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Abstract

Motivated by the growing availability of personal genomics services, we study an information-

theoretic privacy problem that arises when sharing genomic data: a user wants to share his or her

genome sequence while keeping the genotypes at certain positions hidden, which could otherwise

reveal critical health-related information. A straightforward solution of erasing (masking) the chosen

genotypes does not ensure privacy, because the correlation between nearby positions can leak the masked

genotypes. We introduce an erasure-based privacy mechanism with perfect information-theoretic privacy,

whereby the released sequence is statistically independent of the sensitive genotypes. Our mechanism

can be interpreted as a locally-optimal greedy algorithm for a given processing order of sequence

positions, where utility is measured by the number of positions released without erasure. We show

that finding an optimal order is NP-hard in general and provide an upper bound on the optimal utility.

For sequences from hidden Markov models, a standard modeling approach in genetics, we propose

an efficient algorithmic implementation of our mechanism with complexity polynomial in sequence

length. Moreover, we illustrate the robustness of the mechanism by bounding the privacy leakage from

erroneous prior distributions. Our work is a step towards more rigorous control of privacy in genomic

data sharing.

I. INTRODUCTION

A. Motivation

The rise of personal genomics, whereby private individuals are exposed to an increasing range

of direct-to-consumer services for sequencing, sharing, or analyzing their genomes, is leading to

A preliminary version of this paper was presented at IEEE International Symposium on Information Theory, Los Angeles,

CA, USA, 2020.
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growing concerns for genomic privacy [1]–[3]. A personal genome is a rich trove of information

about the underlying individual, including predictors for disease risks and other health-related

traits, which holds great potential for improving one’s health, yet may cause harm if used against

the individual. Unlike other types of personal data like passwords, one’s genetic data cannot be

replaced once leaked, and a data breach may even affect the relatives of the individual whose

genome is leaked. In order to facilitate the sharing of genomes to improve public health and

advance science, we need principled strategies for controlling the privacy risks associated with

genomic data sharing.

A key need in this regard is to selectively limit the leakage of information about biological

or health-related traits of an individual that can be inferred from the shared genetic data. For

example, one may wish to hide certain genotypes (an individual’s genetic information at specific

genomic positions) with well-established disease association before sharing his or her data

with others (e.g., analytic service providers or researchers). Such a capability would give the

individuals more fine-grained control over their genomic privacy.

A simple approach to privacy protection, whereby specific positions in the genome deemed

sensitive by the individual are masked before sharing the data, does not provide sufficient privacy

protection. This is because the correlation structure among nearby genomic positions induced

by the biological processes of genetic inheritance can be used to reconstruct the masked data as

demonstrated in a number of studies [4], [5]. To prevent such an attack, one could alternatively

erase all positions that are highly correlated with the sensitive sites [6], which may be achieved by

masking the data within a large window around each sensitive position. Unfortunately, depending

upon the chosen size of window, these approaches either provide incomplete privacy protection

or require an excessive amount of data to be erased in order to achieve strong privacy (as we

demonstrate in our results), thus limiting the usefulness of the shared data. Here, we aim to design

a principled and effective mechanism for sharing a personal genome that provably hides sensitive

positions, while introducing a small amount of erasure. Our techniques build upon the recent

work on ON-OFF privacy [31], [32] while extending the theory to general data distributions

beyond Markov chains addressed in the previous work.

It is worth noting that information-theoretic approaches are being increasingly explored for a

diverse range of applications in genomics, including sequencing [7], genome-wide association

study (GWAS) [8], [9], genome assembly [10], [11], regulatory network of gene interactions

(RNGI) [12], and DNA-based information storage [13]. There are also recent works addressing
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the issue of genomic privacy, including a solution for private shotgun sequencing [14] based on

the intensively researched private information retrieval (PIR) problems [15]–[20] and differential

privacy mechanisms for sharing aggregate genomic data [21]–[23]. Broadly, our work can be

viewed as a continuation of these efforts to develop effective genomic data processing tools from

an information-theoretic perspective, yet for a novel problem that we introduce, i.e., the design

of mechanisms for selectively hiding sensitive positions in genetic sequences.

B. Genetics background

An individual’s genome consists of a pair of sequences, one from each parent, each consisting

of around 3 billion nucleotides (A, C, G, and T). Each sequence is referred to as a haplotype.

Since most of the genome sequence is identical between different individuals, a common way

to compactly represent a personal genome is as a list of positions of variation, paired with

the observed nucleotide(s) in the given individual (referred to as a genotype). In this work,

we consider the problem of sharing a list of genotypes corresponding to a single haplotype

of an individual. Although standard sequencing or genotyping pipelines produce a genotype at

each position that convolves the two haplotypes, well-established methods exist [24], [25] for

resolving this ambiguity in order to separate the two haplotypes (a process called phasing), after

which each haplotype could be individually considered.

In the setting of our work, we consider an adversary whose goal is to infer the target

individual’s genotypes at specific positions in the genome, given a partially masked genetic

sequence of the individual. In principle, this reconstruction task is equivalent to an extensively

studied problem in bioinformatics known as genotype imputation, originally developed for coping

with the presence of missing data in the existing experimental pipelines for characterizing

personal genomes. If one were to mask only the sensitive positions before sharing the data,

existing imputation algorithms are expected to be effective at revealing the hidden genotypes

using other genotypes in their respective neighborhoods.

A state-of-the-art algorithm for genotype imputation, Minimac [26], is based on a classical

model of genetic sequences introduced by Li and Stephens [27]. In this model, a person’s

genetic sequence is modelled as a mosaic of a large group of reference sequences from other

individuals. This model intuitively captures the underlying biological process of recombination,

which describes the interleaving of two haplotypes of each parent when their genetic material is

passed onto the child. Formally, these models are expressed as hidden Markov models (HMMs),
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where a sequence of genotypes of an individual is generated from a sequence of hidden states

indicating which reference haplotype to copy the genotype from, for each corresponding position.

The parameters of these models are typically inferred from a large reference panel including tens

of thousands of sequenced human genomes [28]. Although alternative approaches to imputation

(e.g. based on matrix factorization [29]) exist, in our work we are especially interested in HMMs

as the primary means to model the distribution of genotypes, considering the wide adoption of

HMMs in genetics not only for imputation, but also for other standard tasks like phasing [24]

and simulation [30]. Further details of this model is provided in Section VII-A.

C. Setup and contributions

In this paper, we formulate the genotype hiding problem: We consider a user who wishes

to share a partially erased version of their genetic sequence while protecting a list of sensitive

positions. Privacy is measured by the mutual information between the sensitive positions and

the released sequence, and we adopt a stringent privacy requirement that enforces zero mutual

information (i.e., perfect privacy). The goal of the problem is to design a privacy mechanism

that satisfies this requirement, while minimizing the number of erasures introduced so as to

maximize the utility of the data.

We present such a mechanism with perfect privacy and provide a range of theoretical insights

into its performance with respect to its utility, measured by the erasure rate. The proposed mech-

anism sequentially processes the positions in the sequence in a given ordering and determines

a suitable erasure rate at each position based on the previously released positions and the data

generating distribution. We prove that our mechanism can be viewed as a locally-optimal, greedy

solution for minimizing the erasure rate at each position. Furthermore, we give a lower bound

on the number of erasures required for any mechanism satisfying the privacy constraint, and

show that our privacy mechanism is in fact (globally) optimal for a class of data generative

distributions defined by Markov chains. We also show that finding the optimal ordering for

the sequential mechanism is generally intractable (NP-hard), illustrating the limits of current

techniques. Lastly, we derive an upper bound on potential privacy leakage due to inaccuracies in

the estimation of the data generative model, suggesting that our mechanism is relatively robust

to a small amount of noise in the data distribution.

For practical applications, we are particularly interested in data generating distributions induced

by hidden Markov models (HMMs), which are broadly adopted in genetics as described in
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Section VII-A. To this end, we also present a computationally-efficient algorithm to implement

the proposed privacy mechanism based on HMMs, and provide an empirical evaluation of its

performance on simulated datasets.

The rest of this paper is organized as follows. In Section II, we formalize the genotype-hiding

problem. Performance bounds are summarized in Section III. In Section IV, we introduce our

privacy mechanism for hiding sensitive genotypes. In Section V, we describe its interpretation

as a locally-optimal solution in detail and demonstrate the NP-hardness of finding the optimal

ordering in general. The robustness of our privacy mechanism to model mismatch is discussed

in Section VI. In Section VII, we propose an efficient implementation of the privacy mechanism

for hidden Markov models. Simulation experiments are presented in Section VIII. Finally in

Section IX, we conclude the paper and discuss future directions.

II. THE GENOTYPE-HIDING PROBLEM

Let X = (X1, . . . , Xn) be the user’s personal genome sequence of length n, and each Xi

takes values in the alphabet X . The user wishes to share X with others, but is concerned about

revealing information about certain positions of X. To hide the values at these sensitive positions,

the user generates a masked version of the data Y = (Y1, . . . , Yn), which only partially reveals

X.

The desired properties of Y are given as follows. First, since we expect substitution errors

to be considerably more undesirable than erasures in genetic analyses, we impose a constraint

that Yi can be either Xi or the erasure symbol ∗. We refer to this property as the faithfulness

condition, i.e.,

Yi = Xi or ∗ . (Faithfulness) (1)

Note that the alphabet of Yi is X ∪ {∗}.

Next, let K ⊂ [n] := {1, . . . , n} be the user-provided set of indices of X containing sensitive

information. We assume that K is chosen irrespective of the sequence (i.e., independently from

X) based on information such as family history or curated disease associations. We require that

no information about XK = {Xi : i ∈ K} is revealed when Y is shared. In other words, we

require that

I(XK;Y) = 0, (Privacy) (2)
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Privacy mechanism

w (Y1, . . . , Yn|X1, . . . , Xn)

Genetic sequence:

X1, . . . , Xn

Sensitive positions:

K ⊆ {1, . . . , n}

Masked sequence:

Y1, . . . , Yn

Privacy: I(Y;XK) = 0

Faithfulness: Yi ∈ {Xi, ∗}

minimize 1
n
E[e(Y)]

where E[e(Y)] =
∑n

i=1 p (yi = ∗)

Requirements Goal

Output

Input

Fig. 1: An illustration of (n,K) genotype-hiding privacy mechanism. The mechanism takes as

input a genetic sequence along with a set of sensitive positions and outputs a masked sequence

with erasures. We require the faithfulness and privacy conditions to be satisfied, and the goal is

to minimize the expected number of erasures in the output.

where I(·) denotes the mutual information. We refer to this requirement as the privacy condition.

Note that our notion of privacy is stronger than alternatives such as local differential privacy [33],

which allows a small amount of leakage. Our work focuses on maximizing the utility over all

mechanisms satisfying the perfect privacy condition.

We aim to design a privacy mechanism w (y|x) to generate Y from given X and K such that

both the faithfulness and privacy conditions are satisfied. Here, we consider the ideal scenario

where the data generating distribution p (x) is known to the mechanism. We discuss the impact

of having an inaccurate p (x) in Section VI; even under this challenging scenario, we show that

the potential privacy leakage is bounded by the divergence between the given p (x) and the true

distribution. Note that we use uppercase symbols to represent random variables and lowercase

symbols to denote their realizations.

While satisfying the above two conditions, we wish to share as much of X as possible. More

precisely, let e(Y) be the number of erasure symbols in Y. Our goal is to minimize the expected

number of erasures E[e(Y)], or equivalently the erasure rate 1
n
E[e(Y)], where

E[e(Y)] =
n
∑

i=1

E[1{Yi = ∗}] =
n
∑

i=1

p (yi = ∗) , (3)

and 1{·} denotes the indicator function.
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A formal description of the genotype-hiding problem is given below. We start by defining the

privacy mechanism for the genotype-hiding problem as follows.

Definition 1. An (n,K) privacy mechanism for a given data generative distribution p (x) with

input alphabet X n and output alphabet Yn is defined by a probabilistic encoding function

Enc : X n → Yn,

where Enc satisfies both the faithfulness condition (Yi ∈ {Xi, ∗}, ∀i) and the privacy condition

(I(XK;Y) = 0).

The performance of the privacy mechanism is measured by the expected number of erasures

per symbol in an output sequence y. This measure captures the distortion between the input and

output sequences induced by a set of single-letter erasures. Following the convention, we define

the rate of a privacy mechanism as the fraction of positions that are not erased in the output:

Definition 2. The rate of an (n,K) privacy mechanism for a given data generative distribution

p (x) is defined by 1− 1
n
E[e(Enc(X))] per symbol.

Definition 3. For any given data distribution p (x), a rate R is achievable if there exists an

(n,K) privacy mechanism such that

1−
1

n
E[e(Y)] ≥ R, (4)

where Y = Enc(X).

Clearly, if R is achievable then R − ǫ for any ǫ > 0 is also achievable by the definition, so we

are interested in finding the maximum achievable rate.

It is worth noting that the encoder Enc(·) can be potentially stochastic, so we may use

conditional probabilities w (y|x) to represent the encoding function. If we treat conditional

probabilities w (y|x) where x ∈ X n,y ∈ Yn as decision variables, the genotype-hiding problem

can be defined as the following optimization problem:

maximize
w(y|x)

1−
1

n

n
∑

i=1

p (yi = ∗)

subject to I(XK;Y) = 0 (Privacy)

Yi ∈ {Xi, ∗}, ∀i (Faithfulness)

(5)
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Note that this problem maximizes the information rate (utility) under the stringent privacy

constraint such that no information about the sensitive positions is leaked.

If we express the objective and the constraints explicitly in terms of the conditional proba-

bilities w (y|x), the optimization problem (5) can be viewed as an instance of linear program-

ming (LP). However, the scale of the problem is intractable in practice, given the exponential

blowup in the number of variables and constraints as the length of the sequence n grows; the

number of decision variables is |X |n|Y|n, and the number of constraints is in the order of

|X ||K||Y|n + n |X ||Y|.

Therefore, the ultimate goal of this paper is to identify a solution to the genotype-hiding

problem in a tractable and computationally-efficient manner. To this end, we first present an

achievable privacy mechanism as well as an upper bound on the maximum achievable rate.

Then we show that the proposed privacy mechanism is computationally efficient for a particular

data generative distribution, namely hidden Markov models, which is of broad interest in our

motivating application in genomics.

III. PERFORMANCE BOUNDS

In this section, we state the performance bounds on the achievable rate in the following

theorems.

Theorem 1. For a given data distribution p (x), a rate R is achievable if

R ≤
1

n

n
∑

i=1

∑

xi∈X

EY[i−1]

[

min
u∈X |K|

p
(

xi|xK = u, Y[i−1]

)

]

. (6)

A detailed description of the achievable scheme will be presented in Section IV.

The right-hand side of (6) may appear unconventional, given that conditioning on Y[i−1] for

each i makes the probability term generally hard to compute as the sequence length n grows.

However, this expression corresponds to a sequential mechanism where the encoder generates

Y1, . . . , Yn one position at a time, and an efficient update exists for incrementally expanding

the conditioning set. As an example, in Section VII, we present a concrete implementation of

the privacy mechanism for data distributions governed by hidden Markov models, which indeed

allows the right-hand side of (6) to be efficiently computed.



9

Theorem 2. For a given data distribution p (x), any achievable rate R must satisfy

R ≤
1

n

n
∑

i=1

∑

xi∈X

min
u∈X |K|

p (xi|xK = u) . (7)

It is worth noting that, given a data distribution p (x), each summand in the right-hand side of

(7) represents the conditional probability of the observation xi at coordinate i when the sensitive

positions xK take on the least-likely values, which can be determined from the given p (x).

Proof. From (3), we know that to establish (7), it is sufficient to show

p (yi 6= ∗) ≤
∑

xi∈X

min
u∈X |K|

p (xi|xK = u) (8)

for any mechanism satisfying the privacy and faithfulness conditions. Consider

p (yi 6= ∗) =
∑

yi∈X

p (yi)

(a)
=
∑

yi∈X

min
u
p (yi|xK = u)

(b)
=
∑

yi∈X

min
u
p (yi = xi|xK = u)

=
∑

xi∈X

min
u
p (xi|xK = u) p (yi = xi|xi, xK = u)

(c)

≤
∑

xi∈X

min
u
p (xi|xK = u) , (9)

where (a) is due to the fact that Yi is independent of XK (privacy condition); (b) follows from the

faithfulness condition Yi ∈ {Xi, ∗}; and (c) follows from the fact that probabilities are bounded

above by 1.

Although not true in general, the upper bounds in (6) and (7) match under special circum-

stances, implying the optimality of an achievable mechanism. That is,

∑

xi∈X

∑

y[i−1]

p
(

y[i−1]

)

min
xK

p
(

xi|xK, y[i−1]

)

=
∑

xi∈X

min
u∈X |K|

p (xi|xK = u) . (10)

We observe that a sufficient condition for this equality is given by the following: for any xi, if

u∗ ∈ argmin
u
p (xi|xK = u) , (11)

then

u∗ ∈ argmin
u
p
(

xi|xK = u, y[i−1]

)

(12)
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for all possible y[i−1]. Intuitively, this means that for any given position xi, the least-likely values

of the (unobserved) sensitive positions xK remains the same regardless of the positions that have

been previously released in the output y[i−1] during the course of the mechanism.

A special case that satisfies this optimality condition is when random variables X1, . . . , Xn

form a Markov chain (i.e., p (x) is induced by a Markov chain), with a single sensitive position.

Without loss of generality, we assume K = {1}.

Corollary 1 (Markov chain). If X1, . . . , Xn forms a Markov chain and the sensitive position is

K = {1}, then a rate R is achievable if and only if

R ≤
1

n

n
∑

i=1

∑

xi∈X

min
u∈X |K|

p (xi|xK = u) . (13)

It is sufficient to justify the corollary by showing that the aforementioned sufficient condition

holds. The proof is included in Appendix A.

IV. PRIVACY MECHANISM

In this section, we present a privacy mechanism for generating Y based on a given p (x),

whose performance matches the bound given in (6), while satisfying both faithfulness and privacy

conditions.

Let us first recall the genotype-hiding problem introduced in (5), i.e.,

maximize
w(y|x)

1−
1

n

n
∑

i=1

p (yi = ∗)

subject to I(XK;Y) = 0 (Privacy)

Yi ∈ {Xi, ∗}, ∀i. (Faithfulness)

(14)

This problem is difficult to solve in its general form given the exponentially growing number

of decision variables in w (y|x) as the sequence length n grows. Instead, we adopt a greedy

optimization approach, whereby the erasure probability of yi is locally minimized, one position

at a time, from 1 to n. In other words, for each i = 1, . . . , n, we solve

minimize
w(yi|x,y[i−1])

p
(

yi = ∗|y[i−1]

)

subject to I(XK; Yi|Y[i−1]) = 0

Yi ∈ {Xi, ∗},

(15)
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for any given y[i−1]. Note that

I(XK;Y) =

n
∑

i=1

I(XK; Yi|Y[i−1]) = 0, (16)

by the chain rule, so if the first constraint of (15) is satisfied for all i, then the solution preserves

the required privacy constraint I(XK;Y) = 0 as defined in (2). The second constraint is inherited

directly from the faithfulness condition. In other words, any solution satisfying the constraints

of (15) for all i will naturally be a feasible solution to the genotype-hiding problem in (5).

We observe that solving the local optimization problem (15) gives rise to a sequential mech-

anism for generating Y. That is, we generate Y one position at a time, where the conditional

distribution for Yi may depend on the values of Y1, . . . , Yi−1 that have been previously generated.

The following defines our chosen privacy mechanism for any given position i, which is in fact an

optimal solution to the local optimization problem (15). A detailed proof of the local optimality

of this scheme is deferred to Section V.

Privacy mechanism: Generate each Yi according to the following conditional distribution

w
(

yi|xi, xK, y[i−1]

)

=



























min
u∈X|K| p(xi|xK=u,y[i−1])

p(xi|xK,y[i−1])
, if yi = xi,

1−
min

u∈X|K| p(xi|xK=u,y[i−1])
p(xi|xK,y[i−1])

, if yi = ∗,

0, otherwise,

(17)

for any xi, xK and y[i−1], where [i− 1] := {1, . . . , i− 1}.

The expression for the erasure probability in the above mechanism can be intuitively under-

stood as follows. We first identify the values of the sensitive positions with the smallest likelihood

of generating the observed symbol xi at the i-th position (as indicated by the numerator in

the fractional term), conditioned on the previously released positions y[i−1]. Note that u is an

auxiliary variable denoting the possible values in the alphabet X |K|, whereas xK denotes the

observed values at the sensitive positions. We then choose the erasure probability such that, the

probability of releasing the original symbol (without erasure) becomes identical among different

hypothetical values of xK, thus ensuring privacy.

It is worth noting that our privacy mechanism satisfies the faithfulness condition (i.e., yi ∈

{xi, ∗}) by design, so we only need to verify that it satisfies the privacy constraint (2). Before

verifying the privacy constraint, we note the following properties of the mechanism.

(1) If i ∈ K, then

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

= 0, (18)
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which yields

w
(

yi = ∗|xi, xK, y[i−1]

)

= 1. (19)

This implies that Xi is always erased if it corresponds to one of the sensitive positions in

K.

(2) We notice from (17) that Xi is not erased with some nonzero probability, so this mechanism

is strictly better than the naı̈ve approach of always erasing any position that have a nonzero

correlation with the sensitive positions.

Proof of privacy. To show that the proposed mechanism in (17) satisfies the privacy condition

(2), it is sufficient to show

I(Yi;XK|Y1, . . . , Yi−1) = 0, (20)

for all i = 1, . . . , n, since this implies

I(XK;Y) =

n
∑

i=1

I(XK; Yi|Y[i−1]) = 0 (21)

by the chain rule. To establish (20), we will equivalently prove that

p
(

yi|xK, y[i−1]

)

= p
(

yi|y[i−1]

)

(22)

for any xK, y[i−1] and yi. Since

p
(

yi|xK, y[i−1]

)

=
∑

xi∈X

p
(

xi|xK, y[i−1]

)

w
(

yi|xi, xK, y[i−1]

)

, (23)

by substituting (17), we have

p
(

yi = ∗|xK, y[i−1]

)

=
∑

xi

p
(

xi|xK, y[i−1]

)

w
(

yi = ∗|xi, xK, y[i−1]

)

= 1−
∑

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

. (24)

Similarly, for yi ∈ X , we have

p
(

yi|xK, y[i−1]

)

=
∑

xi∈X

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

=
∑

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

. (25)

We can observe that the right-hand sides of both (24) and (25) are independent of xK, and hence

by combining (24) and (25), we have

p
(

yi|xK, y[i−1]

)

= p
(

yi|y[i−1]

)

, (26)
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for any xK, y[i−1] and yi, which finishes the proof of (22).

Finally, we can easily verify that our sequential privacy mechanism (17) achieves the rate

1−
1

n

n
∑

i=1

p (yi = ∗) = 1−
1

n

n
∑

i=1

∑

y[i−1]

p
(

yi = ∗|y[i−1]

)

p
(

y[i−1]

)

(a)
=1−

1

n

n
∑

i=1

∑

y[i−1]

p
(

y[i−1]

)

(

1−
∑

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

)

=
1

n

n
∑

i=1

∑

y[i−1]

p
(

y[i−1]

)

∑

xi∈X

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

=
1

n

n
∑

i=1

∑

xi∈X

∑

y[i−1]

p
(

y[i−1]

)

min
xK

p
(

xi|xK, y[i−1]

)

, (27)

where (a) follows by (24) and (26). The final expression is identical to the right-hand side of

(6) as desired.

Example. We present an example to illustrate the operations of the proposed privacy mechanism

in a simplified setting. Let us consider a data distribution p (x) where X1, . . . , Xn form a Markov

chain, as in Corollary 1, and a single sensitive position K = {1}.

By inspecting the privacy mechanism in (17), we know that if yi−1 6= ∗ for some i > 1, then

p
(

xi|xK = u, y[i−1]

)

= p
(

xi|xK = u, y[i−1], xi−1 = yi−1

)

= p (xi|xi−1 = yi−1) , (28)

for any xi and y[i−1] by the Markov property and the fact that K = {1}. This implies that

w
(

yi = xi|xi, xK, y[i−1]

)

=
minu∈X |K| p

(

xi|xK = u, y[i−1]

)

p
(

xi|xK, y[i−1]

) =
p (xi|xi−1 = yi−1)

p (xi|xi−1 = yi−1)
= 1, (29)

which means that if yi−1 6= ∗ then yi 6= ∗ with probability one.

Thus, when p (x) is specified by a Markov chain, we see that the privacy mechanism erases all

positions within a window from the sensitive position and releases the rest without erasure, and

the size of the window is stochastically chosen. This observation suggests that, in contrast to the

heuristic approach of deterministically choosing a window for erasure, our mechanism introduces

additional uncertainty about sensitive data (in fact achieving perfect privacy) by randomizing the

choice of the window. Later in Section VIII, we present a simulation experiment comparing our

mechanism with the deterministic window-based erasure approach with respect to the privacy-

utility trade-off, based on a more realistic data distribution defined by hidden Markov models.
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V. LOCAL OPTIMALITY

In the previous section, we proposed a privacy mechanism for the genotype-hiding problem

satisfying both privacy and faithfulness conditions. Here, we provide further insights into the

optimality of the proposed mechanism. We first prove that the mechanism is indeed an optimal

solution to the local optimization problem in (15) as claimed, and thus can be viewed as a greedy

solution to the general genotype-hiding problem in (5) given a fixed variable ordering (i.e., the

order in which Yi’s are sampled). We then present a negative result to inform future investigation,

showing that finding an optimal variable ordering for the mechanism is intractable (NP-hard) in

general, thus illustrating the limits of current techniques in achieving global optimality.

A. Optimality with respect to the local optimization problem

Let us first recall the local optimization problem (15), i.e.,

minimize
w(yi|x,y[i−1])

p
(

yi = ∗|y[i−1]

)

subject to I(XK; Yi|Y[i−1]) = 0

Yi ∈ {Xi, ∗}.

(30)

As we have shown,

I(XK;Y) =
n
∑

i=1

I(XK; Yi|Y[i−1]) = 0, (31)

by the chain rule, so any solution satisfying the constraints of (15) for all i is a feasible solution

to the general genotype-hiding problem in (5).

We now show that the privacy mechanism in (17) is optimal with respect to the above

optimization problem. First, for any given y[i−1], note that

p
(

yi = ∗|y[i−1]

)

= 1−
∑

yi∈X

p
(

yi|y[i−1]

)

(a)
=1−

∑

yi∈X

min
xK

p
(

yi|xK, y[i−1]

)

(b)
=1−

∑

yi∈X

min
xK

p
(

yi = xi|xK, y[i−1]

)

= 1−
∑

xi∈X

min
xK

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

(c)

≥ 1−
∑

xi∈X

min
xK

p
(

xi|xK, y[i−1]

)

, (32)
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where (a) follows from the privacy condition, (b) follows from the faithfulness condition, and

(c) holds because probability values are at most 1. This implies that any feasible solution to the

local optimization problem (15) has to satisfy

p
(

yi = ∗|y[i−1]

)

≥ 1−
∑

xi∈X

min
xK

p
(

xi|xK, y[i−1]

)

, (33)

and that it is optimal if the last step holds with equality, i.e.,

min
xK

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

= min
xK

p
(

xi|xK, y[i−1]

)

, (34)

for any xi and y[i−1].

By plugging in the proposed mechanism in (17), we have

min
xK

p
(

xi|xK, y[i−1]

)

w
(

yi = xi|xi, xK, y[i−1]

)

=min
xK

p
(

xi|xK, y[i−1]

) minu∈X |K| p
(

xi|xK = u, y[i−1]

)

p
(

xi|xK, y[i−1]

)

=min
xK

min
u∈X |K|

p
(

xi|xK = u, y[i−1]

)

=min
xK

p
(

xi|xK, y[i−1]

)

, (35)

where the last step follows because the two minimizations, both over the alphabet of XK,

are equivalent and can be merged. This implies that the mechanism (17) attains the minimum

probability of erasing Yi and thus is an optimal solution to the local optimization problem (15).

Therefore, our sequential privacy mechanism can be viewed as a locally-optimal algorithm for

solving the general genotype-hiding problem (5), given a fixed variable ordering.

B. NP-hardness of finding an optimal variable ordering

So far, we considered the privacy mechanism that generates a masked sequence Y1, . . . , Yn in

a linear order from 1 to n. A natural question is then whether this linear ordering is optimal

in terms of the erasure rate that the locally-optimal mechanism achieves. Here, we illustrate the

difficulty of determining the optimal variable ordering for the mechanism from a complexity

theory perspective, by proving that it is NP-hard in general. This suggests that devising an

efficient mechanism with better optimality guarantees in the general setting requires additional

assumptions or techniques to circumvent this impossibility result, which is an interesting direction

for further research.
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To formalize the problem, let (o1, . . . , on) be any permutation of (1, . . . , n). We consider

generating Y in the order of o1, . . . , on instead. In this setting, the privacy mechanism (17) is

defined by the conditional distribution

w
(

yoi|xoi , xK, yo[i−1]

)

=































min
u∈X|K| p

(

xoi
|xK=u,yo[i−1]

)

p
(

xoi
|xK,yo[i−1]

) , if yoi = xoi ,

1−
min

u∈X|K| p
(

xoi
|xK=u,yo[i−1]

)

p
(

xoi
|xK,yo[i−1]

) , if yoi = ∗,

0, otherwise,

(36)

for any xoi , xK and yo[i−1]
, where o[i−1] := {o1, . . . , oi−1}. It is easy to see that the faithfulness

and privacy conditions are still satisfied regardless of the ordering.

In the following, we show that finding the best ordering (o1, . . . , on) that minimizes the erasure

rate of the mechanism is NP-hard by constructing a polynomial-time reduction of the well-

known hitting set problem [34] to our problem. More specifically, given an arbitrary instance of

a hitting set problem, we construct an instance of the genotype-hiding problem for which finding

the optimal ordering for the privacy mechanism is equivalent to solving the original hitting set

problem.

At the core of this reduction is a bipartite graph, illustrated in Figure 2, which we use to

represent both an instance of the hitting set problem and to construct a corresponding instance

of the genotype-hiding problem, as we explain in detail below. To clarify the dimensions of the

problems upfront, note that we represent a hitting set problem for k sets over m elements using

a bipartite graph with m left nodes and k right nodes, and the resulting genotype-hiding problem

is over a sequence of length n = m + k with k sensitive positions (|K| = k) and a specially

constructed p (x).

We first review the hitting set problem. Consider a universe U = {v1, . . . , vm} and a collection

of non-empty subsets S = {S1, . . . , Sk} such that Sj ⊆ U for all j ∈ [k]. Without loss of

generality, assume that U =
⋃k

j=1 Sj , and U = [m]. A universe U and sets {S1, . . . , Sk} can be

represented by a bipartite graph, as depicted in Fig. 2. The goal of the hitting set problem is to

find the minimum cardinality h∗ of a set V ⊆ U that satisfies V ∩ Si 6= ∅ for all i, that is

h∗ = min
V⊆U :V ∩Sj 6=∅,∀j∈[k]

|V |. (37)

Next, we construct the corresponding genotype-hiding problem from the given hitting set

problem instance (U,S). For any i ∈ [m], j ∈ [k] such that i ∈ Sj , let bi,j be a random

variable which is independently and uniformly drawn from {0, 1}. In other words, each edge
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v1

v2

vi

vi+1

vm

...

...

S1

S2

Sj

Sk

...

...

bi,j

U = {v1, . . . , vm} S1, . . . , Sk ⊆ U

Fig. 2: A graphical illustration of the bipartite graph used in our NP-hardness proof, representing

an instance of the hitting set problem. The universe U is represented by vertices on the left,

sets are represented by vertices on the right, and the edges represent the inclusion of elements

in each set. To facilitate reduction to the genotype-hiding problem, we associate each edge with

an independent and uniformly random bit bi,j .

in the bipartite graph is associated with a random bit bi,j (see Fig. 2). Then, we define X to

be a sequence of length n = m + k as follows. Let Xi for i ∈ [m] be a tuple of random bits

associated with edges connected to node vi, i.e.,

Xi = (bi,j1, . . . , bi,jr), (38)

where {j1, . . . , jr} = {j : i ∈ Sj}. Next, let Xm+j for j ∈ [k] be

Xm+j =
⊕

i∈Sj

bi,j , (39)

which can be viewed as a parity check bit over the edges connected to node Sj . In other words,

the first m positions of the sequence are uniform and independently distributed symbols (a tuple

of random bits), whereas the remaining k positions are parity check bits defined over the first

m positions.

Note that the joint distribution p (x) = p (x1, . . . , xm+k) is succinctly characterized by the

random bits bi,j’s and the associated bipartite graph, and thus the description of the genotype-

hiding problem can be generated in polynomial time with respect to m and k. In the following,

we refer to the above data generating distribution as p (x;U,S), with respect to which the

corresponding genotype-hiding problem is defined.
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Theorem 3. Given a data generating distribution p (x;U, S) for a sequence of length n = m+k

and sensitive positions K = {m+ 1, . . . , m+ k}, finding the best ordering (o1, . . . , om+k) that

minimizes the erasure rate of our mechanism (36) is NP-hard.

We provide a sketch of the proof here and defer the details to the Appendix. First, we note

the key property of p (x;U, S) that whether or not our mechanism erases the oi-th position is

deterministic given the variable ordering, as stated in the following lemma.

Lemma 2. Given a data generating distribution p (x;U, S) for a sequence of length n = m+ k

and sensitive positions K = {m + 1, . . . , m + k}, the conditional sampling distribution of our

privacy mechanism satisfies

w
(

yoi = ∗|xoi, xK, yo[i−1]

)

∈ {0, 1} (40)

for all i, given any ordering π = (o1, . . . , om+k).

Proof. See Appendix B.

As a result of Lemma 2, the overall erasure rate of the privacy mechanism can be calculated

simply by counting the number of erased positions. Note that, if oi ∈ K, then

w
(

yoi = ∗|xoi, xK, yo[i−1]

)

= 1, (41)

regardless of the ordering as we have previously shown. Thus, we need to compare only the

erased indices in [m] = [m+ k]\K for finding the best ordering.

Let Eπ be the set of erased indices in [m] for a given ordering π = (o1, . . . , on), i.e.,

Eπ = {i : yi = ∗, i ∈ [m]} , (42)

where the distribution over Y is determined by the privacy mechanism. Then, finding the best

ordering corresponds to finding π that leads to the minimum cardinality e∗ of the corresponding

Eπ:

e∗ = min
π

|Eπ|. (43)

Intuitively, whether a particular index i ∈ [m] is included in Eπ can be easily determined

based on the bipartite graph representation of the underlying hitting set problem (see Fig. 2) as

follows. The ordering π = (o1, . . . , om+k) specifies the order in which the m nodes on the left-

hand side of the graph, each with a corresponding Xi, is visited by the mechanism (disregarding
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the sensitive indices oi /∈ [m], which are always erased). As we show in the proof of Lemma 2,

when we visit the node oi ∈ [m], Xoi is erased if and only if there exists a node j ∈ [k] on

the right-hand side of the graph that is connected to oi and only to other nodes (if any) that

are previously visited and not erased. The presence of such a node j indicates that the sensitive

variable Xm+j is directly revealed by Xoi (since the rest of random bits contributing to Xm+j

are already released in Y without erasure), while the absence of such j indicates the existence of

other positions that are erased or have not been released that fully mask the correlation between

Xoi and the sensitive positions.

Finally, we complete the reduction by showing that solving (43) also produces a solution for

the hitting set problem (37), i.e., e∗ = h∗. This is achieved by showing both that the set of erased

indices Eπ is in fact a valid hitting set (e∗ ≥ h∗), and that there exists an ordering π satisfying

|Eπ| ≤ |V | for any given hitting set V (e∗ ≤ h∗). A detailed proof is included in Appendix C.

Since the hitting set problem is equivalent to the set cover problem and is well-known to

be NP-hard, our reduction proves that finding the best ordering π for our privacy mechanism

given any p (x) and K is also NP-hard. We note that this result does not preclude the possibility

that for a restricted class of genotype-hiding problems (e.g., with a structured p (x) defined by

HMMs), one could still find an efficient polynomial-time algorithm for determining the optimal

variable ordering, which remains an interesting open question.

VI. ROBUSTNESS

In this section, we discuss the robustness of our mechanism with respect to the underlying

data distribution. In our formulation of the privacy mechanism, the distribution (or the data

generative model) p (x), from which the input genome sequence originated, is assumed to be

known. In practice, one can only empirically estimate this distribution based on existing data

resources, e.g., by obtaining maximum likelihood estimates of the model parameters based on a

large collection of reference genomes in public data repositories. Consequently, the generative

model used by the mechanism is bound to have deviations from the true generative process,

both in terms of the limitations of the model as well as the noisy estimation of the parameters.

These discrepancies can potentially lead to privacy leakage if the adversary has access to a more

accurate distribution for the underlying input. Here, we study the potential privacy leakage under

the worst-case scenario, where the adversary has access to the true underlying distribution. We

bound the potential leakage as a function of the distance between the data distribution used by
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the mechanism and the true underlying distribution, suggesting that our mechanism is robust to

small deviations in the noisy data distribution we expect to encounter in real-world use cases.

We denote the noisy data distribution used by the mechanism by q (x) and the true distribution

by p (x). The privacy mechanism constructs the sampling distribution w(y|x) based on the

available q (x) such that the output Y is independent of sensitive genotypes XK with respect to

the joint distribution q (x,y) induced by q(x) and the mechanism w(y|x), i.e.,

q (xK,y) =
∑

x[n]\K

q (x,y) =
∑

x[n]\K

w(y|x)q (x) = q (xK) q (y) . (44)

Since X is actually generated from p (x) not q (x), we also define the true joint distribution

p (x,y) induced by p (x) and the mechanism w(y|x); note that the mechanism is still based on

q (x).

Then, we can measure the unforeseen privacy leakage due to the mismatch in data distribution

by the mutual information I(p (xK) ; p (y)) between the sensitive genotypes and the output

sequence with respect to p (x,y), as follows:

I(p (xK) ; p (y)) =
∑

xK,y

p (xK,y) log
p (xK,y)

p (y) p (xK)

=
∑

xK,y

p (xK,y) log
p (xK,y) q (xK,y)

p (y) p (xK) q (xK,y)

(a)
=
∑

xK,y

p (xK,y) log
p (xK,y) q (xK) q (y)

p (y) p (xK) q (xK,y)

= D(p (xK,y) ||q (xK,y))−D(p (xK) ||q (xK))−D(p (y) ||q (y)), (45)

where D(·||·) denotes relative entropy or equivalently Kullback-Leibler (KL) divergence, and (a)

follows from (44). This leads to the following theorem.

Theorem 4. I(p (xK) ; p (y)) ≤ D(p (x) ||q (x)).

Proof. See Appendix D.

This result implies that the amount of privacy leakage due to the potential mismatch between

the data distribution used by the mechanism and the true underlying generative process gracefully

scales with the extent to which the two distributions diverge.
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VII. PRIVACY MECHANISM FOR HIDDEN MARKOV MODELS

Thus far, we considered the data generative model p (x) of the privacy mechanism to be

an arbitrary distribution. Here, we address a particular form of p (x) of great interest for our

application setting in genomics, namely the Li and Stephens model [27], which is based on a

hidden Markov model. This model is widely adopted in genetics for a wide range of tasks that

require a probabilistic model of the genome [35]. For this class of p (x), we propose an efficient

algorithm to implement the privacy mechanism introduced in Section IV.

A. Review of hidden Markov models for genomes

The classical hidden Markov model (HMM) describing the distribution of personal genomes

[27] is as follows. First, let X = (X1, X2, . . . , Xn) represent an individual’s (haplotype) genetic

sequence of length n. Following standard practice in genetics, we adopt a binary alphabet X =

{0, 1} for each element Xi, representing whether the observed nucleotide is identical to the one

in the reference human genome (called reference allele) or not (alternative allele). In addition,

we are given a reference dataset of m personal genome sequences H = {hj : j = 1, . . . , m},

where each sequence hj is of length n. The i-th coordinate of hj is denoted by hi,j , which also

takes a value in X .

In this model, X is viewed as a “mosaic” of reference sequences in H with potential substi-

tution errors arising from mutations or experimental noise in sequencing. Formally, X depends

on a sequence of hidden states {Si}
n
i=1 forming a Markov chain, where each Si takes an integer

in the range {1, . . . , m}, representing an index into H. Without loss of generality, we assume

that the initial state S1 is uniformly distributed over {1, . . . , m}. The transition probability πi,j

from state i to j is set to ǫ
m−1

and 1 − ǫ for i 6= j and i = j, respectively. The parameter ǫ

is often called the recombination probability; in the following we also use the term crossover

probability to refer to this quantity.

Next, each Xi is sampled based on the hidden state Si by copying the corresponding symbol

in the selected reference sequence with a small probability of error. In other words, Xi is equal to

the symbol in the i-th position of hSi
with error probability θ. The overall data distribution p (x)

is fully specified by the tuple (H, ǫ, θ). We provide a graphical illustration of p (x) in Fig. 3. In

our work, we treat the parameters of the above model as given. In practice, these parameters are

estimated from a large collection of reference genomes, e.g., including hundreds of thousands

of individuals, which are available in public data repositories such as the UK Biobank [36].



22

h1

h2

h3
...

hm

Reference
States

S1 S2 S3 · · · Sn

BSCθ

X

Reference allele

Alternative allele

Fig. 3: A graphical illustration of HMM for genomes. The state space of the hidden states is

{1, . . . , m}, where each element corresponds to an index into the reference dataset {h1, . . . ,hm}

(each of length n). A Markov process {Si}
n
i=1 indicates which reference sequence the user reads

the data from at the i-th position. For each i, Xi differs from the i-th position of hSi
with

probability θ, representing noise in the data. BSCθ: Binary symmetric channel with crossover

probability θ.

B. An efficient algorithm for HMMs

In this section, we propose an efficient algorithm to implement the privacy mechanism in-

troduced in Section IV for p (x) based on a hidden Markov model (H, ǫ, θ) described in the

previous section. The outline of our algorithm is provided in Algorithm 1.

As seen in (17), the privacy mechanism determines the probability of erasing xi mainly based

on the probability p
(

xi|xK, y[i−1]

)

. By employing a belief propagation approach akin to the well-

known forward-backward algorithm [37], we track the computation of p
(

xi|xK = u, y[i−1]

)

for

all u ∈ X |K| efficiently. The novelty of our algorithm is that it incorporates the stochasticity of

the privacy mechanism in addition to that of the HMM.

First, note that it is sufficient to describe how to compute p
(

xi|xK = u, y[i−1]

)

for all u ∈ X |K|

and i ∈ [n], which fully determines the distribution of y1, . . . , yn specified by our privacy
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mechanism, i.e.,

p
(

yi|xi, xK, y[i−1]

)

=



























min
u∈X|K| p(xi|xK=u,y[i−1])

p(xi|xK,y[i−1])
, if yi = xi,

1−
min

u∈X|K| p(xi|xK=u,y[i−1])
p(xi|xK,y[i−1])

, if yi = ∗,

0, otherwise.

(46)

We begin by expressing p
(

xi|xK = u, y[i−1]

)

as

p
(

xi|xK = u, y[i−1]

)

=
∑

si

p
(

si|xK = u, y[i−1]

)

p
(

xi|si, xK = u, y[i−1]

)

=
∑

si,si−1

p
(

si−1|xK = u, y[i−1]

)

p (si|si−1, xK = u) p (xi|si) . (47)

Note that

p (si|si−1, xK = u) =
p (si, si−1, xK = u)

p (si−1, xK = u)

=
p
(

si−1|xKi−
= u−

)

p (si|si−1) p
(

xKi+
= u+|si

)

p
(

si−1|xKi−
= u−

)

p
(

xKi+
= u+|si−1

)

=
p (si|si−1) p

(

xKi+
= u+|si

)

p
(

xKi+
= u+|si−1

)

=
p (si|si−1) p

(

xKi+
= u+|si

)

∑

si
p (si|si−1) p

(

xKi+
= u+|si

) , (48)

where Ki− := K ∩ {1, . . . , i− 1}, Ki+ := K ∩ {i, . . . , n}, u− and u+ are corresponding values

of xKi−
and xKi+

specified by u.

As p (xi|si) and p (si|si−1) are directly given by the HMM, we need only to consider how to

compute the two terms p
(

si−1|xK = u, y[i−1]

)

and p
(

xKi+
= u+|si

)

. To simplify our notation,

we introduce the following variables to represent these terms:

ψ(i)(u, si) := p (si|xK = u, y1, . . . , yi) ,

γ(i)(u, si) := p
(

xKi+
= u+|si

)

.

With ψ(i)(u, si) and γ(i)(u, si) for a given position i, we can calculate (47) as

p
(

xi|xK = u, y[i−1]

)

=
∑

si−1

∑

si
ψ(i−1)(u, si−1)p (si|si−1) γ

(i)(u, si)p (xi|si)
∑

si
p (si|si−1) γ(i)(u, si)

. (49)

First, note that γ(i)(u, si) can be recursively computed in the same manner as calculating the

backward probabilities in the forward-backward algorithm, as described below:
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Initialization: We initialize γ(n)(u, sn) by

γ(n)(u, sn) =











p (xn = un|sn) , n ∈ K,

1, n /∈ K.
(50)

Iterations: For i = n− 1, . . . , 1, we compute γ(i)(u, si) as

γ(i)(u, si) =











∑

si+1
p (xi = ui|si) p (si+1|si) γ(i+1)(u, si+1), i ∈ K

∑

si+1
p (si+1|si) γ(i+1)(u, si+1), i /∈ K.

(51)

Next, to efficiently compute ψ(i)(u, si) for i ∈ [n], we analogously adopt the following iterative

steps.

Initialization: ψ(1)(u, s1) is initialized by

ψ(1)(u, s1) ∝ p (s1|xK = u) p (y1|s1, xK = u) , (52)

where p (s1|xK = u) can be calculated by (48) given γ(1)(u, s1), and p (y1|s1, xK = u) is given

by our mechanism as shown in (46).

Iterations: Using Bayes’ rule, we can express ψ(i)(u, si) as

ψ(i)(u, si) = p
(

si|xK = u, y[i]
)

∝ p
(

si|xK = u, y[i−1]

)

p
(

yi|si, xK = u, y[i−1]

)

, (53)

where

p
(

si|xK = u, y[i−1]

)

=
∑

si−1

ψ(i−1)(u, si−1)p (si|si−1, xK = u) , (54)

and

p
(

yi|si, xK = u, y[i−1]

)

=
∑

xi

p (xi|si) p
(

yi|xi, xK = u, y[i−1]

)

. (55)

Therefore, ψ(i)(u, si) can be computed based on ψ(i−1)(u, si−1). We note that the probability

p (si|si−1, xK = u) can be calculated using γ(i)(u, si) as shown in (48), and p
(

yi|xi, xK = u, y[i−1]

)

is given by our mechanism as shown in (46). Using this recurrence relation, ψ(i)(u, si) for all

i ∈ [n] can be computed.

Analogous to the forward-backward algorithm, our algorithm has polynomial computational

complexity of O(nm2) for a fixed u, with respect to the sequence length n and the number

of reference sequences m, for a given u. Clearly, minu∈X |K| p
(

xi|xK = u, y[i−1]

)

can be easily

obtained once p
(

xi|xK = u, y[i−1]

)

for all u have been computed. This overhead involves a factor
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of 2|K| in the computational complexity, but we expect |K| to be a small constant in practice

(e.g., less than 10); since genotype correlation is predominantly local, the user may apply our

mechanism to local regions of the genome of a permissive length, each of which including only

a few sensitive positions.

Algorithm 1 Mechanism for hiding sensitive genotypes in X

Input: Genome sequence X = (X1, . . . , Xn) from an HMM with parameters (H, ǫ, θ), and

indices of sensitive positions K ⊂ [n]

Output: Masked genome sequence Y = (Y1, . . . , Yn), such that I(XK;Y) = 0 and Yi ∈ {Xi, ∗}

for all i ∈ [n]

1: Initialize γ(n)(u, sn) according to (50)

2: for i = n− 1, . . . , 1 do

3: for u ∈ X |K| do

4: Compute γ(i)(u, si) according to (51)

5: Compute p (si|si−1, xK = u) according to (48)

6: end for

7: end for

8: Initialize ψ(1)(u, s1) according to (50)

9: for i = 2, . . . , n do

10: Calculate the erasure probability for Yi using (46)

11: Generate Yi ∈ {Xi, ∗} according to the erasure probability

12: for u ∈ X |K| do

13: Compute ψ(i)(u, si) according to (53)

14: end for

15: end for

VIII. SIMULATIONS

In this section, we provide insights into the empirical performance of our privacy mechanism

for hidden Markov models (HMMs) on simulated datasets. We randomly generated 100 haplotype

sequences of length 100, which together with the choices of error probability θ and crossover

probability ǫ induce p (x), as described in Section VII-A. For simplicity, we suppose the sensitive

position K = {1}.
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We first illustrate the privacy-utility trade-off of the heuristic window-based erasure approach

described in the Introduction. In particular, this approach erases the first ω positions of the

sequence to hide information about the sensitive position (the first position). The results are

shown in Figure 4. The erasure rate is defined by the size of the erased window over the sequence

length, i.e., ω/n (note n = 100). The privacy leakage is measured by the mutual information

between the released positions and the sensitive position X1, normalized by the entropy of X1,

i.e., I(X1;X[n]\[ω])/H(X1). We also show the expected erasure rate of our proposed privacy

mechanism for comparison, whose privacy leakage is strictly zero by design. We observe that

the window-erasure approach requires a high erasure rate (around 0.3) to keep the privacy leakage

close to zero, whereas our mechanism achieves a considerably smaller erasure rate (around 0.12)

while providing perfect privacy. On the other hand, choosing a window size for the baseline

approach to match the erasure rate of our mechanism leads to a considerable privacy leakage.
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Fig. 4: Privacy-utility trade-off of the window-based erasure approach on simulated HMM data

with m = 100, n = 100, K = {1}, crossover probability ǫ = 0.1 and error probability θ = 0.01.

Erasure rate denotes the size of window that is erased normalized by the sequence length n.

Privacy leakage denotes the mutual information between the released data and the sensitive

symbol normalized by the entropy of the sensitive symbol.

We next evaluate our privacy mechanism over a range of different parameter settings. We

consider θ ∈ {0.01, 0.05} and vary ǫ from 0.01 to 0.5, both of which reflect reasonable ranges

of the parameters for the scale of the dataset we simulated. We provide each instance of p (x)
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Fig. 5: Comparison of our mechanism and the upper bound on simulated HMM data with

m = 100, n = 100, K = {1} and different choices of crossover probability ǫ and error probability

θ.

to our privacy mechanism with K = {1} to calculate its achievable rate R (i.e., one minus

the expected erasure rate). Figure 5 shows the comparison between the rate of our mechanism

and the upper bound we derived in Section III. The results suggest that the performance of

our mechanism shows varying degrees of closeness to the theoretical upper bound depending

on the characteristics of the underlying data distribution. In particular, for higher values of ǫ,

representing the regime where the hidden Markov model mixes faster and thus the correlation

with the sensitive position decays more quickly, the rate of our mechanism is nearly identical to

the upper bound. On the other hand, for lower values of ǫ, which lead to stronger correlations

in the sequence, we observed that the gap between our mechanism and the upper bound can

grow considerable large. Note that this does not necessarily imply that our mechanism achieves

a significantly suboptimal performance, given that the upper bound we considered is not tight

in general. We also note that the rate of our mechanism is generally higher when the error

probability is larger (θ = 0.05 vs 0.01), which agrees with the intuition that higher levels of

noise in the data distribution lower the requirement for hiding sensitive information, thus leading

to lower erasure probabilities and higher rates as a result.

To gain further insights into the noticeable gap between the upper bound and our mechanism in

the small ǫ regime, we additionally implemented a linear programming (LP) approach for directly
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Fig. 6: Comparison of our mechanism, the upper bound and the optimal rate based on a linear

programming (LP) solution on simulated HMM data with m = 100, n = 6, K = {1} based on

a truncated version of the dataset used in Fig. 5.

obtaining the optimal mechanism w (y|x). However, since the size of LP grows exponentially

with the length of the sequence n, we could only evaluate this approach for small problem

instances due to numerical instability. We took the same simulated data as before and truncated

each reference haplotype down to the first six positions to obtain a tractable LP instance for this

experiment (n = 6).

The rate comparisons of our privacy mechanism, LP-based optimal mechanism, and the upper

bound in this setting are shown in Fig. 6. As expected, we observed that the optimal rate lies

between the upper bound and the rate of our mechanism, demonstrating that the gap between the

optimal rate and the rate of our mechanism is indeed smaller than the ostensible gap suggested

by the upper bound.

Taken together, these results suggest that, although the performance of our mechanism is often

quite close to the upper bound, the difference between the maximum achievable rate and the

rate of our mechanism can vary based on the properties of the data distribution. We note that it

is yet unknown whether there exists a privacy mechanism that can be as efficiently constructed

as our mechanism while achieving performance that is closer to the optimal rate. Closing this

performance gap both by devising enhanced privacy mechanisms that achieve higher rates and

by developing tighter upper bounds are important directions for future work.
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IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced the genotype hiding problem and proposed an information-

theoretic privacy mechanism as a solution. We analyzed the theoretical properties of the mecha-

nism, and proposed an efficient algorithmic implementation of the mechanism for hidden Markov

models, a main model of interest for our application in genomics.

It is worth noting that our mechanism does not rule out the possibilities of genotype recon-

struction attacks that leverage (i) alternative genetic sequence models and imputation strategies

or (ii) a larger set of reference dataset using which HMM parameters could be more accurately

estimated. However, our model based on HMMs is consistent with the state-of-the-art techniques

for genotype imputation, which is a relatively mature field. In addition, given the high cost of

amassing large-scale genomic data, it would be a significant challenge for an attacker to gain

access to a larger dataset than those in the public realm. As such, our mechanism could be

thought of as providing privacy protection according to the best knowledge of the field. Our

results in Section VI show that any unforeseen privacy leakage arising from the discrepancies

in the data distribution scales gracefully with the relative entropy between the true distribution

and the one used by the mechanism.

There are several key directions for future work. Our work focused on hiding the content of the

sensitive positions, yet a potential concern remains regarding information revealed by the choice

of sensitive positions K. Any approach relying on erasures for privacy protection may inevitably

leak information about K, since preventing such leakage would generally require erasures to

be consistently applied throughout the sequence, which is highly costly in terms of utility if

only a small fraction is considered sensitive. An interesting extension of our work is then to

relax the faithfulness condition when hiding the positions is deemed important. A promising

approach is to re-sample the erased positions from the data distribution as a post-processing step

to the mechanism presented in this paper. That said, we note that in our application setting, K

is neither necessarily or nor solely decided by the sequence, as it may be determined based on

family history of diseases or curated disease associations in public repositories. Thus, we believe

the mechanism presented in this work is directly applicable in many practical scenarios.

Next, although we focused on achieving perfect privacy (with respect to the given data

distribution), it may be useful in practice to consider a relaxed notion such as local differential

privacy [38]. This may give the user the ability to determine a more desirable trade-off between
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the level of privacy and the amount of data to be erased. From an analytical standpoint, this

direction would also lead to useful insights about the achievable points along the privacy-utility

trade-off curve defined by the genotype-hiding problem with a relaxed notion of privacy, to

complement the results in this work.

Furthermore, it would be interesting to explore the generalization of our efficient implemen-

tation strategies to a broader class of data generative models beyond HMMs, which may allow

similar mechanisms to be employed to protect sensitive data in other domains.

Lastly, we plan to study the performance of our privacy mechanism on real genetic datasets

and release the software implementation of our mechanism for the genetics community in the

near future.

Growing threats to genetic privacy are necessitating principled strategies for protecting the

privacy of individuals while maintaining the utility of data sharing. Our work illustrates how

such a strategy could be designed from an information-theoretic perspective to enable selective

disclosure of personal genomic data. Our methodology is broadly applicable to other data sharing

scenarios involving sensitive data with complex correlation structure. We hope that our work

will help spur the development of a wide range of information-theoretic tools for modelling and

preserving private genomic information.

APPENDIX A

PROOF OF COROLLARY 1

We prove the sufficient condition of the optimality holds for the Markov chain case. We give

an inductive proof for the sufficient condition by showing that, for a given xi,

u∗ ∈ argmin
u
p
(

xi|xK = u, y[j−1]

)

(56)

implies

u∗ ∈ argmin
u
p
(

xi|xK = u, y[j]
)

(57)

for j = 1, . . . , i− 1. For each j, we consider the following two cases (yj 6= ∗ and yj = ∗):

(1) If yj 6= ∗, then we have

p
(

xi|xK, y[j]
)

=
∑

xj

p
(

xj |xK, y[j]
)

p
(

xi|xK, y[j], xj
)

(a)
=1{xj = yj}p

(

xi|xK, y[j], xj
)

(b)
= 1{xj = yj}p (xi|xj) , (58)
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where (a) follows because Yj can either be Xj or ∗, and (b) follows from Markovity. In

this case, argminu p
(

xi|xK = u, y[j]
)

is indeed independent of u, which means

argmin
u
p
(

xi|xK = u, y[j]
)

= |X |, (59)

so the statement is trivially true.

(2) If yj = ∗, then we have

p
(

xi|xK, y[j]
)

=
∑

xj

p
(

xj |xK, y[j]
)

p
(

xi|xK, y[j], xj
)

(a)
=
∑

xj

p
(

xj |xK, y[j]
)

p (xi|xj)

(b)
∝
∑

xj

{

p
(

xj |xK, y[j−1]

)

−min
u
p
(

xj |xK = u, y[j−1]

)

}

p (xi|xj)

=
∑

xj

p (xi|xj) p
(

xj |xK, y[j−1]

)

−
∑

xj

p (xi|xj)min
u
p
(

xj |xK = u, y[j−1]

)

= p
(

xi|xK, y[j−1]

)

−
∑

xj

p (xi|xj)min
u
p
(

xj |xK = u, y[j−1]

)

, (60)

where (a) follows from Markovity, and (b) follows from Bayes’s rule and our privacy

mechanism (17). Since the second term of the right-hand side in (60) is independent of xK,

we obtain

argmin
u
p
(

xi|xK = u, y[j]
)

= argmin
u
p
(

xi|xK = u, y[j−1]

)

. (61)

For both cases, we have verified that the sufficient condition holds, which completes the proof.

APPENDIX B

PROOF OF LEMMA 2

We will prove (40) by induction. First, consider the base case:

w (yo1 = ∗|xo1 , xK) = 1−
minxK

p (xo1 |xK)

p (xo1 |xK)
. (62)

From the previous discussion, we know that if oi ∈ K, then

w
(

yoi = ∗|xoi, xK, yo[i−1]

)

= 1, (63)

so without loss of generality, we assume that

o1 /∈ K = {m+ 1, . . . , m+ k}. (64)
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Since

xK =







∑

i:i∈Sj

bi,j : j ∈ [k]







, (65)

and

xo1 = {bo1,j : o1 ∈ Sj} (66)

by definition, we can see that if there exists some j such that Sj = {o1}, then bo1,j ∈ xK and

bo1,j ∈ xo1 . In this case, we can always find some assignments such that

min
xK

p (xo1 |xK) = 0, (67)

implying that

w (yo1 = ∗|xo1 , xK) = 1. (68)

If there is no j such that Sj = {oi}, each
∑

i:i∈Sj
bi,j constituting xK is a binary summation of

some bo1,j and (independent) random bits bi,j such that i 6= o1, where the latter render the result

uniformly random. This means that XK is independent of Xo1 , and thus we have

w (yo1 = ∗|xo1 , xK) = 1−
minxK

p (xo1 |xK)

p (xo1 |xK)
= 1−

minxK
p (xo1)

p (xo1)
= 0, (69)

for all xo1 and xK.

Assume the statement is true for o1, . . . , oi−1. Then for oi, note that

p
(

xoi |xK, yo[i−1]

)

=
p (xoi |xK) p

(

yo[i−1]
|xoi , xK

)

p
(

yo[i−1]
|xK
) . (70)

By letting

Ẽi =
{

oj : yoj 6= ∗, j ≤ i− 1
}

, (71)

(70) can be written as

p
(

xoi |xK, yo[i−1]

)

=
p (xoi |xK) p

(

xẼi |xoi, xK
)

p
(

xẼi |xK
) = p

(

xoi |xẼi , xK
)

, (72)

because of the inductive assumption that the decisions whether to erase yo1, . . . , yoi−1
are deter-

ministic.

Hence, we have

w
(

yoi = ∗|xoi, xK, yo[i−1]

)

= 1−
minxK

p
(

xoi |xK, yo[i−1]

)

p
(

xoi |xK, yo[i−1]

)

= 1−
minxK

p
(

xoi |xẼi , xK
)

p
(

xoi |xẼi , xK
) . (73)
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Analogous to our argument for the base case, if there exists some j such that Sj ⊆ Ẽi ∪ {oi},

then one can determine boi,j ∈ xo1 from xẼi , xK, and thus

min
xK

p
(

xoi |xẼi , xK
)

= 0, (74)

implying that

w
(

yoi = ∗|xoi, xK, yo[i−1]

)

= 1. (75)

If there is no such j, each xj for j ∈ K is the binary summation of some boi,j ∈ xoi and some

independent random bits bi′,j such that i′ 6= oi, which again guarantees that XK is independent

of Xoi conditioning on XẼi
. Thus, we have

w
(

yoi = ∗|xoi, xK, yo[i−1]

)

= 1−
minxK

p
(

xoi |xẼi
)

p
(

xoi |xẼi
) = 0, (76)

for all xoi , xK and yo[i−1]
, which completes the inductive proof.

APPENDIX C

PROOF OF THEOREM 3

First, let us show that e∗ ≥ h∗ by showing that Eπ is a hitting set for any order π, i.e.,

Eπ∩Sj 6= ∅ for all j ∈ [k]. We prove it by contradiction. Suppose that there exists some Sj such

that Eπ∩Sj = ∅, which implies that Sj ⊆ [m]\Eπ for some j. Assume that Sj = {i1, . . . , it}, and

it is the last index visited that specified by the given order π. Then, when we run our mechanism

for it, since i1, . . . , it−1 are all visited and not erased, by recalling the proof of Lemma 2, we

know that Ẽit ⊇ {i1, . . . , it−1}, so we have Sj ⊆ Ẽit ∪{it}. It means that yit is erased or it ∈ Eπ,

which contradicts with our assumption Eπ ∩ Sj = ∅.

Next, we show that e∗ ≤ h∗ by showing that for any given hitting set V , there exists an

order π such that |Eπ| ≤ |V |. Suppose V is a hitting set and |V | = h, i.e., V ∩ Sj 6= ∅ for all

j ∈ [k]. Consider an order π such that oi /∈ V ∪ [m+ 1 : m+ k] for i ≤ m− h and oi ∈ V for

i ∈ [m− h + 1 : m], i.e., visiting indices in the complementary of T before attaining V . When

we visit oi such that i ≤ m− h (or oi ∈ [m]\V ), by the assumption that V ∩ Sj 6= ∅ for all j,

we know that there exists some index tj ∈ Sj ∩ V for each j. By recalling the definition (71),

we know that Ẽi ⊇ [m]\V , so tj /∈ Ẽi. Note that tj ∈ V while oi /∈ V , so tj /∈ Ẽi ∪ {oi}. Hence,

we know that yoi is not erased, or oi /∈ Eπ from the proof of Lemma 2. Since oi /∈ Eπ for

i ≤ m− h given this particular order π, we have |Eπ| ≤ h = |V |, which completes the proof.
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APPENDIX D

PROOF OF THEOREM 4

From (45), we have

I(p (xK) ; p (y)) = D(p (xK,y) ||q (xK,y))−D(p (xK) ||q (xK))−D(p (y) ||q (y)), (77)

and it remains to show that the right-hand side is bounded above by D(p (x) ||q (x)).

By applying the chain rule of relative entropy, we have

D(p (x,y) ||q (x,y)) = D(p (x) ||q (x)) +D(p (y|x) ||q (y|x)), (78)

and

D(p (x,y) ||q (x,y)) = D(p (xK,y) ||q (xK,y)) +D(p
(

x[n]\K|xK,y
)

||q
(

x[n]\K|xK,y
)

). (79)

From these equations, we obtain

D(p (xK,y) ||q (xK,y))

= D(p (x) ||q (x)) +D(p (y|x) ||q (y|x))−D(p
(

x[n]\K|xK,y
)

||q
(

x[n]\K|xK,y
)

). (80)

By substituting (80) in (77), we have

I(p (xK) ; p (y)) = D(p (x) ||q (x)) +D(p (y|x) ||q (y|x))−D(p (xK) ||q (xK))

−D(p
(

x[n]\K|xK,y
)

||q
(

x[n]\K|xK,y
)

)−D(p (y) ||q (y))

(a)

≤D(p (x) ||q (x)) +D(p (y|x) ||q (y|x))

(b)
=D(p (x) ||q (x)), (81)

where (a) follows from the non-negativity of relative entropy, (b) follows from the assumption

q (y|x) = p (y|x) = w(y|x).
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