacement ( one standard deviation) of the coronary tree
between successive image frames was 5.0 (4.0), 5.2 ( 3.1),
5.5 ( 2.8), 7.1 ( 4.4), and 7.4 ( 4.3) pixels. The first iteration
for each motion model operated on the potential map smoothed
using a Gaussian kernel with a standard deviation,, of 4 pixels;
the procedure was terminated when pixels. Two of the
patients required an additional preiteration of the rigid motion
model with a smoothed potential map using in order to
capture the rapid motion of their arteries.

An control point grid was used for the B-solid
motion model in all patients. For the rigid motion model, the
coefficients of (15) were: , , and . For the
affine motion model, the coefficients were: , ,
and . For the B-solid motion model, the coefficients
were: , , and .

Tracking results for one of the patients are presented in Fig. 4.
The recovered motion models are applied to the 3-D coronary
tree reconstructed at end-diastole, and the results are reprojected
on the angiogram images. The biplane image pairs correspond
to images during the atrial contraction (top row), during the ven-
tricular contraction (middle row), and at the next end-diastolic
phase (bottom row).

Table II summarizes the number of iterations required for in-
terframe convergence of each motion model for the five datasets.
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Fig. 4. Tracking results for one patient over one cardiac cycle. The biplane image pairs correspond to atrial contraction (top row), systole (middle row), and
end-diastole (bottom row).

The increased number of iterations required for the rigid motion
model in patients 3 and 5 correspond to the extra iteration with
the larger spatial smoothing kernel of eight pixels described pre-

viously. Fig. 5 shows the system energy as a function of the it-
eration number for five frames in one patient. The largest drops
in the system energy occur during the initial rigid registration
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TABLE II
NUMBER OF ITERATIONSREQUIRED FORINTERFRAMECONVERGENCE OF THE

MOTION TRACKING ALGORITHM IN FIVE PATIENT DATASETS

Fig. 5. Convergence plots for five interframe motion tracking steps in one
clinical coronary angiogram dataset. Two stars on each curve indicate the
transition between the rigid and affine motion tracking, and between the
affine and B-solid motion tracking steps. The energy increases observed at the
transitions between the different motion models is due to the larger spatial
smoothing used for the initial recovery phase of each motion model as part of
the multiresolution tracking strategy.

steps and during the B-solid tracking procedure. The energy in-
creases observed at the transitions between the different motion
models is due to the larger spatial smoothing used for the initial
recovery phase of each motion model as part of the multireso-
lution tracking strategy (see Section II-E).

The RMS reprojection errors for the tracked arteries of the
five patients are presented in Fig. 6. Because of the different
heart rates, the five patients’ results are rescaled temporally and
plotted over one cardiac cycle. Submillimeter RMS errors were
observed in 93% (54/58) of the tracked biplane image pairs.
In Fig. 7, the RMS reprojection error for one patient is plotted
together with the average magnitude of 3-D displacements from
end-diastole of sampled points on the coronary tree.

Following recovery of the motion transformations for the five
data sets, the validity of (14) was assessed. In the first case, the
3-D B-spline coronary tree was sampled at time, and the sam-
ples were subsequently transformed to time . In the second
case, the control points of the 3-D B-spline coronary tree were
transformed from time to time and then sampled. The
3-D displacement errors between the two cases were quantified
on a point by point basis, and were under 0.1 mm in all pa-
tients throughout the cardiac cycle. The results are not unex-
pected as the density of the control points of the 3-D coronary

Fig. 6. The RMS reprojection errors following tracking through one cardiac
cycle in five patient data sets.

Fig. 7. In one patient, the mean 3-D displacement (dashed line) from
end-diastole of points on the coronary tree are shown in comparison to
the measured RMS reprojection error (solid line). Error bars show one
standard deviation of the 3-D displacements. The first image frame represents
end-diastole, and the 14 frames span one cardiac cycle.

B-splines are much higher (every 2 mm along the arc-length)
than the B-solid control point density (between 10–20 mm).

These algorithms were implemented in MATLAB (Math-
works, Inc., Natick, MA) and the five data sets were processed
on computers running Linux, with Pentium III processors
operating between 0.75 and 1 GHz. The mean running time
for motion recovery for one time frame was 155 min (
min). Reimplementation in a compiled language, with more
efficient use of memory, is needed to reduce execution times
for clinical application.

B. Vascular Phantom

The vascular phantom was reconstructed from a biplane
image pair and rigidly aligned with the centerline model
extracted from the MR images. This was repeated using four
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Fig. 8. The vascular phantom was reconstructed and tracked through seven
pairs of biplane X-ray images. The solid line shows the 3-D RMS error
between the tracked vascular phantom and the gold-standard centerline models
obtained from MR imaging at each motion phase. As a baseline error level
(dashed line), the 3-D RMS error between the untracked X-ray reconstruction,
and the deforming gold-standard MR reconstructions was computed. The lines
represent the mean (and one standard deviation) of results obtained in four
independent acquisitions obtained with different biplane angular separations.

sets of biplane image pairs obtained with different imager
orientations, which corresponded to typical angular separations
used in clinical biplane coronary angiography. Over the four
reconstructions, the mean (one standard deviation) 3-D RMS
error between the X-ray and MR reconstructions was 0.66 (
0.04) mm. Reconstructions obtained from image pairs with
less than 20 separation in the LAO-RAO direction showed
increasing 3-D RMS reconstruction errors; with a primary
angle separation of 14, the RMS error was 1.3 mm.

The vascular phantom was tracked into seven biplane image
pairs, using similar parameters to those used for the clinical an-
giograms, except that for the B-solid motion model,
and the largest spatial smoothing kernel used was pixels.
The maximum 3-D displacement of the phantom during its pe-
riodic motion was 2.9 mm, with the mean 3-D displacement
reaching 1.5 mm. The mean displacement (one standard de-
viation) of the phantom between successive image frames was
1.1 ( 0.8) pixels.

The 3-D RMS error computed between the tracked center-
lines and their corresponding centerline models extracted from
the MR imaging dataset are shown in Fig. 8 (solid line). The mo-
tion tracking algorithm succeeds in keeping the mean 3-D RMS
error at 0.69 ( 0.06) mm over the four biplane reconstructions
and over all tracked time frames. In comparison, the 3-D RMS
errors between the untracked X-ray reconstruction and the de-
forming gold-standard MR reconstructions varies between 0.66
and 1.60 mm (dashed line).

IV. DISCUSSION

This paper demonstrates the success of a 3-D method for re-
covering the motion of the left coronary artery tree in biplane an-
giograms of patients with a history of severe cardiac disease, in-

cluding myocardial infarcts and diffuse coronary artery disease.
The algorithm’s generality allows its performance in tracking
the right coronary artery to be evaluated. However, combining
the motion of the two arterial trees into one B-solid deformation
field would be complicated by any respiratory and patient mo-
tion between the two contrast injections.

The experiment performed using the vascular phantom fur-
ther validates the performance of the motion tracking algorithm
by providing an analysis in 3-D. The measured 3-D RMS er-
rors for the tracked models were similar to the 3-D reconstruc-
tion error, indicating that the algorithm performs exceptionally
well, and that the residual errors may be due to variability in the
manual segmentation of the centerlines from the MR images.

The coronary tree is treated as a whole, with no special em-
phasis given to vessel bifurcations. This obviates the difficulty
of explicitly identifying bifurcations, which can be obscured by
overlapping vessels. In some cases, the two daughter vessels
emanating from a bifurcation may overlap each other in the pro-
jection image, causing the point of bifurcation to appear more
distal than its true position.

Previously published 3-D coronary motion tracking methods
[17], [18] have treated the position of each arteries’ B-spline
control points as independent variables to be optimized, and
have constrained the solution space usinga priori knowledge of
coronary motion [19]. The method presented in this paper for-
mulates the motion tracking problem as a warping of the space
in spanned by the 3-D coronary model. The variables being
optimized are the parameters of the 3-D rigid body and affine
transformations, and the control points of the B-solid. These, in
turn, generate a motion field which moves the coronaries in a
spatially coherent manner. Except for the assumption that the
motion of the arteries varies smoothly over, no prior knowl-
edge about the coronary anatomy or motion is required.

The motion of nearby arteries, in a 3-D sense, can be implic-
itly used to facilitate convergence to the correct solution. Con-
sider the case of tracking an artery through a multivessel overlap
in the projection images. In subsequent time frames, when the
arteries separate in the projection images, one of two or more
arteries must be chosen as the correct artery to follow. Tracking
of a neighboring artery, unambiguously resolvable in the projec-
tion images, would act to constrain the tracking procedure of the
first artery. The spatial regularity of the warping of, imposed
by the B-solid, guides the selection of the correct postocclusion
artery to track.

As described in Section II-E, the motion of the coronary ar-
teries is recovered one frame at a time. The jagged reprojec-
tion error plots of Fig. 6 suggest that the recovered transforma-
tions do not capture the temporal regularity typical of physio-
logical motion. An extension to the method presented in this
paper calls for the implementation of temporal continuity of the
rigid and affine motion models and the use of four-dimensional
tensor product B-splines. However, temporal discontinuities are
expected during the cardiac cycle, particularly between the sys-
tolic and diastolic phases. This knowledge would have to be em-
bedded in the temporal regularizing functions, in order to be able
to correctly capture rapid motion changes.

Motion tracking with temporal continuity will also provide
a framework to overcome inconsistencies due to the nonsyn-
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chronous nature of some biplane imaging systems which ac-
quire the two image planes in a temporally interleaved mode.
In the current implementation, a given biplane image pair is
assumed to be acquired synchronously, when there is in fact a
16-ms temporal offset between the images. Rapid motion may
produce irreconcilable observations in the two views, which
would interfere with convergence of the motion tracking proce-
dure for that time frame. Using temporally continuous motion
models will allow each image to be assigned its correct temporal
index.

The RMS reprojection errors of the five patients show a char-
acteristic pattern of increasing during systole and decreasing
into diastolic relaxation. There are two factors which may con-
tribute to this observation. First, the deformation of the coro-
nary arteries over the cardiac cycle, especially in patients with
highly tortuous vasculature, may be too localized to be ade-
quately modeled using the control point grid used
for the B-solid motion model in these experiments. This con-
trol point density was chosen based on experiments for recovery
of myocardial motion from tagged magnetic resonance images
[32]. However, the use of more dense control point grids was
avoided because of the prohibitive computation times given the
current implementation. In lieu of increasing the control point
density, a deformable models method may be considered as a
final step for capturing highly local shape changes.

A second explanation is linked to the observed disappearance
of the distal parts of the coronary arteries during systole. Physio-
logically, extravascular compression of the intramyocardial ar-
teries can lead to their collapse or to a reversal of flow in the
coronaries during systole [30]. For example, in Fig. 4, distal
coronary segments visible in the end-diastolic images (rows 1
and 3) disappear in the systolic images (row 2). The disappear-
ance of vessels during part of the cardiac cycle might cause the
3-D coronary model to be erroneously attracted to nearby ar-
teries or other rectilinear structures. On the other hand, the ab-
sence of nearby attractors would lead to the loss of local defor-
mation information due to the lack of image forces at the distal
points; the distal segments would then be subjected to only the
globally recovered motion of the coronary tree. In general, how-
ever, these distal parts of the coronaries are not important for in-
terventional purposes, but the use of temporally continuous mo-
tion models may help overcome their periodic disappearance.

The quality of the motion tracking algorithm is ultimately
tied to the quality of the algorithm used to detect vessels in the
angiograms. As described in Section II-C, a multiscale method
based on graylevel second derivatives is used to automatically
detect rectilinear structures in the images [24]. As seen in
Fig. 1(b), the detection of proximal segments is somewhat
suppressed. This may be the result of the range of scales,

pixels, used for the clinical validation pro-
cedure. The detection of the larger proximal vessels would be
improved with the use of larger scales of detection. However, at
larger scales, the erroneous detection of background structures
such as ribs, vertebrae, and the diaphragm, and the merging
of neighboring small vessels becomes more problematic. In
practice, the set of filter sizes used for each patient should be
optimized for the given imaging conditions, or an alternative
vessel detection method could be explored.

V. FUTURE DEVELOPMENTS

Dynamic 3-D models of the coronary arteries are needed for
various applications in addition to their conventional uses for
cardiovascular and coronary disease diagnosis as presented in
Section I. For example, the use of robots in facilitating surgical
procedures is an active field of study [33]–[35]. Minimally in-
vasive procedures, which are performed through a few small
incisions, are a particular focus of attention. The limited field
of view, and the remote point of action of the laparoscopic in-
struments, generate unique challenges for the surgeon. In min-
imally invasive coronary artery bypass procedures, the cardiac
motion, and the enveloping pericardium complicate the task of
localizing the arterial segment targeted for intervention. Intraop-
erative registration of preoperative reconstructions of the coro-
naries is being studied as an augmented reality tool to aid the
surgeon.

As an alternative to X-ray angiography, magnetic resonance
coronary angiography (MRCA) is being actively investigated
for use as a noninvasive diagnostic and screening tool for coro-
nary artery disease [36]. However, because of the noninstanta-
neous nature of the MR image acquisition, images of the coro-
nary arteries are degraded by cardiac and respiratory motion. A
comprehensive analysis of the coronary motion is necessary for
development of motion gating and correction techniques for im-
provement of MRCA. A preliminary 2-D study of the rest period
of the coronaries during the cardiac cycle has been presented in
[37]. Respiratory motion has been studied using MR line scan-
ning techniques [38] and fast multi-slice 2-D acquisitions [39].
The 3-D motion tracking method presented in this paper can be
used to provide a previously unseen comprehensive 3-D motion
and deformation map from high temporal and spatial resolution
images of the coronaries.

VI. CONCLUSION

In this paper, a 3-D method for tracking the motion of coro-
nary arteries in a biplane angiogram sequence has been pre-
sented. A registration framework recovers the motion one cine
phase at a time, using a set of coarse-to-fine motion models. This
3-D approach provides a spatially coherent method for tracking
the arteries through projective occlusions, and allows the use of
true 3-D regularizing constraints on the temporal evolution of
the vessels. Finally, efficacy of this method has been demon-
strated by successfully tracking the left coronary tree over one
cardiac cycle in five patient image sets.
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