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ABSTRACT

We characterize the growth of the Sibson and Arimoto mutual informations and α-maximal leakage,
of any order that is at least unity, between a random variable and a growing set of noisy, conditionally
independent and identically-distributed observations of the random variable. Each of these measures
increases exponentially fast to a limit that is order- and measure-dependent, with an exponent that is
order- and measure-independent.

1 Introduction

In the context of information leakage, composition theorems characterize how leakage increases as a result of multi-
ple, independent, noisy observations of the sensitive data. Equivalently, they characterize how security (or privacy)
degrades under the “composition” of multiple observations (or queries). In practice, attacks are often sequential in na-
ture, whether the application is side channels in computer security [1–3] or database privacy [4–6]. Thus composition
theorems are practically relevant. They also raise theoretical questions that are interesting in their own right.

Various composition theorems for differential privacy and its variants have been established (e.g., [4–6]). For the
information-theoretic metrics of mutual information and maximal leakage [7–10] (throughout we assume discrete
alphabets and base-2 logarithms)

I(X ;Y ) =
∑

x,y

P (x, y) log
P (x, y)

P (x)P (y)
(1)

L(X → Y ) = log
∑

y

max
x:P (x)>0

P (y|x), (2)

and α-maximal leakage [11], less is known. While some results are available in the case that P (y|x) is not known [12],
here we assume it is known. For the metrics in (1)-(2) it is straightforward to show the “weak” composition theorem
that if Y1, . . . , Yn are conditionally independent given X , then

I(X ;Y n) ≤

n
∑

i=1

I(X ;Yi)
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L(X → Y n) ≤

n
∑

i=1

L(X → Yi).

These bounds are indeed weak in that if Y1, . . . , Yn are conditionally i.i.d. given X , then as n → ∞, the right-
hand sides generally tend to infinity while the left-hand sides remain bounded. A “strong” (asymptotic) composition
theorem would identify the limit and characterize the speed of convergence.

We prove such a result for both mutual information and maximal leakage. The limits are readily identified as the
entropy and log-support size, respectively, of a minimal sufficient statistic of Y given X . In both cases, the speed
of convergence to the limit is exponential, and the exponent is the same. Specifically, it is the minimum Chernoff
information among all pairs of distinct distributions QY |X(·|x) and QY |X(·|x′).

Mutual information and maximal leakage are both instances of Sibson mutual information [10, 13, 14], the former
being order 1 and the latter being order ∞. The striking fact that the exponents governing the convergence to the limit
are the same at these two extreme points suggests that Sibson mutual information of all orders satisfies a strong asymp-
totic composition theorem, with the convergence rate (but not the limit) being independent of the order. Meanwhile,
Shannon mutual information can also be viewed as Arimoto mutual information of order 1 [15], and α-maximal leak-
age is equivalently expressed as a maximization of Sibson or Arimoto mutual information of order α over P (X) for
α > 1; for α = 1, it equals Shannon mutual information [11], as opposed to the Shannon capacity. Due to the intimate
interrelation between these measures, it is reasonable to suspect that similar strong asymptotic composition theorems
obtain for them all. Indeed, we prove strong composition theorems for Sibson mutual information, Arimoto mutual
information, and α-maximal leakage, for all orders of at least unity. In particular, we find that they all approach their
respective limits at the same α-independent exponential rate, namely the minimum Chernoff information mentioned
earlier.

The composition theorems proven here are different in nature from those in the differential privacy literature. Here we
assume that the relevant probability distributions are known, and we characterize the growth of leakage with repeated
looks from those distributions. We also assume that Y1, . . . , Yn are conditionally i.i.d. given X . Composition theorems
in differential privacy consider the worst-case distributions given leakage levels for each of Y1, . . . , Yn individually,
assuming only conditional independence.

Although our motivation is averaging attacks in side channels, the results may have some use in capacity studies of
channels with multiple conditionally i.i.d. outputs given the input [16, Prob. 7.20].

2 Sibson, Arimoto, Rényi, and Chernoff

This study relies on both Sibson’s and Arimoto’s tunable mutual information metrics as well as α-maximal leakage.
All random variables in the paper are assumed discrete.

Definition 1 ([13, 14]). The Sibson mutual information of order α between random variables X and Y is defined by

ISα (X ;Y ) =
α

α− 1
log
∑

y∈Y

(

∑

x∈X

P (x)P (y|x)α
)1/α

, (3)

for α ∈ (0, 1) ∩ (1,∞) and for α = 1 and α = ∞ by its continuous extensions. These are

IS1 (X ;Y ) = I(X ;Y )

IS∞(X ;Y ) = L(X → Y ),

defined in (1)-(2) above.

Definition 2 ([15]). The Arimoto mutual information of order α between random variables X and Y is defined by

IAα (X ;Y ) =
α

α− 1
log
∑

y∈Y

(

∑

x∈X P (x)αP (y|x)α
∑

x∈X P (x)α

)1/α

(4)

for α ∈ (0, 1) ∩ (1,∞) and for α = 1 and α = ∞ by its continuous extensions. Note that [15]

IA1 (X ;Y ) = I(X ;Y )

but

IA∞(X ;Y ) 6= L(X → Y ).
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Definition 3 ([11]). The α-maximal leakage for α ∈ (1,∞] is equivalently defined using either Sibson or Arimoto
mutual information as:1

Lmax
α (X → Y ) = max

Q(X)
ISα (X ;Y ) = max

Q(X)
IAα (X ;Y ), (5)

where the maxima are over all distributions of X that have full support. For α = 1, we have

Lmax
α (X → Y ) = I(X ;Y ). (6)

as opposed to the (Shannon) capacity

C(X ;Y ) = max
Q(X)

I(X ;Y ). (7)

Liao et al. [11] define α-maximal leakage operationally. The identities in (5)-(6) are a theorem in that work, which we
shall take as a definition. Likewise, Issa et al. [7] define maximal leakage operationally, and (2) is a theorem that we
take as a definition.

We are interested in how ISα (X ;Y n), IAα (X ;Y n), and Lmax
α (X → Y n) grow with n when Y1, . . . , Yn are condition-

ally i.i.d. given X for α ≥ 1. The question for α < 1 is meaningful in all cases but is not considered here because
we are interested in the behavior of operational leakage measures, and the α < 1 regime is not known to be relevant
to measuring leakage. We do not consider the mutual information meaures put forward by Csiszár [17] and Lapidoth
and Pfister [18, 19] for the same reason. For the quantities under study, we shall see that the limits are given by
Rényi entropy. As they will be needed for proof later, we also define Arimoto-Rényi conditional entropy and Rényi
divergence.

Definition 4. The Rényi entropy of order α of a random variable X is given by:

Hα(X) =
1

1− α
log
∑

x∈X

P (x)α (8)

for α ∈ (0, 1) ∩ (1,∞) and for α = 0, α = 1, and α = ∞ by its continuous extensions. These are

H0(X) = log |{x : P (x) > 0}| (9)

H1(X) = H(X) (10)

H∞(X) = log
1

maxx P (x)
. (11)

where H(X) is the regular Shannon entropy.

Definition 5. The Arimoto-Rényi conditional entropy of order α of a random variable X given Y is defined as:

Hα(X |Y ) =
α

1− α
log
∑

y∈Y

(

∑

x∈X

P (x)αP (y|x)α
)

1
α

. (12)

Remark. One can verify that it holds

IAα (X ;Y ) = Hα(X)−Hα(X |Y ). (13)

Definition 6. The Rényi divergence of order α between probability distributions P and Q is defined for α ∈ [0,∞),
α 6= 1 as:

Dα(P ||Q) =
1

α− 1
log
∑

x∈X

P (x)αQ(x)1−α, (14)

where the continuous extension at α = 1 is given by the standard Kullback-Leibler divergence

D(P ||Q) =
∑

x∈X

P (x) log
P (x)

Q(x)
. (15)

The speed of convergence of ISα (X ;Y n), IAα (X ;Y n), Lmax
α (X → Y n), and C(X ;Y n) and to their respective limits

turns out to be governed by Chernoff information.

1The second equality for 1 < α < ∞ in (5) is apparent from (3) and (4) since the tilting of P (x) in the latter can be absorbed
into the maximization.
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Definition 7 ([16]). The Chernoff information between two probability mass functions, P1 and P2, over the same
alphabet X is given as follows. First, for all x ∈ X and λ ∈ [0, 1], let:

Pλ(x) = Pλ(P1, P2, x) =
P1(x)

λP2(x)
1−λ

∑

x′∈X P1(x′)λP2(x′)1−λ
. (16)

Then the Chernoff information is given by

C (P1||P2) = D(Pλ∗ ||P1) = D(Pλ∗ ||P2), (17)

where λ∗ is any value of λ such that the above two relative entropies are equal. Equivalently, the Chernoff information
is also given by:

C (P1||P2) = − min
0≤λ<1

log

(

∑

x

P1(x)
λP2(x)

1−λ

)

(18)

Since we consider finite alphabets, the Chernoff information is infinite if and only if P1 and P2 have disjoint support.

Other Notation: We use Pn to denote the set of all possible empirical distributions of Y n. We let P denote the set of
all possible probability distributions over Y For any P ∈ P , let

T (P ) = {yn ∈ Yn|Pyn = P},

where Pyn is the empirical distribution of yn. Note that T (P ) is empty if P /∈ Pn. We use Q(·) to denote the true
distributions of X and Y n. We let Qx denote the distribution of Y given x for a given x ∈ X . For any P ∈ P , let
xk(P ) denote x ∈ X such that D(P ||Qx) is the kth smallest relative entropy across all elements of X . Ties can be
broken by the ordering of X .

We also define x-domains for fixed n in two slightly different ways. Let

Dx = {P ∈ P|D(P ||Qx) < D(P ||Qx′) ∀x′ 6= x} (19)

D̄x = {P ∈ P|D(P ||Qx) ≤ D(P ||Qx′) ∀x′ ∈ X} (20)

Note that for any P ∈ D̄x, D(P ||Qx) = minx′∈X D(P ||Qx′).

3 The Result

Let X be a random variable with alphabet X = {x1, x2, ...x|X |}. Let Y n = (Y1, Y2, ...Yn) be a vector of discrete

random variables with a shared alphabet Y = {y1, y2, ...y|Y|}. We assume that Y1, Y2, . . . , Yn are conditionally
i.i.d. given X . We may assume, without loss of generality, that X and Y have full support. We will also assume
that the distributions PY |X(·|x) are unique over x, which we call the unique row assumption. For Sibson mutual
information and α-max leakage, this is without loss of generality, since we can divide X into equivalence classes

based on their respective PY |X(·|x) distributions and define X̃ to be the equivalence class of X . Then both Markov

chains X ↔ X̃ ↔ Y n and X̃ ↔ X ↔ Y n hold and so

ISα (X ;Y n) = ISα (X̃ ;Y n) (21)

Lmax
α (X → Y n) = Lmax

α (X̃ → Y n), (22)

by the data processing inequality for Sibson mutual information [20] and α-maximal leakage [11, Thm. 3]. We may

then replace X with X̃ in the case of these measures. For Arimoto mutual information, the chain rule does not hold,

and in fact an arbitrarily large discrepancy can exist between IAα (X ;Y ) and IAα (X̃ ;Y ), as shown in Appendix B,
where it is also shown that the unique row assumption is nonetheless still without loss of generality.

Our measures of interest satisfy the following upper bounds:

I(X ;Y n) ≤ H(X) (23)

C(X ;Y n) ≤ log |X | (24)

ISα (X ;Y n) ≤ H1/α(X) [14, Ex. 2 and Thm. 3] (25)

IAα (X ;Y n) ≤ Hα(X) [21, Prop. 3] (26)

Lmax
α (X → Y n) ≤

{

H(X) if α = 1

log |X | if α > 1
[11, Thm. 3] (27)

=: Lα(X),
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where each inequality holds for all n and all α ∈ [1,∞]. Comparing (25) and (26) suggests that perhaps the Arimoto
mutual information of order α should be associated with the Sibson mutual information of order 1/α; the identity in
(5) suggests otherwise.

Our main result describes how fast these upper bounds are approached as n → ∞.

Theorem 1. Under the unique row assumption, for all α ∈ [1,∞],

min
x 6=x′

C (Qx||Qx′) = lim
n→∞

−
1

n
log
(

H(X)− I(X ;Y n)
)

(28)

= lim
n→∞

−
1

n
log
(

log |X | − C(X ;Y n)
)

(29)

= lim
n→∞

−
1

n
log
(

H1/α(X)− ISα (X ;Y n)
)

(30)

= lim
n→∞

−
1

n
log
(

Hα(X)− IAα (X ;Y n)
)

(31)

= lim
n→∞

−
1

n
log
(

Lα(X)− Lmax
α (X → Y n)

)

. (32)

Thus the Chernoff information governs the exponential rate-of-approach for all measures and for all values of α. This
Chernoff information is infinite if Qx and Qx′ have disjoint support for all x 6= x′; in this case, the bounds in (23)-(27)
are met with equality already for n = 1. Channels with this property arise naturally in certain applications [22].

Observe that (30)-(32) coincide with (28) when α = 1. Also, (30) and (32) coincide for α = ∞; otherwise the
assertions are independent.

For continuous random variables, it is meaningful and interesting to study how ISα (X ;Y n), C(X ;Y n), and
Lmax
α (X → Y n) grow with n. The behavior would be fundamentally different from the discrete case, however.

See Aishwarya and Madiman [23] for a discussion of Arimoto mutual information in the continuous case.

The remainder of the paper is devoted to proving the various assertions contained within Theorem 1. The assertions
are evidently asymptotic in nature, and our proofs are not opimtized to provide the best finite-n bounds. Numerical
experiments show that in many cases our lower and upper bounds are quite far apart for moderate values of n.

4 Proof for Mutual Information and Capacity

We begin by proving (28) and (29), starting with the former. For this, we derive separate upper and lower bounds on
−H(X |Y n). For the lower bound,

−H(X |Y n) ≡
∑

yn∈Yn

Q(yn)
∑

x∈X

Q(x|yn) logQ(x|yn) (33)

=
∑

P∈Pn

∑

yn∈T (P )

Q(yn)
∑

x∈X

Q(yn|x)Q(x)

Q(yn)
log

Q(yn|x)Q(x)

Q(yn)
(34)

=
∑

P∈Pn

∑

yn∈T (P )

∑

x∈X

1

|T (P )|
Q(T (P )|x)Q(x)

· log

1
|T (P )|Q(T (P )|x)Q(x)

∑

x′∈X
1

|T (P )|Q(T (P )|x′)Q(x′)
(35)

=
∑

P∈Pn

∑

x∈X

Q(T (P )|x)Q(x) log
Q(T (P )|x)Q(x)

∑

x′∈X Q(T (P )|x′)Q(x′)
(36)

= −
∑

P∈Pn:
Q(T (P ))>0

[

Q(T (P )|x1(P ))Q(x1(P ))

· log

∑

x′∈X Q(T (P )|x′)Q(x′)

Q(T (P )|x1(P ))Q(x1(P ))

5



+
∑

x 6=x1(P ):
Q(T (P )|x)>0

Q(T (P )|x)Q(x)

· log

∑

x′∈X Q(T (P )|x′)Q(x′)

Q(T (P )|x)Q(x)

]

, (37)

due to the convention that 0 log 0 = 0. Then, replacing weighted sums over x with their largest summand gives

≥ −
∑

P∈Pn:
Q(T (P ))>0

[

Q(T (P )|x1(P ))Q(x1(P ))

· log
(

1 +

∑

x′ 6=x1(P ) Q(T (P )|x′)Q(x′)

Q(T (P )|x1(P ))Q(x1(P ))

)

+ max
x 6=x1(P ):

Q(T (P )|x)>0

{

Q(T (P )|x) log
maxx′∈X Q(T (P )|x′)

Q(T (P )|x)Q(x)

}

]

. (38)

Note that the entire expression inside the summation over P is 0 if Q(T (P )|x2(P )) = 0. Letting Qmin(X) =
minx∈X Q(x) and using ln(1 + x) ≤ x for the x = x1(P ) term,

≥ −
∑

P∈Pn:
Q(T (P ))>0

[

1

ln 2

∑

x′ 6=x1(P )

Q(T (P )|x′)Q(x′)

+ max
x 6=x1(P ):

Q(T (P )|x)>0

{

Q(T (P )|x)
}

· log
1

min x 6=x1(P ):
Q(T (P )|x)>0

Q(T (P )|x) ·Qmin(X)

]

(39)

≥ −
∑

P∈Pn:
Q(T (P ))>0

[

1

ln 2
2−nD(P ||Qx2(P )) + 2−nD(P ||Qx2(P ))

·
[

nDsup + log
(n+ 1)|Y|

Qmin(X)

]

]

(40)

where

Dsup ≡ sup
x,P ′∈P

D(P ′||Qx)<∞

D(P ′||Qx) (41)

= sup
x,P ′∈P:

D(P ′||Qx)<∞

∑

y∈Y

P ′(y) log
P ′(y)

Q(y|x)
(42)

= sup
x,P ′∈P:

D(P ′||Qx)<∞

∑

y∈Y

P ′(y) log
1

Q(y|x)
−H(P ′) (43)

≤ sup
x

log
1

minQ(y|x)>0Q(y|x)
< ∞. (44)

Hence,

−H(X |Y n)

≥ −(n+ 1)|Y|2−nD∗
n

[ 1

ln 2
+ log

(n+ 1)|Y|

Qmin(X)
+ nDsup

]

(45)

where
D∗

n = min
P∈Pn

D(P ||Qx2(P )) (46)
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and P ∗
n is its minimizer.

For the upper bound,

−H(X |Y n)

=
∑

P∈Pn

∑

x∈X

Q(T (P )|x)Q(x) log
Q(T (P )|x)Q(x)

∑

x′∈X Q(T (P )|x′)Q(x′)
(47)

≤
∑

x∈X

Q(T (P ∗
n)|x)Q(x) log

Q(T (P ∗
n)|x)Q(x)

∑

x′∈X Q(T (P ∗
n)|x

′)Q(x′)
(48)

≤ Q(T (P ∗
n)|x1(P

∗
n))Q(x1(P

∗
n ))

· log
Q(T (P ∗

n)|x1(P
∗
n ))Q(x1(P

∗
n))

∑

x′∈X Q(T (P ∗
n)|x

′)Q(x′)
(49)

= Q(T (P ∗
n)|x1(P

∗
n))Q(x1(P

∗
n ))

· log
[

1−

∑

x′ 6=x1(P∗
n) Q(T (P ∗

n)|x
′)Q(x′)

∑

x′∈X Q(T (P ∗
n)|x

′)Q(x′)

]

(50)

recalling that − ln(1− x) ≥ x,

≤ −Q(T (P ∗
n)|x1(P

∗
n ))Q(x1(P

∗
n))

·

∑

x′ 6=x1(P∗
n) Q(T (P ∗

n)|x
′)Q(x′)

∑

x′∈X Q(T (P ∗
n)|x

′)Q(x′)
·

1

ln 2
(51)

≤ −Q(T (P ∗
n)|x1(P

∗
n ))Q(x1(P

∗
n))

·
Q(T (P ∗

n)|x2(P
∗
n ))Q(x2(P

∗
n))

maxx′∈X Q(T (P ∗
n)|x

′)
·

1

ln 2
(52)

≤ −
1

(n+ 1)|Y|
2−nD(P∗

n ||Qx1(P∗
n))Q(x1(P

∗
n))

·
2−nD∗

nQ(x2(P
∗
n))

(n+ 1)|Y|2−nD(P∗
n ||Qx1(P∗

n))
·

1

ln 2
(53)

= −
Q(x1(P

∗
n))Q(x2(P

∗
n))

(n+ 1)2|Y| ln 2
2−nD∗

n . (54)

As we have now shown that mutual information is upper and lower bounded by expressions of the form H(X)−Kn ·

2−nD∗
n for some subexponential sequence Kn, it remains to be shown that this exponent approaches the minimum

Chernoff information as n → ∞.

First, it can be shown using standard continuity arguments that

lim
n→∞

inf
P∈Pn

D(P ||Qx2(P )) = inf
P∈P

D(P ||Qx2(P )) (55)

since D(P ||Qx2(P )) is a continuous function of P . Finally, we arrive at the desired result using Lemma 4 in Ap-
pendix A.

Turning to the result for capacity, let Qu denote the uniform distribution over X . Then by (28) we have

lim inf
n→∞

−
1

n
log (log |X | − C(X ;Y n)) (56)

≥ lim inf
n→∞

−
1

n
log

(

log |X | − I(X ;Y n)
∣

∣

∣

Qu

)

(57)

= min
x 6=x′

C (Qx||Qx′). (58)

For the reverse inequality, for each n, let Qn be a maximizer of I(X ;Y n). Then from the previous observation,
eventually we have

H(X)
∣

∣

∣

Qn

−H(X |Y n)
∣

∣

∣

Qn

≥ I(X ;Y n)
∣

∣

∣

Qu

(59)

≥ log |X | − e−
n
2 minx 6=x′ C (Qx||Qx′). (60)
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Dropping the second term from the left-hand side and using the fact that

D(Qn||Qu) = log |X | −H(X)
∣

∣

∣

Qn

(61)

this implies that, eventually,

e−
n
2 minx 6=x′ C (Qx||Qx′) ≥ D(Qn||Qu). (62)

Thus Qn tends to Qu as n → ∞. Combining this fact with the bound in (54), we have that, eventually,

C(X ;Y n) = I(X ;Y n)
∣

∣

∣

Qn

(63)

= H(X)
∣

∣

∣

Qn

−H(X |Y )
∣

∣

∣

Qn

(64)

≤ H(X)
∣

∣

∣

Qn

−
Qn(x1(P

∗
n ))Q(x2(P

∗
n))

(n+ 1)2|Y| ln 2
2−nD∗

n , (65)

≤ H(X)
∣

∣

∣

Qn

−
1

4|X |2(n+ 1)2|Y| ln 2
2−nD∗

n (66)

≤ log |X | −
1

4|X |2(n+ 1)2|Y| ln 2
2−nD∗

n , (67)

which establishes the result since D∗
n converges to the Chernoff information as shown above.

5 Proof for Sibson (α ∈ (1,∞))

We turn to (30), focusing on the regime α ∈ (1,∞), since the α = 1 case is established in (28) and the α = ∞ case
will be proven subsequently. First, we derive a lower bound of ISα (X ;Y n) for α > 1 that will be useful in this and
subsequent proofs.

Lemma 2.

ISα (X ;Y n) ≥ H1/α(X)−
α

(α− 1) ln 2

(

Γn +
Γ2
n

2(1− Γn)

)

(68)

for α > 1, where

Γn = min(1, (n+ 1)|Y| · 2−n·minx 6=x′ C (Qx||Qx′)).

(69)

Remark. If Qx and Qx′ have disjoint support for every x 6= x′, then Γn = 0 and this lemma establishes that
ISα (X ;Y n) = H1/α(X) for any n ≥ 1.

Proof. We use the Dx sets defined in (19) and (20):

ISα (X ;Y n) ≡
α

α− 1
log

∑

yn∈Yn

(

∑

x∈X

Q(x)Q(yn|x)α
)1/α

(70)

=
α

α− 1
log

∑

P∈Pn

(

∑

x∈X

Q(x)Q(T (P )|x)α
)1/α

(71)

≥
α

α− 1
log
∑

x∈X

∑

P∈Dx∩Pn

(

∑

x′∈X

Q(x′)Q(T (P )|x′)α
)1/α

(72)

≥
α

α− 1
log
∑

x∈X

Q(x)1/α
∑

P∈Dx∩Pn

Q(T (P )|x) (73)

=
α

α− 1
log
∑

x∈X

Q(x)1/α
(

1−
∑

P∈Pn\Dx

Q(T (P )|x)
)

(74)

=
α

α− 1
log
(

∑

x∈X

Q(x)1/α (75)

−
∑

x∈X

∑

P∈Pn\Dx

Q(x)1/αQ(T (P )|x)
)

.
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Define

γn =

∑

x∈X

∑

P∈Pn\Dx
Q(x)1/αQ(T (P )|x)

∑

x∈X Q(x)1/α
≤ 1. (76)

Then we can write

ISα (X ;Y n) ≥
α

α− 1
log
{(

∑

x∈X

Q(x)1/α
)

(1− γn)
}

(77)

= H1/α(X) +
α

α− 1
log(1− γn). (78)

Note that

ln(1 − ǫ) = −

∞
∑

i=1

ǫi

i
(79)

≥ −ǫ−
ǫ

2

(

∞
∑

i=1

ǫi
)

= −ǫ−
ǫ2

2(1− ǫ)
(80)

for 0 < ǫ < 1. Hence,

ISα (X ;Y n) ≥ H1/α(X) +
α

(α − 1) ln 2
(−γn −

γ2
n

2(1− γn)
). (81)

The right-hand side in decreasing in γn over [0, 1]. We also have

γn ≤

∑

x∈X Q(x)1/α(n+ 1)|Y| ·maxP∈Pn\Dx
Q(T (P )|x)

∑

x∈X Q(x)1/α
(82)

≤

∑

x∈X Q(x)1/α(n+ 1)|Y| · max
x′∈X

max
P∈Pn\Dx′

Q(T (P )|x′)

∑

x∈X Q(x)1/α
(83)

= (n+ 1)|Y| ·max
x∈X

max
P∈Pn\Dx

Q(T (P )|x) (84)

≤ (n+ 1)|Y| · 2−n(minx∈X minP∈Pn\Dx
D(P ||Qx)) (85)

≤ (n+ 1)|Y| · 2
−n(minx 6=x′ infP∈D̄

x′
D(P ||Qx)) (86)

= (n+ 1)|Y| · 2−n·minx 6=x′ C (Qx||Qx′), (87)

where we have used Lemma 4 in Appendix A.

We next prove an analogous upper bound.

Lemma 3. For α > 1, define
F (x, P ) = Q(x)Q(T (P )|x)α. (88)

For each n, let {E
(n)
xi }

|X |
i=1 be a partition of Pn such that P ∈ E

(n)
x implies F (x, P ) = maxx′∈X F (x′, P ). Then

ISα (X ;Y n) ≤ H1/α(X) +
α

(α− 1) ln 2

1
∑

x∈X

Q(x)1/α

∑

x∈X

∑

P 6∈E
(n)
x

· (F (x1(P ), P )1/α−1 − F (x, P )1/α−1)F (x, P )), (89)

where for the remainder of this section we redefine xk(P ) so that they are ordered by F (x, P ) instead of relative
entropy. Note that this ordering now depends on n.

Proof. We have

ISα (X ;Y n) =
α

α− 1
log
∑

x∈X

∑

P∈E
(n)
x

(

∑

x′∈X

F (x′, P )
)1/α

(90)

=
α

α− 1
log
∑

x∈X

∑

P∈E
(n)
x

F (x, P )1/α
(

1 +
∑

x′ 6=x

F (x′, P )

F (x, P )

)1/α

(91)
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Using the Taylor series expansion of (1 + x)1/α and discarding x2 and higher-order terms (since 1
α < 1), we have

≤
α

α− 1
log
∑

x∈X

∑

P∈E
(n)
x

F (x, P )1/α
(

1 +
1

α

∑

x′ 6=x

F (x′, P )

F (x, P )

)

(92)

≤
α

α− 1
log
∑

x∈X

∑

P∈E
(n)
x

(

F (x, P )1/α

+ F (x, P )1/α−1
∑

x′ 6=x

F (x′, P )
)

, (93)

where we have used the fact that α > 1. Continuing,

=
α

α− 1
log
∑

x∈X

(

∑

P∈E
(n)
x

F (x, P )1/α

+
∑

P 6∈E
(n)
x

F (x1(P ), P )1/α−1F (x, P )
)

(94)

=
α

α− 1
log
∑

x∈X

(

∑

P∈E
(n)
x

F (x, P )1/α

+
∑

P 6∈E
(n)
x

F (x1(P ), P )1/α−1F (x, P )

+
∑

P 6∈E
(n)
x

F (x, P )1/α −
∑

P 6∈E
(n)
x

F (x, P )1/α
)

(95)

=
α

α− 1
log
∑

x∈X

(

∑

P∈Pn

F (x, P )1/α

+
∑

P 6∈E
(n)
x

(

F (x1(P ), P )1/α−1 − F (x, P )1/α−1
)

F (x, P )
)

(96)

Using ln(1 + x) ≤ x then gives the result.

The lower bound in (30) for α ∈ (1,∞) follows directly from Lemma 2. For the upper bound, pick xa 6= xb and
P ∗ ∈ Dxb

. Let {Pn}
∞
n=1 be a sequence of types converging to P ∗. From Lemma 3 we have

ISα (X ;Y n) ≤ H1/α(X) +
α

(α− 1) ln 2

1
∑

x∈X

Q(x)1/α

∑

x∈X

∑

P 6∈E
(n)
x

· (F (x1(P ), P )1/α−1 − F (x, P )1/α−1)F (x, P )). (97)

Note that eventually Pn ∈ E
(n)
xb , x1(Pn) = xb and F (xb, Pn)

1/α−1 < 1
2F (xa, Pn)

1/α−1. Thus, eventually,

≤ H1/α(X) +
α

(α− 1) ln 2

1
∑

x∈X

Q(x)1/α

· (F (x1(Pn), Pn)
1/α−1 − F (xa, Pn)

1/α−1)F (xa, Pn)). (98)

≤ H1/α(X)−
α

2(α− 1) ln 2

1
∑

x∈X

Q(x)1/α
F (xa, Pn)

1/α (99)

≤ H1/α(X)−
α

2(α− 1) ln 2

1
∑

x∈X

Q(x)1/α
Qmin(X)1/α

·
1

(n+ 1)|Y|
2−nD(Pn||Qxa ) (100)
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where Qmin(X) = minx∈X Q(x). This implies:

lim sup
n→∞

−
1

n
log
(

H1/α(X)− ISα (X ;Y n)
)

≤ lim
n→∞

D(Pn||Qxa
) = D(P ∗||Qxa

). (101)

Since xa 6= xb and P ∈ Dxb
were arbitrarily chosen, this implies:

lim sup
n→∞

−
1

n
log
(

H1/α(X)− ISα (X ;Y n)
)

≤ min
x 6=x′

inf
P∈D̄x

D(P ||Qx′) = min
x 6=x′

C (Qx||Qx′), (102)

where the last step used Lemma 4 in Appendix A.

6 Proof for Maximal Leakage

We turn to proving (30) for the case α = ∞. While the lower bound on IS∞(X ;Y n) can be proven directly, we will
instead note that it can be obtained from Lemma 2 by letting α → ∞ and then n → ∞.

For the upper bound, recalling the x-domains defined in (19) and (20), fix xa 6= xb ∈ X and a P ∈ Dxb
and let

{Pn}
∞
n=1 be a sequence such that Pn ∈ Pn for each n and Pn → P . Then Pn ∈ Dxb

eventually and

IS∞(X ;Y n) ≤ log
∑

x∈X

∑

P∈D̄x∩Pn

Q(T (P )|x) (103)

= log
[

|X | −
∑

x∈X

∑

P∈Pn\D̄x

Q(T (P )|x)
]

(104)

≤ log
[

|X | −
∑

P∈Pn\D̄xa

Q(T (P )|xa)
]

(105)

≤ log
[

|X | −Q(T (Pn)|xa)
]

, (106)

eventually. Thus for sufficiently large n,

IS∞(X ;Y n)

≤ log
[

|X | −
1

(n+ 1)|Y|
2−nD(Pn||Qxa )

]

(107)

≤ log
[

|X |
]

−
1

(ln 2)|X |(n+ 1)|Y|
2−nD(Pn||Qxa ) (108)

and

lim sup
n→∞

−
1

n
log
(

|X | − IS∞(X ;Y n)
)

≤ lim
n→∞

D(Pn||Qxa
) = D(P ||Qxa

). (109)

Since xa 6= xb and P were arbitrary, the result follows by Lemma 4 in Appendix A.

7 Proof for Arimoto

Note that (31) for the case α = 1 has already been proven. We prove the lower and upper bounds for the α > 1 case
as follows.

11



7.1 Proof of Lower Bound

Proof. Let |X | = M and

ǫX|Y n = min
f :Yn→X

P (X 6= f(Y n)) (110)

= 1− EY n [max
x

Q(x|Y n)] (111)

≤ 1− pmax where pmax = max
X

Q(X) (112)

≤ 1−
1

M
. (113)

For 1 < α < ∞,

Hα(X |Y n) ≤ logM − dα(ǫX|Y n ||1−
1

M
) (114)

where dα(p||q) is the binary Renyi divergence ([24], Thm. 3):

dα(p||q) =
1

α− 1
log (pαq1−α + (1− p)α(1− q)1−α). (115)

So,

IAα (X ;Y n) = Hα(X)−Hα(X |Y n) (116)

≥ Hα(X)− logM + dα(ǫX|Y n ||1−
1

M
) (117)

= Hα(X)− logM

+
1

α− 1
log
(

ǫαX|Y n(1 −
1

M
)1−α

+ (1− ǫX|Y n)α(
1

M
)1−α

)

(118)

≥ Hα(X)− logM

+
1

α− 1
log ((1 − ǫX|Y n)α(

1

M
)1−α) (119)

= Hα(X) +
α

α− 1
log (1− ǫX|Y n) (120)

Hence,

IAα (X ;Y n)−Hα(X) ≥
α

α− 1
log (1− ǫX|Y n) (121)

which gives

α− 1

α
[Hα(X)− IAα (X ;Y n)] ≤ log

1

1− ǫX|Y n

. (122)

For 0 < ǫ ≤ 1/2,

log
1

1− ǫ
= log(1 +

ǫ

1− ǫ
) (123)

≤
ǫ

1− ǫ

1

ln 2
(124)

≤
2ǫ

ln 2
. (125)

For all sufficiently large n, we have ǫX|Y n ≤ 1/2 by the unique row assumption. Thus, combining (122) and (125),
for all 1 < α < ∞,

2ǫX|Y n

ln 2
≥

α− 1

α
[Hα(X)− IAα (X ;Y n)] (126)

−
1

n
log(

2ǫX|Y n

ln 2
) ≤ −

1

n
log(

α− 1

α
[Hα(X)− IAα (X ;Y n)]), (127)
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and, taking α → ∞ in (127),

−
1

n
log(

2ǫX|Y n

ln 2
) ≤ −

1

n
log(H∞(X)− IA∞(X ;Y n)). (128)

Note that ǫX|Y n is bounded as [24, Thm. 15]

ǫX|Y n ≤ (M − 1) exp

(

−min
x 6=x′

C (Qn
x ||Q

n
x′)

)

. (129)

Then, using Lemma 5 in Appendix A, for any α ∈ (1,∞],

min
x 6=x′

C (Px||Px′)

≤ lim inf
n→∞

−
1

n
log [Hα(X)− IAα (X ;Y n)] (130)

7.2 Proof of Upper Bound

Proof. For α ∈ [0,∞] [24, (165)],

Hα(X |Y n) ≥ log
1

1− ǫX|Y n

. (131)

Thus,

IAα (X ;Y n) ≤ Hα(X)− log
1

1− ǫX|Y n

(132)

log
1

1− ǫX|Y n

≤ Hα(X)− IAα (X ;Y n) (133)

ǫX|Y n

ln 2
≤ Hα(X)− IAα (X ;Y n) (134)

and so

lim sup
n→∞

−
1

n
log ǫX|Y n ≥ lim sup

n→∞
−
1

n
log[Hα(X)− IAα (X ;Y n)]. (135)

It remains to show that

lim sup
n→∞

−
1

n
log ǫX|Y n ≤ min

x 6=x′
C (Qx||Qx′). (136)

To this end, for any i 6= j, we have

ǫX|Y n = EY n [1−max
x

Q(x|Y n)] (137)

≥
∑

yn

Q(yn)min(Q(xi|y
n), Q(xj |y

n)) (138)

≥ min(Q(xi), Q(xj))
∑

yn

Q(yn)min

(

Q(xi|y
n)

Q(xi)
,
Q(xj |y

n)

Q(xj)

)

(139)

= 2min(Q(xi), Q(xj))ǫn,i,j , (140)

where

ǫn,i,j =
1

2

∑

yn

min(Q(yn|xi), Q(yn|xj)) (141)

is the error probability for the alternative problem in which X assumes only two values, xi and xj , which are equally
likely, and we seek to guess X from Y n. By [16, Thm. 11.9.1], we have

lim
n→∞

−
1

n
log ǫn,i,j = C (Qxi

||Qxj
). (142)

But i and j were arbitrary.
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8 Proof for α-Maximal Leakage

Note that for α = 1, α-maximal leakage is given by regular mutual information, so that case is already proven.

8.1 Proof of Lower Bound

Proof. We obtain the lower bound by choosing X ∼ Qu, where Qu(X) denotes the uniform distribution over X .
Then

Lmax
α (X → Y ) = max

Q(X)
ISα (X ;Y n) ≥ ISα (X ;Y n)|Qu(X). (143)

Then by (30),

lim inf
n→∞

−
1

n
log(log |X | − Lmax

α (X → Y )) ≥ min
x 6=x′

C (Qx||Qx′) (144)

8.2 Proof of Upper Bound

Proof. As with the proof for Shannon capacity, the idea is to show that the maximizing Q(X) must eventually be
contained in a neighborhood of the uniform distribution. Over this neighborhood, we can use Lemma 3 to uniformly
bound the difference

log |X | − max
Q(X)

ISα (X : Y n). (145)

First, for each n, let
Qn(X) ∈ arg max

Q(X)
ISα (X ;Y n). (146)

We have [14, Ex. 2 and Thm. 3]
H1/α(X)|Qn(X) ≥ ISα (X ;Y n)|Qn(X), (147)

and thus, by Lemma 2,

H1/α(X)|Qn(X) ≥ ISα (X ;Y n)|Qu(X) (148)

≥ H1/α(X)|Qu(X)

−
α

(α− 1) ln 2
(Γn +

Γ2
n

2(1− Γn)
). (149)

Then,

H1/α(X)|Qn(X) ≥ H1/α(X)|Qu(X)

−
α

(α− 1) ln 2
(Γn +

Γ2
n

2(1− Γn)
) (150)

H1/α(X)|Qu(X) −H1/α(X)|Qn(X)

≤
α

(α− 1) ln 2
(Γn +

Γ2
n

2(1− Γn)
) (151)

D1/α(Qn(X)||Qu(X))

≤
α

(α− 1) ln 2
(Γn +

Γ2
n

2(1− Γn)
) ≡ ǫn, (152)

where we have used the fact that H1/α(X)|Qu(X) − H1/α(X)|Qn(X) = D1/α(Qn(X)||Qu(X)). Note that
limn→∞ ǫn = 0. Then, using the Rényi version of Pinsker’s Inequality ([25, Thm. 31]),

D1/α(Qu(X)||Qn(X)) ≥
2

α
sup
A

|Qn(A)−Qu(A)|
2 (153)

≥
2

α
sup
x

|Qn(x)−Qu(x)|
2 (154)

and so

ǫn ≥
2

α
sup
x

|Qn(x)−Qu(x)|
2. (155)
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It also follows that, under this constraint,

ǫn ≥
2

α
(Qu(x)−min

x′
Qn(x

′))2 (156)

√

αǫn
2

≥ Qu(x)−min
x′

Qn(x
′) (157)

min
x′

Qn(x
′) ≡ Qmin,n(X) ≥

1

|X |
−

√

αǫn
2

(158)

and similarly,

max
x′

Qn(x
′) ≡ Qmax,n(X) ≤

1

|X |
+

√

αǫn
2

(159)

Let An be the set of distributions over X that satisfy both (158) and (159) and note that Qn ∈ An eventually.
Recalling (88), define

F (x, P, Q̃) = Q̃(x)Q(T (P )|x)α, (160)

where we now indicate the dependence on the input distribution Q̃(x). Similarly, we let {E
(n)

xi,Q̃
} be a partition of Pn

such that P ∈ E
(n)

x,Q̃
implies F (x, P, Q̃) = maxx′ F (x′, P, Q̃) and we let x1(P, Q̃), x2(P, Q̃), . . . , denote the letters

of X in decreasing order of (160). By Lemma 3, we have, eventually

max
Q̃

ISα (X ;Y n)

= max
Q̃∈An

ISα (X ;Y n)

≤ max
Q̃∈An

H1/α(X) +
α

(α− 1) ln 2

1
∑

x∈X

Q̃(x)1/α

∑

x∈X

∑

P 6∈E
(n)

x,Q̃

· (F (x1(P, Q̃), P, Q̃)1/α−1 − F (x, P, Q̃)1/α−1)F (x, P, Q̃)). (161)

Fix xa 6= xb and P ∗ ∈ Dxb
and let Pn be a sequence of types converging to P ∗. Then for all sufficiently large n, we

have that Pn ∈ E
(n)

xb,Q̃
for all Q̃ ∈ An. Then because the summands in (161) are nonpositive, we have

max
Q̃∈An

ISα (X ;Y n)

≤ max
Q̃∈An

H1/α(X) +
α

(α− 1) ln 2

1
∑

x∈X

Q̃(x)1/α

· (F (x1(Pn, Q̃), Pn, Q̃)1/α−1 − F (xa, Pn, Q̃)1/α−1)F (xa, Pn, Q̃)). (162)

Note that, eventually, x1(Pn, Q̃) = xb for all Q̃ ∈ An andF (xb, Pn, Q̃)1/α−1 < 1
2F (xa, Pn, Q̃)1/α−1 for all Q̃ ∈ An.

The remainder of the argument proceeds analogously to the Sibson proof. Eventually, we have

max
Q̃∈An

ISα (X ;Y n)

≤ max
Q̃∈An

H1/α(X)−
1

2

α

(α− 1) ln 2
·

1
∑

x∈X Q̃(x)1/α
(163)

· F (xa, Pn, Q̃)1/α (164)

≤ max
Q̃∈An

H1/α(X)−
1

2

α

(α− 1) ln 2
·

1

|X |
(

1
|X | +

√

αǫn
2

)1/α
(165)

·

(

1

|X |
−

√

αǫn
2

)1/α
1

(n+ 1)|Y|
2−nD(Pn||Qxa ) (166)

≤ log |X | −
1

2

α

(α− 1) ln 2

1

|X |
(

1
|X | +

√

αǫn
2

)1/α
(167)

·

(

1

|X |
−

√

αǫn
2

)1/α
1

(n+ 1)|Y|
2−nD(Pn||Qxa ). (168)
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This implies that

lim
n→∞

−
1

n
log

(

log |X | − max
Q̃(X)

ISα (X ;Y n)

)

≤ min
x 6=x′

C (Qx||Qx′) (169)

by Lemma 4 in Appendix A, which implies the result for 1 < α < ∞. The α = ∞ case follows from (30) since
IS∞(X ;Y n) does not depend on Q(X), and H1/α(X) = log |X | in that case.
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A An Ancillary Lemma

Recall that Qx denotes the distribution of Y given x, and for any P ∈ P , xk(P ) denotes x ∈ X such that D(P ||Qx)
is the kth smallest relative entropy across all elements of X .

Lemma 4.
inf
P∈P

D(P ||Qx2(P )) = min
x 6=x′

C (Qx||Qx′), (170)

where both quantities may be infinite.

Proof. We will separately prove that

inf
P∈P

D(P ||Qx2(P )) ≤ min
x 6=x′

C (Qx||Qx′) (171)

and

inf
P∈P

D(P ||Qx2(P )) ≥ min
x 6=x′

C (Qx||Qx′). (172)

To prove the upper bound, fix x 6= x′ and consider Pλ(y) = Pλ(Qx, Qx′ , y) as defined in (16). Choose λ∗ such that
D(Pλ∗ ||Qx) = D(Pλ∗ ||Qx′). Then, certainly

D(Pλ∗ ||Qx2(Pλ∗ )) ≤ C (Qx||Qx′) (173)

since we know of two X-values whose corresponding Q(Y |X) distributions are equidistant to Pλ∗ , from which (171)
follows.

For the lower bound, we first define subsets of P :

Ex = {P ∈ P | D(P ||Qx) ≤ C (Qx||Qx′)} (174)

Ex′ = {P ∈ P | D(P ||Qx′) ≤ C (Qx||Qx′)} (175)

Note that Ex and Ex′ are convex sets since D(·||·) is convex and that Pλ∗ achieves the minimum distance to Qx′ in
Ex and the minimum distance to Qx in Ex′ [16, Sec. 11.9].

Choose any P ∈ P . There are three cases to consider, depending on the location of P in P-space.

Case 1: P /∈ Ex and P /∈ Ex′ . By construction, D(P ||Qx) ≥ C (Qx||Qx′) and D(P ||Qx′) ≥ C (Qx||Qx′).

Case 2: P ∈ Ex. Using the Pythagorean theorem for relative entropy [16, Thm. 11.6.1],

D(P ||Qx′) ≥ D(P ||Pλ∗) +D(Pλ∗ ||Qx′) (176)

Case 3: P ∈ Ex′ . By the same argument,

D(P ||Qx) ≥ D(P ||Pλ∗) +D(Pλ∗ ||Qx) (177)

Hence, for any P ∈ P ,
max{D(P ||Qx), D(P ||Qx′)} ≥ C (Qx||Qx′) (178)

Since D(P ||Qx2(P )) = min
x 6=x′

max{D(P ||Qx), D(P ||Qx′)},

inf
P∈P

D(P ||Qx2(P )) ≥ min
x 6=x′

C (Qx||Qx′). (179)
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The following result is standard; we provide a proof for completeness.

Lemma 5. For any discrete distributions P1 and P2 on a common alphabet X ,

C (Pn
1 ||P

n
2 ) = nC (P1||P2) (180)

Proof. From (18),

C (P1||P2) = − min
0≤λ<1

log

(

∑

x

P1(x)
λP2(x)

1−λ

)

. (181)

Furthermore,

log

(

∑

xn

P1(x
n)λP2(x

n)1−λ

)

(182)

= log

(

∑

x1

∑

x2

...
∑

xn

n
∏

i

P1(xi)
λP2(xi)

1−λ

)

(183)

= log

(

n
∏

i

∑

xi

P1(xi)
λP2(xi)

1−λ

)

(184)

= log

(

∑

x∈X

P1(x)
λP2(x)

1−λ

)n

. (185)

Hence,

C (Pn
1 ||P

n
2 ) = − min

0≤λ<1
log

(

∑

xn

P1(x
n)λP2(x

n)1−λ

)

(186)

= − min
0≤λ<1

n log

(

∑

x∈X

P1(x)
λP2(x)

1−λ

)

(187)

= nC (P1||P2). (188)

B Data Processing for Arimoto Mutual Information

As a generalization of Shannon conditional entropy, Arimoto-Rényi conditional entropy satisfies a number of desirable
properties. In particular, the rule that conditioning cannot increase entropy carries over to the Arimoto-Rényi version
[15], [21, Thm. 2], [23, Corr. 1], [26, Prop. 2]:

Hα(X |Y, Z) ≤ Hα(X |Y ). (189)

It follows from the definition of Arimoto mutual information that a “right-hand” data processing inequality therefore
holds: if X ↔ Y ↔ Z form a Markov chain, then

IAα (X ;Z) ≤ IAα (X ;Y ). (190)

To reduce our problem to an instance satisfying the distinct row assumption using the technique in Section 3, we
require a “left-hand” version of the inequality, i.e.,

IAα (X ;Z) ≤ IAα (Y ;Z)? (191)

In fact, this inequality can fail dramatically.

Proposition 1. For any 1 < α < ∞, there exist random variables X , Y , and Z such that X ↔ Y ↔ Z and
Y ↔ X ↔ Z with IAα (X ;Z) being arbitrarily small and IAα (Y ;Z) being arbitrarily large.

Proof. Fix positive integers K and L and 0 < ǫ < 1/L. Let Y and Z be jointly distributed as

P (Y = i) =

{

ǫ if i ∈ {1, . . . , L}
1−Lǫ
K if i ∈ {L+ 1, . . . , L+K}

(192)

P (Z = j|Y = i) =







1 if j = i and i ∈ {1, . . . , L}
1
L if i ∈ {L+ 1, . . . , L+K}

0 otherwise.

(193)
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We then couple X to Y and Z via
X = min(Y, L+ 1). (194)

From (4), as ǫ → 0, we have that IAα (X ;Z) → 0. Fix ǫ so that IAα (X ;Z) is as small as desired. If we then let K → ∞,
we have

IAα (Y ;Z) →
α

α− 1
logL. (195)

But L was arbitrary.

For Sibson mutual information and α-maximal leakage, we could reduce our problem to one satisfying the unique
row assumption by dividing X into equivalence classes based on PY |X(·|x) and assigning to a “leader” realization in
each equivalence class the probability of all of the x realizations in that class. This approach fails for Arimoto mutual
information, due to the above result, but the reduction is still possible if one accounts for the exponential tilting of
P (x) in (4).

Proposition 2. Fix α > 0. If (X,Y ) does not satisfy the unique row assumption then there exists X̃ such that

(i) The support of X̃ is strictly contained within the support of X;

(ii) PY |X(y|x) = PY |X̃(y|x) for all x and y;

(iii) (X̃, Y ) satisfies the unique row assumption; and

(iv) IAα (X ;Y ) = IAα (X̃ ;Y ).

Proof. For α = 1, this follows directly from the chain rule for mutual information. For α 6= 1, without loss of
generality, we may assume that there exists a k < |X | such that

PY |X(·|xj) 6= PY |X(·|xi) (196)

for all 1 ≤ i < j ≤ k, and for all k < j ≤ |X | there exists 1 ≤ i ≤ k such that

PY |X(y|xj) = PY |X(y|xi) for all y. (197)

That is, the first k rows of PY |X , viewed as a stochastic matrix, are unique, and every other row is a copy of one of
those k rows. For each 1 ≤ i ≤ k, define the set of X realizations

Ci =
{

x ∈ X : PY |X(y|x) = PY |X(y|xi) for all y
}

, (198)

and note that C1, . . . , Ck are nonempty and form a partition of X . Define X̃ to have support {x1, . . . , xk} with
marginal distribution

P (X̃ = xi) =
1

Γ

(

∑

x∈Ci

P (X = x)α

)1/α

, (199)

where

Γ =

k
∑

i=1

(

∑

x∈Ci

P (X = x)α

)1/α

. (200)

Define the joint distribution between X̃ and Y through (ii). Then (i)-(iii) clearly hold and we have

IAα (X ;Y ) (201)

=
α

α− 1
log
∑

y

(

∑k
i=1

∑

x∈Ci
P (x)αP (y|x)α

∑k
i=1

∑

x∈Ci
P (x)α

)1/α

(202)

=
α

α− 1
log
∑

y

(

∑k
i=1

∑

x∈Ci
(P (x)α/Γα)P (y|x)α

∑k
i=1

∑

x∈Ci
(P (x)α/Γα)

)1/α

(203)

=
α

α− 1
log
∑

y

(

∑k
i=1 P (X̃ = xi)

αP (y|x)α
∑k

i=1 P (X̃ = xi)α

)1/α

(204)

= IAα (X̃ ;Y ). (205)
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