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Abstract—In this manuscript we analyse generalised port-
based teleportation (PBT) schemes, allowing for transmitting
more than one unknown quantum state (or a composite
quantum state) in one go, where the state ends up in several
ports at Bob’s side. We investigate the efficiency of our
scheme discussing both deterministic and probabilistic case,
where parties share maximally entangled states. It turns out
that the new scheme gives better performance than various
variants of the optimal PBT protocol used for the same
task. All the results are presented in group-theoretic manner
depending on such quantities like dimensions and mul-
tiplicities of irreducible representations in the Schur-Weyl
duality. The presented analysis was possible by considering
the algebra of permutation operators acting on n systems
distorted by the action of partial transposition acting on more
than one subsystem. Considering its action on the n−fold
tensor product of the Hilbert space with finite dimension,
we present construction of the respective irreducible matrix
representations, which are in fact matrix irreducible repre-
sentations of the Walled Brauer Algebra. I turns out that the
introduced formalism, and symmetries beneath it, appears in
many aspects of theoretical physics and mathematics - theory
of anti ferromagnetism, aspects of gravity theory or in the
problem of designing quantum circuits for special task like
for example inverting an unknown unitary.

Index Terms—quantum information, quantum teleporta-
tion, group representation theory, symmetric group, port-
based teleportation.

I. (Multi) Port-based teleportation protocols and

their importance

Quantum teleportation is one of the most important
primitives in quantum information science. It performs
an unknown quantum state transmission between two
spatially separated systems. It requires pre-shared entan-
gled resource state and consists of three elements: joint
measurement, classical communication and correction op-
eration depending on the result of the measurements. Ex-
cept quantum teleportation protocol presented by Ben-
nett et al. in [1] we distinguish Knill-Laflamme-Milburn
(KLM) scheme [2], based solely on linear optical tools
and so-called Port-based Teleportation (PBT) protocols,
introduced in [3]. Although, standard teleportation and
KLM scheme are of the great importance and have fun-
damental meaning for the field with range of important
applications [4], [5], [6], [7], [8], [9], [10], here we focus
on PBT schemes. One of the main reasons of that is the
PBT is the only scheme where in the last step the unitary
correction is absent.The lack of correction in the last step
allows for entirely new applications in modern quantum
information science and the high amount of its symme-
tries make it tempting for analysis by representation-
theoretic methods. For instance, PBT has found its place

in non-local quantum computations and position-based
cryptography [11] resulted in new attacks on the cryp-
tographic primitives, reducing the amount of consum-
able entanglement from doubly exponential to expo-
nential, communication complexity [12] connecting the
field of communication complexity and a Bell inequality
violation, theory of universal programmable quantum
processor performing computation by teleportation [3],
universal simulator for qubit channels [13] improving
simulations of the amplitude damping channel and al-
lowing to obtain limitations of the fundamental nature
for quantum channels discrimination [14]. Some aspects
of PBT play a role in the general theory of construction of
universal quantum circuit for inverting general unitary
operations [15] as well as theory of storage and retrieval
of unitary quantum channels [16].

In the original formulation of PBT scheme, see Fig-
ure 1, two parties share a resource state consisting of N
copies of maximally entangled state |ψ+〉, each of them
called a port. Alice to teleport an unknown state ψC to

Fig. 1. On the left-hand side we present the vanilla scheme for the
standard PBT. Two parties share N copies EPR pairs Φ+

d = |ψ+
d 〉〈ψ

+
d |,

where |ψ+
d 〉 = (1/

√
d)∑i |ii〉. Alice to teleport an unknown state

ψC applies a joint measurement (the blue trapeze) on the state to
be teleported and her half A1 · · · AN of the resource state, getting
a classical outcome i transmitted to by by a classical channel. The
index i indicates port on the Bob’s side (red star) on which teleported
state appears. On the right-hand side we present basic scheme for
multi-port teleportation scheme. Again, two parties share N copies
EPR pairs Φ+

d = |ψ+
d 〉〈ψ

+
d |, where |ψ+

d 〉 = (1/
√

d)∑i |ii〉. Alice to
teleport an unknown joint state ψC = ψC1C2 ···Ck , where k ≤ bN/2c,
to Bob performs a global measurement (the blue trapeze) on systems
C1 · · ·Ck A1 · · · AN , getting a classical outcome i = (i1, i2, . . . , ik). She
transmits the outcome i via classical communication to Bob. The index
i indicates on which k ports on the Bob’s side the teleported state
arrives (red stars). Bob to recover the teleported state has to pick up
ports indicated by i with the right order.

Bob performs a joint measurement on it and her half of
the resource state, communicating the outcome through
a classical channel to Bob. It turns out that the outcome
received by Bob points to the system in the resource state
where the state has been teleported to. We distinguish
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two versions of PBT protocol - deterministic (dPBT) and
probabilistic (pPBT). In the first case, after the measure-
ment Alice obtains a classical outcome i ∈ {1, . . . , N}.
In this scenario, the unknown state is always teleported,
but it decoheres during the process. To learn about the
efficiency we compute entanglement fidelity, checking
how well we are able to transmit half of the maximally
entangled state. From the no go theorem [1] for the
deterministic universal processor, we know that we can
achieve perfect teleportation only in the asymptotic limit
N → ∞. In the second case, the probabilistic one, Alice
obtains a classical outcome i ∈ {0, 1, . . . , N}, where
index 0 corresponds to an additional measurement ΠAC

0
indicating the failure of the teleportation process. In
all other cases in pPBT, when i ∈ {1, . . . , N}, parties
proceed with the procedure getting teleported state per-
fectly. To learn about efficiency, we compute the average
probability of success of such a process. Similarly, as
in the deterministic case, the probability is equal to 1
only in the asymptotic limit N → ∞. In every case, we
can consider also optimised PBT, where Alice optimises
jointly over the shared state and measurements before
she runs the protocol to increase the efficiency, see [17]
for further details.

Effective evaluation of the performance of both vari-
ants of PBT requires determining all symmetries that
occur in the problem and spectral analysis of certain
operators. For qubits it has been done in [3], [17] by
exploiting representation theory of SU(2)⊗N , in par-
ticular properties of Clebsch-Gordan (CG) coefficients,
together with semidefinite programming. Unfortunately,
such methods do not work effectively in a higher dimen-
sion, d > 2. It is because in the case of SU(d)⊗N there
is no closed-form of the CG coefficients and to compute
them we need an exponential overhead in N and d.

The first attempt to describe the efficiency of PBT in
higher dimensions has been done in [18] by exploiting
elements of Temperley-Lieb algebra theory, mostly in its
graphical representation. The authors presented closed
expressions for entanglement fidelity as well as the
probability of success for an arbitrary d and N = 2, 3, 4.

Next, in papers [19], [20], [21], authors develop new
mathematical tools allowing for studies of PBT for arbi-
trary N and d. From a technical point of view, the crucial
role is played by the algebra of partially transposed
permutation operators and its irreducible components.
Or in the other words irreducible representations of the
commutant of U⊗(n−1) ⊗U, where the bar denotes com-
plex conjugation, and U is an element of unitary group
U (d). It turns out that basic objects describing all variants
of PBT belongs to the mentioned commutant. Knowing
the full description of irreducible spaces we can reduce
the analysis to every block separately and present entan-
glement fidelity and the probability of success in terms of
parameters describing respective irreducible blocks like
multiplicity or dimension. Finally, in paper [22] authors
investigated the asymptotic behaviour of PBT schemes
which was uncovered in the previous works. Their re-

sults required advanced tools coming from connections
between representation-theoretic formulas and random
matrix theory.

Despite of all the results presented above still, we have
many important questions to answer in the field of PBT
protocols. Here we focus on the following problem: What
is the most effective way to teleport using PBT-like protocols
a state of composite system or several systems, let us say k?
One of the answer could be the following:
• The most obvious one is to run the original PBT

with dimension of the port equal to dk, however the
performance of the PBT protocols gets worse with
growing local dimension [22], [20].

• We could also keep dimensions of the ports and
split the resource state into k packages and then
run k separate PBT procedures independently. Such
analysis, together with some aspets of asymptotic
discussion of the teleportation protocols analysed
here is studied in [23].

In the next sections of this paper, we show that allowing
Bob for a mild correction in a form of ports permutation
we can find a class of multi-port teleportation protocols
(see the right panel of Figure 1), allowing for high
performance measured in terms of entanglement fidelity
or probability of success. Such class of protocols allows
us to transfer the state with higher performance than
the respective PBT schemes mentioned above. To obtain
the final answers we deliver novel mathematical tools
concerning both standard Schur-Weyl duality based on
n-fold tensor product of unitary transformations, U⊗n, as
well as, its "skew" version based on the product of type
U⊗N ⊗ U⊗k (where bar denotes complex conjugation).
By considering irreducible representations of the com-
mutant of U⊗N⊗U⊗k (with n = N + k), we show its con-
nection with the algebra of partially transposed permutation
operators A(k)

n (d), composed of all linear combinations
of the standard permutation operators deformed by the
operation of partial transposition over last k subsystems.
In fact, our work covers unexplored earlier field of find-
ing irreducible matrix representations of Walled Brauer
Algebra [24].

The tool kit presented here is not tailored only for
effective description of port-based like teleportation pro-
tocols and mentioned kind of symmetries appear in
many problems of modern physics and mathematics.

From the perspective of physics, studying quantum
systems with such symmetries play an important role
in antiferromagnetic systems [25]. In this paper the
author considers the spectrum of an integrable anti-
ferromagnetic Hamiltonian of the gl(M|N) spin chain
of alternating fundamental and dual representations. In
particular, to reduce the complexity of the numerical
diagonalisation of the considered Hamiltonian author
applies non-trivial tools emerging from the theory of
Walled-Brauer Algebra. Here, our new tools possibly
enable more analytical approach to the problem or at
least further numerical simplifications.
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Similar kinds of symmetries have found their place
even in some aspects of gravity theories [26], [27] and
particle physics [28]. Here, authors by applying elements
of the representation theory of (Walled) Brauer Alge-
bras and Schur-Weyl duality focus on diagonalisation
of the two-point functions of gauge invariant multi-
matrix operators. In particular, they describe how labels
appearing in diagonal bases are related to respective
Casimir operators and irreducible components of the
Brauer and Walled Brauer Algebra. It turns out that the
depper understanding the spectrum of states from the
point of view of the conformal field theory (CFT) yields
information about space-time physics via the AdS/CFT
duality [29].

Next, our analysis could be applied in the study of
the theory of entanglement and positive maps. The first
such approach has been made by Werner and Eggeling
in seminal paper [30], where the full analysis of tri-
partite U ⊗U ⊗U states has been made, concentrating
on their positivity after partial transposition property
(PPT), which is equivalent to considering U ⊗ U ⊗ U
invariant operators. Our tools can in principle be used
for the characterisation of multipartite states after having
previously chosen the systems to be transposed. This
field, although old, is still under exploration, more in
the context of positive and k−positive maps. To support
our claim let us consider recent papers by Collins and
co-authors [31], [32].

Furthermore, motivated by the recent results on Tem-
perley–Lieb Quantum Channels [33], one can apply
methods developed here, together with the above inves-
tigations, to the problem of constructive examples of new
quantum channels for which the minimum output Rényi
entropy is not additive.

The tools described in paper are enough for the full
description of the universal M → N quantum cloning
machines (where M < N) in the group-theoretic manner.
Such approach has been successfully for universal 1→ N
quantum cloning machines in [34].

Finally, the methods developed here are very similar
to the techniques used in abstract harmonic analysis for
non-commutative groups, where irreducible representa-
tions play a crucial role [35]. This similarity strongly
suggests possibility of implementing our mathematical
results to some aspect of harmonic analysis in future.

To address at least a part of described above problems
we need to diagonalize and investigate properties of
some operators representing certain physical quantity. To
do so we have to construct an analogue of the celebrated
Young-Yamanouchi basis for the symmetric group S(n).
This is the only way of investigating operators which are
U⊗n invariant, thus having non-trivial component only
the symmetric part in the Schur-Weyl duality. However,
in our case our symmetry is deformed - we have k
complex conjugations - the straightforward approach
suggested by the Schur-Weyl duality is not enough. Also,
combining with the approach based on considering the
dual representation to U as it was done [22] is not

enough, since we must have full information about ma-
trix entries of the respective operators on the non-trivial
sectors, similarly as it is for U⊗n invariant operators, and
pre-existing methods simply do not have access to these
sectors of the space.

From the perspective of pure mathematics we deliver
tools for studying and understanding the Walled Brauer
Algebras [24], which is a sub-algebra of the Brauer
Algebra [36] on the most friendly level for potential
applications - irreducible matrix representation. Namely,
the algebra of partially transposed permutation opera-
tors studied here is a representation of the Walled Brauer
Algebra on the space (Cd)⊗n. Up to our knowledge it is
the first result of such kind on this level of generality. We
can go even further, and built a bridge between our tools,
the above-mentioned physical applications and trans-
posed Jucys-Murphy elements [37], [38] which in their
not distorted form generate commutative subalgebra of
C[S(n)]. This approach opens a new path: the opportu-
nity for studying deformation of the permutation group
S(N) within a novel approach to representation theory
put forward in [39].

The structure of this paper is the following. In Sec-
tion II we give summary of all our findings presented in
the manuscript. In Section III we rigorously introduce the
multi-port-based teleportation schemes and discuss the
quantities of interest which are entanglement fidelity and
probability of success. Next, in Section IV and discuss
briefly the occurring symmetries. We explain the connec-
tion with the algebra of partially transposed permutation
operators and the necessity of finding its irreducible
components. In Section V we introduce the basic notions
of the representation theory for the permutation group.
We explain how to compute the basic quantities describ-
ing irreducible representations such as dimensions and
multiplicities. We show how to construct an operator ba-
sis in every irreducible component. Schur-Weyl duality
and notion of Young’s lattice are also shortly explained.
Most of the pieces of information are taken from [40].
In Section VI we prove a few results concerning par-
tially transposed permutation operators. The notion of
partially reduced irreducible representation (PRIR) in
the generalized version concerning previous results is
introduced. Using these two we prove certain summation
rule for matrix elements of irreducible representations
of permutations, which is up to our best knowledge not
known in the literature. Finally, we present results on
partial traces from the operator basis in every irreducible
space of the permutation group. In Section VII we
present the main mathematical results of our paper. We
construct an operator basis in every irreducible represen-
tation of the algebra of partially transposed permutation
operators. Next, using this result, we compute matrix
elements of a port-based teleportation operator deter-
mining the performance of teleportation schemes. We
show that this object is diagonal in our basis, allowing
us to determine its spectral decomposition. Having all
mathematical results, in Section VIII and Section IX, we
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describe deterministic and probabilistic MPBT scheme
and derive expressions describing their performance.
We end up by Section X, where we discuss our results
and present possible ways of further exploring the idea
of multi-port-based teleportation schemes, for example
by simultaneous optimization of the resource state and
Alice’s measurements.

II. Summary of the main results

In this paper we present several results concerning
twofold aspects. Firstly, we introduce tools relating the
characterisation of the structure of the algebra A(k)

n (d)
to the new technical results for practical calculations in
the symmetric group S(n). Secondly, we apply our tools
to characterise a class of multi-port based teleportation
protocols (MPBT).
Results concerning the symmetric group S(n) and the
algebra A(k)

n (d):
1) In Proposition 6 we deliver new summation (orthog-

onality) rule for irreducible representations of the
symmetric group S(n), which is motivated by the
celebrated Schur orthogonality relations [41]. This
summation rule allows us for effective computations
and simplifications quantities regarding MPBT pro-
tocols, especially when computing matrix elements
of MPBT operator describing property of the deter-
ministic scheme. It is also important by itself, giving
deeper understanding of connection between matrix
elements of a subgroup H ⊂ S(n) and the whole
group S(n).

2) We present effective tools for computing partial traces
over an arbitrary number of systems from the irre-
ducible operator basis in every irrep of S(n) emerging
from the Schur-Weyl duality. This is contained in
Lemma 9 and Corollary 10. Up to our best knowledge
these are new results on this level of generality and
extending results from [42], [43]. Since these tools
allow for effective calculations of partial traces in the
group algebra of S(n), which is often the case in
quantum information science, they are of the separate
interest.

3) We show that the algebra A(k)
n (d) of partially trans-

posed permutation operators is in fact the matrix
representation of the Walled Brauer Algebra on the
space (Cd)⊗n. This connection, due to [24], gives us
all the ideals of the considered algebra and show how
they are nested. In particular we identify the maximal
ideal M (see Figure 6), which is the main object for
further understanding multi-port based teleportation
schemes. This identification is implied by the symme-
tries exhibit in our new teleportation protocols.

4) We construct an orthonormal irreducible operator
basis in the maximal ideal (Theorem 11). We show
how the structure of the irreducible blocks looks like
and explain their connection with the irreps of the
symmetric groups S(n) and S(n − 2k). In fact, this
result gives us a way for constructing irreducible

matrix representations of the Walled Brauer Algebra
in the maximal ideal M on the space (Cd)⊗n, which
is the first result of such kind in the literature. It
is analogue of the following basic result regarding
representations of S(n) on (Cd)⊗n:

Eλ
ij =

dλ

n! ∑
σ∈S(n)

φλ
ji(σ
−1)Vσ, (1)

where λ labels irreps of S(n) of dimension dλ, Vσ

is permutation operator, that permutes subsystems
in (Cd)⊗n according to permutation σ ∈ S(n), and
finally numbers φλ

ji(σ
−1) are matrix elements of ir-

reducible representation of σ. The above formula is
actually a general formula that works for any rep-
resentation of a finite group. However, in our case,
we have representation of an algebra, which is not a
group algebra, and there is no such general formula.
We also construct set of projectors on irreducible
blocks of the algebra A(k)

n (d) in the maximal ideal
M, see Definition 15 and Lemma 16.

5) In the considered basis we find matrix elements of the
basic objects for our study - namely, the permutation
operators partially transposed on k systems belonging
to maximal ideal M, as well as those permutation
operators, that are not affected by partial transpose
(Lemma 13). Our matrix elements are analogues of
matrix elements φλ

ij(σ) of irreps of S(n) in Young-
Yamanouchi basis. They are connected with the pa-
rameters describing irreps of the symmetric groups
S(n) and S(n − 2k). This is non-trivial extension of
the tools used in the Schur-Weyl duality to the case
when one has to deal with symmetry of a different
type (partial symmetry)- U⊗(n−k) ⊗ U⊗k, where the
existing tools cannot be applied straightforwardly.
It was possible by introducing notion of partially
irreducible representations, involving concept of the
induced representation and properties of subgroups.
These tools allow us for effective calculations of
compositions and partial traces of operators exhibit-
ing partial symmetries, see for example Lemma 18,
Lemma 19 or Lemma 21, and surely they will find
applications far beyond MPBT protocols.

Results concerning multi-port based teleportation:
1) We investigate multi-port based teleportation

schemes by identifying all their symmetries and
present their connection with the algebra A(k)

n (d),
so in fact with matrix representations of the
Walled Brauer Algebra. We describe two variants,
deterministic and probabilistic one. In particular,
we show explicitly how operators, like signal states
and measurements, encoding the performance of
MPBT decompose in terms of partially transposed
permutation operators (Sections III, IV).

2) Next, having construction of the irreducible basis
in the maximal ideal M of the algebra A(k)

n (d) we
prove Theorem 14 and Theorem 17. In particular these
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results show that the MPBT operator encoding prop-
erties of our protocols is diagonal in projectors onto
irreps of the algebra A(k)

n (d) which are known thanks
to the first part of the paper. It is important to stress
here that adaptation of the pre-existing tools like the
Schur-Weyl duality and the dual representation to U,
which led to re-computation of some known results
in PBT [22], when k = 1, are not enough here. It is
due to the fact that to obtain all the results one must
have an orthogonal irreducible operator basis in every
irreducible sector of the underlying algebra which has
been not known previously.

3) In the deterministic case we prove Theorem 22 in
which we present an explicit expression for entan-
glement fidelity F of the protocol, when parties share
N = n− k maximally entangled states of dimension
d each, and use square-root measurements:

F =
1

dN+2k ∑
α`N−k

(
∑
µ∈α

mµ/α

√
mµdµ

)2

, (2)

where mµ, dµ denote multiplicity and dimension of
irreducible representations of S(N) respectively in
the Schur-Weyl duality, and mµ/α denotes number of
paths on reduced Young’s lattice in which diagram µ
can be obtained from diagram α by adding k boxes.
The efficiency of the new deterministic protocol com-
pared with deterministic PBT when teleporting a
composite system is depicted in Figure 2. In this case,
we perform significantly better even than the optimal
PBT.

Fig. 2. The performance of the deterministic version of our protocol,
measured in entanglement fidelity F, for various choices of initial
parameters which are local dimension d, number of ports N and
number of teleporting particles k. One can see that we achieve better
performance in teleporting a state of two qubits (d = 2, k = 2) then
standard PBT scheme with appropriate port dimension (d = 4, k = 1)
as well as the optimal one (OPT).

4) In the probabilistic case we prove Theorem 23 in
which we connect probability of success p with quan-

tities describing symmetric groups S(N) and S(N −
k):

p =
k!(N

k )

d2N ∑
α`N−k

min
µ∈α

mαdα

λµ(α)
, (3)

The numbers λµ(α) are eigenvalues of MPBT operator
and mα, dα denote multiplicity and dimension of the
irrep labelled by α in the Schur-Weyl duality. The opti-
mal measurements in this case are also derived in the
same theorem. The efficiency of the new probabilistic
protocol compared with probabilistic PBT when tele-
porting a composite system is depicted in Figure 3. In
this case we outperform the optimal PBT scheme for
k ≥ 3. We obtain these results by solving the dual with
the primal problem and showing that they coincide,
giving us the exact value of the probability and form
of the optimal measurements. Exploiting symmetries
of the protocol with the mathematical tools developed
in this paper, we were able to solve the optimisation
problem analytically, which is not the general case in
the optimisation theory.

Fig. 3. The performance of the probabilistic version of our proto-
col, measured in success probability p, for various choices of initial
parameters which are local dimension d, number of ports N and
number of teleporting particles k. One can see that we start achieving
better performance than the corresponding optimal PBT scheme with
appropriate port dimension for a state of three qubits (d = 2, k = 3).

III. Quantities of interest - entanglement fidelity

and probability of success

In multi-port based teleportation protocols Alice
wishes send to Bob an unknown composite qudit quan-
tum state ψC = ψC1C2···Ck , for k ≤ bN/2c, through N
ports, each port given as maximally entangled qudit
state |ψ+〉 = (1/

√
d)∑d

i=1 |ii〉, where d stands for the
dimension of the underlying local Hilbert space. Both
parties share so called resource state of the form |Ψ〉 =⊗N

i=1 |ψ+〉Ai Bi , see Figure 1. Defining the set

I :=
{
(i1, i2, . . . , ik) : ∀1 ≤ l ≤ k il = 1, . . . , N

and i1 6= i2 6= · · · 6= ik
}

(4)
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consisting of k−tuples (not necessarily ordered) denot-
ing ports through which subsystems of the composite
state ψC are teleported. For example, having N = 5, k = 2
and i = (5, 3) means that particle ψC1 is on fifth port and
ψC2 on the third port.

In the next step Alice performs a joint measurement
with outcomes i from the set I . Every effect is described
by positive operator valued measure (POVM) satisfying
∑i∈I ΠAC

i = 1AC. Having that we are in the position
to describe a teleportation channel N , which maps the
density operators acting on HC =

⊗k
i=1HCi to those

acting on Bob’s side:

N (ψC) = ∑
i∈I

TrAB̄iC

[√
ΠAC

i (|Ψ〉〈Ψ|AB ⊗ ψC)
√

ΠAC
i

†]

= ∑
i∈I

TrAC

ΠAC
i TrB̄i

N⊗
j=1

|ψ〉〈ψ|AjBj ⊗ ψC


Bi→B̃

= ∑
i∈I

TrAC

[
ΠAC

i σAB̃
i ⊗ ψC

]
,

(5)

where B̄i = B̄i1 B̄i2 · · · B̄ik denotes discarded subsystems
except those on positions i1, i2, . . . , ik and operation Bi →
B̃ is assigning BN+1 · · · BN+k for every index i on Bob’s
side, introduced for the mathematical convenience. The
states (signals) σAB

i or shortly σi for i ∈ I , from (5), are
given as

σAB̃
i :=TrB̄i

(
P+

A1B1
⊗ P+

A2B2
⊗ · · · ⊗ P+

AN BN

)
Bi→B̃

(6)

=
1

dN−k 1Āi
⊗ P+

Ai B̃
. (7)

In above Āi has the same meaning as B̄i. Then P+
Ai B̃

is
a tensor product of projectors on maximally entangled
sates with respect to subsystems defined by index i and
prescription Bi → B̃. For example, when i = (5, 3),
the notation P+

Ai B̃
means P+

A5B6
⊗ P+

A3B7
. For the further

reasons, we introduce here the following multi port-
based operator given as:

ρ := ∑
i∈I

σi. (8)

In the general case in above sum we have k!(N
k ) =

N!
(N−k)! = |I| elements. One can see that for k = 1 we
reproduce |I| = N number of signals from the original
PBT scheme. For k = 2 we have |I| = N(N − 1), for
k = 3 it is |I| = N(N − 1)(N − 2) and so on.

Deterministic version In this version of the protocol
receiver always accepts state of k of N ports as the
teleported states. Since the ideal transmission of states is
impossible, we would like to know how well we are able
to preform the scheme, possibly as a function of global
parameters like number of ports or local dimension. We
investigate this by checking how well the teleportation
channel N transmits quantum correlations. To do so we

compute its entanglement fidelity F, teleporting halves
of maximally entangled states

F = Tr
[

P+
B̃C

(N ⊗ 1D)P+
CD

]
= ∑

i∈I
Tr
[

P+
B̃C

ΠAC
i

(
σAB̃

i ⊗ P+
CD

)]
=

1
d2k ∑

i∈I
Tr
[
ΠAB̃

i σAB̃
i

]
,

(9)

where D = D1D2 · · ·Dk. To have explicit answer what
is the value of F we need to choose a specific form
of POVM operators ΠAC

i . As it is explained in pre-
vious papers [3], [17], PBT scheme is equivalent to
the state discrimination problem, where authors use N
square-root measurements for distinguishing an ensem-
ble {1/N, σAC

i }. In our case the situation is similar and
the corresponding ensemble is of the form {1/|I|, σAC

i }
with corresponding POVMs:

∀ i ∈ I ΠAC
i =

1
√

ρ
σAC

i
1
√

ρ
+ ∆, (10)

where states σAC
i are given in (6) and ρ is the port-based

operator from (21). It can be easy seen that operator ρ
is not of the full rank, so inversion on the support is
required. Due to this, to every component in (10) an
additional term ∆ of the form

∆ =
1
|Sn,k|

(
1AC
(Cd)⊗n − ∑

i∈I
ΠAC

i

)
(11)

is added. This addition ensures that all effects sum up
to identity operator on whole space (Cd)⊗n. Such proce-
dure does not change the entanglement fidelity F in (9).
Our goal is to evaluate the entanglement fidelity from (9)
with measurements given in (10). The solution given
in terms of group-theoretic parameters is presented in
Theorem 22 in Section VIII.

Probabilistic version In this scenario transmission
sometimes fails, but whenever succeeds then fidelity of
the teleported state is maximal F = 1. The teleportation
channel in the probabilistic version looks exactly the
same as it is in deterministic protocol, however is non-
trace preserving. This fact is due to the reason that now
Alice has access to 1 + |I| POVMs, where an additional
POVM ΠAC

0 corresponds to the failure. To evaluate the
performance of the scheme we need to calculate the
average success probability of teleportation p, where
we average over all possible input states. This leads
to the following expression (see [17], [23] for detailed
calculations):

p =
1

dN+k ∑
i∈I

Tr
(

ΠAC
i

)
. (12)

Requirement of the unit fidelity gives strong condition
on the form of the measurement applied by Alice.
Namely, using argumentation presented in [3], [17], [19]
all the POVMs corresponding to the success of telepor-
tation are of the form:

∀ i ∈ I ΠAC
i = P+

AiC
⊗ΘAi

. (13)
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Having expression for probability of success (12) we ask
what is the maximal possible value of p and what is then
the optimal form the operators ΘAi

from (13) ensuring
mentioned maximisation. It turns out that this problem
can be written as a semidefinite program (SDP). We write
down a primal problem whose solution p∗ lower bounds
the real value of p, and then we write a dual problem
where the solution p∗ is a respective upper bound for
the real value of p. In the boxes below we write down
explicitly primal and dual problem.

The primal problem for probabilistic scheme
The goal is to maximise the quantity:

p∗ =
1

dN+k ∑
i∈I

Tr ΘAi
, (14)

with respect to the following constraints:

(1) ΘAi
≥ 0, (2) ∑

i∈I
P+

AiC
⊗ΘAi

≤ 1AC. (15)

The dual problem for probabilistic scheme The
dual problem is to minimise the quantity

p∗ =
1

dN+k Tr Ω (16)

with respect to the following constraints

(1) Ω ≥ 0, (2) ∀i ∈ I TrAiC

(
P+

AiC
Ω
)
≥ 1N−k,

(17)
where the operator Ω acts on N + k systems, the
identity 1N−k acts on all systems but Ai and C.

The solutions of the above primal and the dual prob-
lem in terms of group-theoretic parameters are presented
in Theorem 23 in Section IX. For potential reader who
would like to learn more about the concept of SDP,
formulation of the respective primal and dual problem,
we refer to book [44].

IV. Symmetries in multi port-based teleportation

In every variant of (multi) port-based teleportation
protocols we distinguish two type of symmetries. One is
connected with covariance and invariance with respect to
the symmetric group S(n− k), while the second one with
invariance with respect to the action of U⊗(n−k) ⊗U⊗k.
We now shall describe briefly connection of these two
types of symmetries with the operators describing anal-
ysed teleportation schemes.

Let us take index i0 such that i0 = (N − 2k + 1, N −
2k + 2, . . . , N − k), then having n = N + k signal σi0 can
be written as

σi0 =
1

dn−2k 1Āi0
⊗ P+

n−2k+1,n ⊗ P+
n−2k+2,n−1 ⊗ · · · ⊗ P+

n−k,n−k+1

=
1

dn−k 1Āi0
⊗Vtn

n−2k+1,n ⊗Vtn−1
n−2k+2,n−1 ⊗ · · · ⊗Vtn−k+1

n−k,n−k+1,

(18)

where by tn, tn−1 etc. we denote the partial transpositions
with respect to particular subsystem and by Vr,s the per-
mutation operator between system r and s (since now we
drop off indices for A, B unless they necessary), for the
Vts

r,s operator is proportional to P+
r,s. Further we assume

whenever it is necessary that permutation operators are
properly embedded in whole (Cd)⊗n space so we will
write just Vr,s instead of Vr,s ⊗ 1r̄,s̄. Moreover for the
signal σi0 we introduce simpler notation

σi0 =
1

dn−k 1⊗Vtn
n−2k+1,n ⊗Vtn−1

n−2k+2,n−1 ⊗ · · · ⊗Vtn−k+1
n−k,n−k+1

≡ 1
dN V(k),

(19)

where

V(k) ≡ 1⊗Vtn
n−2k+1,n ⊗Vtn−1

n−2k+2,n−1 ⊗ · · · ⊗Vtn−k+1
n−k,n−k+1,

(k) ≡ tn ◦ tn−1 ◦ · · · ◦ tn−k+1,
(20)

◦ denotes composition of maps, and 1 denotes iden-
tity acting on the space untouched by tensor product
of projectors on maximally entangled states. Form the
definition of the signals σi in (6) and form of σi0 from (19)
we can deduce that PBT operator ρ can be written as

ρ = ∑
i∈I

σi =
1

dN ∑
τ∈Sn,k

Vτ−1 V(k)Vτ , (21)

where sum runs over all permutations τ from the coset
Sn,k := S(n−k)

S(n−2k) , and Vτ the permutation operator corre-
sponding to the permutation τ. Due to the construction
we have that |I| =

∣∣∣ S(n−k)
S(n−2k)

∣∣∣. Moreover, it is easy to
notice that any signal state satisfies:

∀ τ ∈ Sn,k VτσiVτ−1 = στ(i). (22)

Let us notice that the operator ρ is invariant with respect
to action of any permutation from S(n− k) acting on the
first n− k systems:

∀ τ ∈ S(n− k) VτρVτ−1 = ρ. (23)

In particular, relation (22) and (23) imply covariance of
the SRM measurements given in (10) with respect to the
coset Sn,k. The same type of covariance we require for
POVMs in the probabilistic scheme from (13).

We have also the second kind of symmetries. Notice
that all operators σi as well PBT operator from (8) are
invariant with respect to action of U⊗(n−k)⊗U⊗k, where
the bar denotes the complex wise conjugation and U
is an element of unitary group U (d). This observation
follows from the structure of the signal states and the
fact that every bipartite maximally entangled state P+

ij ,
between system i and j, is U ⊗U invariant.

This property with expression (19) means that basic
elements describing the performance of the presented
teleportation protocol belong to the algebra A(k)

n (d) of
partially transposed permutation operators with respect
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to k last subsystems. For k = 1 we reduce to the
known case, and standard d dimensional port-based
teleportation introduced in [19] and the algebra A(1)

n (d)
discussed in [45], [46]. In this particular case we have
Sn,1 = S(n− 1)/S(n− 2) and all permutations τ are of
the form of transpositions (a, n) for a = 1, . . . , n− 1, and
|S(n− 1)/S(n− 2)| = n− 1.

The operation of partial transposition changes signifi-
cantly properties of the operators under consideration,
making the resulting set of operators no longer the
group algebra of the symmetric group S(n). To see it
explicitly, let us consider a swap operator Vi,j inter-
changing systems on positions i and j. It is obvious
that by applying the swap operator twice, we end up
with an identity operator. However, applying the partial
transposition to Vi,j, the swap operator is mapped to
the operator dP+

ij , which is proportional to maximally
entangled state between respective systems. Applying
partially transposed swap operator twice, we end up
with d2P+

ij , since P+
ij P+

ij = P+
ij . This property makes our

further analysis more complex, and direct application
of the standard methods from the representation theory
of the group algebra of the symmetric group S(n) is
insufficient here.

In next sections we introduce notations and definitions
and construct irreducible orthonormal basis of the alge-
bra A(k)

n (d) and formulate auxiliary lemmas required to
spectral analysis of the operator ρ and describing the
performance of the protocol.

V. Notations and Definitions

For a given natural number n we can define its parti-
tion µ in the following way

µ = (µ(1), µ(2), . . . , µ(l)) (24)

such that

∀1≤i≤l µ(i) ∈ N, µ(1) ≥ µ(2) ≥ · · · ≥ µ(l) ≥ 0,
l

∑
i=1

µ(i) = n. (25)

The Young frame associated with partition µ is the array
formed by n boxes with l left-justified rows. The i-th row
contains exactly µ(i) boxes for all i = 1, 2, . . . , l. Further,
we denote Young diagrams by the Greek letters. The
set of all Young diagrams, with up to n ∈ N boxes,
is denoted as Yn. The restriction to the set of Young
diagrams with no more then d rows is denoted as Yn,d.
We endow Yn,Yn,d with a structure of a partially ordered
set by setting, for µ = (µ(1), µ(2), . . . , µ(l)) ` n and
α = (α(1), α(2), . . . , α(s)) ` n− k,

α � µ, (26)

if µ(i) ≥ α(i) for all i = 1, 2, . . . , l. If α � µ we denote
by µ/α the array, called also a skew shape, obtained
by removing from the Young frame µ the boxes of the

Fig. 4. Graphics presents construction of a skew shape µ/α for Young
frames µ = (6, 3, 3, 1) and α = (3, 2, 1).

Young frame of α. We have illustrated this procedure by
an example presented in Figure 4. For any α, µ ∈ Yn we
say that µ covers α, or α is covered by µ if α � µ and

α � ν � µ, ν ∈ Yn ⇒ ν = α or ν = µ. (27)

In other words, µ covers α if and only if α � µ and µ/α
consists of at least a single box. Later we use an equiv-
alent symbol µ ∈ α to denote Young diagrams µ ` n
obtained from Young diagrams α ` n − k by adding k
boxes. While by the symbol α ∈ µ we denote Young
diagrams α ` n − k obtained from Young diagrams
µ ` n by subtracting k boxes. Informally it means that a
Young diagram with n− k boxes is contained in a Young
diagram with n boxes. Having the concept of Young
diagram and sets Yn,Yn,d we define Young’s lattice and
its reduced version (see Figure 5). The Young’s lattice

Fig. 5. The Young’s lattice Y6, i.e. with six consecutive layers labelled
by permutation groups from S(1) to S(6). By orange and black dashed
lines we depict two possible paths from irrep λ = (1) of S(1) to irrep
λ′ = (2, 1, 1, 1, 1) of S(6). The reduced Young’s lattice Y6,2, i.e. for d = 2
is defined by all diagram on the right-hand side of the red line.

arises when we construct subsequent Young diagrams
by adding boxes one by one. In this way we obtain
subsequent layers of Young diagrams for growing n. We
connect a diagram with a subsequent diagram by an
edge, that is obtained by adding a box. More formally
the Young’s lattice of Yn is the non-oriented graph with
vertex set Yn and an edge from λ to µ if and only if λ
covers µ. The same definition applies for Young’s lattice
of Yn,d, but we remove all Young diagrams with more
than d rows. A path rµ/α in the Young’s lattice is a
sequence rµ/α = (µ ≡ µn ` n → µn−1 ` n− 1 → · · · →
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α ≡ µn−k ` n− k), for some k ∈ N and k < n. The integer
number mµ/α is the total lengths of all paths from µ to
α.

All irreducible representations (irreps) of S(n) are
labelled by Young diagrams with n boxes denoted as
α `d n, where d is a natural parameter, meaning we
take into account diagrams with at most d rows. The
dimension dα of the irrep α is given by the hook length
formula

dµ =
n!

∏
(i,j)∈µ

hµ(i, j)
, (28)

where hµ(i, j) is so called the hook length of the hook
with corner at the box (i, j) given as one plus the number
of boxes below (i, j) plus number of boxes to the right
of (i, j). Multiplicity mµ,d of every irrep α `d n is
characterised by Weyl dimension formula, saying that

mµ,d = ∏
1≤i≤j≤d

µi − µj + j− i
j− i

. (29)

Later on we suppress notation to α ` n and mµ, having in
mind the dependence of the natural parameter d, playing
later the role of local dimension of the space Cd.

Having commuting representations of S(n) and U (d)
on (Cd)⊗n, acting by permuting the tensor factors, and
multiplication by U⊗n respectively, we can decompose
the space (Cd)⊗n, using Schur-Weyl duality [47] into
direct sum of irreducible subspaces as follows:

(Cd)⊗n ∼=
⊕
α`dn

Uα ⊗ Sα. (30)

In the above Sα are representation spaces for the permu-
tation groups S(n), while Uα are representation spaces of
U (d). In Schur basis producing the decomposition (30)
we can define in every space Sα an orthonormal operator
basis Eα

ij, for i, j = 1, . . . , dα, separating the multiplicity
and representation space of permutations respectively.
Namely we have

Eα
ij = 1Uα ⊗ |α, i〉〈α, j| ≡ 1Uα ⊗ |i〉〈j|α. (31)

We can also use representation of Eα
ij on the space

(Cd)⊗n, which is of the form

Eα
ij =

dα

n! ∑
τ∈S(n)

φα
ji(τ
−1)Vτ , (32)

where φα
ji(τ
−1) denotes matrix element irreducible repre-

sentation of the permutation τ−1 ∈ S(n). The operators
from (31) have the following properties

Eα
ijE

β
kl = δαβδjkEα

il , Tr Eα
ij = mαδij. (33)

Let us observe that operators Eα
ii are projectors. Action of

the operators Eα
ij on an arbitrary permutation operator

Vσ, from the left and from the right-hand side, for σ ∈
S(n) is given by

Eα
ijVσ = ∑

k
ϕα

jk(σ)Eα
ik, VσEα

ij = ∑
k

ϕα
ki(σ)Eα

kj. (34)

Using this basis we can write matrix representation of
a given permutation τ−1 ∈ S(n), on every irreducible
space labelled by α ` n as

φα(τ−1) = ∑
ij

φα
ij(τ
−1)Eα

ij. (35)

Moreover, using this operators we construct Young pro-
jectors, the projectors on components Uα ⊗Sα from (30):

Pα = ∑
i

Eα
ii =

dα

n! ∑
τ∈S(n)

χα(τ−1)Vτ . (36)

The numbers χα(τ−1) = ∑i φα
ii(τ
−1) are irreducible

characters.
Sometimes instead of |α, i〉 we write |α, iα〉 or just |iα〉.

Defining c = ∑α mαdα any operator X ∈ M(c× c,C) can
be written using elements {Eα

ij} as X = ∑α ∑dα
i,j=1 xα

ijE
α
ij.

Considering n−particle system, by writing Vn−1,n we
understand 11...n−2 ⊗Vn−1,n, and similarly for other op-
erators. The operator 11...n−2 is identity operator on first
n− 2 particles.

VI. Preliminary Mathematical Results

A. Partial trace over Young projectors

In this section we present a set of auxiliary lemmas
which are crucial for the presentation in the further
sections. Introducing notation Tr(k) = Trn−2k+1,...,n−k, de-
noting the partial trace over a set {n− 2k + 1, . . . , n− k}
of particles, and recalling the notation

V(k) := Vtn
n−2k+1,nVtn−1

n−2k+2,n−1 · · ·V
tn−k+1
n−k,n−k+1 (37)

we start from formulation of the following:

Fact 1. For any operator acting on n − k systems we have
the following equality

V(k)X⊗ 1n−k+1...nV(k) = Tr(k)(X)V(k), (38)

where 1n−k+1...n is the identity operator on k last subsystems,
while the operator X on first n− k.

In particular cases, when k = 1, 2, we have respectively

V(1)X⊗ 1nV(1) = Trn−1(X)V(1),

V(2)X⊗ 1n−1,nV(2) = Trn−3,n−2(X)V(2).
(39)

Now we prove Fact 1:

Proof. It is enough to show that expression (39) holds for
k = 1 and then use the argumentation below iteratively.
Using identity V(1) = dP+, where P+ is the projector
on maximally entangled state and d is the dimension of
local Hilbert space, we write

V(1)(X⊗ 1n)V(1) =

d2(11,...,n−2 ⊗ P+)

(
∑
ij

X1,...,n−2
ij ⊗ e(n−1)

ij ⊗ 1n

)
(11,...,n−2 ⊗ P+),

(40)
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where {e(n−1)
ij } is standard operator basis on subsystem

n− 1 and X1,...,n−2
ij are operators on subsystems from 1 to

n− 2. Using explicit form of P+ = (1/d)∑k,l e(n−1)
kl ⊗ e(n)kl

and X(1,...,n−2)
ij we get (41), given at the top of the next

page, where xi1 j1,...,in−1 jn−1 denotes matrix elements of X.

Fact 2. Let {|i〉α}dα
i=1 denote a basis in an irrep α ` n of

dimension dα. Then for any operator Xα = ∑ij xα
ij|i〉〈j|α

acting on the space Cdα , we have

∑
τ∈S(n)

Tr
(

Xαφα(τ−1)
)

Vτ =
n!
dα

1U
α ⊗ Xα. (42)

Proof. Inserting expression (35) into (42) we obtain

∑
τ∈S(n)

Tr
(

Xαφα(τ−1)
)

Vτ = ∑
τ∈S(n)

Tr

(
Xα ∑

ij
φα

ij(τ
−1)Eα

ij

)
Vτ

= ∑
ij

Tr
(

XαEα
ij

)
∑

τ∈S(n)
φα

ij(τ
−1)Vτ

=
n!
dα

∑
ij

Tr
(

XαEα
ij

)
Eα

ji.

(43)

In Schur basis every operator Eα
ij has a form 1U

α ⊗ |i〉〈j|α.
This allows us to write
n!
dα

∑
ij

Tr
(

XαEα
ij

)
Eα

ji

=
n!

mαdα
∑
ij

Tr
[(

1U
α ⊗ Xα

) (
1U

α ⊗ |i〉〈j|α
)] (

1U
α ⊗ |j〉〈i|α

)
=

n!
dα

1U
α ⊗ Tr (Xα|i〉〈j|α) |j〉〈i|α =

n!
dα

1U
α ⊗ Xα.

(44)

Now, let us introduce the following objects:

φ̃µ(a, n) := dδa,n φµ(a, n), and Ṽa,n := dδa,n Va,n, (45)

where φµ(a, n) is a matrix representation of permutation
Va,n on irrep µ ` n. Having that we can formulate the
following

Lemma 3. Let us denote by 1µ
γ the identity on an irrep γ

of S(n− 1) contained in irrep µ of S(n), then we have the
following restriction of φ̃µ(a, n) to irrep β of S(n− 1)[

n

∑
a=1

φ̃µ(a, n)

]
β

= xµ
β1µ

β with xµ
β = n

mµdβ

mβdµ
. (46)

Proof. Consider
n

∑
a=1

φ̃µ(a, n) =
n−1

∑
a=1

φµ(a, n) + d1µ (47)

which is clearly invariant with respect to S(n− 1). Hence
it admits the decomposition

n

∑
a=1

φ̃(a, n) = ∑
γ∈µ

xµ
γ1µ

γ (48)

for some xµ
γ ∈ C. The restriction for chosen irrep β ∈ µ

reduces the above to[
n

∑
a=1

φ̃µ(a, n)

]
β

= xµ
β1µ

β. (49)

Now our goal is to compute the unknown coefficients
xµ

γ. To do so let us first observe that we can write
every projector Pµ in terms of coset elements φ(a, n) and
permutations from S(n− 1). Indeed we have

Pµ =
dµ

n! ∑
σ∈S(n)

Tr
[
φµ(σ−1)

]
Vσ

=
dµ

n!

n

∑
a=1

∑
τ∈S(n−1)

Tr
[
φµ((a, n) ◦ τ−1)

]
Va,nVτ .

(50)

Since every representation is a homomorphism we have
φµ((a, n) ◦ τ−1) = φµ((a, n))φµ(τ−1). Moreover, because
τ ∈ S(n− 1) and µ ` n, representation φµ(τ−1) has to
be block diagonal in α ` n− 1:

φµ(τ−1) =
⊕
α∈µ

φα(τ−1), (51)

where the symbol α ∈ µ denotes all Young frames
obtained from µ by removing a single box. Denoting by
1µ, 1α identities on irreps µ ` n and α ` n − 1 respec-
tively, for which α ∈ µ holds, we write 1µ =

⊕
α∈µ 1α.

Applying this identity together with (51) to equation (50)
we rewrite as

Pµ =
dµ

n!

n

∑
a=1

Va,n ∑
α∈µ

∑
τ∈S(n−1)

Tr
(
[φµ(a, n)]α φα(τ−1)

)
Vτ ,

(52)

where [φµ(a, n)]α ≡ 1αφµ(a, n)1α. Using Fact 2 to expres-
sion (52) we have

Pµ =
1
n

n

∑
a=1

Va,n ∑
α∈µ

dµ

dα

(
1U

α ⊗ [φµ(a, n)]α
)

. (53)

Having (53) and definitions (45), together with (49), and
Trn V(a, n) = dδa,n 11...n−1, we write

Trn−1 Pµ =
1
n ∑

β∈µ=

dµ

dβ
1U

β ⊗
[

n

∑
a=1

φ̃µ(a, n)

]
β

=
1
n ∑

β∈µ

dµ

dβ
xµ

β1U
β ⊗ 1S

β =
1
n ∑

β∈µ

dµ

dβ
xµ

β Pβ.

(54)

Using (99), property Tr(PβPµ) = mµdβ, for µ ` n, β `
n− 1, and

Tr
(

PβPµ

)
=

1
n ∑

γ∈µ

dµ

dγ
xµ

γ Tr
(

PγPβ

)
=

1
n

dµ

dβ
xµ

βdβmβ =
1
n

dµmβxµ
β

(55)

we deduce that

xµ
β = n

mµdβ

mβdµ
. (56)

This finishes the proof.
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V(1)(X⊗ 1n)V(1) = ∑
kl

(
11,...,n−2 ⊗ e(n−1)

kl ⊗ e(n)kl

)(
∑
ij

X1,...,n−2
ij ⊗ e(n−1)

ij ⊗ 1n

)
∑
pq

(
11,...,n−2 ⊗ e(n−1)

pq ⊗ e(n)pq

)
(41)

= ∑
kq

 ∑
i1,...,in−2,p,
j1,...,jn−2,p

xi1 j1,...,in−2 jn−2,ppe(1)i1 j1
⊗ · · · ⊗ e(n−2)

in−2 jn−2

⊗ e(n−1)
kq ⊗ e(n)kq

= ∑
kq

(
∑
p

X1,...,n−2
pp

)
⊗ e(n−1)

kq ⊗ e(n)kq

= Trn−1(X)V(1)

B. A new summation rule for irreducible representations and
PRIR (Partially Reduced Irreducible Representation) notation

Let H ⊂ S(n) be an arbitrary subgroup of S(n) with
transversal T = {τk : k = 1, . . . , n!

|H|}, i.e. we have

S(n) =

n!
|H|⋃

k=1

τk H. (57)

For the further purposes, we can also introduce simpli-
fied notation

Notation 4. Let us take µ ` n and α ` n− k, for k < n. By
index rµ/α we denote a path on Young’s lattice from diagram
µ to α. This path is uniquely determined by choosing a chain
of covered young frames from µ to α, differencing by one box
in each step:

rµ/α = (µ, µn−1, . . . , µn−k+1, α) (58)

and
µ 3 µn−1 3 · · · 3 µn−k+1 3 α. (59)

Consider an arbitrary unitary irrep φµ of S(n). It can
be always unitarily transformed to PRIR φ

µ
R, such that

∀κ ∈ H φ
µ
R(κ) =

⊕
α∈µ,rµ/α

ϕα,rµ/α(κ) ≡
⊕
rµ/α

ϕrµ/α(κ),

(60)
where α labels the type of if a irrep of H and rµ/α

denotes path on Young’s lattice from µ to α. It means
that element ϕα,rµ/α(κ) is repeated |Rµ/α| = mµ/α times,
where Rµ/α is the set composed of all paths rµ/α from
µ to α. Whenever it is clear from the context we write
just ϕα(κ) instead of ϕα,rµ/α(κ). Diagonal blocks in the
decomposition (60) are labelled and in fact ordered by
the two indices α, rµ/α. The PRIR representation of S(n),
reduced to the subgroup H, has block diagonal form
of completely reduced representation, which in matrix
notation takes the form

∀κ ∈ H (φ
µ
R)

rµ/α ,̃rµ/β

iα jβ
(κ) = δrµ/α r̃µ/β ϕα

iα jα(κ), (61)

where indices iα, jα run from 1 to dimension of the
irrep α, and δrµ/α r̃µ/β = δµνδµn−1νn−1 · · · δαβ. The above
considerations allow us to introduce the following

Notation 5. Every basis index iµ, where µ ` n, can be written
uniquely using a path on Young’s lattice as

iµ ≡ (rµ/α, lα), α ∈ µ, (62)

and lα denotes now index running only within the range
of the irrep α. The indices iµ, lα are of the same type as
rµ/α, but with trivial last element, i.e. a single box Young
diagram. Equation (62) defines the division of the chosen path
on Young’s lattice from diagram µ to single box diagram,
through a diagram α. By writing δiµ jν , where µ ` n and
α ` n− k, we understand the following

δiµ jν = δrµ/α r̃ν/β δlα l′β
= δµνδµn−1νn−1 · · · δµn−k+1νn−k+1 δαβδlα l′β

.
(63)

Similarly as in [19], [21] the block structure of this
reduced representation allows to introduce such a block
indexation for the PRIR φ

µ
R of S(n), which gives

∀σ ∈ S(n) φ
µ
R(σ) =

(
(φ

µ
R)

rµ/α ,̃rµ/β

iα jβ
(σ)
)

, (64)

where the matrices on the diagonal (φ
µ
R)

rµ/α ,̃rµ/β

iα jβ
(σ) are

of dimension of corresponding irrep ϕα of S(n− 1). The
off diagonal blocks need not to be square.

Now we formulate the main result of this subsection,
the generalized version of PRIR orthogonality relation.
The following proposition plays the central role in in-
vestigating matrix elements of MPBT operator in irre-
ducible orthonormal operator basis presented later in
Section VII.

Proposition 6. Let H ⊂ S(n) be an arbitrary subgroup of
S(n) with transversal T = {τk : k = 1, . . . , n!

|H|}, In the
PRIR notation φ

µ
R of S(n) satisfy the following bilinear sum

rule
n!
|H|

∑
k=1

dβ

∑
kβ=1

(φ
µ
R)

rµ/α ,̃rµ/β

iα kβ
(τ−1

k )(φν
R)

rν/β ,̃rν/γ

kβ jγ
(τk)

=
n!
|H|

dβ

dµ
δrµ/α r̃ν/γ δiα jγ , ∀rµ/α, r̃µ/β, rν/β, r̃ν/γ (65)

where α, β, γ are irreps of H contained in the irrep µ of S(n),
and |H| denotes cardinality of the subgroup H.
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Proof. The proof is based on the classical orthogonality
relations for irreps, which in PRIR notation takes a form

∑
g∈G

(φ
µ
R)

rµ/α r̃µ/β

iα kβ
(g−1)(φν

R)
rν/β r̃ν/γ

kβ jγ
(g) =

|G|
dµ

δr̃µ/βrν/β δiα jγ ,

(66)
where |G| denotes cardianlity of the group G. It means,
that even if α = γ, i.e. these representations are of
the same type, but r̃µ/β 6= rν/β, the RHS of the above
equation is equal to zero. Next part of the proof follows
from the proof of Proposition 29 in paper [21].

C. Properties of irreducible operator basis and Young projec-
tors under partial trace

For further purposes, namely for effective computa-
tions of performance of our teleportation schemes, we
prove here how irreducible operator basis given in (32)
or (31), and Young projectors from (36) behave under
taking a partial trace over last k systems. Our formulas
are generalisations of attempts to similar problem made
in [42]. We start considerations from calculating the
partial trace from operators (32) over last system. In
all lemmas presented below we use PRIR representation
described in Subsection VI-B.

Lemma 7. For irreducible operator basis Eµ
kl , where µ ` n,

introduced in (32), the partial trace over last system equals to

Trn Eββ′

iβ jβ′
(µ) = ∑

α∈µ

mµ

mα
Eα

iα jα δαβδαβ′ =
mµ

mβ
Eβ

iβ jβ
δββ′ . (67)

Proof. Similarly as it was done for Young projectors Pµ

in (50), we can rewrite Eµ
ij as

Eµ
kl =

dµ

n! ∑
σ∈S(n)

φ
µ
lk(σ

−1)Vσ

=
dµ

n!

n

∑
a=1

∑
τ∈S(n−1)

φ
µ
lk((a, n) ◦ τ−1)Va,nVτ .

(68)

Observing that φ
µ
lk(σ

−1) = Tr
(
|k〉〈l|φµ(σ−1)

)
, where

|k〉, |l〉 are basis vector in irrep µ, we can write in PRIR
notation k = kµ = (β, iβ) and l = lµ = (β′, jβ′) having

Eββ′

iβ jβ′
(µ) =

dµ

n!

n

∑
a=1

Va,n ∑
τ∈S(n−1)

Tr
[
|β, iβ〉〈β′, jβ′ |φµ(a, n)φµ(τ−1)

]
Vτ . (69)

Since τ ∈ S(n − 1) and µ ` n, we can apply directly
decomposition from (60) writing

Eββ′

iβ jβ′
(µ) =

dµ

n!

n

∑
a=1

Va,n ∑
α∈µ

∑
τ∈S(n−1)

Tr
([
|β, iβ〉〈β′, jβ′ |φµ(a, n)

]
α

φα(τ−1)
)

Vτ . (70)

In the above, by
[
|β, iβ〉〈β′, jβ′ |φµ(a, n)

]
α

we denote the
restriction to irrep α. Applying Fact 2 to the above
expression we write

Eββ′

iβ jβ′
(µ)

=
dµ

n!

n

∑
a=1

Va,n ∑
α∈µ

(n− 1)!
dα

1U
α ⊗

[
|β, iβ〉〈β′, jβ′ |φµ(a, n)

]
α

.

(71)

Taking the partial trace over last system, and having in
mind the definition of φ̃µ(a, n− 1) from (45), we have:

TrnEββ′

iβ jβ′
(µ)

=
dµ

n!
Trn

(
n

∑
a=1

Va,n

)
∑
α∈µ

(n− 1)!
dα

1U
α ⊗

[
|β, iβ〉〈β′, jβ′ |φµ(a, n)

]
α

=
dµ

n!

n

∑
a=1

(
∑
α∈µ

(n− 1)!
dα

1U
α ⊗

[
|β, iβ〉〈β′, jβ′ |φ̃µ(a, n)

]
α

)
.

(72)

From the proof of Lemma 3 we know that the
object

[
∑n

a=1 φ̃µ(a, n)
]

β
is invariant with respect to

S(n − 1). Together with property 1α
µ|β, iβ〉〈β′, jβ′ |1α

µ =
δαβδα,β′ |α, iα〉〈α, jα|, we have

TrnEββ′

iβ jβ′
(µ)

=
dµ

n! ∑
α∈µ

(n− 1)!
dα

xµ
α 1U

α ⊗ |α, iα〉〈α, jα|δαβδαβ′

=
1
n

dµ

dβ
xµ

β1U
α ⊗ |β, iβ〉〈β, jβ|δββ′ =

mµ

mβ
Eβ

iβ jβ
δββ′ .

(73)

In the last step we use explicit form of coefficients xµ
β

given in Lemma 3 and expression (31).

Corollary 8. From Lemma 9 we see that taking a partial trace
over n−th subsystem we destroys all the coherences between
block labelled by different β ` n− 1.

For further purpose of having explicit connection with
the structure of multi-port teleportation scheme, let us
assume that now µ ` n − k, such that 2k < n. Having
that and extended notion of PRIR, we are in position to
present the second main result of this section.

Lemma 9. For basis operators Eµ
kl in the irreducible represen-

tation labelled by µ ` n− k, we have the following equality:

Tr(k) E
rµ/β r̃µ/β′
iβ jβ′

=
mµ

mβ
Eβ

iβ jβ
δrµ/β r̃µ/β′

(74)

where we use simplified notation Tr(k) = Trn−2k+1,...,n−k.
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Proof. To prove the above statement we use iteratively
Lemma 7. Let us write explicitly indices k = kµ, l = lµ in
PRIR notation:
kµ = (µn−k−1, rµn−k−1) = (µn−k−1, . . . , µn−2k+1, µn−2k, iµn−2k )

= (µn−k−1, . . . , µn−2k+1, β, iβ),

lµ = (µ′n−k−1, sµ′n−k−1
) = (µ′n−k−1, . . . , µ′n−2k+1, µ′n−2k, iµ′n−2k

)

= (µ′n−k−1, . . . , µ′n−2k+1, β′, jβ′),
(75)

where we put β = µn−2k, β′ = µ′n−2k for simpler notation.
Each lower index denotes a proper layer on the reduced
Young’s lattice, starting from the highest layer labelled
by the number n − k. In the first step we compute the
partial trace over (n− k)-th system getting

Trn−kE
µn−k−1 µ′n−k−1
rµn−k−1 sµ′n−k−1

(µn−k)

=
mµn−k

mµn−k−1

Eµn−k−1
rµn−k−1 sµn−k−1

δµn−k−1µ′n−k−1
.

(76)

This procedure reduced paths in (75) to

rµn−k−1 = (µn−k−2, qµn−k−2)

= (µn−k−2, µn−k−3, . . . , µn−2k+1, β, iβ),
(77)

sµn−k−1 = (µ′n−k−2, pµ′n−k−2
)

= (µ′n−k−2, µ′n−k−3, . . . , µ′n−2k+1, β′, jβ′),
(78)

where β = µn−2k, β′ = µ′µ−2k. Now computing the trace
from (76) over (n− k− 1)-th particle we write

δµn−k−1µ′n−k−1

mµn−k

mµn−k−1

Trn−k−1 E
µn−k−2µ′n−k−2
qµn−k−2 pµ′n−k−2

(µn−k−1)

= δµn−k−1µ′n−k−1
δµn−k−2µ′n−k−2

mµn−k

mµn−k−1

mµn−k−1

mµn−k−2

Eµn−k−2
qµn−k−2 pµn−k−2

.

(79)

Continuing the above procedure, up to last system in
Tr(k) we obtain expression (80), displayed at the top
of the following page since in the last line we used
definition of rµ/α and suppressed indices labelling layers
on reduced Bratelli diagram. This finishes the proof.

Then Lemma 9 implies the following statement about
the Young projector:

Corollary 10. Let Pµ be a Young projector on irrep labelled
by µ ` n− k, then

Tr(k) Pµ = ∑
β∈µ

mµ/β

mµ

mβ
Pβ (81)

where we use simplified notation Tr(k) = Trn−2k+1,...,n−k.

Indeed, knowing that Pµ = ∑k Eµ
ii , we write in PRIR

basis

Tr(k) Pµ = ∑
kµ

Eµ
kµkµ

= ∑
β∈µ

∑
rµ/β

∑
iβ

Tr(k) E
rµ/βrµ/β

iβ iβ

= ∑
β∈µ

∑
rµ/β

∑
iβ

mµ

mβ
Eβ

iβiβ
= ∑

β∈µ
∑
rµ/β

∑
iβ

mµ

mβ
Eβ

iβiβ

= ∑
β∈µ

∑
rµ/β

mµ

mβ
Pβ = ∑

β∈µ

mµ/β

mµ

mβ
Pβ.

(82)

VII. The Commutant Structure of U⊗(n−k) ⊗U⊗k

Transformations and MPBT operator

In this section we deliver an orthonormal basis for
the commutant of U⊗(n−k) ⊗ U⊗k, or equivalently for
the algebra A(k)

n (d). Being more strict, we introduce an
irreducible basis for an two-sided idealM generated by
the element V(k) and elements of the algebra A(k)

n (d):

M = {VτV(k)V†
τ′ | τ, τ′ ∈ S(n− k)}. (83)

For our problem full description of M, together with
irreducible representation is enough since all basic ob-
jects describing MPBT scheme belong to this ideal, see
for example definition of MPBT operator from (21). In
the most general case the algebra A(k)

n (d) contains also
two-sided ideals generated by the elements V(k′), for
k′ < k, and elements of the algebra A(k)

n (d). We have
the following chain of inclusions

M≡M(k) ⊂M(k−1) ⊂ · · · ⊂ M(1) ⊂M(0) ≡ A(k)
n (d).

(84)
The irreducible basis fir the ideals with k′ < k will be
studied elsewhere, since we do not use objects from the
outside of the ideal M. In Figure 6 we present nested
structure of A(2)

5 (d) for d > 3, together with labelling
subsequent blocks within them. Having expressions for
partial trace over an arbitrary number of particles from
irreducible basis operators of the symmetric group we
are in the position to formulate the main result, namely
we have:

Theorem 11. The orthonormal operator basis of the commu-
tant of U⊗(n−k) ⊗U⊗k in the maximal ideal M is given by
the following set of operators

F
rµ/αrν/α

iµ jν =
mα√mµmν

E
rµ/α

iµ 1α
V(k)Erν/α

1α jν (85)

satisfying the following composition rule

F
rµ/αrν/α

iµ jν F
rµ′/βrν′/β

kµ′ lν′
= δ

rν/αrµ′/β δjνkµ′
F

rµ/αrν′/α

iµ lν′
(86)

where mµ, mν and mα are multiplicities of respective irreps of
S(n− k) and S(n− 2k) in the Schur-Weyl duality.

Proof. The proof contains two main steps:

• Showing that operators are orthonormal, i.e.

F
rµ/αrν/α

iµ jν F
rµ′/βrν′/β

kµ′ lν′
= δ

rν/αrµ′/β δjνkµ′
F

rµ/αrν′/α

iµ lν′
. (87)

Indeed, writing explicitly the above composition
and using orthogonality relation for operators Eµ

iµ jµ ,
we have
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δµn−k−1µ′n−k−1
δµn−k−2µ′n−k−2

× · · · × δµn−2k+1µ′n−2k+1
δµn−2kµ′n−2k

mµn−k

mµn−k−1

mµn−k−1

mµn−k−2

× · · · ×
mµn−2k+1

mµn−2k

Eµn−2k
iµn−2k jµn−2k

= δµn−k−1µ′n−k−1
δµn−k−2µ′n−k−2

× · · · × δµn−2k+1µ′n−2k+1
δµn−2kµ′n−2k

mµn−k

mµn−2k

Eµn−2k
iµn−2k jµn−2k

= δ
rµ/β r̃µ/β′

mµ

mβ
Eβ

iβ jβ
,

(80)

Fig. 6. Graphic presents the interior structure of the algebra A(2)
6 (d),

with the nested structure of the ideals M(0),M(1),M(2), for d ≥ 4
(only with this requirement all the Young frames occur in the de-
composition). In particular, we focus on the interior block structure
of the idealM(2), on which objects describing multi-port teleportation
schemes are defined. The middle figure represents the process of the
induction by adding two boxes to two allowed starting Young frames
which are (2) and (1, 1). In this case we have nested structure of three
layers. The most right figure presents process of the reduction from
irreps labelled by Young frames of 4 boxes to irreps labelled to Young
frames of two boxes. We present here the process of the reduction for
the two most left upper blocks.

F
rµ/αrν/α

iµ jν F
rµ′/βrν′/β

kµ′ lν′

=
mα√mµmν

mβ
√mµ′mν′

E
rµ/α

iµ 1α
V(k)Erν/α

1α jν

×E
rµ′/β

kµ′ 1β
V(k)E

rν′/β

1β lν′

= δνµ′δjνkµ′
mα√mµmν

mβ
√mµ′mν′

E
rµ/α

iµ 1α
V(k)

×E
rν/αrµ′/β

1α 1β
V(k)E

rν′/β

1β lν′
. (88)

Now, applying Fact 1 to operator E
rν/αrν′/β

1α 1β
, together

with Lemma 9, we reduce to

F
rµ/αrν/α

iµ jν F
rµ′/βrν′/β

kµ′ lν′

= δνµ′δαβδ
rν/αrµ′/β δjνkµ′

mα√mµmµ′

mα√mµ′mν′

mµ′

mα

×E
rµ/α

iµ 1α
Eα

1α1α
V(k)E

rν′/α

1α lν′

= δ
rν/αrµ′/β δjνkµ′

mα√mµmν′

×E
rµ/α

iµ 1α
Eα

1α1α
V(k)E

rν′/α

1α lν′
. (89)

Finally observing that E
rµ/α

iµ 1α
Eα

1α1α
= E

rµ/α

iµ 1α
we get

expression (86).

• Showing that element V(k) generating the ideal M,
see (83) can be expressed as a linear combination of
basis elements F

rµ/αrν/α

iµ jν . Indeed, we have

V(k) = ∑
µ,ν`n−k

PµV(k)Pν = ∑
µ,ν`n−k

∑
iµ ,jν

Eµ
iµiµ V(k)Eν

jν jν ,

(90)

since 1 = ∑µ Pµ together with (36). Writing indices
iµ, jν in PRIR notation, according to Notation 5 we
get

V(k) = ∑
µ,ν

∑
rµ/α ,̃rν/β

∑
lα ,l′β

E
rµ/αrµ/α

lα lα
V(k)E

r̃ν/β r̃ν/β

l′β l′β

= ∑
µ,ν

∑
rµ/α ,̃rν/β

∑
lα ,l′β

E
rµ/αrµ/α

lα 1α
Eα

1α lα V(k)Eβ

l′β1β
E

r̃ν/β r̃ν/β

1β l′β
.

(91)

Having [Eα
1α lα , V(k)] = [Eβ

l′β1β
, V(k)] = 0 and or-

thogonality relation Eα
1α lα Eβ

l′β1β
= δαβδlα l′β

Eα
1α1α

we

reduce (91) to

V(k) = ∑
µ,ν

∑
rµ/α ,̃rν/α

∑
lα

E
rµ/αrµ/α

lα 1α
V(k)Er̃ν/α r̃ν/α

1α lα

= ∑
µ,ν

∑
rµ/α ,̃rν/α

∑
lα

√mµmν

mα

(
mα√mµmν

E
rµ/αrµ/α

lα 1α
V(k)Er̃ν/α r̃ν/α

1α lα

)

= ∑
µ,ν

∑
rµ/α ,̃rν/α

∑
lα

√mµmν

mα
F

rµ/α r̃ν/α

lα rµ/α r̃ν/α lα
.

(92)

In the above we use representation of F
rµ/αrν/α

iµ jν in full
PRIR basis:

F
rµ/αrν/α

iµ jν → F
rµ/α rν/α

kβ rµ/β rν/γ k′γ
(93)

since iµ = (rµ/β, kβ) and jν = (rν/γ, k′γ). This finishes
the proof.

Next we focus on the relations analogous to (34) for
the basis elements F

rµ/αrν/α

iµ jν and operators V(k), Vτ , where

τ ∈ Sn,k ≡
S(n−k)

S(n−2k) . To have all required tools let us first
rewrite expressions from (34) in PRIR notation, but for



15

a specific choice of indices and partitions µ ` n− k and
α ` n− 2k:

∀τ ∈ S(n− k) VτE
rµ/α

iµ 1α
= ∑

lµ

φ
µ
lµiµ

(τ)E
rµ/α

lµ 1α

∀τ ∈ S(n− k) Erν/α

1α jν Vτ−1 = ∑
kν

φν
jνkν

(τ−1)Erν/α

1α kν

(94)

where φ
µ
lµiµ

(τ), φν
jνkν

(τ−1) are the matrix elements of
Vτ , Vτ−1 in irreducible basis expressed in the PRIR no-
tation, see (35) and Section VI. Having the above we are
in position to prove the following

Lemma 12. Let us take basis operators for the idealM given
through Theorem 11, together with (93). Then for the operator
V(k) defined in (37) and an arbitrary permutation operator Vτ ,
for τ ∈ S(n− k), the following relations hold:

F
rµ/α rν/α

kβ rµ/β rν/γ lγ
V(k) = ∑

µ′
∑

rµ′/γ

√mνmµ′

mγ
F

rµ/γ rµ′/γ

kβ rµ/β rµ′/γ lγ
δrν/αrν/γ

(95)
and

F
rµ/α rν/α

kβ rµ/β rν/γ lγ
Vτ = ∑

kν

φν
jνkν

(τ)F
rµ/αrν/α

iµ kν
(96)

where φν
jνkν

(τ) are the matrix elements of Vτ in the irreducible
basis expressed in the PRIR notation introduced in Section VI.

Proof. First let us calculate action of F
rµ/αrν/α

iµ jν on V(k).
Using expression (93) we have

F
rµ/α rν/α

kβ rµ/β rν/γ lγ
V(k) =

mα√mµmν
E

rµ/βrµ/α

kβ 1α
V(k)E

rν/αrν/γ

1α lγ
V(k)

=

√
mν

mµ
δrν/αrν/γ E

rµ/βrµ/γ

kβ 1γ
Eγ

1γ lγ
V(k),

(97)

where in the second equality we used Fact 1 and
Lemma 9. Now decomposing identity acting on n − k
systems in PRIR basis

1 = ∑
µ′`n−k

Pµ′ = ∑
µ′

∑
rµ′/α′

∑
sα′

E
rµ′/α′ rµ′/α′
sα′ sα′

α′ ` n− 2k,

(98)
and multiplying by it the right hand side of (97) we have

F
rµ/α rν/α

kβ rµ/β rν/γ lγ
V(k)

=

√
mν

mµ
∑
µ′

∑
rµ′/α′

∑
sα′

E
rµ/βrµ/γ

kβ 1γ
V(k)Eγ

1γ lγ
E

rµ′/α′ rµ′/α′
sα′ sα′

δrν/αrν/γ

(99)

since
[

Eγ
1γ lγ

, V(k)
]

= 0. Moreover we have

Eγ
1γ lγ

E
rµ′/α′ rµ′/α′
sα′ sα′

= δα′γδsα′ lγ E
rµ′/γrµ′/γ

1γ lγ
. Substituting

to (99) we write:

F
rµ/α rν/α

kβ rµ/β rν/γ lγ
V(k)

=

√
mν

mµ
∑
µ′

∑
rµ′/γ

E
rµ/βrµ/γ

kβ 1γ
V(k)E

rµ′/γrµ′/γ

1γ lγ
δrν/αrν/γ

= ∑
µ′

∑
rµ′/γ

√mνmµ′

mγ
F

rµ/γ rµ′/γ

kβ rµ/β rµ′/γ lγ
δrν/αrν/γ .

(100)

This proves expression (95).To prove equation (96) we
use directly (94) with (85):

F
rµ/αrν/α

iµ jν Vτ =
mα√mµmν

E
rµ/α

iµ 1α
V(k)Erν/α

1α jν Vτ

= ∑
kν

φν
jνkν

(τ)
mα√mµmν

E
rµ/α

iµ 1α
V(k)Erν/α

1α kν

= ∑
kν

φν
jνkν

(τ)F
rµ/αrν/α

iµ kν
.

(101)

This finishes the proof.

Analogously we can evaluate expressions (95), (96) for
action from the right-hand side. For the further purposes
we write explicitly such action on Vτ , for τ ∈ S(n− k):

Vτ F
rµ/αrν/α

iµ jν = ∑
kµ

φ
µ
kµiµ

(τ)F
rµ/αrν/α

kµ jν
. (102)

Using the second part of the proof of Theorem 11 we
can formulate the following

Lemma 13. The operator V(k) defined in (37) and an ar-
bitrary permutation operator Vτ , for τ ∈ S(n − k) in the
operator basis from Theorem 11 have matrix elements equal
to: (

V(k)
) rµ/α rν/α

kβ rµ/β rν/γ lγ
= δkβ lγ δrµ/αrµ/β δrν/αrν/γ

√mµmν

mα
,

(103)
and

(Vτ)
rµ/αrν/α

iµ jν = δrµ/αrν/α δiµ jν

√
mµ

mν
∑
kµ

φ
µ
kµiµ

(τ), (104)

where mµ, mν, mα are multiplicities of respective irreducible
representations in the Schur-Weyl duality, and φ

µ
kµiµ

(τ) are
the matrix elements of Vτ in the irreducible basis expressed in
the PRIR notation introduced in Section VI.

Proof. To prove the statement of the lemma we have to
compute overlap of V(k) with F

rµ/αrν/α

iµ jν written in PRIR
basis:(

V(k)
) rµ/α rν/α

kβ rµ/β rν/γ lγ
=

1
mα

Tr
[
V(k)F

rµ/α rν/α

kβ rµ/β rν/γ lγ

]
=

1
√mµmν

Tr
[
V(k)E

rµ/βrµ/α

kβ 1α
V(k)E

rν/αrν/γ

1α lγ

]
.

(105)
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Applying Fact 1 and Lemma 9 we reduce to(
V(k)

) rµ/α rν/α

kβ rµ/β rν/γ lγ
= δrµ/αrµ/β

1
√mµmν

mµ

mα
Tr
[

Eα
kα1α

V(k)E
rν/αrν/γ

1α lγ

]
= δrµ/αrµ/β

1
mα

√
mµ

mν
Tr
[

Eα
kα1α

E
rν/αrν/γ

1α lγ

]
,

(106)

since only the operator V(k) acts non-trivially on last k
systems. Now, let us observe that the operator Eα

kα1α
acts

on first n − 2k systems, while the operator E
rν/β

1β lν
on

n− k, so(
V(k)

) rµ/α rν/α

kβ rµ/β rν/γ lγ
= δrµ/αrµ/β

1
mα

√
mµ

mν
Tr
[

Eα
kα1α

Tr(k)
(

E
rν/αrν/γ

1α lγ

)]
= δrµ/αrµ/β δrν/αrν/γ

√mµmν

mαmγ
Tr
[

Eα
kα1α

Eγ
1γ lγ

]
= δrµ/αrµ/β δrν/αrν/γ

√mµmν

m2
α

Tr Eα
kα lα

= δrµ/αrµ/β δrν/αrν/γ δkα lγ

√mµmν

mα
.

(107)

In the second equality we applied Lemma 9, while in
fourth we used property from (33). Now we evaluate the
matrix elements of Vτ . Using expression (102) we write

(Vτ)
rµ/αrν/α

iµ jν =
1

mα
Tr
[
Vτ F

rµ/αrν/α

iµ jν

]
=

1
mα

∑
kµ

φ
µ
kµiµ

(τ)Tr
[

F
rµ/αrν/α

kµ jν

]
=

1
√mµmν

∑
kµ

φ
µ
kµiµ

(τ)Tr
[

E
rµ/α

kµ 1α
V(k)Erν/α

1α jν

]
=

1
√mµmν

∑
kµ

φ
µ
kµiµ

(τ)Tr
[

E
rµ/α

kµ 1α
Erν/α

1α jν

]
= δrµ/αrν/α

1
√mµmν

∑
kµ

φ
µ
kµiµ

(τ)Tr
(

Eµ
kµ jµ

)
.

(108)

Knowing that Tr
(

Eµ
kµ jµ

)
= δkµ jµ mµ = δµνδkµ jν mµ we

simplify to

(Vτ)
rµ/αrν/α

iµ jν = δrµ/αrν/α δkµ jν

√
mµ

mν
∑
kµ

φ
µ
kµiµ

(τ). (109)

This finishes the proof.

Having description of the basis elements in the ideal
M and action properties we are ready to calculate matrix
elements of the multi-port teleportation operator (21).

Theorem 14. The matrix elements of the MPBT opera-
tor (21), with number of ports N and local dimension d, in
operator basis from Theorem 11 are of the form

(ρ)
rµ/αrν/β

iµ jν =
k!(N

k )

dN
mµ

mα

dα

dµ
δrµ/αrν/β δiµ jν . (110)

The numbers mµ, mα and dµ, dα denote respective multiplici-
ties and dimensions of the irrpes in the Schur-Weyl duality,
labelled by α ` n− 2k and µ ` n− k, such that µ ∈ α.

Proof. The proof proceeds similarly as the proof of
Lemma 13, namely we compute

(ρ)
rµ/αrν/β

iµ jν

=
1

mα
Tr
[
ρF

rµ/αrν/α

iµ jν

]
=

1
dN

1
√mµmν

∑
τ∈Sn,k

Tr
[
V(k)VτE

rµ/α

iµ 1α
V(k)Erν/α

1α jν Vτ−1

]
,

(111)

where sum runs over all permutations τ from the coset
Sn,k ≡

S(n−k)
S(n−2k) . Substituting (94) to (111) we have

(ρ)
rµ/αrν/β

iµ jν =
1

dN
1

√mµmν
∑

τ∈Sn,k

∑
lµ

∑
kν

φ
µ
lµiµ

(τ)φν
jνkν

(τ−1)

× Tr
[
V(k)E

rµ/α

lµ 1α
V(k)Erν/α

1α kν

]
.

(112)

Using Fact 1 we write the following chain of equalities:

Tr
[
V(k)E

rµ/α

lµ 1α
V(k)Erν/α

1α kν

]
= Tr

[
Tr(k)

(
E

rµ/α

lµ 1α

)
V(k)Erν/α

1α kν

]
= Tr

[
Tr(k)

(
E

rµ/α

lµ 1α

)
Erν/α

1α kν

]
= Tr

[
Tr(k)

(
E

rµ/α

lµ 1α

)
Tr(k)

(
Erν/α

1α kν

)]
,

(113)

where Tr(k) = Trn−2k+1,...,n−k. Expanding rest of the
indices in PRIR notation, i.e. lµ = (sµ/β, pβ), kν =
(sν/β′ , qβ′) and applying Lemma 9 we have

Tr(k)
(

E
sµ/βrµ/α

pβ 1α

)
= δsµ/βrµ/α

mµ

mα
Eα

pα1α

Tr(k)

(
E

rν/αsν/β′
1α qβ′

)
= δ

rν/αsν/β′ mν

mα
Eα

1αqα
.

(114)

Now, we substitute the above into (112) writing as fol-
lows

(ρ)
rµ/αrν/β

iµ jν (115)

=
1

dN

√mµmν

m2
α

∑
τ∈Sn,k

∑
rµ/α ,pα

∑
rν/α ,qα

(φν)
rν/α

jν qα
(τ−1) (φµ)

rµ/α

pα iµ (τ)

×Tr
(

Eα
pα1α

Eα
1αqα

)
=

1
dN

√mµmν

mα
∑

τ∈Sn,k

∑
rµ/α ,pα

∑
rν/α ,qα

δpαqα (φ
ν)

rν/α

jν qα
(τ−1)

× (φµ)
rµ/α

pα iµ (τ)

=
1

dN

√mµmν

mα
∑

τ∈Sn,k

∑
rµ/α ,rν/α

∑
qα

(φν)
rν/α

jν qα
(τ−1) (φµ)

rµ/α

qα iµ (τ).

(116)

In the above we use orthonormality relation, together wit
the trace property (33), so Tr

(
Eα

pα1α
Eα

1αqα

)
= Tr Eα

pαqα
=
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mαδpαqα . Finally applying summation rule from Proposi-
tion 6 we arrive at

(ρ)
rµ/αrν/β

iµ jν =
1

dN |Sn,k|
mµ

mα

dα

dµ
=

k!(N
k )

dN
mµ

mα

dα

dµ
δrµ/αrν/β δiµ jν .

(117)
This finishes the proof.

Let us check the consequences of Theorem 14. Expres-
sion (110) tells us that multi-port teleportation operator
ρ is diagonal in the operator basis given in Theorem 11.
It means ρ can expressed as

ρ =
k!(N

k )

dn ∑
α

∑
µ∈α

∑
rµ/α

∑
kµ

mµ

mα

dα

dµ
F

rµ/αrµ/α

kµ kµ

= ∑
α

∑
µ∈α

∑
rµ/α

∑
kµ

λµ(α)F
rµ/αrµ/α

kµ kµ

(118)

where we introduced the quantity

λµ(α) ≡
k!(N

k )

dN
mµ

mα

dα

dµ
. (119)

Now we can formulate the following

Definition 15. Having basis elements from (85) of Theo-
rem 11, we define the following operators

∀α ∀µ ∈ α Fµ(α) ≡ ∑
rµ/α

∑
kµ

F
rµ/αrµ/α

kµ kµ
. (120)

Having the above definition we prove:

Lemma 16. Operators Fµ(α) for α ` N − k and µ ∈ α are
projectors and span identity 1M on the ideal M.

Proof. First let us check that operators Fµ(α) given
through Definition 15 are indeed orthonormal projectors.
Indeed using (86) we have

Fµ(α)Fν(β) = ∑
rµ/α

∑
kµ

∑
rν/β

∑
lν

F
rµ/αrµ/α

kµ kµ
F

rν/βrν/β

lν lν

= ∑
rµ/α

∑
kµ

∑
rν/β

∑
lν

δrµ/αrν/β δkµ lν F
rµ/αrν/β

kµ lν

= δµνδαβ ∑
rµ/α

∑
kµ

∑
rν/β

∑
lν

δrµ/αrν/β δkµ lν F
rµ/αrν/β

kµ lν

= δµνδαβ ∑
rµ/α

∑
kµ

F
rµ/αrµ/α

kµ kµ

= δµνδαβFµ(α),
(121)

since for fixed µ, ν and α, β we use the property
δrµ/αrν/β ≡ δµνδαβδrµ/αrν/β , see Notation 4.

To prove ∑α ∑µ∈α Fµ(α) = 1M we must show that
∀x ∈ M we have x ∑α ∑µ∈α Fµ(α) = ∑α ∑µ∈α Fµ(α)x = x.
Expanding x in the operator basis from Theorem 11

x = ∑
α′ ,β′

∑
µ′∈α′

∑
ν′∈β′

∑
iµ′ jν′

x
rµ′/α′ rν′/β′
iµ′ jν′

F
rµ′/α′ rν′/β′
iµ′ jν′

,

x
rµ′/α′ rν′/β′
iµ′ jν′

∈ C, (122)

and using expression (86) we get the statement.

Finally thanks to Lemma 16 and decomposition (118),
together with (119) we formulate spectral theorem for
the multi-port teleportation operator (the multiplicities
given below come from Lemma 20):

Theorem 17. The MPBT operator given through (21) has the
following spectral decomposition

ρ = ∑
α

∑
µ∈α

λµ(α)Fµ(α), (123)

where eigenprojectors Fµ(α) are given in Definition 15 with
corresponding eigenvalues λµ(α) from (119) with multiplici-
ties mµ/αmαdµ.

Checking that indeed we have ρFµ(α) = λµ(α)Fµ(α), fol-
lows directly from orthonormality property of operators
Fµ(α) proven in Lemma 16.

At the end of this section we prove two additionally
lemmas on projectors Fµ(α) given in Definition 15. Defin-
ing symbol the Tr(2k) ≡ Trn−2k+1,...,n which is a partial
trace operation with respect to last 2k systems we have
the following

Lemma 18. For a partially transposed permutation operator
V(k) from (37) and operators Fµ(α) given through Defini-
tion 15 the following holds:

∀α ` n− 2k ∀µ ∈ α Tr(2k)

[
V(k)Fµ(α)

]
= mµ/α

mµ

mα
Pα,

(124)
where the numbers mµ, mα denote respective multiplicities in
the Schur-Weyl duality, while Pα is a Young projector on n−
2k particles.

Proof. Using definition of the operator Fµ(α) and expres-
sion (85) we write

∑
rµ/α

∑
kµ

Tr(2k)

[
V(k)F

rµ/αrµ/α

kµ kµ

]
= ∑

rµ/α

∑
kµ

mα

mµ
Tr(2k)

[
V(k)E

rµ/α

iµ 1α
V(k)E

rµ/α

1α kµ

]
. (125)

Using Fact 1, Lemma 9 and iµ = (sµ/β, iβ) to operator
E

rµ/α

kµ 1α
= E

rµ/β rµ/α

kβ 1α
we simplify the above equation to

∑
rµ/α

∑
kα

Tr(2k)

[
Eα

kα1α
V(k)E

rµ/αrµ/α

1α kα

]
= ∑

rµ/α

∑
kα

Tr(k)
[

Eα
kα1α

E
rµ/αrµ/α

1α kα

]
= ∑

rµ/α

∑
kα

Tr(k)
[

E
rµ/αrµ/α

kα kα

]
= mµ/α

mµ

mα
∑
kα

Eα
kαkα

= mµ/α

mµ

mα
Pα,

(126)

where in the last equality we used the definition of
projectors Pα given in (36).
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Further, below the proof of Lemma 21 we discuss
alternative proof method of the above lemma.

Lemma 19. For operators Fµ(α) given through Definition 15
the following holds:

∀α ` n− 2k ∀µ ∈ α Tr(k)
(

Fµ(α)
)
= mµ/α

mα

mµ
Pµ,

(127)
where the numbers mµ, mα denote respective multiplicities of
the irrpes in the Schur-Weyl duality, mµ/α denotes number
of paths on reduced Young’s lattice in which diagram µ can
be obtained from diagram α, while Pµ is a Young projector on
n− k particles.

Proof. The proof is based on the straightforward calcula-
tions and observations made in the proof of Lemma 18.
Using Definition 15 we have

Tr(k)
(

Fµ(α)
)
=

mα

mµ
∑
rµ/α

∑
kµ

Tr(k)
(

E
rµ/α

kµ 1α
V(k)E

rµ/α

1α kµ

)
=

mα

mµ
∑
rµ/α

∑
kµ

E
rµ/α

kµ 1α
E

rµ/α

1α kµ

= mµ/α
mα

mµ
∑
kµ

Eµ
kµkµ

= mµ/α
mα

mµ
Pµ

(128)

where in the last equality we used the definition of
projectors Pµ given in (36).

Lemma 20. For operators Fµ(α) given through Definition 15
the following holds:

∀α ` n− 2k ∀µ ∈ α Tr
(

Fµ(α)
)
= mµ/αmαdµ, (129)

where the numbers mµ, mα denote respective multiplicities of
irreps in the Schur-Weyl duality, dµ stands for the dimension
of the irrep µ, mµ/α denotes number of paths on reduced
Young’s lattice in which diagram µ can be obtained from
diagram α.

Proof. To compute the trace from Fµ(α) is enough to
compute the trace from the right-hand side of (127) of
Lemma 19, knowing that Tr Pµ = mµdµ.

Lemma 21. For operators Fµ(α) given through Definition 15
and operator V(k) defined in (37), the following holds:

V(k)Fµ(α) = V(k)PαPµ. (130)

Proof. First let us write explicitly the left-hand side
of (130) using Definition 15 and Lemma 9:

V(k)Fµ(α) = V(k) ∑
rµ/α

∑
kµ

F
rµ/αrµ/α

kµ kµ

=
mα

mµ
∑
rµ/α

∑
rµ/β

∑
iβ

V(k)E
rµ/βrµ/α

iβ 1α
V(k)E

rµ/αrµ/β

1α iβ

= V(k) ∑
rµ/α

∑
iα

Eα
iα1α

E
rµ/αrµ/α

1α iα

= V(k) ∑
rµ/α

∑
iα

E
rµ/αrµ/α

iα iα .

(131)

Now, writing composition PαPµ in PRIR basis we get:

V(k)PαPµ = V(k) ∑
iα

Eα
iαiα ∑

rµ/β

∑
jβ

E
rµ/βrµ/β

jβ jβ

= V(k) ∑
rµ/α

∑
iα

E
rµ/αrµ/α

iα iα

(132)

since Eα
iαiα E

rµ/βrµ/β

jβ jβ
= δαβδiα jβ E

rµ/αrµ/α

iα iα . Now observing
that right-hand sides of (131) and (132) coincide we finish
the proof.

One can observe that having (130) we can prove the
statement of Lemma 18 applying directly Corollary 10
to projector Pµ. Indeed we have

Tr(2k)

(
V(k)Fµ(α)

)
= Tr(2k)

(
V(k)PαPµ

)
= Tr(k)

(
PαPµ

)
= mµ/α

mµ

mα
Pα,

(133)

where Tr(2k) ≡ Trn−2k+1,...,n and Tr(k) = Trn−2k+1,...,n−k.

VIII. Entanglement fidelity in Deterministic

version of the protocol

Having description of the deterministic version of
MPBT from Section III and mathematical tools developed
in Section VII, especially the spectral decomposition of
the operator ρ, given in Theorem 17, we can formulate
the following:

Theorem 22. The entanglement fidelity in the deterministic
multi-port teleportation with N ports and local dimension d
is given as

F =
1

dN+2k ∑
α`N−k

(
∑
µ∈α

mµ/α

√
mµdµ

)2

, (134)

where mµ, dµ denote multiplicity and dimension of irreducible
representations of S(N) respectively, and mµ/α denotes num-
ber of paths on reduced Young’s lattice in which diagram µ
can be obtained from diagram α by adding k boxes.

Proof. In the first step of the proof we apply the covari-
ance property (22) and (23) to equation (9) describing
the entanglement fidelity and obtain the following ex-
pression:

F =
1

d2k ∑
i∈I

Tr
(

ΠAB̃
i σAB̃

i

)
=
|Sn,k|

d2k Tr
(

ΠAB̃
i0

σAB̃
i0

)
=

k!(N
k )

d2k Tr
(

1
√

ρ
σAB̃

i0

1
√

ρ
σAB̃

i0

)
,

(135)

where σAB̃
i0

is defined in (19). In the second equality

we used the covariance property of signals σAB̃
i and

invariance of ρ with respect to the coset Sn,k. Using
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spectral decomposition of the operator ρ presented in
Theorem 17 we expand equation (135) to:

F=
k!

d2k

(
N
k

)
Tr
(

ΠAB̃
i0

σAB̃
i0

)
=

k!
d2N

(
N
k

)
∑

α,β`N−k
∑
µ∈α

∑
ν∈β

1√
λµ(α)

1√
λν(β)

×Tr
(

Fµ(α)V(k)Fν(β)V(k)
)

.

(136)

Now applying Lemma 21 we can rid of the operators
Fµ(α)

F=
k!

d2N

(
N
k

)
∑

α,β`N−k
∑
µ∈α

∑
ν∈β

1√
λµ(α)

1√
λν(β)

Tr
(

Fµ(α)V(k)Fν(β)V(k)
)

=
k!

d2N

(
N
k

)
∑

α,β`N−k
∑
µ∈α

∑
ν∈β

1√
λµ(α)

1√
λν(β)

Tr
(

PµPαV(k)PνPβV(k)
)

.

(137)

Observing
[

Pβ, V(k)
]
= 0, we can apply Fact 1 together

with Corollary 10 to V(k)PνV(k), getting

F=
k!

d2N

(
N
k

)
∑

α,β`N−k
∑
µ∈α

∑
ν∈β

1√
λµ(α)

1√
λν(β)

× ∑
β′∈ν

mν/β′
mν

mβ′
Tr
(

PµPαPβPβ′V
(k)
)

=
k!

d2N

(
N
k

)
∑

α`N−k
∑

µ,ν∈α

1√
λµ(α)

1√
λν(α)

mν/α
mν

mα

×Tr
(

PµPα Tr(k) V(k)
)

=
k!

d2N

(
N
k

)
∑

α`N−k
∑

µ,ν∈α

1√
λµ(α)

1√
λν(α)

mν/α
mν

mα

×Tr
(

PµPα

)
.

(138)

Again applying Corollary 10, this time to projector Pµ,
together with Tr Pα = mαdα, we have

F =

k!
d2N

(
N
k

)
∑

α`N−k
∑

µ,ν∈α

1√
λµ(α)

1√
λν(α)

mν/αmµ/αmµmν
dα

mα
.

(139)

Using explicit expression for eigenvalues λµ(α), λν(α)
given in (119) we have

F=
k!

d2N+2k

(
N
k

)
dN

k!(N
k )

∑
α`N−k

∑
µ,ν∈α

mµ/αmν/α

×
√

mαdµ

mµdα

√
mαdν

mνdα

mµmν

mα
dα

=
1

dN+2k ∑
α`N−k

∑
µ,ν∈α

mµ/α

√
mµdµmν/α

√
mνdν

=
1

dN+2k ∑
α`N−k

(
∑
µ∈α

mµ/α

√
mµdµ

)2

.

(140)

This finishes the proof.

An alternative proof of Theorem 22 is presented in
Appendix A. One can see that by setting k = 1 to (134)
we reproduce known expression for entanglement fi-
delity in ordinary port-based teleportation [19]. Indeed,
in this case always mµ/α = 1, for any µ ∈ α, since
we can move only by one layer on reduced Young’s
lattice. The expression from (134) is plotted in Figure 2
for different number of ports N as well local dimension
d and number of teleported states k. We see that our
deterministic scheme performs significantly better than
standard PBT protocol, even in the optimal scheme, with
respective dimension of the port.

IX. Probability of success in Probabilistic version

of the protocol

Having description of the probabilistic version of
MPBT scheme from Section III we are in position to
solve SDP programs and evaluate optimal probability of
success p when the parties share maximally entangled
states. Namely, we have the following:

Theorem 23. The average probability of success in the
probabilistic multi-port teleportation with N ports and local
dimension d is given as

p =
k!(N

k )

d2N ∑
α`N−k

min
µ∈α

mαdα

λµ(α)
, (141)

with optimal measurements of the form

∀ i ∈ I ΠAC
i =

k!(N
k )

d2N P+
AiC
⊗ ∑

α`N−k
Pα min

µ∈α

1
λµ(α)

.

(142)
Numbers λµ(α) are eigenvalues of ρ and are given in (119)
and mα, dα denote multiplicity and dimension of the irrep
labelled by α.

Proof. The solution of optimisation tasks, so proof of the
above theorem, is based solely on methods and tools
delivered in Section VI and Section VII. We start from
solving the primal problem. Due to symmetry in our
scheme we assume that ∀i ∈ I ΘAi

= ∑α`N−k xαPα

with xα ≥ 0 to satisfy constraint (1) from (15). Operators
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Pα are Young projectors acting on subsystems defined
by the symbol Ai. To satisfy constraint (2) from (15) we
write for every irreducible block α:

∑
i∈I

P+
AiC
⊗ΘAi

(α) =
xα

dk ∑
τ∈Sn,k

Vτ−1 V(k) ⊗ PαVτ

= dN−kxαρ(α) ≤ Pα.
(143)

In the above expression we use fact that for operator ρ
from (21) and projection Pα we have ρ(α) = PαρPα. Now,
to satisfy inequality 143 it is enough to require:

∀α xα ≤ dk−N min
µ∈α

1
λµ(α)

, (144)

where numbers λµ(α) are eigenvalues of ρ and are given
in (119). Using assumption of covariance of measure-
ments ∀ τ ∈ Sn,k VτΠiVτ−1 = Πτ(i) it is enough to
work with the index i0 only. Having that and border
solution for xα from (144), we calculate the quantity p∗

from (14):

p∗ =
1

dN+k ∑
i∈I

Tr

(
∑

α`N−k
xαPα

)
=

k!(N
k )

dN+k ∑
α

xα Tr Pα

=
k!(N

k )

d2N min
µ∈α

mαdα

λµ(α)
,

(145)

since Tr Pα = mαdα. For showing optimality of p∗ we
need to solve the dual problem from (16) and (17). We
assume the following form of the operator Ω in (16):

Ω = ∑
α`N−k

xµ∗(α)Fµ∗(α), xµ∗(α) = dk 1
mµ∗/α

mα

mµ∗
.

(146)
The symbol µ∗ means that we are looking for such µ ∈ α
which minimizes the quantity p∗ from (16). Operators
Fµ∗(α) are eigenprojectors of ρ given through Defini-
tion 15 and Theorem 17, symbol mµ∗/α denotes number
of paths on reduced Young’s lattice in which diagram µ∗

can be obtained from diagram α. Finally mµ∗ , mα denote
respective multiplicities of irreps. Since we are looking
for any feasible solution to bound exact average prob-
ability of success p from the below we are allowed for
such kind of assumptions. The first constraint from (17)
is automatically satisfied due to assumed form of Ω
in (146). To check the second condition we need to
compute

Tr(2k)

(
P+

AiC
Ω
)
= Tr(2k)

(
P+

Ai0 CΩ
)
=

1
dk Tr(2k)

(
V(k)Ω

)
,

(147)
where we used covariance property of P+

AiC
and covari-

ance of Ω with respect to the elements from the coset
Sn,k. Writing explicitly Ω and using Lemma 18 we have

1
dk Tr(2k)

(
V(k)Ω

)
= ∑

α

1
mµ∗/α

mα

mµ∗
Tr(2k)

(
V(k)Fµ∗(α)

)
= ∑

α

Pα = 1,

(148)

so we satisfy the second constraint from (17) with equal-
ity. Now we are in position to compute p∗ from (17):

p∗ =
1

dN+k Tr Ω =
1

dN ∑
α

1
mµ∗/α

mα

mµ∗
Tr
(

Fµ∗(α)
)

=
1

dN ∑
α

m2
αdµ∗

mµ∗
=

k!(N
k )

d2N min
µ∈α

mαdα

λµ(α)
.

(149)

In third equality we use Lemma 20, in fourth we used the
definition of the symbol µ∗ and form of λµ(α) from (119).
From expressions (145) and (149) we see that p∗ = p∗.
We conclude that exact value of the average success
probability indeed is given through expression (141)
with corresponding measurements (142) presented in
Theorem 23.

X. Discussion

In this paper, we deliver analysis of the the multi-
port based teleportation schemes, which are non-trivial
generalisation of the famous port-based teleportation
protocol. These schemes allow for teleporting several
unknown quantum states (or a composite quantum state)
in one go so that the states end up in the respective
number of ports on Bob’s side. This protocol offers much
better performance than the original PBT at the price of
requiring corrections on the receiver’s side which are
permutations of the ports where the teleported states
arrive. We discuss the deterministic protocol where the
transmission always happens, but the teleported state
is distorted, and the probabilistic case, where we have
to accept the probability of failure, but whenever the
protocol succeeds the teleportation is perfect. In both
cases, we calculate parameters describing the perfor-
mance of discussed schemes, like entanglement fidelity
(see Theorem 22) and the probability of success (see
Theorem 23). Expressions, except the global parameters
such as the number of ports N and local dimension
d, depend on purely group-theoretical quantities like
for example dimensions and multiplicities of irreducible
representations of the permutation group. The whole
analysis is possible due to the rigorous description of the
algebra of partially transposed permutation operators
provided in this paper. In particular, we deliver the
matrix operator basis in irreducible spaces on which
respective operators describing teleportation protocol are
supported (see Theorem 14, Theorem 17). The developed
formalism applied to the considered problem allows
to reduce calculations from the natural representation
space to every irreducible block separately, simplifying
it significantly. Moreover, symmetries occurring in the
protocol allow us to solve semidefinite programming
problems in an analytical way, which is not granted in
general in SDP problems, see Section IX.

The methods presented in this paper may be applied
to solve some related problems, but require further
development of the formalism. The first one is the
construction of the optimized version of the multi-port
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schemes. In this case, we have to find the operation OA
which Alice has to apply to her part of the resource
state before she runs the protocol. Clearly in this case
the resource state is no longer in the form of product
of the maximally entangled pairs. The second problem
is to understand the scaling of the entanglement fidelity
and probability of success in the number of ports N, the
number of teleported particles k and local dimension d.
To answer this question one needs to adapt the analysis
presented in [22] and examine the asymptotic behavior
of the quantity mµ/α appearing in our analysis (see for
example Theorem 22). The third problem is to under-
stand multi-port recycling schemes as a generalization
of ideas in [48]. We would like to know how much the
resource state degrades after the teleportation procedure
and is there, in principle, the possibility of exploiting the
resource state again.
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Appendix

Using spectral decomposition of the operator ρ pre-
sented in Theorem 17 we expand equation (135) to:

F=
k!

d2k

(
N
k

)
Tr
(

ΠAB̃
i0

σAB̃
i0

)
=

k!
d2N

(
N
k

)
∑

α,β`N−k
∑
µ∈α

∑
ν∈β

1√
λµ(α)

1√
λν(β)

(150)

×Tr
(

Fµ(α)V(k)Fν(β)V(k)
)

.

Now we have to compute the trace from the compo-
sition Fµ(α)V(k)Fν(β)V(k) between partially transposed
permutation operator defined in (37) and eigenprojec-
tors Fµ(α) presented in Definition 15. Numbers λµ(α)
denote respective eigenvalues of multi-port teleporta-
tion operator given in (119). Using explicit form of
eigenprojectors from Definition 15, expression (85) for
basis operator in Theorem 11, together with Fact 1 and
Lemma 9 we can write the following chain of equalities,
displayed at the top of the following page, where the
simplified form (152) follows from

[
Eα

lα1α
, V(k)

]
= 0 and

Eα
lα1α

E
rµ/αrµ/α

1α lα
= E

rµ/αrµ/α

lα lα
, where we applied definition of

Pα = ∑lα Eα
lα lα , orthogonality relation PαPβ = δαβPα and

finally Tr Pα = mαdα. The symbol mµ/α denotes number
of paths on reduced Young’s lattice in which frame µ can
be obtained from frame α by adding k boxes. Substituting
final form of (152) to (150) we have

F =
k!

d2N+2k

(
N
k

)
∑

α`N−k
∑

µ,ν∈α

dα

mα

mµ√
λµ(α)

mν√
λν(β)

mµ/αmν/α.

(153)

Inserting explicit form of eigenvalues λν(α), λµ(α)
given in (119), we reduce to:

F=
k!

d2N+2k

(
N
k

)
∑

α`N−k
∑

µ,ν∈α

dα

mα

mµ√
λµ(α)

mν√
λν(β)

mµ/αmν/α

=
k!

d2N+2k

(
N
k

)
dN

k!(N
k )

∑
α`N−k

∑
µ,ν∈α

mµ/αmν/α√
mαdµ

mµdα

√
mαdν

mνdα

mµmν

mα
dα

=
1

dN+2k ∑
α`N−k

∑
µ,ν∈α

mµ/α

√
mµdµmν/α

√
mνdν

=
1

dN+2k ∑
α`N−k

(
∑
µ∈α

mµ/α

√
mµdµ

)2

. (154)

This finishes the proof.
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Michał Studziński received MSc degree in astronomy in 2009 from
the Nicolaus Copernicus University and PhD in physics from the
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