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Policing 802.11 MAC Misbehaviours
Paul Patras∗, Member, IEEE, Hessan Feghhi∗, David Malone,

and Douglas J. Leith, Senior Member, IEEE

Abstract—With the increasing availability of flexible wireless 802.11 devices, the potential exists for users to selfishly manipulate their

channel access parameters and gain a performance advantage. Such practices can have a severe negative impact on compliant

stations. To enable access points to counteract these selfish behaviours and preserve fairness in wireless networks, in this paper we

propose a policing mechanism that drives misbehaving users into compliant operation without requiring any cooperation from clients.

This approach is demonstrably effective against a broad class of misbehaviours, soundly-based, i.e. provably hard to circumvent and

amenable to practical implementation on existing commodity hardware.

Index Terms—Wireless LAN, 802.11, misbehaviour, policing, prototyping

✦

1 INTRODUCTION

COMPUTERS equipped with Wi-Fi devices that follow the
popular IEEE 802.11 specification [1] employ a decen-

tralised Medium Access Control (MAC) protocol to coor-
dinate their transmissions on the channel. By design, this
mechanism ensures compliant users connecting to a wireless
network receive equal opportunity of access to the medium
and in this sense share resources in a fair manner. Each
client station, however, operates independently and thus
could act more aggressively in order to gain performance
benefits, if changes can be made to the protocol behaviour.
This already occurs in practice when network interface cards
are not designed correctly, as reported in [2]. More critically,
it can happen when users selfishly manipulate their channel
access parameters to gain a performance advantage (see
e.g. [3]). This can cause significant unfairness, with the per-
formance of the users that obey the standard being severely
degraded [4], [5]. For example, consider a real network with
two backlogged stations, one of them compliant and the
other using a minimum contention window (CWmin) half
that recommended by the 802.11 standard. If the network
operates with a regular access point (AP), the misbehaving
user will transmit on average nearly twice as many frames
as the compliant station. We illustrate this scenario in Fig. 1
with light bars. Also plotted with dark bars is the perfor-
mance of each client when the AP runs the policing scheme
introduced in this paper, demonstrating its effectiveness in
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Fig. 1: Wireless network with two stations, one contending with
CWmin = 32 (compliant) and one with CWmin = 16 (misbe-
having). Stations always have 1,000-byte packets to send and
employ the IEEE 802.11 HR/DSSS physical layer at 11Mb/s.
Average and 95% confidence interval of the attempt rate at-
tained by each station when the network operates with a
regular AP, as well as with an AP running the policing scheme
proposed in this paper. Experimental Data.

penalising misbehaving clients and equalising attempt rates,
thereby restoring fairness.

Such MAC misbehaviours are increasingly of concern
as open-source device drivers (e.g. MadWifi [6], compat-
wireless [7], etc.) are becoming prevalent and permit users
to modify the protocol rules either from the command line
or with basic programming knowledge. Looking ahead, the
trend is towards introducing still further flexibility, such as
versatile architectures that allow changing the MAC opera-
tion of commodity hardware, by reprogramming the proto-
col state machine with the help of simple visual tools [8].

In this paper we introduce an AP-based policing scheme
for 802.11 Wireless LANs that is (i) demonstrably effec-
tive against a broad class of misbehaviours, (ii) soundly-
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based, i.e. provably hard to circumvent, and importantly,
(iii) amenable to practical implementation, as we demon-
strate via prototyping on existing commodity hardware.
With this policing scheme, the AP controls the transmission
attempt rate of misbehaving stations by acknowledging
their frames with a probability that depends on the de-
viation of the stations’ transmission attempt rate from the
fair value. Decreasing the probability of acknowledgement
causes a client station to backoff its contention window,
thereby reducing its transmit rate and restoring fairness. An
important feature of this approach is that it only requires
measuring the transmit rate of each client station, which
is straightforward as all traffic passes through the AP in
the infrastructure operational mode, and does not require
identification of the specific type of misbehaviour being
performed (e.g. shorter backoff, frame bursting, etc.). This
features make the proposed scheme particularly suitable
for nomadic Wi-Fi hot spots set up using smart phones or
pocket 3G routers, as well as mobile broadband network
services on the move, e.g. in-flight Wi-Fi, wireless access
on public transportation (buses, underground railway,1 etc.),
and even hot air balloons that provide Internet connectivity
to remote areas.2

We provide a mathematical analysis of the proposed
policing algorithm’s convergence properties and prove its
robustness in the presence of users that can detect APs
that penalise misbehaviour. More precisely, we show that
any strategy that seeks to game our policing algorithm,
deviating from the fair operation, necessarily leads to lesser
goodput for a misbehaving station in the long run.

To establish the feasibility of our proposal, we present a
prototype implementation of the policing algorithm on off-
the-shelf hardware. We validate the performance of our im-
plementation by conducting extensive testbed experiments
over a wide range of misbehaviour scenarios. The results
obtained demonstrate that our solution effectively penalises
misbehaviour irrespective of the network size, number of
selfish users and the parameters manipulated, without im-
pacting negatively the operation of compliant stations. We
also show that our algorithm does not mistakenly penalise
compliant stations, even in complex situations where com-
pliant stations generate different volumes of traffic and so
some clients consume the air time underutilised by others.
Further, we show that our proposal not only tackles MAC
misbehaviour, but has no negative impact on state-of-the-art
PHY rate control algorithms, while it successfully alleviates
fairness issues that arise in practical deployments due to
PHY/MAC interactions.

To the best of our knowledge, our proposal is the first
AP-based MAC misbehaviour counteracting solution with
theoretical performance guarantees and a fully functioning
prototype implementation that has been extensively eval-
uated by way of experiments in a real Wi-Fi network. We
summarise the key contributions of our work below.

(1) We design a novel algorithm that, unlike previous
proposals, not only addresses MAC misbehaviour

1. In the UK, the Three mobile operator recently launched the ’Wi-Fi
on the London Underground’ service (see http://www.three.co.

uk/Support/Free_WiFi_on_London_Underground.
2. See e.g. Google Loon, http://www.google.com/loon/

detection, but thwarts selfishness without requiring
non-trivial modifications of the protocol stack;

(2) We specify a scheme that controls stations’ transmis-
sion attempt rates and is robust to adaptive misbe-
having strategies that seek to game its operation;

(3) We provide detailed proof of this robustness and
rigorous analytical evidence of the algorithm’s con-
vergence;

(4) We detail a functional implementation of the de-
signed system on real 802.11 hardware;

(5) We give a sound methodology for estimating the
maximum achievable attempt rate, without inject-
ing traffic in the network or requiring changes to
compliant stations;

(6) We further validate the algorithm’s convergence
properties with real experiments;

(7) We provide a comprehensive performance evalua-
tion of our scheme, running on commodity devices
in a real deployment, covering a broad range of
circumstances.

The rest of the paper is organised as follows. In Sec. 2
we review related work. In Sec. 3 we present the proposed
policing algorithm and in Sec. 4 we analyse its convergence
properties and its robustness to misbehaviour strategies that
seek to game its operation. In Sec. 5 we detail the prototype
we implemented on commodity hardware and in Sec. 6 we
report the results of the experimental evaluation conducted
under different network scenarios. In Sec. 7 we investigate
the operation of our solution under more problematic chan-
nel effects. Finally, Sec. 8 concludes the paper.

2 RELATED WORK

Misbehaviour detection has received much attention from
the research community (see e.g. [3], [4], [9], [10], [11],
[12], [13], [14], [15]). Existing work, however, largely fo-
cuses on how undesired behaviour can be achieved with
current cards and on engineering solutions that assist the
AP in identifying disobedient users, as well as the nature of
their misbehaviour [4], [12], [13]. Only a limited number of
proposals address counteracting greedy actions, and these
suffer from significant practical drawbacks. For instance,
[9] requires a reputation management system to prevent
MAC layer misbehaviour, while a cross-layer interaction is
assumed in [10] to enable higher layers to restrict the traffic
that non-compliant clients generate.

In contrast to prior work, in this paper we introduce
an effective policing scheme for 802.11 Wireless LANs
(WLANs) that overcomes the above limitations, as it does
not require modification of the protocol stack and is
amenable to practical implementation. By design, a key
benefit of our policing algorithm is that it does not require
any information about the number of active stations or the
nature of their misbehaviour.

The underlying principle behind our approach is to
control the attempt rate of misbehaving clients by censoring
the generation of MAC layer acknowledgements (ACKs).
ACK skipping has been suggested as a means to allocate
bandwidth for traffic prioritisation in a network of well-
behaved stations [16], [17], [18], but to the best of our
knowledge has not been implemented to date with real
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devices, as this fundamental operation is handled at the
firmware level.

The solution we propose leverages our previous de-
sign [19], but differs in that here: (I) we aim to control
the transmission attempt rate instead of throughput, thus
seeking to equalise stations’ air time [20]. By driving the
channel access probabilities of all clients to the same value,
regardless of the contention parameters they employ, we
effectively preserve short-term fairness. (II) We allow carry-
ing forward penalties, thus also achieve long-term fairness.
Finally, (III) we guarantee that the mechanism cannot be
gamed by greedy users that detect its operation.

3 POLICING ALGORITHM

In this section we first explain the class of misbehaviours
our proposal tackles and then we detail the operation of the
policing algorithm. We consider WLANs with a single-AP
(or, alternatively a group of co-operating APs) operating in
infrastructure mode, i.e. all packets are transmitted through
the AP, as this is the default and most widespread opera-
tional mode of today’s Wi-Fi deployments.

3.1 Class of Misbehaviours

Our focus is on 802.11 MAC protocol misbehaviours. We do
not consider lower layer PHY attacks, e.g. ACK jamming, or
higher layer selfish behaviour, e.g. TCP acknowledgement
manipulation or station association attacks. We also confine
consideration to behaviours that seek to obtain performance
benefits, rather than simply to disrupt the network opera-
tion through e.g. signal jamming [21], or exploiting security
vulnerabilities [22].

Our interest in this class of greedy MAC behaviours
arises from the observation that they can be realised with
currently available open-source drivers that allow manipu-
lation of the MAC layer parameters (CWmin, CWmax, AIFS
and TXOP [1]), sometimes simply by issuing a single com-
mand on the system console (see e.g. iwpriv for Atheros-
based cards). Note that, despite the possibility of broad-
casting precise EDCA configurations by means of beacon
frames from the AP, selfish clients are free to ignore any
of the contention parameter values assigned through this
(advisory) mechanism and the prevalence of such open
drivers provides them sufficient incentives to do so.3 We
assume WLANs implement an authentication mechanism
such as Wi-Fi Protected Access (WPA2) [25], that pre-
vents short and repeatedly aggressive sessions facilitated
by MAC address spoofing techniques. Note also that the
IEEE 802.11i standard ensures replay protection through
several mechanisms, of which the use of CCMP (Counter
Mode Cipher Block Chaining Message Authentication Code
Protocol, Counter Mode CBC-MAC Protocol) or TKIP (Tem-
poral Key Integrity Protocol) procedures are particularly
relevant to our scheme. Thus, a selfish user will be unable to
impersonate fair clients and jeopardise their reputation. Our
work can be adapted also to open-access networks, by aug-
menting it with a signal-strength based MAC layer spoofing
detector [26] or a passive device fingerprinting tool [27].

3. Consequently, earlier TXOP-based allocation approaches (e.g. [23],
[24]) do not provide effective policing when stations are misbehaving.

The resilience of our proposal to more sophisticated security
attacks can be further strengthened if used in combination
with fine-grained PHY layer information [28].

3.2 Controller Operation

To tackle this class of misbehaviours, we propose that the AP
exploits the fundamental nature of the acknowledgements
within the ARQ mechanism of 802.11. Specifically, we use
the fact that stations will increase their contention window
and re-attempt to deliver a frame that was not acknowl-
edged before sending the next packet. By appropriately
suppressing ACK generation for cheating users, the AP can
therefore reduce their transmission rate and drive them to
fair operation.

We consider WLANs that operate in a commercial set-
ting where the service provider seeks to monetize connec-
tivity and thus a naı̈ve solution that simply disassociates
users with marginal, possibly accidental misbehaviour (see
e.g. [2]), would be operationally unacceptable. Instead, our
goal is to effectively correct such behaviours. It is possible
though that a misbehaving station does not increase its
contention window despite not receiving ACKs. For such
blatantly and deliberately misbehaving stations, it is not
possible to use ACK suppression to drive the station to fair
operation and instead the policing algorithm adapts to drop
all ACKs and associated data packets, reducing the goodput
of such misbehaving stations to zero and eventually disas-
sociating them from the network.

The key to the performance of this algorithm is the
manner in which we adjust the penalty pi(t) associated to
a misbehaving user i and the corresponding ACK suppres-
sion rate PNACK,i(t) at each time step t of its execution.
The underlying principle is to compute a penalty p that
is proportional to a station’s deviation from the expected
fair behaviour, and apply that penalty in the next step
or, in case of gross deviations, across multiple iterations.
The ACK suppression rate is the probability with which
a received frame is acknowledged, i.e. min{pi, 1}, and is
directly responsible for regulating a station’s transmission
rate in the next interval. Algorithm 1 details the operation
of the proposed approach.

For each station, the algorithm works as follows. At
each execution step t, it compares the measured station’s
transmission attempt rate xi(t) against the fair value x̄(t).
When the attempt rate4 is above the fair value, the rate
of ACK suppression is increased, and vice-versa when the
attempt rate is below the fair value. Thus at a fixed point we
have xi(t)/x̄(t)−1 = 0, i.e. xi(t)/x̄(t) = 1 and consequently
the station’s attempt rate is driven to the fair value.5

The algorithm requires an estimate of the maximum fair
transmission attempt rate. That is, the transmit rate that
would be achieved by a client station employing the stan-
dard recommended 802.11 MAC configuration. In Sec. 5.2
we discuss in detail how to estimate this quantity and
show that the AP can perform this operation on commodity

4. We use the term “attempt rate” to refer to the stationary probability
that a station transmits a frame in a randomly chosen slot time. Note
that this does not refer to the PHY layer bit rate achievable with various
modulation and coding schemes (MCS).

5. Note that, to streamline notation, we will often drop the i subscript
from now on, provided there is no scope for confusion.
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Algorithm 1 Determining the rate of ACK suppression.

Initialise t = 0, pi(t) = 0, PNACK,i(0) = 0 for client
station i, ∀i.
loop

Estimate the maximum fair transmission attempt rate
x̄(t), given the current network conditions;
for each associated client station i do

Measure transmission attempt rate xi(t) of the sta-
tion;
Update the penalty:

pi(t+ 1) = max

(

0, pi(t) + α

(
xi(t)

x̄(t)
− 1

))

, (1)

where 0 < α < 1 is a parameter that determines
the speed of reaction to deviations from the fair
behaviour;
PNACK,i(t+ 1) = min{pi(t+ 1), 1};
t← t+ 1;

end for
end loop

hardware, without requiring the cooperation of compliant
stations. In essence, the AP need not necessarily inject traffic
into the network to assess the maximum attainable perfor-
mance, but can infer this by counting the busy and idle slots.
This is sufficient to compute the expected collision probabil-
ity under current network conditions (i.e. number of clients
and different contention parameters these may employ), and
thus the corresponding attempt rate, by means of a Markov
chain model of the DCF operation [29]. Alternatively, the AP
may observe existing downlink traffic to estimate the fair
attempt rate, which is an approach we explore in Sec. 6.5.

Since PNACK,i(t) is a probability, it can only take values
in [0, 1]. However, as we do not impose an upper bound on
the update of pi(t), we allow the algorithm to carry forward
and accumulate the penalty when pi(t) − PNACK,i(t) > 0
(i.e. for aggressive behaviour where PNACK,i reaches 1),
until the greedy station reverts to compliant operation. Thus
we prevent gaining long-term advantage over compliant
stations (see Sec. 4.2).

Fig. 2 shows an example of the policing algorithm in
operation. In this example we consider an 802.11g WLAN
with three stations: two stations use standard contention
parameters and the third uses a smaller value of CWmin.
Using a two-class Bianchi-like model [30] we illustrate the
time evolution of the stations’ throughputs during the oper-
ation of the proposed policing scheme. Observe that while
the more aggressive station initially claims more throughput
due to the increased transmission attempt rate, the policing
algorithm quickly adjusts the ACK drop probability, so that
the misbehaving client receives lower performance.

In what follows we provide a mathematical analysis of
the the policing scheme’s convergence and robustness prop-
erties and then present a practical implementation that we
validate via extensive experiments in a real 802.11 WLAN.

4 MATHEMATICAL ANALYSIS

In this section, we first establish the convergence properties
of Algorithm 1. Second, we study the robustness of the
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Fig. 2: Throughput performance in a Wireless LAN consisting of
three saturated stations that transmit 1,500-byte packets using
the 802.11 DSSS-OFDM physical layer at 54Mb/s. Two stations
use the default MAC configuration (CWmin = 32) and the third
employs an aggressive setting (CWmin = 16). The policing algo-
rithm is applied at the AP with α = 0.1. Theoretical prediction.

proposed solution under misbehaviour strategies that seek
to game its operation with the goal of achieving long-
term performance benefits. Our mathematical analysis does
not focus exclusively on saturation scenarios (i.e. whereby
stations always have packets to transmit), though we do
use saturation to upper bound the attempt rate of com-
pliant stations. In the experimental evaluation we report
in Sec. 6, however, we also investigate the performance
of the proposed scheme with on/off and real-time (i.e.
non-saturated) traffic, showing that our algorithm adapts
quickly to traffic changes and does not penalise compliant
stations with higher demands.

4.1 Convergence

We begin by establishing general conditions under which
Algorithm 1 converges to a fixed point. For well-behaved
stations that follow the 802.11 DCF specification, using a
model such as [31] we can verify that ∃c, 0 < c < 1,
such that x(t)/x̄(t) ≤ 1 − cPNACK(t), ∀t > 0. Specifically,
the attempt rate of a fair station will be proportional to
the transmission probability, which we can calculate as a
function of PNACK , the failure probability f seen by the
station due to collisions, and other (fixed) MAC parameters.
Fig. 3 shows that for a range of collision probabilities,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

A
tt

e
m

p
t 

R
a

te
 /

 F
a

ir
 R

a
te

PNACK

1 - 0.4 PNACK

f = 0.0
f = 0.1
f = 0.2
f = 0.4

 0.8

 1

 0  0.1

Fig. 3: The normalised attempt rate, x(t)/x̄(t), for a standard
compliant station over a range of network conditions (collision
probabilities f ) and ACK suppression rates PNACK . The line
1− 0.4PNACK shows an upper bound. Theoretical prediction.
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these can be bounded with c ≤ 0.4. Thus for well-behaved
stations we have the following important result.

Theorem 1 (Well-behaved stations). For stations satisfying
x(t)/x̄(t) ≤ 1 − cPNACK(t), 0 < c < 1, ∀t > 0,
Algorithm 1 ensures limt→∞ p(t) = 0. That is, for well-
behaved stations the policing algorithm does not drop
any ACKs.

Proof: First note p(t) ≥ 0 and if p(t) = 0, then
subsequent terms p(t + k), k > 0, are zero. If the sequence
does not become constant at zero, then the max with zero is
not active in Algorithm 1, and we consider two cases:

1) if 0 < p(t) ≤ 1, then

p(t+ 1) = p(t) + α

(
x(t)

x̄(t)
− 1

)

≤ p(t)− αcp(t);

2) if p(t) > 1, then

p(t+ 1) ≤ p(t)− αc.

So, at each step, p(t) decreases by at least αcmin(p(t), 1).
Thus p(t) is non-increasing and bounded below, and so con-
vergent. As p(t)− p(t+1)→ 0, we see αcmin(p(t), 1)→ 0,
and thus p(t)→ 0.

We now show that in situations with misbehaving sta-
tions Algorithm 1 also converges. Firstly, for misbehaving
stations whose transmit attempt rates remain sensitive to
ACK suppression, we have the following.

Theorem 2 (Moderately misbehaving stations). Suppose the
transmit rate of a station satisfies the following condi-
tions:

i) x(t)/x̄(t) > 1 when PNACK(t) = 0,
ii) x(t)/x̄(t) < 1 when PNACK(t) = 1, and

iii) x(t)/x̄(t) is strictly decreasing with PNACK,t and
Lipschitz with a constant smaller that 2/α.

Then Algorithm 1 converges to a point where x(t) = x̄(t).

Proof: Since x(t)/x̄(t) is strictly decreasing, there ex-
ists a unique value of PNACK(t) where x(t)/x̄(t) = 1. We

call this value P . Let V (t) = (p(t)− P )2. Note that V (t) is
positive definite and radially unbounded [32] in p(t) and

V (t+1) = (p(t+ 1)− P )2 ≤
(

p(t)− P + α

(
x(t)

x̄(t)
− 1

))2

.

Expanding, we find

V (t+ 1)≤ V (t)

+ α

(
x(t)

x̄(t)
− 1

)

(p(t)− P )



2− α

(
x(t)
x̄(t) − 1

)

p(t)− P



 .

Note that α > 0 and (x(t)/x̄(t) − 1)(p(t) − P ) is strictly
negative except when p(t) = P , so if

2 > α

(
x(t)
x̄(t) − 1

)

p(t)− P
,

then we can ensure that V (t) converges asymptotically to
zero as t → ∞. However, this condition is ensured by

requiring x(t)/x̄(t) be Lipschitz in PNACK(t) (and conse-
quently p(t)) with a constant smaller that 2/α. Thus, as
V (t)→ 0, we have p(t)→ P .

In the case of highly-aggressive stations for which the
transmit attempt rate cannot be made fair using ACK sup-
pression alone (e.g. when backoff of the MAC contention
window has been disabled), we have the following.

Theorem 3. For stations where ∃c > 0 such that x(t) ≥
x̄(t)(1 + c) for all PNACK ∈ [0, 1], Algorithm 1 ensures
PNACK(t)→ 1.

Proof: By assumption, x(t)/x̄(t) > 1. Hence,
p(t+ 1) ≥ p(t) +αc. It follows that p(t) increases to a value
greater than 1 and so PNACK(t)→ 1.

Of course, some non-compliant stations may not meet
the smoothness conditions for convergence of PNACK . In-
deed, the station might randomly choose an attempt rate at
any time. However, in what follows we show that in this
case the station cannot gain from any such strategy.

4.2 Robustness

Next we consider a scenario where a misbehaving client
becomes aware of the policing algorithm running at the
AP and attempts to game its operation, with the goal of
achieving a long-term benefit in terms of throughput. We
demonstrate that our scheme is robust to such sophisticated
misbehaviour strategies by showing that, by design, the
algorithm will penalise any strategy that deviates from the
fair behaviour.

Suppose that the selfish station seeks to maximise its
goodput and remember the algorithm can carry forward the
penalty. The mean goodput over the interval [0, T ] is given
by

S(T ) :=
1

T

T∑

t=1

x(t) (1− p(t)) =
x̄

T

T∑

t=1

(1 + y(t))(1 − p(t)),

(2)

where y(t) = x(t)/x̄−1. We can rewrite the policing update
as

p(t+ 1) = max (0, p(t) + αy(t)) , (3)

and if we iterate this backwards to the previous time t∗

where p(t) was zero,6 we see

p(t+ 1) = max

(

0, α
t−1∑

k=t∗

y(k)

)

.

Suppose there is a time T ∗ > 0 with p(T ∗) = 0 but p(t) > 0

for 1 ≤ t < T ∗. Then, we see
∑T∗−1

k=0 y(k) ≤ 0, so the
average attempt rate of the station up to time T ∗ is less than
that of a fair station. As p(T ∗) = 0, we may remove this
interval from our consideration and consider just the times
from T ∗ onwards. By repeating this argument, we see that
we only need to consider the potential unfair behaviour of
stations where p(0) = 0 and p(t) = α

∑t−1
k=0 y(k) > 0 for

1 ≤ t < T . We have the following result.

Theorem 4. For policing Algorithm 1, suppose that
α
∑t−1

k=0 y(k) ≥ 0 for 1 ≤ t < T . Let Y be an upper

6. Note that p(t) will be zero at least at t∗ = 0.
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bound for y(j) and let ∆ > 1/α + Y be a positive
integer. Then, if T > ∆ and we consider the val-
ues of S(T ) as we vary y(1), . . . , y(T −∆), and hold
the other y(j) fixed, S(T ) is maximised by choosing
y(1) = . . . = y(T −∆) = 0.

Proof: With policing update (3) we have

p(t+ 1) = α
t∑

k=1

y(t),

and we consider terms in S(T ) as follows.

S(T ) = x̄+
x̄

T

T∑

t=1

y(t)

︸ ︷︷ ︸

goodput gain

− x̄

T

T∑

t=1

(1 + y(t)) p(t)

︸ ︷︷ ︸

goodput cost

. (4)

Now,

T∑

t=1

(1 + y(t)) p(t) =
T∑

t=1

(1 + y(t))α
t−1∑

k=1

y(t)

=
T∑

t=1

y(t)α
T∑

k=t+1

(1 + y(k)) .

So, the net relative gain is bounded by

T∑

t=1

y(t)−
T∑

t=1

y(t)α
T∑

k=t+1

(1 + y(k))

=
T∑

t=1

y(t)(1 − α(T − t))− α
T∑

t=1

T∑

k=t+1

y(t)y(k).

Taking the derivative with respect to y(j) we get

(1− α(T − j))− α
∑

t6=j

y(j)

= α




1

α
− T + j −

T−1∑

t=j

y(t) + y(j)



 ,

which is negative when j ≤ T −∆ < T −1/α−Y , as the
sum is non-negative and y(j) ≤ Y . Thus, to maximise
the gain, we choose the smallest possible values of y(j)
subject to the constraint on the partial sums being non-
negative. Thus y(1) = . . . = y(T −∆) = 0.

This results confirms that no benefit can be obtained by
deviating from the fair behaviour over T − ∆ steps. Note
however that a non-compliant client could potentially at-
tempt to use a more aggressive transmit rate over the last ∆
iterations before leaving the network, seeking to gain a small
throughput benefit. But the fact that we allow for the penalty
to carry forward to future times and consider networks that
employ authentication makes such misbehaviours costly.

5 IMPLEMENTATION

To demonstrate that deploying the policing algorithm is fea-
sible with off-the-shelf hardware, in this section we present
a Linux-based prototype implementation that we developed
and discuss a non-intrusive technique for estimating the fair
transmission attempt rate.

Fig. 4: Schematic view of the policing algorithm implementa-
tion. The policing update and fair rate estimation are imple-
mented in the driver, per-station information is stored in the
shared memory and ACK suppression is performed in FW.

5.1 Prototype

Implementing the suppression of MAC ACKs with existing
devices is a challenging task, since generation of ACK
frames is a basic operation that is handled at a low level
within the wireless stack, below the device driver. To tackle
this challenge, we based our implementation on an AP
equipped with a Broadcom BCM4318 wireless adapter that
employs the OpenFWWF firmware [33]. The key advantage
of using this open-source firmware (FW) is that it allows
modifying the MAC protocol state machine running on the
device, as already reported in [34], [35]. In addition to this,
as the firmware runs on a modest 8 MHz processing unit
on the network interface card (NIC), we modified the b43

driver of the open-source compat-wireless package, to
manage the more computationally demanding operations
of our algorithm.

Fig. 4 illustrates the essential building blocks of our
prototype. As shown in the figure, the implementation
is split between the firmware and the driver: the former
handles book keeping of per-station frame count, channel
monitoring and ACK generation, while the latter manages
the transmit rate computation and updating the ACK sup-
pression rate for each associated client, based on the policing
algorithm. To co-ordinate the operation of the firmware and
driver modules, we rely on the 4KB shared memory. We
use this to store the information pertaining to each station
and required by our algorithm, as we observe that a large
portion of it remains unused during normal NIC operation.

We implement ACK handling in the firmware, as this is
a highly time-sensitive operation. Specifically, the decisions
to acknowledge or not a correctly received frame must be
made within SIFS time and thus must not be interrupted
or delayed by other tasks. For each frame received with a
correct frame check sequence (FCS), we inspect the source
MAC address, increment the frame counter (used by the
driver to compute the attempt rate) of the sending station,
fetch the corresponding PNACK value and decide to gener-
ate or suppress the acknowledgement. To complete these
operations efficiently, our implementation employs a fast
hash map and a list of information blocks. The hash-map
consists of a 1 KB memory block that holds 512 2-byte
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g(f) =
2(1− 2f)(1− fR+1)

W (1− (2f)m+1)(1− f) + (1− 2f)(1− fR+1) +W2mfm+1(1− 2f)(1− fR−m)
. (5)

pointers to sub-blocks storing the current frame count and
ACK dropping probability associated to a station, as well as
its MAC address. Fig. 5 shows the structure of the memory
allocated for policing.

The policing update, which controls the penalty associ-
ated to each client, is implemented in the driver, as driver
code runs on the CPU of the host and can perform calcu-
lations more quickly. The computation of the transmit rates
and updates of the penalties according to (1) are executed
at configurable discrete time intervals, when the driver
reads the information stored in the shared memory for each
associated station and performs the following operations:
(i) computes the transmission attempt rate of each station
based on the frame count, (ii) estimates the fair attempt rate
(see Sec. 5.2), (iii) updates the ACK dropping probabilities
PNACK,i and writes their values back into the correspond-
ing blocks, and (iv) resets the frame counters.

5.2 Fair Attempt Rate Estimation

To decide whether to police an associated station, our al-
gorithm measures its performance and compares this to
the maximum transmission attempt rate a fair client would
attain under current network conditions. In this subsection,
we discuss one mechanism for achieving fair attempt rate
estimation non-intrusively, i.e. without injecting traffic in
the network or requiring message passing between the AP
and other stations. We will show that observing the wireless
channel for a duration above 5 seconds ensures a good
estimate of fair performance.

Towards this end we run a virtual MAC instance at the
AP, that reproduces the operation of a fair station, but does
not release packets on the channel. Instead, we monitor
channel slots and check the outcome of “virtual” trans-
missions, i.e. whether virtual attempts would have resulted
in successes or collisions. Based on these observations, the
mechanism estimates the failure probability f experienced
by a fair station, which can be then used to derive the
attainable transmission attempt rate. More specifically, the
AP can count the number of idle and busy slots over an
observation period and since the probability of a busy slot
(either due to successful transmission or collision) directly

Fig. 5: Memory structure storing policing data. The hash map
items point to per-station information elements storing the
MAC address, frame counter (used to compute the attempt
rate) and the current PNACK .

impacts the chance that some other station transmits in
a slot, the interaction of a (virtual) station with the net-
work can be summarised in a succinct way through the
expected collision probability this experiences. Note that
this method does not require precise knowledge of the
current network conditions, in terms of number of clients
and the contention parameter these employ. Instead we
may use a two-dimensional Markov chain model [29] to
determine the attempt rate for a saturated station with this
collision probability. In our implementation, the firmware
code inspects the IFS STATUS and IFS IDLE COUNTER

registers7 to count the number of busy and respectively idle
slots, and writes these values periodically into the shared
memory. At the end of an observation period, the driver
retrieves these measurements and uses them to compute
the expected collision probability, and the corresponding
attempt rate. In what follows, we give a formal analysis of
this approach and investigate its accuracy.

Suppose we have a network of n stations transmitting
with probabilities x1, . . . , xn. Further, suppose that a station
is saturated, for instance station 1. Assume for now that this
station is fair. We can write the failure probability due to
collisions for this station as

f1 = 1− (1− x2) . . . (1− xn).

As the station is fair,

x1 = g(f1),

where g is a function mapping the failure probability to the
transmission probability and is given in (5) above [29].

In the above, we denote W = CWmin, m is the maximum
backoff stage and R denotes the retry limit.

Consider now that the AP runs a saturated virtual MAC
instance. We can similarly express the failure probability fv
this observes, as follows:

fv = 1− (1− x1)(1− x2) . . . (1− xn)

= 1− (1− x1)(1− f1) = 1− (1− g(f1))(1 − f1),

where g is the fair backoff function given by (5). Note that if
we know fv, we can solve the above for f1. We note that the
difference between the two is relatively small and reduces
as the contention rate increases.

Since there is a one-to-one mapping from fv to f1, we
could invert this to obtain an exact value for the failure
probability of a fair saturated station and apply (5) to
compute the maximum achievable rate x̄ of a fair station.
Another approach is to compute the virtual attempt rate,
g(fv), and scale this up by 14%, as numerical calculations
of both the virtual and actual maximum achievable attempt
rate show this is a good estimate of their gap, over a broad
range of network conditions.

The remaining question is how long should the channel
observation period be, to ensure an accurate estimate of fv.

7. Details about the relevant firmware registers used are available at
http://bcm-v4.sipsolutions.net/802.11/Registers
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Fig. 6: Observation time required to estimate the collision
probability fv of a fair client as the number of active station
increases. Theoretical prediction.

To answer this, we regard the virtual transmission attempt
as a Bernoulli trial, whereby assuming independent trails,

a failure is observed with probability f̂v and a success

with probability 1 − f̂v. By the central limit theorem, if
the number of observations N is large, the distribution of

f̂v is approximately normal with mean fv and variance
σ2 = fv(1 − fv)/N .

Say we want to compute the number of samples N
that gives us 95% confidence that the estimated mean has

precision ǫ, i.e. P (|fv − f̂v| > ǫ) < 0.05. The confidence

interval is f̂v±zσ, where z = 1.96 is the z-score required for

95% confidence. Since σ is unknown and f̂v(1 − f̂v) ≤ 0.5,
using this conservative upper bound [36], N must satisfy

z

2
√
N

= ǫ.

Thus the number of observations required to ensure a good
estimate of the fair attempt rate is

N =
( z

2ǫ

)2
.

To translate this into an observation period required for a
good estimate of fair performance before an update of the
PNACK probabilities, consider the average slot duration in
a network with saturated stations

E[Tslot] = Peσ + PsTs + PcTc,

where Pe, Ps and Pc are the probabilities that a slot is empty,
contains a success and respectively a collision, and σ, Ts and
Tc are the corresponding slot durations (see [31] for detailed
calculations). Thus we compute the observation interval that
gives an accurate estimation of the mean as8

Tupdate = N · E[Tslot].

To indicate the values Tupdate would take in practice for
ǫ = 0.01, in Fig. 6 we plot the necessary channel observa-
tion time for obtaining an estimate according to the above
requirements for different network conditions in terms of
number of saturated stations and assuming stations send
packets with 1,000-byte payload at 11 Mb/s (IEEE 802.11
HR/DSSS). We conclude, that an observation interval above

8. Note that E[Tslot] is upper bounded by the length of a successful
transmission Ts, which is readily obtainable from the “duration” field
of correctly received frames. Thus, one could avoid the complexity of
computing Tslot and use Ts instead, to simplify implementation.

5 seconds will ensure a good estimate of the fair perfor-
mance in many scenarios. In our experiments we conserva-
tively use a Tupdate = 10s for all tests.

Note that alternatively the AP can rely on existing down-
link traffic to estimate the maximum fair attempt rate. This
only requires small modifications to the AP’s device driver
to record the collision probability experienced by packets
leaving its MAC queue. This measurement may then be
used with (5) above to determine the fair attempt rate, as
required for policing. To demonstrate its feasibility, we use
this approach in the experiments we report in Sec. 6.5.

In what follows, we evaluate the performance of our
prototype in a real testbed and demonstrate its effectiveness
under different types of misbehaviour.

6 EXPERIMENTAL EVALUATION

Having described the design and implementation of our
proposal, we now evaluate the performance of the policing
algorithm in a real 802.11 testbed and prove its effectiveness
under different types of misbehaviours and a wide range
of network conditions. Our deployment consists of nine
Soekris net4801 embedded PCs, one acting as AP and the
other eight as stations. The AP is equipped with a Broadcom
BCM4318 wireless card and is capable of running our proto-
type. The clients use Atheros AR5212 chipset adapters and
the ath5k driver, which we modified to allow manipulating
the MAC parameters by simple commands from the system
console. All clients employ the 802.11 HR/DSSS physical
layer (802.11b) and, if not otherwise specified, do not per-
form rate adaptation.

Unless stated otherwise, we consider all stations are
backlogged and send unidirectional UDP traffic to the AP.
In all cases, we measure the performance of the stations
when the network is operating with a standard AP and
an AP running the proposed policing algorithm configured
with the following settings: speed of reaction factor α = 0.1
(see (1)) and update period Tupdate = 10s.

6.1 Controller Validation

First we study the impact of four types of misbehaviour
that can be easily implemented with current hardware,
whereby aggressive MAC settings are used. Specifically,
we investigate the scenarios where a user seeks to obtain
performance benefits by employing selfish configurations
as follows: (i) contending with a CWmin parameter half
the default value (“CWmin Halved”), (ii) disabling the Bi-
nary Exponential Backoff (BEB) mechanisms while keeping
a smaller CWmin setting (“CWmin=CWmax”),9 (iii) using a
shorter interframe space post-backoff (“AIFS = SIFS”),10 and
(iv) retaining the access to the medium for 6.413ms by vio-
lating the TXOPlimit parameter (“Large TXOP”), thus being
able to send multiple frames upon a single transmission.

In these scenarios we consider a simple network topol-
ogy with one misbehaving station sharing the medium with

9. Note that compliant devices employ CWmax > CWmin settings to
reduce failure probability upon subsequent attempts, thus being less
aggressive.

10. AIFS ≥ 2σ+ SIFS is the amount of time a station is required to
sense the channel idle before entering the backoff procedure. SIFS=10µs
is the short interframe space. σ is the duration of an idle slot.
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Fig. 7: WLAN consisting of three backlogged stations sending 1,000-byte packets
using the IEEE 802.11 HR/DSSS physical layer at 11Mb/s. Station S1 employs one
of four types of MAC misbehaviour, stations S2 and S3 are standard compliant.
Average throughput (above) and attempt rate (below) of each station in each
scenario, when the network operates with a regular AP (light bars) and an AP
running our policing algorithm (dark bars). Also plotted is the performance of a
station when all clients are fair. Experimental data.
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Fig. 8: WLAN w/ 3 saturated stations, one
misbehaving with CWmin half the default
value. The throughput (above), attempt rate
(middle) and penalty applied by the pro-
posed policing algorithm (below) over time.

two fair clients that contend for the channel using the
default MAC parameters specified by the 802.11 standard
(i.e. CWmin = 32, CWmax = 1024, AIFS = DIFS = 50µs,
TXOP = 0). Each client is saturated and transmits 1,000-
byte packets to the access point for a total duration of
3 minutes. We measure the throughput and attempt rate
of each station under each scenario, with and without the
policing algorithm running at the AP, and repeating 10 times
each test to compute average and 95% confidence intervals
with good statistical significance.

Fig. 7 shows the throughput and attempt rate attained
by each client in each of the scenarios considered, both
with and without our policing algorithm running at the
AP. To add perspective, we also plot with a dotted line the
performance of one station when when all clients behave
fairly (“All Fair”). Observe that a selfish user using a smaller
CWmin attains nearly twice the throughput of compliant
stations if not policed, whilst reducing the throughput
and attempt rate of the fair users (“CWmin Halved”, light
bars). When we activate the policing algorithm (dark bars),
this behaviour is effectively counteracted, as our solution
equalises the attempt rates, while the misbehaving client
sees its throughput performance reduced. If the selfish be-
haviour becomes more aggressive (“CWmax=CWmin”, light
bars), e.g. the cheater employs a fixed contention window
and thus does not backoff upon failures, in fact the policing
algorithm rapidly increases the ACK dropping probability
corresponding to that client to 1, thereby disassociating this
from the AP. This is reflected in both the attempt rate and
throughput performance, which are effectively zero when
policing is applied (dark bars).

A more subtle misbehaviour strategy could employ a
short post-backoff interframe space, e.g. the greedy station

only waits SIFS before a new attempt, which is the mini-
mum time separating two consecutive frames. Although less
significant (since the selfish station sometimes randomly
selects a large backoff counter and waits more than the
other contenders that wait DIFS plus a short backoff value),
the non-compliant client still achieves performance gains to
the detriment of the fair stations present in the network
(“AIFS=SIFS”, light bars). Once again, if we execute the
policing algorithm at the AP, the transmission attempt rates
are equalised and fairness is restored (dark bars).

Lastly, if the misbehaving user transmits several frames
upon a single channel access (“Large TXOP”), their through-
put performance is significantly higher than that of the fair
stations as no action is taken to correct this selfish comport-
ment (light bars). In contrast, with the proposed policing
scheme, attempt rates stay equal and the cheater sees their
throughput throttled down below the value corresponding
to fair operation (dark bars).

Let us now take a closer look at the behaviour of the
controller implemented by our scheme. Specifically, we are
interested in validating the convergence of the algorithm
under different types of misbehaviour. For this purpose,
we pick two of the four scenarios discussed above and
examine the time evolution of the network performance.
More precisely, in Figs. 8 and 9 we show the time evolution
of the throughput and attempt rate for the non-compliant
user and a fair station, as well as the penalty applied by our
algorithm, in the cases when the selfish client uses a CWmin

half the default value and respectively a large TXOP setting,
e.g. TXOP = 6.413ms.

In both cases, observe that the policing algorithm suc-
cessfully brings the attempt rate of the misbehaving station
down to that of a fair client (middle graph), while their
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Fig. 9: WLAN consisting of three saturated stations: two com-
pliant and one misbehaving, using TXOP = 6.413 ms. The
AP runs the proposed policing scheme. Time evolution of the
throughput (above), attempt rate (middle) and penalty applied
by the proposed policing algorithm (below) for the misbehav-
ing station and one fair client. Experimental data.

throughput is reduced (top graph). What is important to
remark is that the algorithm is close to convergence after a
few steps, with the convergence time being shorter for more
aggressive behaviour (i.e. with manipulated TXOP). Note
also that the convergence time can be further reduced by
choosing a larger α parameter.

Further, we verify that our algorithm does not unnec-
essarily penalise fair stations, i.e. does not trigger false
alarms, due to the channel access randomness inherent in
802.11 DCF. To this end we examine the time evolution of a
station’s attempt rate, the maximum achievable attempt rate
estimated by our algorithm, and the penalty applied to each
client. We investigate these with the same network settings
(three backlogged stations) in two scenarios, namely all
stations fair and respectively one of them misbehaving with
a CWmin half the default value. As we show in Fig. 10, our
estimate closely follows the actual performance attainable
by a fair client, and consequently the penalty applied to
these exhibits only small variations above zero. To put
things in perspective, we plot a 0.02 penalty threshold and
confirm that the percentage of times the penalty applied to
fair clients exceeds this value is zero in all scenarios.

6.2 Impact of Network Size

Next, we investigate whether a misbehaving client could
hide in the crowd as the number of network users increases.
For this purpose, we consider a network with one selfish
station employing a small CWmin based misbehaviour and
we vary the number of fair stations, while we examine the
performance of both. In each case, all clients are backlogged
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Fig. 10: WLAN consisting of three saturated stations. The AP
runs the proposed policing scheme (α = 0.2). Time evolution
of the attempt rate and fair rate estimate (top), and penalty
applied (bottom) when all clients are fair (left), respectively one
employs a CWmin half the default value. Experimental data.

and send 1,000-byte packets for a total duration of 3 min-
utes. We repeat each experiment 10 times and compute the
average with 95% confidence intervals of the attempt rate
and throughput attained by each station.

In Fig. 11 we show the attempt rate and throughput
of the selfish station and that of one fair client, with a
standard AP as well as with an AP executing our algorithm.
Observe that the performance of the selfish user decreases
as the network size increases, but is constantly significantly
above that of a fair client if no action is taken to counteract
the greedy behaviour. In contrast, when the AP runs our
policing algorithm, the attempt rate of the misbehaving user
never exceeds that of a fair client (observe the overlapping
dark lines in the top sub-figure), while their throughput per-
formance falls below that of fair clients in all circumstances.

We conclude that the network size does not impact the
performance of our algorithm, which effectively penalises
misbehaving clients even in denser topologies.

6.3 Multiple Misbehaving Clients

In what follows, we study the performance of the proposed
policing algorithm when multiple misbehaving clients are
present in the WLAN. Here, we aim to understand whether
the presence of a large number of selfish users could in-
fluence the penalty update of our algorithm. We demon-
strate that, despite its prevalence, such behaviour will not
be regarded as fair by the policing scheme. We use the
same methodology as in the previous subsection, running
3-minute tests for each network scenario and conducting
10 independent experiments for each case. We measure the
average performance of both fair and misbehaving stations
in terms of attempt rate and throughput.

First let us consider the case where only one station is
fair and increase the number of selfish clients present in
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Fig. 11: WLAN consisting of one misbe-
having client with CWmin half the default
value and an increasing number of com-
pliant stations. All clients always have a
1,000-byte packet to transmit at 11Mb/s
(802.11b). Average and 95% confidence
intervals of the attempt rate (above) and
throughput (below) attained by the mis-
behaving station and one fair user, when
the AP operates with and without our
policing scheme. Experimental data.
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Fig. 12: WLAN consisting of one com-
pliant station and an increasing number
of misbehaving users with CWmin half
the default value. All stations are back-
logged with 1,000-byte packets and trans-
mit at 11Mb/s (802.11b). Average and
95% confidence intervals of the attempt
rate (above) and throughput (below) at-
tained by the fair client and one selfish
user, when AP operates with and without
our policing scheme. Experimental data.
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Fig. 13: WLAN with eight backlogged
clients, varying the ratio of compli-
ant:misbehaving stations. Selfish users
contend with CWmin halved. Average and
95% confidence intervals of the attempt
rate (above) and throughput (below) of
a fair and a misbehaving station, when
AP operates with and without our polic-
ing scheme. Maximum achievable fair at-
tempt rate estimated by our algorithm is
also shown above. Experimental data.

the network. The results of these experiments are depicted
in Fig. 12, where we plot the attempt rate and throughput
of the fair station and that of one non-compliant station,
with and without the policing algorithm running at the
AP. We observe that also in these scenarios, the policing
algorithm equalises the attempt rate of all stations while
the throughput performance of non-compliant users is ef-
fectively reduced.

In addition, we examine a network with a fixed number
of clients (n = 8) and vary the proportion of fair/ misbe-
having stations. The attempt rate and throughput of one
client within each category is shown in Fig. 13 when the AP
operates with and without the proposed policing scheme.
Also shown in the figure is the maximum achievable fair
attempt rate as computed by our algorithm, which is largely
the same irrespective of the number of selfish clients in the
WLAN. These results further confirm the effectiveness of
our scheme in the presence of several misbehaving stations.

6.4 Dynamic Network Conditions

We consider next a scenario with network dynamics where
fair and misbehaving clients join and leave the WLAN at
different times. Our goal here is twofold: (i) we verify that
our proposal adapts quickly to changes in the network
topology, and (ii) we demonstrate the algorithm carries
forward the penalty of selfish users when those leave the
network. To this end, we conduct an experiment with the
AP running our policing scheme and four backlogged client
stations, as follows. Two fair stations connect to the WLAN

and start transmitting to the AP at t = 0s. After 100s, a
misbehaving station (S3) joins the network, contending with
a CWmin parameter half the default value. At t = 200s
another standard compliant station (S4) connects to the
WLAN. Finally, S3 leaves the network after transmitting for
200s and S4 disassociates 100s later.

The result of this experiment is depicted in Fig. 14 where
we plot the time evolution of the attempt rate, throughput
and penalty corresponding to each client. We can see clearly
that our algorithm quickly detects and starts penalising the
misbehaving station, equalising the attempt rates in a few it-
erations. As the fourth client joins, our solution re-estimates
the maximum achievable attempt rate and continues penal-
ising the selfish user, without affecting the performance of
the new station. Lastly, as the cheater leaves the network,
the penalty is preserved and carried forward to be applied
when this client will reconnect. Thus we confirm that the
performance of our algorithm is not affected by network
dynamics and penalties are successfully carried forward. We
also note that the number of false alarms is zero, since the
penalty applied to complaint stations remains below 0.02.

In the experiments presented so far, all the contenders,
whether compliant or selfish, transmitted saturated traffic.
Indeed misbehaviour becomes problematic under heavy
network loads, since the performance of compliant users
suffers as a result of the gains achieved by the selfish clients.
However, it is also useful to verify that our algorithm can
detect misbehaving clients that transmit on/off (bursty) traf-
fic, since intuitively the average attempt rate of these might
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Fig. 14: WLAN with dynamic topology: two
compliant stations are joined by a misbehav-
ing one (CWmin half the default value) and
subsequently by a third fair client. Stations
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data.
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Fig. 15: WLAN consisting of four standard compliant stations generating het-
erogeneous traffic: file upload, web browsing, video streaming, system update
(download). AP runs the proposed policing scheme. 30-minute snapshot of the
attempt rate (above) and throughput (middle) attained by each flow, as well as
the penalties applied by our algorithm (below). Experimental data.

fall below the expected maximum fair value. We note that
the robustness analysis we present in Sec. 4.2 guarantees
that no transmission strategy can game the operation of the
policing algorithm, though verifying this in practice with
such bursty traffic is appropriate. To this end we conducted
additional experiments where a misbehaving client alter-
nates periodically between silent and active periods of τ sec-
onds (τ = 10s and 20s), while sharing the network with two
complaint stations. We leave out the illustration of this result
due to space limitations, but confirm that the proposed
policing scheme is robust to selfish users generating bursty
traffic, as the algorithm detects rapidly their deviation from
fair behaviour and penalises them accordingly.

6.5 Real Traffic

Next, we investigate the performance of the policing algo-
rithm in a more realistic scenario with heterogeneous traffic.
We will show that the policing algorithm does not unneces-
sarily penalise fair clients that have increased demands and
attain higher transmission rates simply due to the reduced
activity of the other contenders.

Towards this end, we consider a network with n = 4
clients, the first one uploading a large file, the second gen-
erating web traffic, the third streaming a video file and the
last performing a system update. To emulate the file upload,
we generate saturated traffic using iperf on the first client.
The second station establishes finite size TCP connections,
alternating between periods of activity, during which a 2-

Mbyte file is transferred, and silent periods exponentially
distributed with mean λ−1 = 60s [37]. The third station
streams a MPEG-4 encoded version of “Resident Evil: Apoc-
alypse” at 1 Mb/s using the VLC media player [38]. To em-
ulate the activity of the fourth station, we use a backlogged
iperf downstream session from the AP to the client. In this
scenario, as the AP is always fair, we use the downstream
flow to estimate the fair throughput. We run the experiment
for a total duration of 1 hour, measuring for each flow the
attempt rate, throughput and penalty applied.

In Fig. 15 we plot a 30-minute snapshot of the network
operation in this experiment, showing the time evolution
of the aforementioned performance metrics for each client
station. First, we observe that the penalty stays at zero most
of the time for all stations, only with infrequent and small
variations above zero (the percentage of times the penalty
exceeds the 0.02 threshold is 8.89%, while the average
penalty applied at each iteration for the uplink flow is 0.011,
which is negligible). Second, the medium-quality video flow
sees its bandwidth demand satisfied most of the time. Third,
the bandwidth demanding upload and download flows
equally share the remaining available air time. Lastly, the
spurious web traffic experiences similar performance to that
of other flows whenever they compete.

We conclude that indeed the proposed policing algo-
rithm does not penalise stations that generate more traffic
than their competitors as long as they comply with the
MAC configuration defined by the 802.11 standard. This
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Fig. 16: WLAN consisting of three saturated stations sending
1,000-byte packets using the IEEE 802.11 HR/DSSS physical
layer. Two stations are compliant and transmit at 11Mb/s, the
third is misbehaving (CWmin halved) and runs the Minstrel RC
algorithm. Clients can choose from the following set of PHY bit
rates for transmission: {1, 2, 5.5 and 11} Mb/s. The AP runs
the proposed policing scheme. PHY rates selected by the selfish
client (above) and penalty applied (middle) over a 150s period.
Network utility comparison (below) when the misbehaving
client runs the Minstrel RC algorithm and uses a single PHY
rate for transmission respectively. Experimental data.

differentiates our approach from recent work that focuses
on backoff misbehaviour detection [15], as our scheme is not
required to perform deep packet inspection to differentiate
TCP and UDP traffic,11 in order to avoid penalising fair
flows that achieve superior throughput. Furthermore, our
algorithm not only addresses misbehaviour detection, but
also counteracts effectively such selfish practices, irrespec-
tive of the strategy employed.

7 NON-IDEAL CHANNEL EFFECTS

We also investigate the performance of our implementation
under several challenging situations that occur frequently in
practice. Specifically, we verify that the proposed algorithm
has no negative impact on rate switching decisions taken by
state-of-the-art rate control algorithms and demonstrate the
potential of our scheme to alleviate unfairness issues that
arise due to the PHY/MAC interactions occurring in the
presence of the capture effect.

11. Traffic differentiation based on transport protocol is infeasible
when clients use IPsec, e.g. by setting up a virtual private network.

7.1 Rate Control

We study the behaviour of a rate control algorithm executed
at a greedy client that manipulates their MAC configura-
tion and is being penalised by our policing algorithm to
counteract their misbehaviour. Our goal here is to verify
that rate control (RC) algorithms will not wrongly interpret
suppressed ACKs as losses caused by poor channel condi-
tions and thus will not trigger downgrades of the PHY rate.
This is particularly important, since unnecessarily selecting
a lower modulation scheme can be wasteful of channel time
and significantly impact on the overall network utility [39].

To this end, we consider again a simple scenario with
two fair clients and one misbehaving station that uses a
CWmin parameter half the standard recommended value.
In this experiment, the selfish client runs the Minstrel rate
control algorithm, which is the default mechanism imple-
mented by mac80211 drivers on Linux systems since kernel
version 2.6.29 (March 2009 to date), and the AP executes
the proposed policing scheme. Note that Minstrel [40], Sam-
pleRate [41] and other commonly used rate control schemes
work by sampling the mean transmission time at different
PHY rates. Since our ACK dropping scheme impacts on all
PHY rates in the same way, it will inflate the transmission
times for all rates in the same way, and consequently we
expect the rate control scheme will still pick the rate with
shortest transmission time. Similarly, schemes that make
decisions based on SNR or related indicators will not be
mislead by ACK dropping [42].

We examine the time evolution of the penalty applied
by our algorithm to the cheater, as well as the rate selected
by Minstrel during the operation of our scheme. As shown
in Fig. 16, increasing the penalty does not influence the rate
selection decisions taken by the rate control algorithm, since
packets are transmitted almost always at the maximum rate
(11 Mb/s) and lower rates are only periodically sampled
(approx. every 30s), with only a couple of frames.

To verify that indeed the network utility is not affected
when policing is applied to selfish stations, we also plot at
the bottom of Fig. 16 this metric for the same experiment,
as well as for the case when the misbehaving client does
not perform rate adaptation and all stations transmit at a
single rate, e.g. 11Mb/s . Note that we compute the network
utility as in [43], i.e. the sum of the natural logarithms of the
individual throughputs, which is considered a good mea-
sure of proportional fairness [20]. From the results in Fig. 16
we conclude that our policing algorithm does not tamper
with the operation of current rate control mechanisms and
thus has no negative impact on the network utility when
penalties are applied to non-compliant client stations.

7.2 Capture Effect

We investigate a scenario where all stations obey the stan-
dard specification, but experience different performance due
to their placement relative to the AP. Specifically, we are
interested in checking whether our policing scheme can
improve fairness when a client that is located closer to the
AP captures the channel while transmitting simultaneously
with stations that reside farther away. This effect is fre-
quently encountered in practice and can cause significant
unfairness, as already documented in e.g. [44], [45].
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Fig. 17: WLAN consisting of three compliant stations always
having 1,000-byte packets to transmit using the IEEE 802.11
HR/DSSS physical layer at 11Mb/s. Station (S1) is located next
to the AP. Stations S2 and S3 are placed at a distance four times
longer, thus S1 can capture the channel over S2 and S3. Average
and 95% confidence interval of per-station throughput shown
above with a regular AP (light bars) and an AP running the
proposed policing scheme (dark bars). Network utility shown
below, with and without policing. Experimental data.

For this purpose, we examine again the performance
of a network with three fair stations, but this time with
one station (S1) located next to the AP and the other two
(S2 and S3) at similar, but four times longer distances. In
the top plot of Fig. 17 we show the average throughput
attained by each client in this scenario, with and without our
policing algorithm running at the AP. Observe that without
policing S1 achieves significantly better performance than
the other two clients with a standard AP (light bars). On the
other hand, when the AP executes our policing algorithm,
the attempt rate of the station positioned near the AP will
be reduced and consequently all stations will attain nearly
identical throughputs (dark bars). Note that this correction
of the throughput distribution among clients comes at no
network utility cost, as we show in the lower plot of Fig. 17.

We conclude that our policing scheme not only combats
MAC misbehaviour, but can also mitigate unfairness that
arises in real deployments due to PHY/MAC interactions.

8 CONCLUSIONS

In this paper we introduced a policing scheme that penalises
MAC misbehaviour and preserves fairness in wireless net-
works. The proposed algorithm is executed at the AP and
does not require any modification to compliant devices. We
established the convergence of our algorithm, as well as
its robustness to sophisticated misbehaviour strategies that
seek to game its operation. We presented a practical im-
plementation on off-the-shelf hardware and demonstrated
the effectiveness of our proposal by conducting extensive
experiments in a real wireless LAN, over a wide range of
network conditions and misbehaviour scenarios. The results
obtained show that our policing algorithm drives selfish

users into compliant operation, regardless of the type of
misbehaviour employed, and does not penalise compliant
clients that consume more air time than lightly loaded
stations. In addition, we showed that our solution has no
negative impact on current rate control algorithms and can
alleviate unfairness incurred by PHY layer capture effect.
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