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Abstract—A variety of wireless interfaces are available for today’s mobile user to access Internet content. When coverage areas of
these different technologies overlap, a terminal equipped with multiple interfaces can use them simultaneously to improve the
performance of its applications. In this paper, we motivate the advantages that can be had through simultaneous use of multiple
interfaces and present a network layer architecture that enables diverse multiaccess services. In particular, we explore in depth one
such service provided by the architecture: Bandwidth Aggregation (BAG) for real-time applications. An important aspect of the
architecture when providing BAG services for real-time applications is the scheduling algorithm that partitions the traffic onto different
interfaces such that the QoS requirements of the application are met. We propose one such algorithm Earliest Delivery Path First
(EDPF), that ensures packets meet their playback deadlines by scheduling packets based on the estimated delivery time of the
packets. We show through analysis that EDPF performs close to an idealized Aggregated Single Link (ASL) discipline, where the
multiple interfaces are replaced by a single interface with same aggregated bandwidth. A prototype implementation and extensive
simulations carried using video and delay traces show the performance improvement BAG with EDPF scheduling offers over using just
the Highest Bandwidth Interface (HBI) and other scheduling approaches based on weighted round robin.

Index Terms—Network architecture and design, video, scheduling, algorithm/protocol design and analysis, implementation,

simulation.
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1 INTRODUCTION

THE explosive growth of the Internet has been a major
driving force in the proliferation of a variety of wireless

technologies. Examples include 802.11, Bluetooth, GPRS,
CDMA2000, UMTS, etc. Several research challenges [1], [2],
[3], [4] related to the use of a single wireless technology at the
mobile client have been explored so far. With the incidence of
a variety of wireless technologies, seamless migration of
connections [5] (vertical handoff) from one interface to
another, content adaptation [6] to suit the characteristics of
the interface have also been addressed. However, the basis of
most of the research in this domain has been confined to
single interface use at any given time to meet all the
connectivity requirements of the applications.

Existing wireless technologies differ widely in terms of

services Offered—bandwidth, coverage, QoS support, pri-

cing, etc. Restricting usage to one single interface at a time

limits the flexibility available to the end user in making the

best use of all available resources on his interfaces. The use

of multiple interfaces simultaneously opens new way of

addressing some of the limitations of wireless media and

can enable other new and interesting possibilities:

. Bandwidth Aggregation. Bandwidth offered by the
multiple interfaces can be aggregated to improve
quality or support demanding applications that need
high bandwidth.

. Mobility Support. The delay associated with handoff
can be significantly reduced when an alternate
communication path is always kept alive.

. Reliability. For applications requiring strict reliabil-
ity guarantees, some or all packets can be dupli-
cated/encoded and sent on the multiple paths.

. Resource Sharing. While the above scenarios involve
a single client host, the idea can be extended to
broader scenarios. For instance, in an ad hoc
network of nodes connected via their local interfaces
(LAN—802.11 or Bluetooth), a subset of nodes may
have wide area (WAN) connections. These WAN
bandwidth resources can be shared effectively across
the nodes to access Internet.

. Data-Control Plane Separation. Similarly, the WAN
interfaces in an ad hoc/sensor network can also be
used for out of band control communication (via an
infrastructure proxy) to aid distributed ad hoc
protocols such as routing. The LAN interface can
thus mostly be used for data, thereby achieving a
clean separation between control and data planes.

We term the services enabled by such simultaneous use of
multiple interfaces as MultiAccess Services. To realize, in
practice, the services listed above, we need an architecture
to support multiple communication paths. In this paper, we
begin by providing a general framework in the form of such
an architecture. In particular, we focus our attention on one
of the services provided by the architecture: Bandwidth
Aggregation (BAG) for real-time applications.

The architecture can be addressed at different layers of
the protocol stack. We choose a network layer approach as
opposed to transport/application layer solution to intro-
duce minimal changes in the existing infrastructure thus
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providing application transparency. Our network layer
architecture consists of an infrastructure proxy. A proxy
may provide services to a set of mobile clients equipped
with multiple interfaces, and multiple proxies may be
provisioned for reliability and scalability. Some of the
features of the network proxy are similar in spirit to that
provided by Mobile IP [7]. The client uses a fixed IP address
acquired from the proxy in establishing connections with
the remote host. The proxy captures the packets destined
for the client and uses IP-within-IP encapsulation to tunnel
them to the client. However, unlike Mobile IP, the proxy can
manage multiple care-of-addresses and perform intelligent
processing and scheduling of packets.

One of the services provided by the architecture is that of
aggregating bandwidth available on multiple interfaces to
increase application throughput. We explore in depth this
particular service in the context of real-time applications.
While the use of multiple interfaces can increase one’s
bandwidth, the use of multiple paths, each with varying
characteristics introduces new problems in the form of
excess delay due to potential packet reordering. Streaming
applications that employ smoothing buffers can tolerate this
reordering to an extent. However, for interactive applica-
tions, if care were not taken to minimize the delay resulting
from reordering, such delay is often equivalent to a packet
loss. In the context of our architecture, we look at this issue
in the form of the scheduling algorithm at the network
proxy (or mobile client in the uplink direction) that
partitions the data stream onto the multiple paths corre-
sponding to the different network interfaces. We propose
the Earliest Delivery Path First (EDPF) algorithm that has
the explicit objective of reducing delay due to reordering. It
estimates the delivery time of the packets on each Internet
path (corresponding to each interface), and schedules each
packet on the path that delivers it the earliest. This
approach effectively minimizes reordering and thereby
the delay and jitter experienced by the application.

To understand the behavior of EDPF, we perform both
analysis and simulation/implementation. The ideal scheduling
algorithm would aggregate bandwidth such that the
performance is similar to the case where a single link with
the same aggregate bandwidth is used—we call this the
Aggregated Single Link (ASL) algorithm. We analyze the
performance difference between EDPF and the idealized
ASL algorithm in terms of several metrics: the number of
bits serviced, delay experienced by the packets, the jitter
under buffering, and the maximum buffer requirement for
in-order delivery. In addition to the analysis, we study the
performance of EDPF through a prototype implementation
and trace-based simulations for both real-time streaming and
interactive applications. Our results show that EDPF
mimics ASL closely and outperforms round-robin-based
approaches [8] by a large margin.

While we have introduced BAG in the context of wireless
interfaces, wired (e.g., dialup) links can also be included in
bandwidth aggregation. Further, the scheduling algorithm
EDPF can be used to provide QoS in many systems that use
multiple paths. Examples of such systems include high-end
storage (host connected to RAID server via multiple
channels), Ethernet/ppp link aggregator systems [9], [10].

The rest of the paper is organized as follows: In Section 2,
we describe our architecture. The scheduling algorithm
EDPF along with several properties is presented in Section 3.

Section 4 presents the results of our experiments using a
prototype implementation and trace driven simulations. We
discuss the deployment complexity and some of the
assumptions we make in our work in Section 5. We present
related work in Section 6 and, finally, conclude in Section 7.

2 ARCHITECTURE AND SERVICES

In this section, we first motivate our choice of a network
layer architecture that enables multiaccess services and then
proceed to discuss the functional components that make up
our architecture. We also elaborate on one of the services
provided by the architecture—BAG, which is the focus
point of this paper. Additional details of the architecture
can be found in [11].

2.1 Why a Network Layer Architecture?

The architecture can potentially be addressed at different
layers of the protocol stack. Link layer solutions are
infeasible in this setup, as the networks span different
domains, controlled by different service providers. An
application-level solution is a possible design alternative.
Making applications aware of the presence of multiple
interfaces can lead to application specific optimization and
can be very efficient. However, given the diversity of
applications, this approach would mean modifying/rewrit-
ing the various applications while ensuring compatibility
with existing infrastructure, making wide spread deploy-
ment a difficult job. Further, the applications need to keep
track of the state of different interfaces, which increases
their complexity. And, when multiple applications share
common client resources (interfaces), they have to be
designed with care such that they are friendly to each other.

Transport layer solutions (e.g., for use with TCP-based
applications) share some of the same features as application
layer solutions. While they can be efficient, they still need
all server software to be upgraded to use the new transport
protocols and careful design to ensure fair access to client
resources.

With IP as a unifying standard, a network layer proxy
based approach has the advantages of being transparent to
applications and transport protocols and does not need any
changes to existing server software. Our choice of a network
layer solution mainly stems from its ease of deployment.
Legacy applications, in particular, can benefit with this
approach as they have no other design alternative. Another
advantage with a network layer setting is a centralized
approach to end user flow management that can potentially
prevent any unfair interaction.

While the network layer approach overcomes most
limitations of the other approaches, it may not always be
very efficient as it operates further down the stack.
However, we believe that with careful design, most
inefficiencies can be minimized. Our design choice, though
an alternate to application/transport layer solutions, as
such, does not preclude further optimization at the higher
layers. In the sense that our architecture can complement
these approaches in terms of mobility support when
handling multiple interfaces. In the absence of this solution,
higher layer approaches may have to handle mobility
themselves or rely on multiple Mobile IP initiations (one for
each interface, which to our knowledge is not supported by
Mobile IP).
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We now proceed to discuss the main details of our
architecture.

2.2 Architecture

Fig. 1 shows a high-level overview of the architecture. The
network proxy provides many different services (Band-
width Aggregation, mobility support, resource sharing,
etc.) to the client (equivalently, the MH), which is
connected to the Internet via multiple network interfaces.
The MH, when using the services of the network proxy,
acquires a fixed IP address from it and uses it to
communicate directly with the remote server. The MH
also registers the care-of IP addresses of its multiple active
interfaces with the proxy. When the application traffic of
the MH passes through the domain of the proxy (since the
source address used by the MH in the packets corresponds
to an address in the proxy network), the proxy intercepts
the packets and performs necessary application specific
processing. It then tunnels them using IP-within-IP
encapsulation to the client’s different interfaces. This
mechanism is similar to that used in Mobile IP, but has
been extended to handle multiple interfaces. Note that this
mechanism is needed in our architecture not just for

mobility support, but for simultaneous use of interfaces—it
is essential even when the client is stationary.

Many Radio Access Networks (RANs) often use private
IP address space (NAT functionality), and/or discard
packets if the packets contain a source IP address different
from those configured for use within the access network
(ingress filtering). The mechanism used in our architecture
to overcome these problems is the same as that used in
Mobile IP. To overcome ingress filtering, we employ reverse
tunneling, i.e., outgoing packets from the MH are now
tunneled to the network proxy. To overcome NAT usage in
access networks, we perform tunneling on top of UDP.

The functional components that make up our architec-
ture, which reside on the MH and on the network are as
shown in Fig. 2. We explain briefly the functionality of each
component. Additional details can be found in [11].

. Profile Manager/Server. The Profile Manager and
Profile Server have the main role of handling
application requirements and conveying the same
to the necessary modules. For each application the
MH starts, the Profile Manager generates a profile
based on user input and application needs. The
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profile includes the interfaces to use, the type of
scheduling to perform across the chosen interfaces
(which algorithm), granularity of scheduling (per
packet or per flow), and any additional functionality
needed (duplication of packets for reliability, content
adaptation, etc.). The Profile Manager conveys this
profile information to the Profile Server to facilitate it
in handling the application traffic that passes
through the proxy.

. Access Manager and Access Selection Unit. Based on the
profile generated, the task of the Access Selection
unit is to bring up the necessary interfaces in
conjunction with Access Manager. The Access
Manager manages its tasks by talking with one or
more Link Managers, which handle individual
interfaces.

. Mobility Manager/Server. The newly acquired care-of
IP addresses are registered by the Mobility Manager
on the client side with Mobility Server on the proxy
network. The mobility units also handle client
mobility by tearing down old tunnels and establish-
ing new ones with the newly acquired care-of
addresses.

. Traffic Manager. The Traffic Manager is the compo-
nent which constitutes the core of multiaccess
services. This unit resides both on the client and
the proxy network and hosts the various scheduling
algorithms needed to provide different services. The
Profile Manager/Server informs the Traffic Manager
on the exact handling of a client flow. Typically, each
data packet flows through the traffic manager. For
each packet, the Traffic Manger determines its flow-
id, accesses the correct profile and performs appro-
priate processing.

. Performance Monitoring Unit. The component which
provides performance input for the Traffic Manager
is the Performance Monitoring Unit. The Perfor-
mance Monitoring Units residing on both the client
and the proxy network, through collaboration
monitor the characteristics of the underlying paths
between the network proxy and the client.

2.2.1 BAG Services

One of the services provided by the architecture toward

increasing application throughput is that of Bandwidth

Aggregation (BAG). Consider a user equipped with two

interfaces, each of which provides on average 100kbps and

50kbps bandwidth. By simultaneous use of both interfaces,

the user can increase his total bandwidth to 150kbps.

Bandwidth Aggregation, attempts to increase user band-

width by striping data onto the multiple interfaces so as to

avail all available bandwidth.
While we have come a long way in terms of peak data

rates in mobile networks, 9.6kbps (GSM-TDMA) in 2G to

2Mbps (UMTS) in 3G, the typical rates one can expect to see

in a loaded network are still very small [12]—40kbps in

1xRTT, 80kbps in EDGE, 250kbps in UMTS. Supporting

real-time applications with stringent QoS requirements,

large file transfers, intense Web sessions is a difficult task

and may not even be possible if confined to a single

interface. Using bandwidth available from all possible
sources may be the only option to increase one’s bandwidth
and support demanding applications. In this paper, we
focus our attention on two such demanding applications—
real-time streaming and interactive video. In concurrent
work [13], we have considered BAG services for TCP
applications. In the context of the overall architecture, a
crucial aspect that dictates real-time video performance is
the scheduling algorithm that resides in Traffic Manager
which splits traffic across the different paths. We now turn
to a discussion of the design of this algorithm.

3 THE SCHEDULING ALGORITHM

For real-time applications, the scheduling algorithm not
only has to effectively aggregate bandwidth of the inter-
faces, but also minimize delay experienced by packets due
to potential reordering caused by varying characteristics
(delay, bandwidth, loss) of the multiple paths. We first
present a scheduling algorithm under ideal conditions, that
achieves our desired objectives (Section 3.1), along with
some useful properties (Section 3.2). In subsequent sections,
we explain how the algorithm fits in practical scenarios.

3.1 The Earliest Delivery Path First (EDPF)
Scheduling Algorithm

The overall idea behind EDPF is to 1) take into considera-
tion the overall path characteristics between the proxy and
the MH—delay, as well as the wireless bandwidth, and
2) schedule packets on the path which will deliver the
packet at the earliest to the MH. In explicit terms, EDPF can
be described as follows;

The network between the proxy and the MH can be

simplified as shown in Fig. 3. Each path l (between the

proxy and the MH) can be associated with three quantities:

1) Dl, the one-way wireline delay associated with the path

(between the proxy and Base Station—BS), 2) Bl, the

bandwidth negotiated at the BS,1 and 3) a variable Al,

which is the time the wireless channel becomes available for

the next transmission at the BS. If we denote by ai, the

arrival instance of the ith packet (at the proxy) and by Li,

the size of the packet, this packet when scheduled on path l

would arrive at the MH at dli.

dli ¼MAXðai þDl;AlÞ þ Li=Bl: ð1Þ

The first component computes the time at which transmis-
sion can begin at the BS, and the second component
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computes the packet transmission time (we ignore the
wireless propagation delay). EDPF schedules the packet on
the path p, where

p ¼ fl : dli � dmi ; 1 � m � Ng;

N being the number of interfaces. That is, the path with the
earliest delivery time. EDPF then updates Ap to dpi , i.e., the
next transmission can begin only at the end of the current
packet reception. EDPF tracks the queues at each of the
base-stations through the Al variable. By tracking the
queues at the base-stations and taking it into account while
scheduling packets, EDPF ensures that it uses all the
available path bandwidths, while achieving minimal packet
reordering. The explanation so far focused only on down-
link transmission where the MH acts as a sink. The same
algorithm can also be used for the uplink case where the
roles of MH and proxy are interchanged.

3.2 Properties of EDPF

We now analyze some of the properties of EDPF. Our goal
is to bound the performance behavior of EDPF, as well as to
compare it with the idealized ASL case. When the arrival
rate of traffic is less than the total aggregated bandwidth,
there is enough spare bandwidth available to mask the
inefficiency of scheduling. It is only when the BSs have
queue build-up (which is when delays are higher),
scheduling becomes more important. In such a scenario,
we can simplify the analysis by noting that we expect the Al

factor to dominate in (1). Accordingly, we assume that the
wireline delay Dl experienced by the packets is 0.2 This
helps us to highlight the relevant properties of EDPF
without introducing additional complications. Further, this
makes comparison against ASL more meaningful; with
asymmetric delay across the different paths, it is not
straightforward to determine the wireline delay for the
ASL case to make a meaningful comparison.

In the analysis below, we carry over the notations N ,
Bl, Al, ai, and Li from above. In addition, we use the
following notation: We define the links corresponding to
the highest and lowest bandwidth as hb ¼ argmaxlfBlg
and lb ¼ argminlfBlg, respectively. We define Bmax ¼ Bhb

and Bmin ¼ Blb. Each link l has a weight, wl ¼ Bl=Bmin.
We let Lmax be the maximum packet size.

Let TlðtÞ ¼ maxft; Alg. TlðtÞ is in essence the time at
which a packet arriving at time t can begin transmission on
link l. Note that when packet i is scheduled on link l, if di is
its delivery time at the client, Tlðaþi Þ ¼ di, where aþi refers to
the time instant just after ai (arrival time of packet i at
proxy). When buffering is used with EDPF, we distinguish
between the delivery time to the client (di), and the receive
time at the application, denoted ri. Thus, ri � di. We set the
initial value of Al ¼ 0, and let the first packet arrive at time
0 (a1 ¼ 0).

We first present a useful lemma that is used to derive
some of the properties of EDPF.

Lemma 1. At any time t, if TnðtÞ � TmðtÞ, then TmðtÞ � TnðtÞ �
Lmax=Bn.

Proof. We prove the above lemma by induction on the
packet number i as follows: We will show that in the
interval ½0; a2�, the lemma holds. Assuming that it
holds in ½0; ai�, we will then show that it holds in the
interval ðai; aiþ1�. (Recall that a1 ¼ 0.)

Basis. The first packet is scheduled on the link with the
highest bandwidth, i.e., hb, to deliver it the earliest. Ahb

would now take on the value L1=Bmax and Am6¼hb ¼ 0.
Consequently,

Thbð0þÞ � Tmð0þÞ ¼ L1=Bmax � Lmax=Bm:

The lemma holds at time 0þ. For any 0 < t � a2 since
TmðtÞ ¼ maxft; Amg, the difference between Tms de-
creases linearly with t.

Inductive step. Assume that the lemma holds for
packets 1; 2; . . . ; i� 1, i.e., it holds in the interval ½0; ai�.
Let l be the link chosen for transmission of packet i.
Then, according to EDPF,

di ¼ TlðaiÞ þ Li=Bl � TmðaiÞ þ Li=Bm; 1 � m � N:

At time aþi , Tlðaþi Þ takes on the value of di and the other
T s do not change. Hence, we have:

Tlðaþi Þ � Tmðaþi Þ þ Li=Bm: ð2Þ

We now consider the following two cases:
Case 1. Tlðaþi Þ > Tmðaþi Þ. According to (2), Tlðaþi Þ �

Tmðaþi Þ � Li=Bm.
Case 2. Tlðaþi Þ � Tmðaþi Þ. Since the lemma holds at time

ai, we have TmðaiÞ � TlðaiÞ � Lmax=Bl. Since TlðaiÞ <
Tlðaþi Þ � Tmðaþi Þ ¼ TmðaiÞ, from above inequality we get,
Tmðaþi Þ � Tlðaþi Þ � Lmax=Bl.

Thus, the lemma holds at time aþi in both cases. As in
the basis, at any time ðai < t � aiþ1Þ, the difference
between T s decreased linearly with t and, hence, the
lemma follows. tu

When packets are of constant size, it is easy to see that
with EDPF, they will arrive in order at the client. Consider
two packets fi; j : j > ig. Packet j may arrive before i only if
it were scheduled on a different link. If packet sizes are the
same and the link on which j was transmitted delivers
packets the earliest, EDPF when scheduling i would have
picked that link for its transmission. Thus, packets will
always arrive in order. Note that this property does not
hold for other scheduling schemes based on Weighted
Round Robin (WRR) or variants of it such as Surplus Round
Robin (SRR) [8], Longest Queue First.

When packets are of variable size, it is important that the
scheduling algorithm distribute the bits across the links
properly. Given P packets of variable size for transmission,
we can say the algorithm achieves good bandwidth
aggregation if the maximum difference between the
normalized bits allocated to any two pairs of links m;n is
at most a constant. The constant should not be a function of
P . The following theorem upper-bounds this constant by
Lmax for EDPF. In case of WRR, this quantity is a function of
P and can grow without bound. To understand why,
consider the case of two links with equal weights, where
packet sizes alternate between maximum and minimum
size. For SRR it is 2Lmax (proof not presented).
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Theorem 1. For EDPF, given P packets to transmit, the
maximum difference between the normalized bits allocated to
any two pairs of links m;n is upper bounded by Lmax.

maxm;n
Sentm
wm

� Sentn
wn

����
���� � Lmax:

Proof. Let t be the time instance at which one of the links
first becomes idle, i.e., at t the particular link in question
finishes serving its share of the load P . For any link l,
TlðtÞ would essentially indicate the overall time for
which the link was used for transmission. Therefore,
TlðtÞ �Bl would be the total number of bits sent on the
link—Sentl. For any two links m;n,

Sentm
wm

� Sentn
wn

����
����

¼ TmðtÞ �Bm

wm
� TnðtÞ �Bn

wn

����
����:

Since Bl=wl ¼ Bmin and since the difference between
the Ts cannot exceed Lmax=Bmin from Lemma 1, the
right-hand side is at most Lmax. This proves the
theorem. tu

The behavior of a system with multiple links differs from
its single link counterpart ASL on several grounds. First,
packets no longer arrive in order due to multiple paths.
Second, work can accumulate as packets may be serviced at
a rate less than in ASL. This accumulation can result in
packets experiencing excess delay on average. The low
service rate also increases the jitter experienced by the
packets. In the rest of this section, we compare EDPF with
ASL by providing upper-bounds on the above mentioned
differences—work, delay, jitter, and buffering required. For
better readability, we just state the theorems here and
discuss the results at the end of the section. The interested
reader can find the proofs in Appendix A.1.

Theorem 2. For any time t, the difference between the total
number of bits W serviced by ASL and EDPF is upper
bounded as

WASLð0; tÞ �WEDPF ð0; tÞ � Lmax
XN
l¼1

wl � 1

 !
:

Proof. See Appendix A.1. tu
Theorem 3. The difference in delay experienced by a packet i in

ASL and EDPF is upper bounded as

dEDPFi � dASLi �
Lmaxð

PN
l¼1 wl � 1ÞPN
l¼1 Bl

þ ðN � 1ÞLiPN
l¼1 Bl

:

Proof. See Appendix A.1. tu

Jitter is defined as the difference in delay experienced by
two consecutive packets, i.e., Ji ¼ ðri � ri�1Þ � ðai � ai�1Þ. It
is easy to see that if the packets are not buffered (ri ¼ di),
Ji � Li=Bmin. The worst case jitter happens when both the
packets are transmitted on the link corresponding to lb.

Theorem 4. When buffering is employed, the jitter experienced

by a packet i is upper bounded by Li=Bmax.

Proof. See Appendix A.1. tu
Theorem 5. The buffer size needed (at the client) to deliver the

packets in order (to the application) is at most ðN � 1ÞLmax.

Proof. See Appendix A.1. tu

3.3 Discussion

An important property a scheduling algorithm should have

is that it utilize the bandwidths of the links properly. EDPF

ensures that this difference in normalized bits allocated to

any two links is a small constant Lmax (Theorem 1). Further,

Theorem 2 shows that the work carried over in EDPF in

comparison to ASL is again a constant independent of time.

Another property the scheduling algorithm should have is

that it minimize reordering and, thus, the delay and jitter

experienced by the packets. Here, too, EDPF performs close

to ASL. The difference in delay experienced by the packets,

between EDPF and ASL, is bounded (Theorem 3). The

bound is proportional to the bandwidth asymmetry as well

as the number of interfaces. The jitter is bounded by a small

constant if buffering is used (Theorem 4), and the amount of

buffering required to achieve this is only linear in the

number of interfaces, and independent of other factors.
Though looked at in the context of bandwidth aggrega-

tion, EDPF can also be used in Queuing disciplines to

provide QoS. What we have analyzed is the performance of

a “single queue—multiple server system” based on EDPF

scheduling. We have compared such a system with one that

employs a single server but which serves the queue at a rate

equal to the sum of the rates of the multiple servers.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the

scheduling algorithm in the context of two important class

of real-time applications: streaming and interactive video.

We experiment with streaming applications on a prototype

implementation of our architecture as a proof of concept for

BAG services and to quantify the performance improve-

ment BAG services bring over conventional single interface

use. With respect to interactive applications, we consider an

appropriate simulation setup in line with efforts in the next-

generation networks to support QoS and show the

performance advantages EDPF scheduling has over

weighted round-robin based approaches.

4.1 Streaming Video Applications

Streaming video involves the transfer of data as a

continuous steady stream that allows a client to display

video before the entire file has been downloaded. The client

normally employs a smoothing buffer to hide the variability

in the bit rate of the data stream and to present a good

quality video with fewer halts. We show that BAG can help

streaming applications by significantly reducing the buffer-

ing time needed to ensure continuous playback, thereby

enhancing end-user experience.
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4.1.1 Implementation Details

We implemented a prototype of the setup as depicted in Fig. 1
for streaming video. The video server is trace-driven—it uses
frame size traces of several video sequences taken from [14]. It
reads generation-time/size information from the trace file,
generates appropriate sized packets and streams them to the
client using a UDP socket. The duration of the video
sequences used in this experiment is 30 minutes.

The client machine (MH) connects to the Internet using
multiple interfaces. It binds the multiple care-of addresses
to a virtual IP address (that of the proxy) and uses the
virtual address to talk to the video server (via proxy if
interfaces are NAT enabled). We used two 1xRTT cards
(CDMA2000) in our experiments. Ideally, we would have
liked to use two separate technologies, but other available
interfaces were not very conducive. HDR-based 1xEVDO
had no Linux drivers and GPRS was unstable (while shorter
runs showed good performance improvement, in longer
runs, the delay experienced by some packets were in excess
of 20 seconds possibly due to a bug in the implementation).
The purpose of this experiment is to demonstrate proof of
concept of BAG—we believe that similar performance as
shown in this paper can be achieved with other stable
interfaces.

The functional components that make up our architec-
ture (Fig. 2) have been implemented as Linux loadable
kernel modules. The Traffic Manager (TM) is the main
components relevant to this experiment. So we elaborate
more on this component. For ease of implementation, we
integrated some parts of the Performance Monitoring Unit
with the TM. The TM resides in kernel space and intercepts
all incoming packets before the routing module. At the
proxy, the TM encapsulates the captured packets with a
header whose destination IP address is determined by the
EDPF algorithm implemented within. At the MH, it
removes the outer IP header and collects interface statistics.
After the appropriate processing, the TM passes control of
the packet to the routing module to be handled as usual.
The MH’s TM module also communicates the parameters
needed by EDPF (Dl and Bl) to the proxy using UDP. We
use the average values of delays and throughput observed
on the interfaces as values for these parameters. Note that
reordering is not much of an issue in streaming applica-
tions, given the buffering of packets. So, EDPF does not
really need an accurate estimation of these parameters.

4.1.2 Metrics of Evaluation

The client application at the MH, buffers incoming packets
and begins video display after a fixed delay which we term
Startup Latency, and denote byL. Once the display begins, the

application displays frames consecutively every t seconds

(frame period). If at one of these epochs, the client’s buffer

does not have the complete frame, the frame is considered lost

(we discard its dependent frames as well). At the next epoch,

the client will attempt to display the next frame.
We use two metrics for comparison: 1) The buffering

time (BT ) needed to ensure continuous playback of

received frames. In other words, with L ¼ BT , no received

frame misses its playback deadline. And, 2) the Frame Loss

ratio (FL) for a given Startup Latency. This ratio includes

frames lost en route as well as frames lost due to late

arrivals.

4.1.3 Experimental Results

Table 1 shows the first metric—the buffering time needed

(in sec) to ensure continuous playback of received frames

for various video sequences. The mean and peak bit rates in

kbps of the video sequence are also shown. We compare

BAG/EDPF with the use of just a single interface—the

Highest Bandwidth Interface (HBI). As can be seen, BAG

with EDPF achieves a much lower startup latency than HBI.

BAG achieves twice the bandwidth of HBI in this experi-

ment (two similar interfaces), and the performance im-

provement in terms of BT is more than proportionate—in

most cases it is over a factor of two lesser.
The variation of FL with L for the “Lecture” video is as

shown in Fig. 4. At L ¼ 0:5sec, EDPF has a FL of 0.5 percent,

while HBI has 7.3 percent. At L ¼ 2sec, EDPF achieves FL of

0.04 percent while HBI still suffers a high 6.6 percent frame

loss. Streaming applications that support VCR functions

require one way delays in the range of 1-2 seconds. If less than

1 percent frame loss is required, BAG can support this, while

using just one interface cannot.
Another interesting result we observed is that the

packets discarded en-route was much higher for HBI, than

in EDPF for all the runs. For example, eight packets were

discarded for EDPF as compared to 326 packets fro HBI. We

believe this to be caused due to buffer overflow at the

wireless base-station. When using multiple interfaces, the

load gets uniformly distributed resulting in lesser losses

—another advantage of simultaneous interface use.
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4.2 Interactive Video

In the previous section, we have demonstrated on an
experimental testbed the benefits of BAG services for
streaming video applications. We now consider real-time
interactive multimedia.

Interactive applications like video telephony, video
conferencing have very stringent delay requirements—they
need one way latency under 150 ms for excellent quality of
service and under 400 ms for acceptable quality. Present
mobile systems (GPRS, CDMA2000, HDR) as they stand
today are best effort based with one way delays in the range
of a few hundred ms to excess of 1 second. It is, in general,
very difficult to support interactive applications on systems
that provide no QoS guarantees. Efforts are now underway
to integrate QoS support in both the core backbone as well
as radio access segment of the next-generation systems. In
line with efforts in this direction, we consider an appro-
priate simulation setup and study the performance of
interactive video when using BAG services. We now
describe the experimental methodology and present experi-
mental results subsequently.

4.2.1 Experimental Methodology

The network topology shown in Fig. 1 captures the vision of
next generation networks where the Base Station (BS) is an
extension of IP-based Internet. We implement/simulate
each of the components that make up the topology. We
assume that the radio access network provides QoS support
and that the wireless hop is the bottleneck link.

The Server. As in the previous section, we simulate
video server behavior using frame size traces. We consider
a high quality MPEG4 “Office Cam” [14] video, which
captures the activity of a person in front of a terminal. The
mean and peak bit rates of this video are 400kbps and
2Mbps, respectively. The reason for choosing this video is
1) Interactive video applications like video telephony/
conference will be similar in nature. 2) The bandwidth it
needs compares to that we can obtain by aggregation in
next-generation Radio Access Networks (RANs).

The Internet Paths. In the next generation networks, the
BS is considered to be an extension of the Internet.
Accordingly, we used delay traces collected on different
Internet Paths to simulate the delay experienced by the
packets up to the BS. The mean value of this delay between
server and proxy is 15 ms and between proxy and BSs is
22 ms (the same trace file was used on all the paths between
proxy and BSs). The traces were collected by generating
packets of appropriate size (derived from the frame size
trace) and measuring the round trip time (RTT) on paths
between hosts located at the following universities: UCSD,
UCB, CMU, and Duke. Note that this 37 ms average delay
corresponds to just the delay experienced by the packet on
the wireline segment. The total one way delay experienced
by the packet often is much higher, given the backlog at the
BS (queuing delay) and wireless transmission and propaga-
tion delay. And, it is this total delay that has to be under a
reasonable value (say, 250 ms) for achieving good quality
video.

Base-Stations and the Wireless Channels. Since we
assume that the underlying network provides QoS, the BSs

are simulated to have a link capacity equal to negotiated
rate and no cross traffic. They serve the packets in their
queue on a first-come-first-served basis. This is a reasonable
assumption because, in systems that provide QoS, once QoS
(bandwidth/loss) is negotiated, the channel is retained for
the whole session (no release/grant happens). Fluctuating
channel conditions and resulting losses are overcome by
FEC, limited ARQ, and increasing power of transmission (to
maintain loss rate below the negotiated value). In appro-
priate experiments, we also simulate channel losses—the
base-stations introduce errors in the packets and may
retransmit the packet based on the retransmission policy
in place.

The Network Proxy. The proxy implements two types of
scheduling Algorithms—EDPF and Surplus Round Robin
(SRR) (for comparison purposes). Surplus Round Robin
(SRR) was proposed in [8] as a generic bandwidth
aggregation algorithm, it is similar to WRR but adjusted
to account for variable sized packets, where the surplus
(unused bandwidth) is carried on to the next round. SRR
needs the negotiated bandwidth Bl of the interfaces in its
calculations. EDPF in addition to Bl also needs wireline
delay Dl. In the simulations, we use the average value of the
Internet path delay traces for EDPF calculations. In practice,
Dl can be estimated by sending signaling packets to the MH
during connection setup (clock synchronization is not
required since only the relative delay between the different
paths matters). This in general suffices because Internet
path delays are known to vary only slowly, over several
tens of minutes [15].

The Client. The packets arriving at the client are placed

in a buffer to overcome any reordering and passed in order

to the video application.
Application Performance Metrics. To measure the

quality of the video reception, we use the following

performance metrics.

1. The backlog in the system between the HA and the
client application.

2. The one-way delay experienced by the packets
between the server and the client application.

3. Floss—the fraction of frames that were discarded
because packets that make up the frame experience
delay in excess of maximum delay bound (DBmax, a
configurable parameter) or were lost en route. Note
that when a frame is discarded, we also discard its
dependent frames (P/B frames are discarded when
the corresponding I frame is lost). This metric mainly
captures the effect excessively delayed packets have
on the overall quality of the video.

4. Glitch duration (Gd) and Glitch Rate (g). We define
Gd as the number of consecutive frames that were
discarded. We define g as the number of glitches that
occur per ms.

4.2.2 Experimental Results

We first address the issue of how much bandwidth to

allocate to support QoS requirements of the application. We

then fix the bandwidth at a suitable value and evaluate the

performance using a set of metrics. Later, we measure the

sensitivity of the scheduling algorithms to bandwidth/delay
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asymmetry, number of interfaces, bandwidth/delay varia-
tion, and channel losses.

Bandwidth Allocation. To enable continuous video
playback, appropriate bandwidth must be allocated to the
video stream. Allocating just the average rate for Variable
Bit Rate encodings would not in general satisfy the
maximum delay requirements of the video. Peak allocation
on the other hand result in very low bandwidth utilization.

Given a packet stream of packets, we would like to
determine bandwidth B such that the delay experienced by
the packets is bounded by DBmax. We are also interested in
finding the buffer capacity C that is needed to ensure that
there is no overflow at the MH.

When the wireline delay D and the bandwidth split (ratio
in which the bandwidth is allocated to the various
interfaces) are fixed, the bandwidth B that bounds the
maximum delay by DBmax can be obtained by doing a
binary search. Note that, in practice, the bandwidth split
cannot be known in advance at the client. Without knowl-
edge of total bandwidth, the client would not know how
much bandwidth to negotiate on each interface. However,
the server can help the client in the negotiation by
providing a range of values corresponding to different
splits.

When sufficient bandwidth has been allocated to achieve
the delay objective as mentioned above, the maximum
buffer capacity needed to avoid overflow at the client is
given by BðDBmax �DÞ. The proof for this can be found in
Appendix A.2. Note that for bandwidths under 1Mbps and
DBmax under 500 ms, the buffering needed to avoid
overflow is quite small (< 62.5kbytes).

We have calculated the bandwidth needed for EDPF,
SRR, and ASL for various delay bounds (DBmax) and
bandwidth splits. Since ASL is the ideal case, we express the
bandwidth required in the other two cases as a percentage
over that required for ASL. Fig. 5 shows this percentage for
the case of three interfaces when the bandwidth is split
among them in different ratios. Note that the y-axis is set to
log-scale. We see that EDPF performs close to the ideal case
ASL, and outperforms SRR by a huge margin in most cases.

We have performed a range of experiments, varying the
number of interfaces as well as the bandwidth splits. The
nature of the results remains the same. Table 2 summarizes

the results for all these runs by averaging the bandwidth
needed over these experimental runs—the averaging is
done across various bandwidth splits. We considered
20 different splits as summarized in Table 3.

4.2.3 Application Performance Measures

While the previous section looked at the bandwidth
required to satisfy a given delay bound, we now look at
application behavior for a given bandwidth allocation. For
the rest of this section, we fix the aggregate bandwidth at
600kbps (1.5 times mean). A choice of a much lower
bandwidth than this results in > 1 percent of the packets
experiencing delay in excess of 500 ms, maximum permis-
sible for interactive video. The number of wireless interfaces
considered is three for most experiments. The use of two
interfaces has less scope for reordering than three interfaces;
hence, we present results for three interfaces (the nature of
the results remains the same for two interfaces). We now
present the various performance metrics in turn.

System Backlog. Since we are providing bandwidth that is
much less than the peak rate, some amount of backlog is
inevitable. The faster the algorithms service the packets, the
faster the backlog clears and the better the algorithms
aggregate bandwidths. Fig. 6 shows the backlog in the system
as observed between the HA and the client application for the
different algorithms when the bandwidth split is 3:2:1. For SL,
since the packets are serviced at a constant rate, the backlog
captures the variable bit rate part of the video. The maximum
and mean backlog for SL are 21,200 bytes and 3,100 bytes,
respectively. For EDPF and SRR, since we have multiple
interfaces, the backlog is higher. However, the backlog for
EDPF is very close to SL with a few additional peaks. The
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TABLE 2
Average Bandwidth Required (in kbps) for

ASL, EDPF, and SRR

TABLE 3
Bandwidth Splits on the Interfaces
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maximum and mean backlog for EDPF is 23,380 bytes and

3,700 bytes, respectively. SRR, on the other hand, has more

peaks and the peaks are rather high. The maximum and mean

backlog values for SRR are 32,150 bytes and 4,800 bytes,

respectively.
The backlog as measured above between the HA and the

client application includes the buffering needed to deliver the

packets in order to the application. This is of interest from the

application perspective. However, the backlog when mea-

sured between the HA and the client receiver can be directly

related to the number of bits serviced (work done) by the

algorithms—Theorem 2 in Section 3. Since the arrival

distribution at the HA is identical across the algorithms, the

difference in the number of bits serviced by the algorithms

will be the same as the negative of the difference in the backlog

induced by the algorithms. We measured this difference in

backlog for EDPF and SRR over SL for different splits. We

observe that this difference always satisfied the maximum

bound for EDPF. However, for SRR, this difference was much

higher than even the maximum permissible under EDPF. For

example, for a 3:2:1 split, this difference was about 3,596 bytes

for EDPF, less than 5,000 bytes as given by the bound. Where

as for SRR, this difference was about 9,096 bytes.
Delay Distribution. The Cumulative Distribution Func-

tion (CDF) of the delay experienced by the packets

(including buffering delay needed to deliver the packets

in order) is shown in Fig. 7. The different plots in each

graph are for the different algorithms, and for different

values of the bandwidth split. For ASL, 99.8 percent of the

packets have delay less than 200 ms. In case of EDPF, this

value ranges between 99.2 to 99.6 percent for different

splits. For SRR, its between 56.5 and 99.2 percent.
We have also verified to see if the delay experienced by the

packets (between the HA and client receiver) is indeed under

the delay bounds as derived in Section 3, Theorem 3. We

observe that, as with the work done, the difference in delay of

EDPF scheduling over SL was under the bounds for all splits

considered. However, with respect to SRR this difference was

large. For example, the difference in delay for EDPF in case of

5:3:1 split was 63 ms, well under the 133 ms delay bound.

However, in case of SRR, this difference was 196 ms, well

above EDPF.

Another point worth mentioning here is the amount of
buffering needed to overcome reordering. For the splits
considered, this was under 3,600 bytes for EDPF, where as
for SRR it was as high as 11,500. We observed that in most
cases, the buffering needed for EDPF exceeded the bound
derived in Theorem 5 in Section 3. This was mainly due to
the Internet path delay variations. When we fixed these
delay values to a constant, we observed that the buffering
needed was under the derived values. For example, for the
5:3:1 split, with fixed delays, buffering needed for EDPF
was 1,305, well under the 2,000 bytes maximum bound.

Frame Discard Ratio. Fig. 8 shows Floss as a function of
different DBmax when the number of interfaces is fixed at
three. As expected, Floss decreases as DBmax increases.
When DBmax is set at 200 ms, EDPF achieves a Floss less
than 0.6 percent while for SRR it can be as high as 20 percent
loss (for ASL it is 0.2 percent).

Glitch Statistics. The glitch rate is another useful metric
that captures the disruption in the video presentation due to
discarded frames. Table 4 shows the glitch statistics when
the number of interfaces used is three and for 300 ms delay
bound. In terms of the glitch rate too, SRR performs very
poorly. Though EDPF has higher average glitch duration
than SRR, it should be looked in relation to the glitch rate.
For EDPF, glitches happen less often and when they do,
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they span on average 3-6 frames. While in SRR, glitches
happen more often and on average span small intervals 1-
3 frames. Usually, the number of occurrences when glitch
durations exceeds 3 is about the same for EDPF as in SRR.

4.2.4 Bandwidth Asymmetry and Number of Interfaces

In order to capture the sensitivity of the system perfor-
mance to bandwidth asymmetry and the number of
interfaces, we compute Floss under different splits (see
Table 3) for a given number of interfaces and delay bound.
The standard deviation of the obtained values (expressed in
percent) in shown in Fig. 9 for different number of
interfaces. As can be seen in the figure, the standard
deviation increases and then falls with DBmax, for both
EDPF and SRR. When DBmax is small, the percentage of lost
frames is quite large irrespective of the bandwidth split and,
hence, we do not see much variation in loss across splits.
But, as DBmax is increased, the variation becomes more
apparent. For large values of DBmax, the frame loss goes
down closer to zero and so does the variation. But, overall,
compared to SRR, EDPF is more robust to bandwidth
asymmetry. This is a desirable feature since it allows the
client more freedom to make bandwidth requisitions on the
various network interfaces.

To measure the sensitivity of the algorithms to the
number of interfaces we measured the mean value of Floss
as a function of the number of interfaces. As the number of
interfaces increases, so does the scope for reordering and,
hence, Floss. However, EDPF is more tolerant of increase in

number of interfaces than SRR. For instance, for a DBmax of
200 ms, when increasing the number of interfaces from 3 to
4, EDPF showed an increase in Floss of only 2.1 percent
while SRR showed an increase of 5.2 percent.

4.2.5 Miscellaneous Issues

Channel Losses. So far, we have not considered channel
losses. In this setup, it may not be possible to alter the
scheduling to overcome channel losses as the time
granularity over which the channel state changes is likely
to be finer than the feedback loop between the MH and the
proxy. Normally, radio networks that support real-time
applications do try to achieve loss rate less than some
negotiated value by using efficient FEC, limited ARQ, or
through an increase in transmit power. We have run a set of
experiments to see the performance of the system under
channel losses with limited ARQ. Retransmissions may
alter EDPF’s estimate of the variable Al (time when channel
becomes available). However, we observed that the effect is
very minor, masked by the gains that can be had through
retransmissions. For a DBmax of 300 ms, 5:3:1 split, 1 percent
uniformly distributed channel losses, no retransmissions
gave us a Floss of 1.9 percent, while retransmissions brought
it down to 0.2 percent.

Wireline Delay Variations and Asymmetry. EDPF uses
the estimated delay between proxy and the BSs in
determining the delivery time of packets. It may seem that
large delay variations may affect EDPF’s performance.
However, we argue that this is not the case. To perceive
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Fig. 8. Probability of frame loss.

TABLE 4
Glitch Statistics: Startup Latency = 0.3 Seconds and # Interfaces = 3

Fig. 9. Sensitivity to bandwidth asymmetry.
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good quality video, we would like to achieve Floss < 1%.
The bandwidth needed to guarantee such low loss rate
should overcome the queuing delay (induced at BS) more
than wireline delay. The delay variation will likely be
masked by this queuing delay. In (1) of Section 3, Al

dominates ai þDl for most packets that experience excess
delay. We observe this through experiments as well. At a
DBmax of 200 ms, for a truncated Guassian delay distribu-
tion with mean 22 ms and 10 ms standard deviation, Floss
increased by only 0.14 percent over no delay variation. The
same reasoning applies to delay asymmetry as well. To
make a fair comparison, we consider a 1:1:1 split and
compare a wireline delay asymmetry of 44:44:44 to a
22:44:66. We observed only a 0.07 percent increase in Floss
at a DBmax of 225 ms due to increase in asymmetry.

Bandwidth Fluctuations. Apart from delay variations,
we also examined the impact bandwidth fluctuations have
on the performance of our system. Given the very stringent
delay requirements of interactive video, it is very difficult to
support these applications in a setup involving large and
rapid bandwidth fluctuations (e.g., resulting from cross
traffic). Hence, we do not consider the same. However,
small bandwidth fluctuations (e.g., resulting from proces-
sing delays at the BSs) about the negotiated bandwidth
values can be tolerated to a good extent as we show now.

We introduce bandwidth fluctuation as a percentage
over the negotiated bandwidth and measure the effect this
fluctuation has on application frame loss Floss and buffering
needed to deliver the packets in order. For example, a
10 percent bandwidth variation about 200kbps reserved
bandwidth involves choosing a uniform value between 180-
220 kbps for each packet transmission on that interface.
Fig. 10 shows the variation of Floss as a function of
bandwidth variation for a 3:2:1 split of 600kbps and a
DBmax of 200 ms. In all cases, Floss increases with increase in
fluctuations as is expected. For EDPF, this increase in frame
loss is hardly perceptible for upto 10 percent variation.
From then on it slowly increases, crossing the unacceptable
1 percent frame loss threshold at 25 percent bandwidth
variation. For SRR, the increase in Floss with bandwidth
variation is rather steep. With respect to buffering required
to deliver packets in order, both EDPF and SRR experience
increased reordering with increase in fluctuation. At

0 percent variation (no bandwidth fluctuation) this value

is about 2,000 bytes for EDPF and 7,164 bytes for SRR. At 25

percent bandwidth fluctuation, this value increases to 6,439

bytes for EDPF and 16,534 for SRR. These values are still too

small to effect processing speed or memory requirements at

the client.
Extensions to EDPF. It is possible to improve the

performance of EDPF further by taking into consideration

additional parameters. If the MH provides EDPF with

additional information such as maximum tolerable delay,

EDPF can drop packets that are unlikely to meet their delay

constraints (EDPF already maintains an estimate of it). This

saves scarce bandwidth and helps other packets to meet

their delay constraints. We have extended EDPF (EDP-

F_EXT) to support this feature. Fig. 11 shows the relative

improvement. Also, if frame priority information can be

conveyed in the packets, EDPF can perform appropriate

filtering—dropping lower priority frames in presence of

congestion.
In addition to the “Office Cam” video trace, we have

experimented with other video traces from [14] as well as

H.263 encoding. We obtained similar results as shown

above. EDPF in all cases, effectively aggregated bandwidth

while minimizing delay experienced by the packets.

5 DISCUSSION

In this section, we elaborate on some important points. We

first discuss the deployment complexity of our approach.

Subsequently, we present two aspects that affect the

performance of our network layer approach: delay/band-

width fluctuations and wireless mobility.

5.1 Deployment Complexity and Overheads

Our network layer architecture has been designed with the

goal of introducing minimum changes to the infrastructure.

The only changes needed are software changes at the MH

and deployment of proxies, no changes are needed in the

radio network or server software. The deployment com-

plexity of our architecture is thus minimal. To increase

reliability and scalability of the architecture, we envision

multiple proxies, each providing service to a subset of MHs.
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As far as the complexity of the scheduling algorithm
EDPF goes, the per-packet computation complexity is
proportional to the number of interfaces, which is likely to
be two to three in most cases. In terms of network overhead,
the (relative) one-way delay and bandwidth information
need to be passed from the client to the network proxy only
once during setup for interactive applications and once
every few seconds for streaming applications. The buffering
required to pass packets in order is also minimal, normally
limited to under five packets.

5.2 Delay/Bandwidth Fluctuations and Estimation

Two important parameters that affect the performance of
our scheduling algorithm are 1) bandwidth of the wireless
last hop and 2) delay on the paths from proxy to BSs. Let us
examine each in turn.

One of the assumptions we make in this work is that the
underlying infrastructure provides some form of QoS
support in the form of bandwidth guarantees. Without
such guarantees, its almost impossible to support applica-
tions with very stringent delay requirements like interactive
video. Normally, when the infrastructure provides QoS, the
client negotiates a certain bandwidth on each of its
interfaces. It then passes this information to the proxy for
use as an estimate of bandwidth in EDPF scheduling. The
BSs try to guarantee this negotiated bandwidth for the
duration of the connection. So, large bandwidth variations
(e.g., resulting from cross traffic) are ruled out of considera-
tion in this paper because of the very stringent delay
requirements of the real-time applications. In [13], we have
extended EDPF to handle bandwidth fluctuations for best-
effort-based TCP applications. On the other hand, small or
intermittent bandwidth fluctuations (e.g., resulting from
random processing delays at BSs or retransmission) can be
tolerated to some extent without much performance
degradation as was shown in Section 4.2.5.

Obtaining delay estimates for the path between proxy and
the BSs during the course of the connection without support
from the BSs is, in general, a difficult task. This is because it is
difficult to figure out the contribution of queuing delay to the
overall end to end delay observed on the path. As mentioned
earlier, we do not view this as a serious limitation because of
the following reasons. For one, delay estimates during
connection setup (where there is no queuing) or estimates
from the recent past (few tens of seconds to a few minutes)
will most likely be sufficient for the duration of the
connection. This is because Internet path delays are known
to vary only slowly, over several tens of minutes [15]. Further,
any errors in estimation or fluctuations which usually are
small (as average delays on the backbone are themselves
small) will likely be masked by the transmission and queuing
delay at the bottleneck bandwidth and do not degrade
performance much (Section 4.2.5). In (1) of Section 3, Al

dominates ai þDl for most packets. We observed this in our
experiments as well (Section 4.2.3)—the average buffer size at
the BSs was about 4,500 bytes.

5.3 Mobility and Blackouts

Mobility and blackouts an integral part of a wireless
environment and should be addressed in the design of the
network architecture. Our architecture handles mobility

similar to Mobile IP [7]; however, unlike it, it can support
more than one wireless interface. Stalls during handoff can
be handled by not sending packets on the interface which is
performing handoff related processing. Blackouts on an
interface can be similarly handled.

Even though the architecture can support mobility, the
performance of real-time applications in mobile environ-
ments can suffer due to stalls during handoffs and/or the
inability to negotiate adequate bandwidth at the new BS. No
amount of clever scheduling onto the interfaces will help in
this regard as the available bandwidth is not sufficient to
support the video application. Content adaptation is the only
viable option. Our network-layer architecture lends itself
well to this approach because of the feedback mechanism in
place between client and the proxy.3 For example, the client
can notify the proxy of an impending handoff on an interface,
whereby the proxy will stop using that interface and in
addition drop all low priority frames (e.g., B frames in
MPEG4) because of the decrease in available bandwidth.
While the above scheme simply drops all low priority frames,
in [16], we have considered an intelligent frame discard
algorithm for interactive video in a multiple interface setting
when adequate bandwidth that provides high quality video
cannot be reserved. The algorithm relies on an important
aspect of video stream—Group of Pattern (GOP) frame size
correlation to predict future frame sizes (and, hence, playback
deadlines) in a small window. The decision to drop a frame is
based on the impact the present frame drop has on meeting
future high priority frame deadlines and, hence, on overall
quality of the video.

6 RELATED WORK

Bandwidth aggregation across multiple channels has its
origins as a link layer solution in the context of analog dial-
ups, ISDN, and ATM [9], [17], [18]. Link Layer solutions are
infeasible in our present scenario, where the RANs in
question belong to different domains controlled by different
service providers.

The Stripe protocol [8] is a generic load-sharing protocol
that can be used over any logical First-In-First-Out (FIFO)
channels, it was implemented in some routers in the context
of Multilink PPP. It is based on Surplus Round Robin (SRR)
and provides FIFO delivery of these packets to higher layers
with minimum overhead in the form of packet processing
(looking up the packet sequence number). The design goals
of stripe are different from those considered in this paper, it
achieves its objective at the expense of introducing addi-
tional delay. For real-time interactive applications, this
approach will not work well as was shown in the previous
sections.

Contemporary to our initial work [19] that explored
some of the ideas presented in this paper, some transport
and network layer solutions have been proposed to
achieve bandwidth aggregation in a similar setting. A
network layer solution based on tunneling was proposed
in [20] and performance of TCP has been evaluated.
Though similar in spirit to our architecture, this work does
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not look into real-time application support or address in

depth the architecture components that enable diverse

services. The Reliable Multiplexing Transport Protocol

(RMTP) [21] is a reliable rate-based transport protocol that

multiplexes application data onto different channels.

Parallel TCP (pTCP) [22] is another transport layer

approach that opens multiple TCP connections one for

each interface in use. The focus of this paper is on

supporting real-time applications which may not employ

TCP as the transport protocol because of their delay

constraints. Further, our main goal is to introduce minimal

changes to the infrastructure while enabling diverse

functionalities, which these approaches cannot achieve.

7 CONCLUSIONS

In this paper, we motivate the advantages of simultaneous

use of multiple interfaces and propose a network-layer

architecture that enables such use. Our network layer

architecture provides many different services—bandwidth

aggregation, reliability support, resource sharing, and data-

control plane separation to the end MH. Further, it is

transparent to applications and involves minimum changes

to the infrastructure.
One of the services provided by the architecture is BAG

(bandwidth aggregation) for real-time applications. Imple-

mentation/simulations show that BAG services can bring in

significant performance improvements over conventional

single interface use. The scheduling algorithm that BAG

employs (EDPF) mimics closely the idealized Aggregated

Single Link (ASL) case and outperforms by large margin

approaches based on weighted round robin.
Though introduced in the context of wireless interfaces,

BAG and EDPF are applicable in broader contexts. Any

system with multiple paths can use the EDPF scheduling

algorithm to provide QoS support.

APPENDIX A

DETAILS OF PROOFS

A.1 Properties of EDPF

Details of proof for Theorem 2. WASL takes on a maximum

value when the link becomes idle. Let t be such a time.

Since ASL is idle, all packets serviced must have arrived

before t. We now have the following two cases.
Case 1. One or more of the links in EDPF are idle at t.
The deficit over ASL, EDPF has to serve after t is

maximum when: 1) All links except one are busy serving
the deficit. 2) The idle link corresponding to lb. Using
Lemma 1, this difference in time TlðtÞ � TlbðtÞ for which
any link l 6¼ lb is busy is bounded by Lmax=Bmin. The
overall deficit in bits is thus bounded by:

Lmax
X
l6¼lb

Bl=Bmin ¼ Lmax
XN
l¼1

wl � 1

 !
:

Case 2. All the links are busy at t.
Let � < t, be the earliest time instant at which all links

in EDPF got busy. Between ½�; t�,

WASLð�; tÞ �WEDPF ð�; tÞ ¼
XN
l¼1

Blðt� �Þ:

Thus, the difference at t cannot exceed that at � , i.e.,

WASLð0; tÞ �WEDPF ð0; tÞ �WASLð0; �Þ �WEDPF ð0; �Þ:

And, Case 1 bounds the right hand side by Lmaxð
PN

l¼1

wl � 1Þ. tu
Details of proof for Theorem 3. In case of EDPF, the

following two cases arise.
Case 1. When packet i arrives, it finds one or more of

the links in EDPF idle. If it were scheduled on the idle
link, its delivery time will not exceed ai þ Li=Bmin. Since
EDPF schedules the packet on the link which delivers its
the earliest, the departure time of this packet when
scheduled on other links would also not exceed this
amount, i.e., dEDPFi � ai þ Li=Bmin. In case of ASL,

dASLi � ai þ Li=
XN
l¼1

Bl:

Thus,

dEDPFi � dASLi � Lið
PN

l¼1 wl � 1ÞPN
l¼1 Bl

:

Case 2. When packet i arrives it finds all the links
busy, let j < i be the latest packet whose arrival busies all
the links. Let lj be the link on which j was scheduled and
li be the link on which i was scheduled. We now consider
the worst case delay that can be experienced by packet i.
This happens if

. When j arrives, the number of bits P that still
need to be serviced is maximum possible. This
essentially increases the time before the system
can serve packets j to i. This event happens when
lj ¼ lb and for l 6¼ lb,

TlðajÞ � TljðajÞ ¼ Lmax=Bmin ðfrom Lemma 1Þ:

Hence,

P ¼
XN
l¼1

TlðajÞ � TljðajÞ � Lmax
XN
l¼1

wl � 1

 !
:

. All packets between i and j (inclusive) are
delivered ahead of i, i.e., di � dk for j � k < i.
So, we have,

di ¼ TliðaiþÞ ¼ maxfTlðaiþÞ; for 1 � l � Ng:

If we denote by �li;l the time spent by link l 6¼ li in

the interval ½aj; di� either idle (or serving packets

k > i). We have �li;l ¼ Tliðaþi Þ � Tlðaþi Þ. The packet i

is delayed further if �li;l is maximum possible, this

essentially pushes further the delivery time of

packet i, as some of the work (serving packets j to i)

that needs to be done on links l 6¼ li got pushed onto

link li. If we denote byF , the overall idle time in bits

in the interval ½aj; di� , we have F ¼
P

l6¼li �li;l �Bl.

CHEBROLU AND RAO: BANDWIDTH AGGREGATION FOR REAL-TIME APPLICATIONS IN HETEROGENEOUS WIRELESS NETWORKS 401

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on May 26,2010 at 22:19:36 UTC from IEEE Xplore.  Restrictions apply. 



From Lemma 1 (Case 1), we have �li;l � Li=Bl.

Thus, F � ðN � 1ÞLi.
During the interval ½aj; di�, the system was busy

serving load P , packets from j to i and either staying
idle or serving packets k > i. Hence, we have,

ðdEDPFi � ajÞ
X

Bl ¼
Xi
k¼j

Lk þ P þ F;

dEDPFi �aj þ
Pi

k¼j LkP
Bl

þ Lmaxð
P
wl � 1ÞP
Bl

þ ðN � 1ÞLiP
Bl

:

In case of ASL, dASLi � aj þ
Pi

k¼j LkP
Bl

. Thus, the theorem
follows. tu

Details of proof for Theorem 4. The jitter experienced by a

packet i is given by Ji ¼ ðri � ri�1Þ � ðai � ai�1Þ. If the

packet i is buffered, we will have ri ¼ ri�1 and the jitter

will be non positive as ai � ai�1. So, in the proof below,

we only look at the case where i is not buffered, i.e.,

ri ¼ di. Note that i� 1 could still be buffered. Also, note

that Ji is maximum when ri�1 is minimum and ai ¼ ai�1.
We consider the following four different cases based

on whether packets i� 1 and i are transmitted on link hb.
Case 1. Both packets ði� 1Þ and i are transmitted on hb.

If ri ¼ di ¼ ai þ Li=Bmax i.e., packet i begins transmission
immediately on arrival. Then, Ji < Li=Bmax as ri�1 � ai�1

> 0. Otherwise, we have di ¼ di�1 þ Li=Bmax. Since ai �
ai�1 � 0 and ri�1 � di�1, we have Ji � di � ri�1 � di �
di�1 ¼ Li=Bmax.

Case 2. Packet ði� 1Þ is transmitted on hb and packet
i is transmitted on some other link ðl 6¼ hbÞ. Since we
assume packet i is not buffered, di � di�1. We have ai <
di�1 as otherwise packet i would have been transmitted
on hb. Therefore, di�1 ¼ Thbðaþi Þ and di ¼ Tlðaþi Þ. From
Lemma 1 (Case 1), we have

di � di�1 ¼ Tlðaþi Þ � Thbðaþi Þ � Li=Bmax:

Since

ri�1 � di�1; Ji � di � ri�1 � di � di�1 � Li=Bmax:

Case 3. The ði� 1Þth packet is transmitted on link lð6
¼ hbÞ and the ith packet is transmitted on hb. Let j <
i� 1 be the packet that was transmitted latest on link hb.
I f di ¼ ai þ Li=Bmax, a s m e n t i o n e d i n c a s e 1 ,
Ji < Li=Bmax. Otherwise, if di > ai þ Li=Bmax, we have
di ¼ dj þ Li=Bmax. Packet i� 1 can be passed up only
after j, hence ri�1 � dj. Therefore,

Ji � di � ri�1 � di � dj ¼ Li=Bmax:

Case 4. Packet ði� 1Þ is transmitted on link lð6¼ hbÞ
and the packet i is transmitted on link kð6¼ hbÞ. Again let
j < i� 1 be the packet that was transmitted latest on link
hb. Since packet i is not transmitted on hb, ai < dj. From
Lemma 1 (Case 1), we have dj ¼ Thbðaþi Þ and di ¼ Tkðaþi Þ
and, hence, di � dj � Li=Bmax. As before, ri�1 � dj and,
hence, Ji � di � ri�1 � di � dj ¼ Li=Bmax.

Since, in all the four cases the bound holds, the
theorem is proven. tu

Details of proof for Theorem 5. At any time t, let
TmaxðtÞ ¼ maxfTlðtÞg. After t, any packet transmitted
on a link l 6¼ max, if it is delivered before TmaxðtÞ needs to
be buffered. Let �max;l ¼ TmaxðtÞ � TlðtÞ. Thus, all packets
transmitted on link l after t whose summation of packet
lengths is less than �max;l �Bl will need to be buffered.
From Lemma 1, �max;l � Lmax=Bl. Thus, the total buffer
size would beX

l6¼max
�max;l �Bl �

X
l6¼max

Lmax ¼ ðN � 1Þ � Lmax:

ut

A.2 Interactive Video—Buffering Required to Avoid
Overflow

The buffer size at the client increases whenever a packet
arrives and decreases whenever a packet has to be
displayed. The maximum time a packet can spend in the
buffer is DBmax �D—if it spends anytime more than this,
the packet will surely miss its playback deadline. During
this interval, the buffer can fill at most at a rate of B, so the
size of the buffer C cannot exceed BðDBmax �DÞ.
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