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Abstract

We derive various error exponents in the bee identification problem under two different
decoding rules. Under näıve decoding, which decodes each bee independently of the others,
we analyze a general discrete memoryless channel and a relatively wide family of stochastic
decoders. Upper and lower bounds to the random coding error exponent are derived and
proved to be equal at relatively high coding rates. Then, we propose a lower bound on
the error exponent of the typical random code, which improves upon the random coding
exponent at low coding rates. We also derive a third bound, which is related to expurgated
codes, which turns out to be strictly higher than the other bounds, also at relatively low
rates. We show that the universal maximum mutual information decoder is optimal with
respect to the typical random code and the expurgated code. Moving further, we derive
error exponents under optimal decoding, the relatively wide family of symmetric channels,
and the maximum likelihood decoder. We first propose a random coding lower bound, and
then, an improved bound which stems from an expurgation process. We show numerically
that our second bound strictly improves upon the random coding bound at an intermediate
range of coding rates, where a bound derived in a previous work no longer holds.

Index Terms: Bee identification problem, error exponent, expurgated exponent, typical
random code, permutation recovery.
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1 Introduction

The bee identification problem is a problem of correctly identifying a massive amount of data

which have been shuffled and corrupted by noise. Specifically, consider the following problem.

Let Cn be a codebook composed by enR codewords. Assume that these codewords are randomly

permuted and afterwards, each one of them is fed into a discrete memoryless channel (DMC).

Based on a set of channel outputs, one has to correctly decode the underlying permutation.

While originally motivated in a study on the social interactions between bees in a beehive

[3], the bee identification problem (to be defined formally later on) and its variants already

found its way to information theory in a few different research areas. We mention here just a

few. In [16], a strongly asynchronous massive access channel was investigated. In this model,

enν different users transmit a randomly selected message among enR ones. The decoder has to

correctly decode all messages, and furthermore, to correctly identify the users’ identities. In a

different topic, the problem of identifying the underlying probability distributions of a set of

a massive number of observed sequences under the constraint that each sequence is generated

i.i.d. by a distinct distribution has been considered in [17]. Fundamental limits of data storage

via unordered DNA molecules was studied in [4], and it noisy version was analyzed in [5]. Other

aspects of the permutation recovery problem have been investigated in [10].

Recently, the bee identification problem has been studied from the viewpoint of its exponen-

tial error bounds. In [14], the codebook is composed by binary codewords, which are permuted

and fed into a binary symmetric channel (BSC). In that work, two different decoding techniques

have been considered; independent decoding and joint decoding. In independent decoding, each

channel output is decoded separately, and in joint decoding, one uses all channel output se-

quences together in order to recover the underlying permutation. Under any of these decoders,

the authors derive two kinds of bounds on the optimal error exponent: (i) random coding error

exponent, and, (ii) error exponent which relies on characteristics of typical random binary codes

[1]. They show that for any of the two decoders, the error exponent of the typical random code

(TRC) is strictly higher than the random coding error exponent at relatively low coding rates,

as is already known to happen in ordinary channel coding over a general DMC [7], [9]. In [14],

a converse bound is also derived, which is proved to have the same value as the value of the

TRC exponent under joint decoding at rate zero. In a different work [15], the same authors
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of [14] study the capacity and the error exponent of the bee identification problem, but when

some fraction of the bees are assumed to be outside the beehive. The authors provide an exact

characterization of the error exponent and they prove that independent decoding is optimal.

The focus of this work is on extensions and refinements of the error exponent analysis of

the same decoding rules studied in [14]. In particular, the main contributions of this work are

the following.

1. In näıve (independent) decoding, we adopt a slightly relaxed definition for the probability

of error; while in [14], error counts even if a single bee is incorrectly decoded, here, we

refer to an error event only when at least L bees are erroneously decoded. We believe

that such a relaxed definition may be more suitable in this kind of problem (and others

as well), which accounts for a massive amount of data.

2. For the ensemble of uniformly randomly drawn constant composition codes, we provide

different exponential error bounds for a general DMC and a wide class of stochastic

decoders, collectively referred to as the generalized likelihood decoder (GLD). We provide

the following results:

(a) Both upper and lower bounds on the random coding error exponent, which turn to

match each other at relatively high coding rates, at least for some specific DMCs.

(b) A lower bound on the error exponent of the TRC. We show on a numerical example

that it strictly improves upon the random coding exponent at low coding rates.

(c) An error exponent which stems from expurgated codes in ordinary channel coding.

This exponent is strictly higher at low coding rates relative to the TRC exponent.

3. We show that the universal maximum mutual information (MMI) decoder is optimal with

respect to the TRC and the expurgated code, a fact that was recently asserted in ordinary

channel coding [12].

4. We provide exponential error bounds under optimal (joint) decoding, but under a slightly

less general model: (i) the general DMC is replaced by the family of symmetric channels,

which includes the BSC as a special case. (ii) The wide family of GLDs is confined

only to the (optimal) maximum likelihood (ML) decoder. (iii) The ensemble of constant
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composition codes is switched to the i.i.d. random coding ensemble. Under this setting,

we provide two different lower bounds to the optimal error exponent:

(a) The first is a lower bound on the random coding error exponent, which is given by

a relatively simple expression, that does not include any optimization problems.

(b) The second is derived by code expurgation, and it improves upon the previous one

at low coding rates. Our second bound matches the bound in [14] that relies on

characteristics of typical random binary codes, but it holds for a wider set of coding

rates. Specifically, it still improves upon the random coding lower bound at rates

where the bound in [14] no longer holds.

The remaining part of the paper is organized as follows. In Section 2, we establish notation

conventions. In Section 3, we formalize the models and the main objectives of this work. In

Section 4, we provide and discuss the main results, and in the Appendixes, we prove them.

2 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, realizations will

be denoted by the corresponding lower case letters, and their alphabets in calligraphic font.

Random vectors and their realizations will be denoted, respectively, by boldfaced capital and

lower case letters. Their alphabets will be superscripted by their dimensions. For a generic

joint distribution QXY = {QXY (x, y), x ∈ X , y ∈ Y}, which will often be abbreviated by

Q, information measures will be denoted in the conventional manner, but with a subscript

Q, that is, IQ(X;Y ) is the mutual information between X and Y , and similarly for other

quantities. The weighted divergence between two conditional distributions (channels), say,

QY |X and W = {W (y|x), x ∈ X , y ∈ Y}, with weighting QX is defined as

D(QY |X ||W |QX) =
∑

x∈X

QX(x)
∑

y∈Y

QY |X(y|x) log
QY |X(y|x)

W (y|x)
, (1)

where logarithms, here and throughout the sequel, are taken to the natural base. The prob-

ability of an event E will be denoted by P{E}, and the expectation operator will be denoted

by E[·]. The indicator function of an event E will be denoted by 1{E}. The notation [t]+ will

stand for max{0, t}.
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For two positive sequences, {an} and {bn}, the notation an
.
= bn will stand for equality in

the exponential scale, that is, limn→∞(1/n) log (an/bn) = 0. Similarly, an
·
≤ bn means that

lim supn→∞(1/n) log (an/bn) ≤ 0, and so on. Accordingly, the notation an
.
= e−n∞ means that

an decays at a super–exponential rate (e.g. double–exponentially).

By the same token, for two positive sequences, {an} and {bn}, whose elements are both

smaller than one (for all large enough n), the notation an
◦
= bn will stand for equality in the

double–exponential scale, that is,

lim
n→∞

1

n
log

(

log bn
log an

)

= 0. (2)

The empirical distribution of a sequence x ∈ X n, which will be denoted by P̂x, is the vector

of relative frequencies, P̂x(x), of each symbol x ∈ X in x. The joint empirical distribution of a

pair of sequences, denoted by P̂xy, is similarly defined. The type class of QX , denoted T (QX),

is the set of all vectors x ∈ X n with P̂x = QX . In the same spirit, the joint type class of QXY ,

denoted T (QXY ), is the set of all pairs of sequences (x,y) ∈ X n × Yn with P̂xy = QXY .

Throughout the paper, we will make a frequent use of the fact that

kn
∑

i=1

an(i)
.
= max

1≤i≤kn
an(i) (3)

as long as {an(i)} are nonnegative exponential functions of an integer n and kn
.
= 1. This

exponential equivalence will be termed henceforth the summation–maximization equivalence

(SME). The sequence kn will represent the number of type classes possible for a given block

length n, which is polynomial in n.

3 Problem Setting and Objectives

Consider a DMC, W = {W (y|x) : x ∈ X , y ∈ Y}, where X is a finite input alphabet, Y

is a finite output alphabet, and W (y|x) is the channel input-output single–letter transition

probability from x to y. When fed by a vector x = (x1, x2, . . . , xn) ∈ X n, the channel responds

by producing an output vector y = (y1, y2, . . . , yn) ∈ Yn, according to

W (y|x) =
n
∏

i=1

W (yi|xi). (4)
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Let Cn = {x1,x2, . . . ,xM} be a set of M = enR codewords, R being the coding rate in nats

per channel use. Let C̃n = {x̃1, x̃2, . . . , x̃M} be some random permutation of Cn, drawn by the

channel from the set of all possible permutations of {1, 2, . . . ,M}, according to the uniform

distribution. Let {ỹ1, ỹ2, . . . , ỹM}, where ỹi, i ∈ {1, 2, . . . ,M}, is the channel output when the

channel is fed by x̃i. Based on the set {ỹ1, ỹ2, . . . , ỹM}, we would like to decode and find out

which codeword in Cn is the source for each of these channel outputs.

At this point, we distinguish between two different decoders.

3.1 The Näıve Decoder

We consider the ensemble of constant composition codes: for a given distribution QX over X ,

all vectors in Cn are uniformly and independently drawn from the type class T (QX).

In näıve decoding, one takes each channel output sequence ỹi and decodes for one codeword

from Cn using the GLD. The GLD is a stochastic decoder, that chooses the estimated message

m̂ according to the following posterior probability mass function, induced by ỹi:

P

{

M̂ = m
∣

∣

∣
ỹi

}

=
exp{ng(P̂xmỹi

)}
∑M

m′=1 exp{ng(P̂xm′ ỹi
)}

, (5)

where P̂xmỹi
is the empirical distribution of (xm, ỹi), and g(·) is a given continuous, real–valued

functional of this empirical distribution. The GLD provides a unified framework which covers

several important special cases, e.g., matched likelihood decoding, mismatched decoding, ML

decoding, and universal decoding.

For a given codebook, define the following enumerator, which counts the total number of

incorrect decodings:

Ne(Cn) =

M
∑

m=1

1 {decoding of xm has failed} . (6)

In this work, we allow for at most L ∈ N incorrect decodings, such that the probability of error

is defined by

Pe(Cn) = P{Ne(Cn) ≥ L}. (7)

The random coding error exponent is defined in the usual manner as

Er(R) = lim
n→∞

−
1

n
logE [Pe(Cn)] , (8)
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while the error exponent of the TRC is defined by

Etrc(R) = lim
n→∞

−
1

n
E [logPe(Cn)] . (9)

Finding exact expressions for (8) and (9) appears to be difficult. We derive lower and upper

bounds on (8) and a lower bound on (9).

Another objective is to prove the existence of a sequence of codes C = {Cn}
∞
n=1, whose error

exponent is strictly higher than Er(R) and Etrc(R), at least at low coding rates, and obtain a

single–letter expression that lower bounds the following limit

E(C ) = lim inf
n→∞

−
1

n
log Pe(Cn). (10)

3.2 The Optimal Decoder

Under optimal decoding, the constant composition ensemble is much more complicated to ana-

lyze, since ordinary analysis tools, like the method of types, are no longer applicable. Hence, the

constant composition ensemble is now replaced by the i.i.d. ensemble, where the M codewords

are drawn independently, and each one is drawn under the product distribution

P (x) =

n
∏

i=1

PX(xi), (11)

where PX is some probability mass function on X . Let Π(M) be the set of all possible permu-

tations of {1, 2, . . . ,M}. The maximum likelihood decoder is given by

π̂(y1, . . . ,yM ) = argmax
π∈Π(M)

M
∏

m=1

W (ym|xπ(m)). (12)

The probability of error is defined as

P opt
e (Cn) =

1

|Π(M)|

∑

π∈Π(M)

∑

y1∈Y
n

· · ·
∑

yM∈Yn

M
∏

m=1

W (ym|xπ(m))1{π̂(y1, . . . ,yM ) 6= π}. (13)

Under optimal decoding, we have two objectives. First, to obtain a lower bound on the random

coding error exponent

E
opt
r (R) = lim

n→∞
−
1

n
logE [P opt

e (Cn)] , (14)

and second, to prove the existence of a sequence of codes C = {Cn}
∞
n=1, whose error probability

decays exponentially at a strictly higher rate than E
opt
r (R), and obtain the tightest possible

single–letter expression that lower bounds the following limit

E
opt(C ) = lim inf

n→∞
−
1

n
logP opt

e (Cn). (15)
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4 Main Results

4.1 Näıve Decoding

In order to present upper and lower bounds on the random coding error exponent, we first

provide some definitions. Define the set Q(QX) = {QX′|X : QX′ = QX} and

α(R,QY ) = max
Q

X̃|Y ∈S(QX ,QY )
{g(QX̃Y ) +R− IQ(X̃ ;Y )}, (16)

β(R,QY ) = max
{Q

X̃|Y : Q
X̃
=QX}

{g(QX̃Y ) + [R− IQ(X̃ ;Y )]+}, (17)

where S(QX , QY ) = {QX̃|Y : IQ(X̃ ;Y ) ≤ R, QX̃ = QX}, as well as

Λ(QXX′ , R) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X
′;Y |X) + β(R,QY )− g(QX′Y )}, (18)

Γ(QXX′ , R) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X
′;Y |X)

+ [max{g(QXY ), α(R,QY )} − g(QX′Y )]+}. (19)

Finally, define the exponent functions

Eub
r (R,L) = min

QX′|X∈Q(QX)

[

L · Γ(QXX′ , R)− L · [2R− IQ(X;X ′)]+ + [IQ(X;X ′)− 2R]+
]

+

(20)

and

Elb
r (R,L) = min

QX′|X∈Q(QX)
L ·max

{

[IQ(X;X ′)−R]+,Λ(QXX′ , R) + IQ(X;X ′)− 2R
}

. (21)

Our first result in this section is the following theorem, which is proved in appendices A

and B.

Theorem 1 Consider the ensemble of random constant composition codes Cn of rate R and

composition QX . Then,

lim
n→∞

−
1

n
logE [Pe(Cn)] ≥ Eub

r (R,L). (22)

Also,

lim
n→∞

−
1

n
logE [Pe(Cn)] ≤ E lb

r
(R,L). (23)
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Discussion

For L = 1, the exponent function (20) is at least as tight as in [14, Eq. (14)]. To see why this

is true, consider a GLD with g(QXY ) = IQ(X;Y ). In this case, α(R,QY ) = R and we get that

Eub
r (R, 1) ≥ min

QX′|X∈Q(QX)
[Γ(QXX′ , R) + IQ(X;X ′)− 2R]+ (24)

= min
{QX′Y |X , QX′=QX}

[D(QY |X‖W |QX) + IQ(X
′;Y |X)

+ [max{IQ(X;Y ), R} − IQ(X
′;Y )]+ + IQ(X;X ′)− 2R]+ (25)

= min
{QX′Y |X , QX′=QX}

[D(QY |X‖W |QX) + IQ(X;X ′|Y )

+ [max{IQ(X;Y ), R} − IQ(X
′;Y )]+ + IQ(X

′;Y )− 2R]+ (26)

= min
{QX′Y |X , QX′=QX}

[D(QY |X‖W |QX) + IQ(X;X ′|Y )

+ max{IQ(X;Y ), IQ(X
′;Y ), R} − 2R]+ (27)

= min
QY |X

[D(QY |X‖W |QX) + max{IQ(X;Y ), R} − 2R]+ (28)

= min
QY |X

[D(QY |X‖W |QX) + [IQ(X;Y )−R]+ −R]+ (29)

= [Er(R)−R]+, (30)

where Er(R) is the random coding error exponent in ordinary channel coding. The expression

in (30) is the same as in [14, Eq. (14)], but for a general DMC, which proves our claim.

On the one hand, for any L ≥ 2, Elb
r (R,L) is larger than Eub

r (R,L), at least at low coding

rates, since at rate zero,

Eub
r (0, L) = min

QX′|X∈Q(QX)

{

L · Γ(QXX′ , 0) + IQ(X;X ′)
}

(31)

Elb
r (0, L) = min

QX′|X∈Q(QX)
L ·
{

Λ(QXX′ , 0) + IQ(X;X ′)
}

(32)

and Λ(QXX′ , R) ≥ Γ(QXX′ , R). Moreover, we note the following fact: when L grows, the expo-

nent function Elb
r (R,L) grows without bound, while the exponent function Eub

r (R,L) converges

to the finite function

Ẽr(R) = min
{QX′|X∈Q(QX): [2R−IQ(X;X′)]+≥Γ(QXX′ ,R)}

[IQ(X;X ′)− 2R]+. (33)

Since we expect the exponential rate of decay of the probability of error to increase without

bound as the number of incorrectly decoded bees grows, we believe that the true exponential
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rate of decay of E [Pe(Cn)] is closer to Elb
r (R,L) at relatively low coding rates, rather than to

Eub
r (R,L). Unfortunately, we were not able to further tighten the exponential rate of decay of

the upper bound on E [Pe(Cn)].

On the other hand, we argue that Elb
r (R,L) = Eub

r (R,L) at relatively high coding rates, at

least for some DMCs. As for Eub
r (R,L), we claim that there exists some rate R∗(L), such that

for all R ≥ R∗(L), the clipping operator around IQ(X;X ′) − 2R in (20) is active. To see why

this is true, assume conversely, that is, there exist arbitrarily high rates, such that the clipping

operator around IQ(X;X ′)−2R is inactive, while the clipping operator around 2R− IQ(X;X ′)

is active. Since Γ(QXX′ , R) increases linearly with a slope of one at high rates, due to the

behavior of α(R,QY ), E
ub
r (R,L) increases without bound, which is a contradiction. Hence, at

relatively high rates,

Eub
r (R,L) = min

QX′|X∈Q(QX)
L ·
[

Γ(QXX′ , R) + IQ(X;X ′)− 2R
]

+
. (34)

For the exponent function Elb
r (R,L), note that for sufficiently high rates, the clipping operator

around IQ(X;X ′)−R in (21) is active, such that,

Elb
r (R,L) = min

QX′|X∈Q(QX)
L ·
[

Λ(QXX′ , R) + IQ(X;X ′)− 2R
]

+
. (35)

Finally, it can be easily proved, using similar techniques as in [8, Section 5], that for some specific

channels, like the z-channel or the binary erasure channel, an equality between Λ(QXX′ , R) and

Γ(QXX′ , R) holds, which asserts that Elb
r (R,L) = Eub

r (R,L) at relatively high rates.

We conclude from (34) that for any L, there exists Rmax, such that Eub
r (R,L) > 0 if and

only if R < Rmax. An explicit lower bound on Rmax can be derived as follows using the lower

bound in (30). The requirement [Er(R)−R]+ > 0 is equivalent to

R < min
QY |X

{D(QY |X‖W |QX) + [IQ(X;Y )−R]+} (36)

= min
QY |X

max
t∈[0,1]

{D(QY |X‖W |QX) + t(IQ(X;Y )−R)}, (37)

which, in turn, is equivalent to

∀QY |X , ∃t ∈ [0, 1], R < D(QY |X‖W |QX) + t(IQ(X;Y )−R), (38)

or, to

∀QY |X , ∃t ∈ [0, 1], R <
D(QY |X‖W |QX) + tIQ(X;Y )

1 + t
. (39)

10



Hence, we conclude that

Rmax ≥ min
QY |X

max
t∈[0,1]

{

D(QY |X‖W |QX) + tIQ(X;Y )

1 + t

}

(40)

= min
QY |X

max

{

D(QY |X‖W |QX),
D(QY |X‖W |QX) + IQ(X;Y )

2

}

(41)

= min
QY |X

{

D(QY |X‖W |QX) +
1

2
· [IQ(X;Y )−D(QY |X‖W |QX)]+

}

. (42)

Following the studies in [1], [7], and [9] on TRCs in ordinary channel coding, we claim that

also in the bee identification problem, the random coding error exponent, which is bounded

from above and below in Theorem 1, does not yield the true exponential behavior of the error

probability of a randomly chosen code, since it is dominated by the relatively bad codes in the

ensemble, rather than the channel noise, at least at low coding rates. Due to the definition

of the TRC exponent, the derivation of a single-letter expression is not as easy as in ordinary

random coding (for example, see the proof in [7, Section 5]), since the expectations over the

randomness of the ensemble and over the randomness of the channel cannot be switched, which

is one of the first steps in random coding analysis. We next present a lower bound on the error

exponent of the TRC. Define the exponent function

Etrc(R,L) = min
{QX′|X∈Q(QX): IQ(X;X′)≤2R}

L ·
[

Γ(QXX′ , R) + IQ(X;X ′)− 2R
]

+
. (43)

Then, our second result is the following theorem, which is proved in Appendix D.

Theorem 2 Consider the ensemble of random constant composition codes Cn of rate R and

composition QX . Then,

lim
n→∞

−
1

n
E [log Pe(Cn)] ≥ Etrc(R,L). (44)

Several comments are now in order.

• Since each bee is decoded independently, the error probability depends heavily on the

statistical characteristics of the type class enumerators,

N(QXX′)
△
=

M−1
∑

m=0

∑

m′ 6=m

1 {(Xm,Xm′) ∈ T (QXX′)} , (45)

which also play a pivotal role in the proofs of the main results in [7] and [13]. Specifi-

cally, the result in Theorem 2 is related to the values of {N(QXX′)} in a TRC, which is
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exp{n(2R − IQ(X;X ′))} if 2R ≥ IQ(X;X ′) and zero otherwise. This fact was already

asserted in [7] and it explains the constraint in the minimization problem in (43).

• By applying (43) to the BSC, a symmetric input assignment, the ML decoder, and L = 1,

one arrive to a similar result as in [14, Theorem 3]. Nevertheless, we mention a relatively

significant difference between the two derivations. On the one hand, the bound in [14]

is heavily based on the behavior of typical random binary codes [1], and thus, it cannot

be directly generalized to larger alphabets. On the other hand, in this work, we directly

derive (a lower bound on) the error exponent of the TRC, which holds for any DMC.

• Although we only propose here a lower bound on the TRC exponent, we conjecture that

a matching upper bound also holds, and leave it to future work. Furthermore, we believe

that a concentration property holds, i.e., that the exponential rate of decay of the error

probability of a randomly chosen code is close to Etrc(R,L) with a very high probability.

A similar property in ordinary channel coding was already proved in [13].

In ordinary channel coding, the random coding error exponent, as well as the error exponent

of the TRC are improved at relatively low coding rates by code expurgation. Upon using the

result in [8, Section 5], which is an error exponent under the assumption of a GLD, we are able

to derive a bound which is tighter than Eub
r (R,L) and Etrc(R,L), at least at low coding rates.

Let us define the exponent function

Eex(R,L) = min
{QX′|X∈Q(QX): IQ(X;X′)≤R}

L ·
[

Γ(QXX′ , R) + IQ(X;X ′)− 2R
]

+
. (46)

Then, our third result is the following theorem, which is proved in Appendix E.

Theorem 3 There exists a sequence of constant composition codes, {Cn, n = 1, 2, . . . }, with

composition QX , such that

lim inf
n→∞

−
1

n
logPe(Cn) ≥ Eex(R,L). (47)

The qualitative behavior of Etrc(R,L) and Eex(R,L) is similar to the behavior of the TRC

exponent and the expurgated exponent in ordinary channel coding. At rate zero, they are

equal, but at positive low rates, Etrc(R,L) < Eex(R,L). At relatively high coding rates, the

minimization constraints in (43) and (46) become inactive and these exponent functions, as

well as the lower bound on the random coding error exponent given in (34) are all equal.

12



In ordinary channel coding, it has been lately proved in [12] that the MMI decoder is optimal

with respect to the TRC and with respect to the expurgated code. One may wonder whether

a similar phenomenon also holds in the bee identification problem. Note that the exponent

functions in (43) and (46) strongly resembles the error exponent of the TRC [7, Eq. (18)]

and the expurgated exponent [8, Eq. (42)] in ordinary channel coding. Since the proof in [12]

exclusively relies on upper and lower-bounding the term Γ(QXX′ , R), we conclude that in the

current setting, the MMI-based näıve decoder is optimal with respect to both the TRC and the

expurgated code, i.e., it performs as good as the ML-based näıve decoder. This fact may be

quite important from the practical point of view, since the effective channel that reads the bee

bar-codes may vary with time, due to thermal effects in electro-optical detectors and more.

We demonstrate some of the above discussed properties of the different error exponents

in a specific numerical example. Consider the z-channel with alphabets X = Y = {0, 1},

conditional probabilities of W (0|0) = 1 − W (1|0) = 0.9, and let the input assignment be

QX(0) = QX(1) = 1/2. Also, we use the decoding metric g(Q) = EQ logW (Y |X), which

is equivalent to ML decoding. In Figure 1, all four error exponents are plotted for the choice

L = 3. As discussed earlier, at low coding rates, Elb
r (R,L) > Eub

r (R,L), but for any R ≥ 0.1483,

Elb
r (R,L) = Eub

r (R,L), i.e., we have an exact random coding error exponent. Although not

shown here, this tightness holds for any coding rate for L = 1. At low coding rates, indeed

Eex(R,L) > Etrc(R,L), and both of these exponent functions strictly improve upon the random

coding error exponent, similarly as in ordinary channel coding. At high coding rates, all the

exponent functions coincide. As for the maximal attainable coding rate, all exponent functions

are strictly positive as long as R < 0.2092. This maximal rate is also predicted by the lower

bound in (42), which is relatively surprising, since the bound in (42) was derived from an

exponent function which is related to a GLD with decoding metric g(Q) = IQ(X;Y ), not the

matched decoder.

4.2 Optimal Decoding

In order to present our first result in this section, which is a lower bound to the random coding

error exponent, we first make a few definitions. A DMC W is called symmetric if its probability

transition matrix is doubly stochastic, i.e., every row is given by a permutation of any other

13
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Figure 1: Error exponents for the z–channel (w = 0.9 and L = 3).

row, and the same for its columns. For x, x′ ∈ X , define

B(x, x′) =
∑

y∈Y

√

W (y|x)W (y|x′). (48)

For σ ≥ 1, define

Ξ(σ) =
∑

x∈X

∑

x′∈X

PX(x)PX (x′)[B(x, x′)]2/σ , (49)

and

Ω(σ) =
∑

x∈X

∑

x′∈X

PX(x)PX(x′)[B(x, x′)]1/σ . (50)

Also, define the exponent function

Eopt
r (R) = [min {− log Ξ(1)− 2R,−2 log Ω(1)− 3R}]+ . (51)

The proof of the following result is very similar to the proof of Theorem 5 below, and hence

omitted.

Theorem 4 Assume that W is a symmetric channel and that PX is the uniform distribution.

Then, under optimal decoding,

lim
n→∞

−
1

n
logE [P opt

e
(Cn)] ≥ Eopt

r
(R). (52)
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Discussion

As can be seen in (51), the overall error event may be dominated by two different error events,

depending on the quality of the channel and on the coding rate. This fact has already been

asserted in [14], but here, we elaborate more on it. On the one hand, for relatively good channels,

and for any coding rate, the dominating error event is when two bees are switched. On the

other hand, for relatively bad channels, it depends on the coding rate; at relative low coding

rates, two bees are incorrectly decoded, but at relatively high rates, three bees are erroneously

identified. In order to demonstrate these issues more quantitatively, we now refer to the BSC.

For a BSC with crossover probability p ∈ (0, 1/2), one easily finds that

Ξ(1) =
1

2
+ 2p(1 − p), (53)

Ω(1) =
1

2
+
√

p(1− p). (54)

Then, the critical channel parameter in this case is the one that solves the equation:

[

1

2
+ 2p(1− p)

]3

=

[

1

2
+
√

p(1− p)

]4

, (55)

which can be found numerically as p∗ ≈ 0.01466. Furthermore, for BSCs with a crossover

parameter in the range (p∗, 1/2), the phase transition in the rate axis occurs at

R∗(p) = log
Ξ(1)

Ω2(1)
. (56)

In Figure 2 we plot Eopt
r (R) for two different values of p. As can be seen there, for p < p∗,

the exponent function decreases with a slope of −2 at all coding rates (which is related to the

error event of switching between two bees), but for p > p∗, it decreases with a slope of −2 as

long as R ≤ R∗(p) ≈ 0.087, and with a slope of −3 otherwise (exchanging between three bees).

Similarly to ordinary channel coding, also in this scenario, the random coding error expo-

nent can be improved at relatively low coding rates by expurgation. It should be pointed out,

however, that the processes of expurgation in ordinary channel coding and in the bee identi-

fication problem slightly differ from one another. In ordinary channel coding, one draws 2M

codewords, and expurgate the M codewords with the highest conditional error probabilities,

such that all remaining ones have error probabilities bounds above by e−nEex(R), where Eex(R)

is the expurgated error exponent. In the bee identification problem, on the other hand, the
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Figure 2: Random coding error exponents for the BSC under optimal decoding.

specific performance of the individual codewords are no longer of interest, since all the code-

words are being used together. Here, too, we draw 2M codewords, but prove the existence of

a subset of M codewords with a good collective behavior.

Define the following exponent function:

Eopt
ex (R) = sup

σ≥1
{σ ·min [− log Ξ(σ)− 2R,−2 log Ω(σ)− 3R]} . (57)

Then, our second result is the following theorem, which is proved in Appendix F.

Theorem 5 Assume that W is a symmetric channel and that PX is the uniform distribution.

Then, under optimal decoding, there exists a sequence of i.i.d. codes, {Cn, n = 1, 2, . . .}, such

that

lim inf
n→∞

−
1

n
logP opt

e (Cn) ≥ Eopt

ex (R). (58)

The proof of Theorem 5 relies on ideas and techniques from both [2] and [14]. Most impor-

tantly, the proof in Appendix F uses the fact that every permutation of a set (e.g., of bees) is

equivalent to a composition of disjoint cycles [6]. Since each cycle of incorrectly decoded bees
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can be analyzed relatively easily, we are able, exactly as in [14], to sum up the contributions of

all possible permutations.

In [14], two lower bounds on the reliability function of the bee identification problem are

given. The first is a random coding bound, similarly to the bound in Theorem 4. It can be

easily shown that upon applying Eopt
r (R) to the BSC, one arrives at the result in [14, Theorem

2]. The second bound in [14] stems from characteristics of typical random binary codes [1] and

is given by

Eopt
[14](R) = −δGV(2R) · log

(

√

4p(1 − p)
)

, R ∈ [0, RTRC(p)), (59)

where δGV(2R) is the Gilbert-Varshamov distance, defined as the value of δ ∈ [0, 0.5] with

h2(δ) = 1− 2R, h2(·) being the binary entropy function, and where

RTRC(p) =
1

2

[

1− h2

(

√

4p(1− p)

1 +
√

4p(1 − p)

)]

. (60)

Since (57) and (59) are given by relatively different optimization problems1, it seems that

comparing between Eopt
ex (R) and Eopt

[14](R) directly from their expressions may be rather difficult.

Hence, we compare between Eopt
ex (R) and Eopt

[14](R) numerically. As can be seen in Figure 3, for

R ≤ RTRC(p) ≈ 0.1758, the two bounds are equal, but for R ≥ RTRC(p), there exists an interval

where Eopt
ex (R) still improves upon Eopt

r (R). The fact that Eopt
ex (R) = Eopt

[14](R) at relatively low

coding rates is quite surprising, at least to the authors of this work, since Eopt
[14](R) is related to

typical codes, while Eopt
ex (R) is a byproduct of an expurgation process. As far as we know, the

only scenario where TRCs and expurgated codes have similar performance is for linear codes

[1], while in any other case (e.g., [7] and [11]), the expurgated code performs strictly better

than the TRC, at least at some interval of rates.

Appendix A

Proof of Eq. (22) of Theorem 1

Assume that the codebook Cn is given. Then, the enumerator Ne(Cn) is a sum of independent

indicator random variables. Note that these indicators have different success probabilities. The

1Solving the non-linear equation h2(δ) = 1− 2R can be recast as an optimization problem.
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Figure 3: Error exponents for the BSC under optimal decoding (p = 0.01).

probability of erroneous decoding of the codeword xm is given by

pm(Cn)
△
=
∑

y∈Yn

W (y|xm) ·

∑

m′ 6=m exp{ng(P̂xm′y)}
∑M

m̃=1 exp{ng(P̂xm̃y)}
. (A.1)

Denote the expectation of Ne(Cn) by

µ = µ(Cn)
△
= E [Ne(Cn)] =

M
∑

m=1

pm(Cn). (A.2)

Let L ∈ N be fixed and denote the indicator random variables Im = 1 {Decoding of xm has failed},

m ∈ {1, 2, . . . ,M}. Then, for any t ≥ 0, the Chernoff bound implies that

Pe(Cn) = P{Ne(Cn) ≥ L} (A.3)

≤ e−tL · E

[

exp

{

t ·

M
∑

m=1

Im

}]

(A.4)

= e−tL ·

M
∏

m=1

E [exp {t · Im}] (A.5)

= e−tL ·
M
∏

m=1

(

1− pm(Cn) + pm(Cn)e
t
)

(A.6)

= e−tL · exp

{

M ·
1

M

M
∑

m=1

log
[

1 + (et − 1)pm(Cn)
]

}

(A.7)
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≤ e−tL · exp

{

M · log

[

1 +
1

M

M
∑

m=1

(et − 1)pm(Cn)

]}

(A.8)

= e−tL · exp

{

M · log

[

1 +
µ(Cn)

M
(et − 1)

]}

(A.9)

= exp

{

M · log

[

1 +
µ(Cn)

M
(et − 1)

]

− tL

}

, (A.10)

where (A.8) is due to Jensen’s inequality and the concavity of the log(·) function. Next, we

minimize with respect to t. Let us define the function

f(t) = a · log
[

1 + b · (et − 1)
]

− c · t, (A.11)

whose derivative is given by

f ′(t) = a ·
b · et

1 + b · (et − 1)
− c, (A.12)

and thus, solving f ′(t) = 0 provides

b · et

1− b+ b · et
=

c

a

∆
= d (A.13)

⇔ b · et = d(1 − b) + bd · et (A.14)

⇔ b(1− d) · et = d(1− b) (A.15)

⇔ et =
d(1− b)

b(1− d)
. (A.16)

Now, by substituting b = µ
M and d = L

M , we arrive at

et =
L
M (1− µ

M )
µ
M (1− L

M )
=

L
M (M−µ

M )
µ
M (M−L

M )
=

L(M − µ)

µ(M − L)
, (A.17)

where the right most expression of (A.17) is greater or equal to one as long as L ≥ µ(Cn), and

thus, the minimizer is given by

t∗ = log

[

L(M − µ)

µ(M − L)

]

, (A.18)

for L ≥ µ(Cn), and t∗ = 0 otherwise. In the former case, substituting t∗ back into (A.10)

provides

Pe(Cn) ≤ exp

{

M · log

[

1 +
µ

M

(

L(M − µ)

µ(M − L)
− 1

)]

− L · log

[

L(M − µ)

µ(M − L)

]}

(A.19)

= exp

{

M · log

[

1 +
µ

M
·
M(L− µ)

µ(M − L)

]

− L · log

[

L(M − µ)

µ(M − L)

]}

(A.20)
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= exp

{

M · log

(

1 +
L− µ

M − L

)

− L · log

[

L(M − µ)

µ(M − L)

]}

(A.21)

= exp

{

M · log

(

M − µ

M − L

)

− L · log

(

L

µ

)

− L · log

(

M − µ

M − L

)}

(A.22)

= exp

{

(M − L) · log

(

M − µ

M − L

)

− L · log

(

L

µ

)}

(A.23)

.
= exp

{

M · log
(

1−
µ

M

)

− L · log

(

L

µ

)}

, (A.24)

where the last passage is due to the assumption that L is exponentially smaller than M = enR.

When L < µ(Cn), substituting t∗ = 0 back into (A.10) gives the trivial bound Pe(Cn) ≤ 1.

Hence, we have that

Pe(Cn)

≤ exp

{

M · log

(

1−
µ(Cn)

M

)

− L · log

(

L

µ(Cn)

)}

· 1 {µ(Cn) ≤ L}+ 1 {µ(Cn) > L} (A.25)

.
= exp

{

M · log

(

1−
µ(Cn)

M

)

+ L · log (µ(Cn))

}

· 1 {µ(Cn) ≤ L}+ 1 {µ(Cn) > L} (A.26)

= (µ(Cn))
L ·

(

1−
µ(Cn)

M

)M

· 1 {µ(Cn) ≤ L}+ 1 {µ(Cn) > L} (A.27)

.
= (µ(Cn))

L · exp {−µ(Cn)} · 1 {µ(Cn) ≤ L}+ 1 {µ(Cn) > L} (A.28)

.
= (µ(Cn))

L · 1 {µ(Cn) ≤ L}+ 1 {µ(Cn) > L} (A.29)

≤ min
{

LL, (µ(Cn))
L
}

+ 1 {µ(Cn) > L} . (A.30)

Let us average (A.30) over the ensemble of codebooks. It follows from Jensen’s inequality and

the concavity of the function f(t) = min{A, t} that

E [Pe(Cn)] ≤ E
[

min
{

LL, µ(Cn)
L
}

+ 1 {µ(Cn) > L}
]

(A.31)

≤ min
{

LL,E
[

µ(Cn)
L
]}

+ P {µ(Cn) > L} . (A.32)

Let

Zm(y) =
∑

m̃6=m

exp{ng(P̂xm̃y)}, (A.33)

fix ǫ > 0 arbitrarily small, and for every y ∈ Yn, define the set

Bǫ(m,y) =
{

Cn : Zm(y) ≤ exp{nα(R − ǫ, P̂y)}
}

. (A.34)

Following the result of [8, Appendix B], we know that, considering the ensemble of randomly

selected constant composition codes of type QX ,

P{Bǫ(m,y)} ≤ exp{−enǫ + nǫ+ 1}, (A.35)
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for every m ∈ {1, 2, . . . ,M} and y ∈ Yn, and so, by the union bound,

P







M
⋃

m=1

⋃

y∈Yn

Bǫ(m,y)







∆
= P {Bǫ} ≤

M
∑

m=1

∑

y∈Yn

P {Bǫ(m,y)} (A.36)

≤
M
∑

m=1

∑

y∈Yn

exp{−enǫ + nǫ+ 1} (A.37)

= enR · |Y|n · exp{−enǫ + nǫ+ 1}, (A.38)

which still decays double–exponentially fast.

Now, for the expectation inside the left expression of (A.32), we derive as follows:

E
[

µ(Cn)
L
]

(A.39)

= E















M
∑

m=1

∑

y∈Yn

W (y|xm) ·

∑

m′ 6=m exp{ng(P̂xm′y)}
∑M

m̃=1 exp{ng(P̂xm̃y)}





L










(A.40)

= E















M
∑

m=1

∑

m′ 6=m

∑

y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)





L










(A.41)

·
≤ E















M
∑

m=1

∑

m′ 6=m

∑

y∈Yn

W (y|xm) ·min

{

1,
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ exp{nα(R− ǫ, P̂y)}

}





L










(A.42)

.
= E















M
∑

m=1

∑

m′ 6=m

exp
{

−nΓ(P̂xmxm′ , R − ǫ)
}





L










(A.43)

= E















∑

QX′|X∈Q(QX)

N(QXX′) · exp {−nΓ(QXX′ , R− ǫ)}





L










(A.44)

.
=

∑

QX′|X∈Q(QX)

E

{

[N(QXX′)]L
}

· exp {−nΓ(QXX′ , R− ǫ) · L} . (A.45)

Next, the L–th moment of N(QXX′) is given by [13, Lemma 3]

E

{

[N(QXX′)]L
} ·
≤ exp

{

n ·
(

L ·
[

2R − IQ(X;X ′)
]

+
−
[

IQ(X;X ′)− 2R
]

+

)}

. (A.46)

Substituting it back into (A.45) and then into the left expression in (A.32) provides

min
{

LL,E
[

µ(Cn)
L
]}
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·
≤ min







LL,
∑

QX′|X∈Q(QX)

e
n·
(

L·[2R−IQ(X;X′)]
+
−[IQ(X;X′)−2R]

+

)

· e−nΓ(QXX′ ,R−ǫ)·L







(A.47)

.
= exp {−n · Eub

r (R,L, ǫ)} , (A.48)

where,

Eub
r (R,L, ǫ)

= min
QX′|X∈Q(QX)

[

L · Γ(QXX′ , R− ǫ)− L · [2R− IQ(X;X ′)]+ + [IQ(X;X ′)− 2R]+
]

+
. (A.49)

For the right expression of (A.32), we derive in the following way:

P {µ(Cn) > L} = P







M
∑

m=1

∑

y∈Yn

W (y|xm) ·

∑

m′ 6=m exp{ng(P̂xm′y)}
∑M

m̃=1 exp{ng(P̂xm̃y)}
> L







(A.50)

·
≤ P







M
∑

m=1

∑

m′ 6=m

exp
{

−nΓ(P̂xmxm′ , R− ǫ)
}

> L







(A.51)

≤ P







∑

QX′|X∈Q(QX)

N(QXX′) · exp {−nΓ(QXX′ , R − ǫ)} > 1







(A.52)

.
=

∑

QX′|X∈Q(QX)

P {N(QXX′) > exp {nΓ(QXX′ , R− ǫ)}} (A.53)

.
= max

QX′|X∈Q(QX)
P {N(QXX′) > exp {nΓ(QXX′ , R− ǫ)}} (A.54)

.
= exp

{

−n · Ẽr(R, ǫ)
}

, (A.55)

where it follows from [13, Theorem 3] that

Ẽr(R, ǫ) = min
{QX′|X∈Q(QX): [2R−IQ(X;X′)]+≥Γ(QXX′ ,R−ǫ)}

[

IQ(X;X ′)− 2R
]

+
. (A.56)

As a last step, we prove that for any finite L, Eub
r (R,L, ǫ) is lower or equal to Ẽr(R, ǫ). We first

prove that Eub
r (R,L, ǫ) is monotonically non–decreasing in L. We have that

Eub
r (R,L, ǫ)

= min
QX′|X∈Q(QX)

[

L · Γ(QXX′ , R − ǫ)− L ·
[

2R − IQ(X;X ′)
]

+
+
[

IQ(X;X ′)− 2R
]

+

]

+
(A.57)

= min

{

min
{QX′|X∈Q(QX): IQ(X;X′)≤2R}

L ·
[

Γ(QXX′ , R− ǫ) + IQ(X;X ′)− 2R
]

+
,

min
{QX′|X∈Q(QX): IQ(X;X′)>2R}

[

L · Γ(QXX′ , R− ǫ) + IQ(X;X ′)− 2R
]

+

}

(A.58)

∆
= min {A(L), B(L)} . (A.59)
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Now, the sequence A(L) is trivially non–decreasing, and B(L) is also non–decreasing, since

Γ(QXX′ , R) is non–negative. Hence, Eub
r (R,L, ǫ) is non–decreasing as a minimum between two

non–decreasing sequences. Letting L grow without bound gives

lim
L→∞

Eub
r (R,L, ǫ)

= lim
L→∞

min
QX′|X∈Q(QX)

[

L · Γ(QXX′ , R− ǫ)− L ·
[

2R − IQ(X;X ′)
]

+
+
[

IQ(X;X ′)− 2R
]

+

]

+

(A.60)

= min
{QX′|X∈Q(QX): [2R−IQ(X;X′)]+≥Γ(QXX′ ,R−ǫ)}

[

IQ(X;X ′)− 2R
]

+
(A.61)

= Ẽr(R, ǫ), (A.62)

which proves that Eub
r (R,L, ǫ) ≤ Ẽr(R, ǫ) for any finite L. Thus,

lim
n→∞

−
1

n
logE [Pe(Cn)] ≥ min{Eub

r (R,L, ǫ), Ẽr(R, ǫ)} = Eub
r (R,L, ǫ), (A.63)

which complete the proof of the first part of Theorem 1, due to the arbitrariness of ǫ > 0.

Appendix B

Proof of Eq. (23) of Theorem 1

Recall that the probability of error is given by

Pe(Cn) = P

{

M
∑

m=1

Im ≥ L

}

. (B.1)

Let ǫ > 0 be given. Define the sets

Aǫ(Cn, i) =
{

m : e−niǫ ≤ pm(Cn) ≤ 1
}

, (B.2)

and the enumerators

Nǫ(Cn, i) =

M
∑

m=1

1

{

e−niǫ ≤ pm(Cn) ≤ 1
}

, (B.3)
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where pm(Cn) is the probability of error when message m is transmitted, as given explicitly in

(A.1). Now,

Pe(Cn) = P

{

M
∑

m=1

Im ≥ L

}

(B.4)

= P







∞
⋃

i=1







∑

m∈Aǫ(Cn,i)

Im ≥ L













(B.5)

≥ sup
i∈N

P







∑

m∈Aǫ(Cn,i)

Im ≥ L







. (B.6)

For any i ∈ N and a given codebook Cn, let R(Cn, i) be the exponential rate of the size of

Aǫ(Cn, i), i.e.,

R(Cn, i)
△
=

1

n
logNǫ(Cn, i). (B.7)

The probability in (B.6) can be lower-bounded as follows:

P







∑

m∈Aǫ(Cn,i)

Im ≥ L







≥

enR(Cn,i)
∑

k=L

(

enR(Cn,i)

k

)

(

e−niǫ
)k (

1− e−niǫ
)enR(Cn,i)−k

(B.8)

≥

(

enR(Cn,i)

L

)

(

e−niǫ
)L (

1− e−niǫ
)enR(Cn,i)−L

(B.9)

◦
=

(

enR(Cn,i)

L

)

(

e−niǫ
)L (

1− e−niǫ
)enR(Cn,i)

(B.10)

.
= enR(Cn,i)Le−niǫL

(

1− e−niǫ
)enR(Cn,i)

. (B.11)

As for the third factor in (B.11), we use the fact that log
(

1− e−niǫ
) .
= −e−niǫ, and get

(

1− e−niǫ
)enR(Cn,i)

= exp
{

enR(Cn,i) log
(

1− e−niǫ
)

}

(B.12)

◦
= exp

{

−en(R(Cn ,i)−iǫ)
}

(B.13)

≥
(

1− en(R(Cn,i)−iǫ)
)

1{R(Cn, i) ≤ iǫ}, (B.14)

where (B.14) is due to the fact that for any t ∈ R, e−t ≥ 1 − t. Substituting (B.14) back into

(B.11) yields

Pe(Cn) ≥ sup
i∈N

[

en(R(Cn,i)−iǫ)L ·
(

1− en(R(Cn,i)−iǫ)
)

1{R(Cn, i) ≤ iǫ}
]

(B.15)

≥ sup
i≥R/ǫ

[

en(R(Cn ,i)−iǫ)L ·
(

1− en(R(Cn ,i)−iǫ)
)

1{R(Cn, i) ≤ iǫ}
]

(B.16)
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= sup
i≥R/ǫ

[

en(R(Cn ,i)−iǫ)L ·
(

1− en(R(Cn ,i)−iǫ)
)]

(B.17)

.
= sup

i≥R/ǫ

[

en(R(Cn ,i)−iǫ)L
]

, (B.18)

where (B.17) and (B.18) are due to the fact that R(Cn, i) ≤ R for any i with probability one.

Taking the expectation provides

E{Pe(Cn)} ≥ E

{

sup
i≥R/ǫ

[

en(R(Cn,i)−iǫ)L
]

}

(B.19)

≥ sup
i≥R/ǫ

E
{

e−niǫL ·Nǫ(Cn, i)
L
}

(B.20)

= sup
i≥R/ǫ

e−niǫL · E
{

Nǫ(Cn, i)
L
}

(B.21)

≥ sup
i≥R/ǫ

e−niǫL · (E {Nǫ(Cn, i)})
L , (B.22)

where (B.22) follows from Jensen’s inequality and the convexity of the function f(t) = tL,

L ∈ N. As for the expectation in (B.22), we have

E {Nǫ(Cn, i)} =

M
∑

m=1

P
{

pm(Cn) ≥ e−niǫ
}

. (B.23)

Next, we prove in Appendix C, that the probability in (B.23), which is given explicitly by

P







∑

y∈Yn

W (y|Xm) ·

∑

m′ 6=m exp{ng(P̂Xm′y)}
∑M

m̃=1 exp{ng(P̂Xm̃y)}
≥ e−niǫ







, (B.24)

is lower-bounded as

P
{

pm(Cn) ≥ e−niǫ
} ·
≥ exp{−nE(R, iǫ)}, (B.25)

where

E(R, iǫ) = min
QX′|X∈J (R,iǫ)

[

IQ(X;X ′)−R
]

+
(B.26)

and J (·, ·) is defined by

J (R, s) =
{

QX′|X ∈ Q(QX) :
[

R− IQ(X;X ′)
]

+
≥ Λ(QXX′ , R)− s

}

. (B.27)

Substituting (B.25) back into (B.23) and then into (B.22) yields

E{Pe(Cn)}
·
≥ sup

i≥R/ǫ
e−niǫL ·

(

M
∑

m=1

exp{−nE(R, iǫ)}

)L

(B.28)

= sup
i≥R/ǫ

e−niǫL · exp{−n[E(R, iǫ)−R]L} (B.29)

= sup
i≥R/ǫ

exp{−n[E(R, iǫ) −R+ iǫ]L}. (B.30)
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Finally, since ǫ > 0 is arbitrarily small, we conclude that

lim
n→∞

−
1

n
logE{Pe(Cn)} ≤ inf

s≥R
{[E(R, s)−R+ s]L} . (B.31)

It only remains to simplify the expression on the right-hand-side of (B.31). Let us define

Elb
r (R,L) = inf

s≥R
min

QX′|X∈J (R,s)

{(

[IQ(X;X ′)−R]+ −R+ s
)

· L
}

, (B.32)

such that

Elb
r (R,L)

= inf
s≥R

min
{

QX′|X∈Q(QX),

[R−IQ(X;X′)]+≥Λ(QXX′ ,R)−s

}

{(

[IQ(X;X ′)−R]+ −R+ s
)

· L
}

(B.33)

= min
QX′|X∈Q(QX)

inf
s≥max{R,Λ(QXX′ ,R)−[R−IQ(X;X′)]+}

{(

[IQ(X;X ′)−R]+ −R+ s
)

· L
}

(B.34)

= min
QX′|X∈Q(QX)

{(

[IQ(X;X ′)−R]+ −R+max
{

R,Λ(QXX′ , R)− [R− IQ(X;X ′)]+
})

· L
}

(B.35)

= min
QX′|X∈Q(QX)

L ·max
{

[IQ(X;X ′)−R]+,Λ(QXX′ , R) + IQ(X;X ′)− 2R
}

, (B.36)

which complete the proof of the second part of Theorem 1.

Appendix C

Proof of Eq. (B.25)

For a given m, m′ 6= m, and y ∈ Yn, define

Zmm′(y) =
∑

m̃∈{0,1,...,M−1}\{m,m′}

exp{ng(P̂xm̃y)}. (C.1)

Let δ > 0 and define the set

B̂n(δ,m,m′,y) =
{

Cn : Zmm′(y) ≥ exp{n · (β(R, P̂y) + δ)}
}

, (C.2)

and its complement Ĝn(δ,m,m′,y), where β(R,QY ) is defined as in (17). Let

B̂n(δ,m) =
⋃

m′ 6=m

⋃

y∈Yn

B̂n(δ,m,m′,y), (C.3)

and

Ĝn(δ,m) = B̂c
n(δ,m). (C.4)

26



Let us define the quantity

Λ̃(QXX′ , R, δ) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X
′;Y |X)

+ [max{g(QXY ), β(R,QY ) + δ} − g(QX′Y )]+}, (C.5)

and the type class enumerator

Nm(QX′|X |xm) =
∑

m′ 6=m

1

{

Xm′ ∈ T (QX′|X |xm)
}

. (C.6)

We get the following

P
{

pm(Cn) ≥ e−niǫ
∣

∣Xm = xm

}

= P







∑

m′ 6=m

∑

y∈Yn

W (y|xm)

×
exp{ng(P̂Xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂Xm′y)}+ Zmm′(y)
≥ e−niǫ

∣

∣

∣

∣

∣

Xm = xm

}

(C.7)

≥ P







Cn ∈ Ĝn(δ,m),
∑

m′ 6=m

∑

y∈Yn

W (y|xm)

×
exp{ng(P̂Xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂Xm′y)}+ Zmm′(y)
≥ e−niǫ

∣

∣

∣

∣

∣

Xm = xm

}

(C.8)

≥ P







Cn ∈ Ĝn(δ,m),
∑

m′ 6=m

∑

y∈Yn

W (y|xm)

×
exp{ng(P̂Xm′y)}

exp{ng(P̂xmy)}+ exp{ng(P̂Xm′y)}+ exp{n · [β(R, P̂y) + δ]}
≥ e−niǫ

∣

∣

∣

∣

∣

Xm = xm

}

(C.9)

.
= P







Cn ∈ Ĝn(δ,m),
∑

m′ 6=m

∑

y∈Yn

W (y|xm)

× exp{n · [max{g(P̂xmy), β(R, P̂y) + δ} − g(P̂Xm′y)]+} ≥ e−niǫ
∣

∣

∣Xm = xm

}

(C.10)

.
= P







Cn ∈ Ĝn(δ,m),
∑

m′ 6=m

exp{−n · Λ̃(P̂xmXm′ , R, δ)} ≥ e−niǫ

∣

∣

∣

∣

∣

∣

Xm = xm







(C.11)

= P







Cn ∈ Ĝn(δ,m),
∑

QX′|X∈Q(QX)

Nm(QX′|X |xm) · exp{−n · Λ̃(QXX′ , R, δ)} ≥ e−niǫ

∣

∣

∣

∣

∣

∣

Xm = xm







,

(C.12)
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where (C.7) follows from the definitions of the probability of error and Zmm′(y) in (A.1) and

(C.1), respectively. In (C.8), we lower–bounded by intersecting with the event Cn ∈ Ĝn(δ,m). In

(C.9), the definition of the set Ĝn(δ,m) in (C.4) was used, in (C.10), the exponential equivalence

enB/(enA + enB + enC)
.
= exp{−n · [max{A,C}−B]+}, in (C.11), the method of types and the

definition of Λ̃(QXX′ , R, δ) in (C.5), and in (C.12), the definition of the type class enumerators

Nm(QX′|X |xm) in (C.6).

Next, we simplify the expression of Λ̃(QXX′ , R, δ). First, note that for any Q̂XY with

marginals QX and QY

β(R,QY ) = max
{Q

X̃|Y : Q
X̃
=QX}

{g(QX̃Y ) + [R− IQ(X̃ ;Y )]+} (C.13)

≥ max
{Q

X̃|Y : Q
X̃
=QX}

g(QX̃Y ) (C.14)

≥ g(Q̂XY ). (C.15)

Then,

Λ̃(QXX′ , R, δ)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X
′;Y |X)

+ [max{g(QXY ), β(R,QY ) + δ} − g(QX′Y )]+} (C.16)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X
′;Y |X) + [β(R,QY ) + δ − g(QX′Y )]+} (C.17)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X
′;Y |X) + β(R,QY )− g(QX′Y ) + δ} (C.18)

= Λ(QXX′ , R) + δ, (C.19)

where (C.17) is due to β(R,QY ) ≥ g(QXY ), (C.18) is because β(R,QY ) ≥ g(QX′Y ), and (C.19)

follows the definition in (18). Let us now define

Gn(δ, i,m,xm) =







Cn :
∑

QX′|X∈Q(QX)

Nm(QX′|X |xm) · exp{−n · Λ̃(QXX′ , R, δ)} ≥ e−niǫ







,

(C.20)

such that, continuing from (C.12):

P
{

pm(Cn) ≥ e−niǫ
∣

∣Xm = xm

}

·
≥ P

{

Ĝn(δ,m) ∩ Gn(δ, i,m,xm)
∣

∣

∣Xm = xm

}

(C.21)
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= P







⋂

m′ 6=m

⋂

y∈Yn

Ĝn(δ,m,m′,y)

∣

∣

∣

∣

∣

∣

Gn(δ, i,m,xm),Xm = xm







· P {Gn(δ, i,m,xm)|Xm = xm}

(C.22)

=



1− P







⋃

m′ 6=m

⋃

y∈Yn

B̂n(δ,m,m′,y)

∣

∣

∣

∣

∣

∣

Gn(δ, i,m,xm),Xm = xm









 · P {Gn(δ, i,m,xm)|Xm = xm}

(C.23)

≥



1−
∑

m′ 6=m

∑

y∈Yn

P

{

B̂n(δ,m,m′,y)
∣

∣

∣Gn(δ, i,m,xm),Xm = xm

}



 · P {Gn(δ, i,m,xm)|Xm = xm}

(C.24)

= P {Gn(δ, i,m,xm)|Xm = xm} −
∑

m′ 6=m

∑

y∈Yn

P

{

B̂n(δ,m,m′,y) ∩ Gn(δ, i,m,xm)
∣

∣

∣Xm = xm

}

.

(C.25)

Assessing P{Gn(δ, i,m,xm)|Xm = xm} in (C.25)

Now,

P{Gn(δ, i,m,xm)|Xm = xm}

= P







∑

QX′|X∈Q(QX)

Nm(QX′|X |xm) · exp{−n · (Λ(QXX′ , R) + δ)} ≥ e−niǫ

∣

∣

∣

∣

∣

∣

Xm = xm







(C.26)

.
= P

{

max
QX′|X∈Q(QX)

Nm(QX′|X |xm) · exp{−n · (Λ(QXX′ , R) + δ)} ≥ e−niǫ

∣

∣

∣

∣

∣

Xm = xm

}

(C.27)

= P







⋃

QX′|X∈Q(QX)

{

Nm(QX′|X |xm) ≥ exp{n · (Λ(QXX′ , R)− iǫ+ δ)}
}

∣

∣

∣

∣

∣

∣

Xm = xm







(C.28)

.
=

∑

QX′|X∈Q(QX)

P
{

Nm(QX′|X |xm) ≥ exp{n · (Λ(QXX′ , R)− iǫ+ δ)}
∣

∣Xm = xm

}

(C.29)

.
= max

QX′|X∈Q(QX)
P
{

Nm(QX′|X |xm) ≥ exp {n · (Λ(QXX′ , R)− iǫ+ δ)}
∣

∣Xm = xm

}

, (C.30)

where (C.27) and (C.30) follow by the SME. Since Nm(QX′|X |xm) is a binomial sum of enR− 1

trials and probability of success e−nIQ(X;X′), the last expression decays exponentially with the

following rate function

min
QX′|X∈Q(QX)

{

[IQ(X;X ′)−R]+ [R− IQ(X;X ′)]+ ≥ Λ(QXX′ , R)− iǫ+ δ

∞ [R− IQ(X;X ′)]+ < Λ(QXX′ , R)− iǫ+ δ
(C.31)

= min
{QX′|X∈Q(QX): [R−IQ(X;X′)]+≥Λ(QXX′ ,R)−iǫ+δ}

[

IQ(X;X ′)−R
]

+
(C.32)

≡ E(R, iǫ− δ), (C.33)
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and thus

P{Gn(δ, i,m,xm)|Xm = xm}
.
= exp{−n ·E(R, iǫ− δ)}. (C.34)

Upper–bounding P{B̂n(δ,m,m′,y) ∩ Gn(δ, i,m,xm)|Xm = xm} in (C.25)

Define the type class enumerator

Nm(QX|Y |y) =
∑

m̃6=m

1

{

Xm̃ ∈ T (QX|Y |y)
}

. (C.35)

Then, we have the following

P{B̂n(δ,m,m′,y) ∩ Gn(δ, i,m,xm)|Xm = xm}

= P







∑

m̃∈{1,2,...,M}\{m,m′}

exp{ng(P̂Xm̃y)} ≥ exp{n · (β(R, P̂y) + δ)},

∑

m′′ 6=m

exp{−n · (Λ(P̂xmXm′′ , R) + δ)} ≥ e−niǫ

∣

∣

∣

∣

∣

∣

Xm = xm







(C.36)

≤ P







∑

m̃6=m

exp{ng(P̂Xm̃y)} ≥ exp{n · (β(R, P̂y) + δ)},

∑

m′′ 6=m

exp{−n · (Λ(P̂xmXm′′ , R) + δ)} ≥ e−niǫ

∣

∣

∣

∣

∣

∣

Xm = xm







(C.37)

= P







∑

QX|Y

Nm(QX|Y |y) exp{ng(QXY )} ≥ exp{n · (β(R, P̂y) + δ)},

∑

QX′|X

Nm(QX′|X |xm) exp{−n · (Λ(QXX′ , R) + δ)} ≥ e−niǫ

∣

∣

∣

∣

∣

∣

Xm = xm







(C.38)

.
= P







⋃

QX|Y

{

Nm(QX|Y |y) ≥ en·(β(R,P̂y)−g(QXY )+δ)
}

,

⋃

QX′|X

{

Nm(QX′|X |xm) ≥ en·(Λ(QXX′ ,R)−iǫ+δ)
}

∣

∣

∣

∣

∣

∣

Xm = xm







(C.39)

.
=
∑

QX|Y

∑

QX′|X

P

{

Nm(QX|Y |y)
ℓ ≥ en·(β(R,P̂y)−g(QXY )+δ)·ℓ,

Nm(QX′|X |xm)k ≥ en·(Λ(QXX′ ,R)−iǫ+δ)·k
∣

∣

∣
Xm = xm

}

(C.40)

.
= max

QX|Y

max
QX′|X

P

{

Nm(QX|Y |y)
ℓ ≥ en·(β(R,P̂y)−g(QXY )+δ)·ℓ,
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Nm(QX′|X |xm)k ≥ en·(Λ(QXX′ ,R)−iǫ+δ)·k
∣

∣

∣Xm = xm

}

(C.41)

≤ max
QX|Y

max
QX′|X

P

{

Nm(QX|Y |y)
ℓ ·Nm(QX′|X |xm)k

≥ en·(β(R,P̂y)−g(QXY )+δ)·ℓ · en·(Λ(QXX′ ,R)−iǫ+δ)·k
∣

∣

∣Xm = xm

}

(C.42)

≤ max
QX|Y

max
QX′|X

P

{

Nm(QX|Y |y)
ℓ ·Nm(QX′|X |xm)k

≥ en·([R−IQ(X;Y )]++δ)·ℓ · en·(Λ(QXX′ ,R)−iǫ+δ)·k
∣

∣

∣
Xm = xm

}

, (C.43)

where k and ℓ are arbitrary positive integers. Step (C.42) is due to the fact that P{X ≥ a, Y ≥

b} ≤ P{X · Y ≥ a · b}, under the assumption that a, b are positive. In (C.43), we use the

definition of β(R,QY ) in (17), which implies that β(R,QY ) ≥ g(QXY ) + [R− IQ(X;Y )]+.

It follows from Markov’s inequality that

P

{

Nm(QX|Y |y)
ℓ ·Nm(QX′|X |xm)k ≥ en·([R−IQ(X;Y )]++δ)·ℓ · en·(Λ(QXX′ ,R)−iǫ+δ)·k

∣

∣

∣Xm = xm

}

≤ inf
ℓ∈N

inf
k∈N

E
[

Nm(QX|Y |y)
ℓ ·Nm(QX′|X |xm)k

∣

∣Xm = xm

]

en·([R−IQ(X;Y )]++δ)·ℓ · en·(Λ(QXX′ ,R)−iǫ+δ)·k
, (C.44)

and substituting it back into (C.43) yields

P{B̂n(ǫ,m,m′,y) ∩ Gn(δ, i,m,xm)|Xm = xm}

·
≤ max

QX|Y

max
QX′|X

inf
ℓ∈N

inf
k∈N

E
[

Nm(QX|Y |y)
ℓ ·Nm(QX′|X |xm)k

∣

∣Xm = xm

]

en·([R−IQ(X;Y )]++δ)·ℓ · en·(Λ(QXX′ ,R)−iǫ+δ)·k
. (C.45)

For S ≥ 0, a joint distribution QUV , and an integer j ∈ N, define the following quantity

F (S,QUV , j) =

{

exp{nj (S − IQ(U ;V ))} IQ(U ;V ) < S
exp{n (S − IQ(U ;V ))} IQ(U ;V ) > S

. (C.46)

We use the following proposition:

Proposition 1 Let Nm(QX′|X |xm) and Nm(QX|Y |y) be as in (C.6) and (C.35), respectively.

Then, for any ℓ, k ∈ N,

E

[

Nm(QX|Y |y)
ℓNm(QX′|X |xm)k

∣

∣

∣Xm = xm

] ·
≤ F (R,QXY , ℓ) · F (R,QXX′ , k). (C.47)

Since Proposition 1 is very close in spirit to [13, Proposition 4], we omit the proof. Substituting

the result of Proposition 1 back into (C.45) provides

P{B̂n(δ,m,m′,y) ∩ Gn(δ, i,m,xm)|Xm = xm}

·
≤ max

QX|Y

inf
ℓ∈N

exp{n · (ℓ · [R − IQ(X;Y )]+ − [IQ(X;Y )−R]+)}

exp{n · ([R− IQ(X;Y )]+ + δ) · ℓ}

× max
QX′|X

inf
k∈N

exp{n · (k · [R− IQ(X;X ′)]+ − [IQ(X;X ′)−R]+)}

exp{n · (Λ(QXX′ , R)− iǫ+ δ) · k}
. (C.48)
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As for the left–hand term in (C.48), we have that

−
1

n
log max

QX|Y

inf
ℓ∈N

exp{n · (ℓ · [R− IQ(X;Y )]+ − [IQ(X;Y )−R]+)}

exp{n · ([R − IQ(X;Y )]+ + δ) · ℓ}

= −
1

n
log max

QX|Y

inf
ℓ∈N

exp{−n · ([IQ(X;Y )−R]+ + ℓδ)} (C.49)

= min
QX|Y

sup
ℓ∈N

([IQ(X;Y )−R]+ + ℓδ) (C.50)

= ∞. (C.51)

For the right–hand term in (C.48), we get the following

−
1

n
log max

QX′|X

inf
k∈N

exp{n · (k · [R − IQ(X;X ′)]+ − [IQ(X;X ′)−R]+)}

exp{n · (Λ(QXX′ , R)− iǫ+ δ) · k}

= min
QX′|X

sup
k∈N

(

k ·
(

Λ(QXX′ , R)− iǫ+ δ − [R− IQ(X;X ′)]+
)

+ [IQ(X;X ′)−R]+
)

(C.52)

= min
{QX′|X∈Q(QX): [R−IQ(X;X′)]+≥Λ(QXX′ ,R)−iǫ+δ}

[

IQ(X;X ′)−R
]

+
(C.53)

= E(R, iǫ − δ). (C.54)

Thus,

P{B̂n(δ,m,m′,y) ∩ Gn(δ, i,m,xm)|Xm = xm}
·
≤ e−n∞ · exp{−n ·E(R, iǫ− δ)}. (C.55)

Final Steps

Finally, we continue from (C.25) and use the results of (C.34) and (C.55) to provide

P
{

pm(Cn) ≥ e−niǫ
∣

∣Xm = xm

}

·
≥ P {Gn(δ, i,m,xm)|Xm = xm} −

∑

m′ 6=m

∑

y∈Yn

P

{

B̂n(δ,m,m′,y) ∩ Gn(δ, i,m,xm)
∣

∣

∣
Xm = xm

}

(C.56)
·
≥ exp{−n ·E(R, iǫ − δ)} −

∑

m′ 6=m

∑

y∈Yn

e−n∞ · exp{−n · E(R, iǫ− δ)} (C.57)

.
=
(

1− enR · |Y|n · e−n∞
)

· exp{−n · E(R, iǫ− δ)} (C.58)

.
= exp{−n ·E(R, iǫ − δ)}. (C.59)

Since (C.59) is independent of the specific realization of Xm, it immediately follows that

P
{

pm(Cn) ≥ e−niǫ
} ·
≥ exp{−n ·E(R, iǫ− δ)}, (C.60)

and due to the arbitrariness of δ > 0, we conclude that

P
{

pm(Cn) ≥ e−niǫ
} ·
≥ exp{−n ·E(R, iǫ)}, (C.61)
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which is exactly (B.25).

Appendix D

Proof of Theorem 2

We have proved in (A.30) that

Pe(Cn) ≤ min
{

LL, (µ(Cn))
L
}

+ 1 {µ(Cn) > L} . (D.1)

Note that for every codebook, the first term on the right hand side of (D.1) is at least as large

as the second term, and hence, the right hand side of (D.1) can be further upper–bounded by

Pe(Cn) ≤ 2min
{

LL, (µ(Cn))
L
}

. (D.2)

It follows that

E [log Pe(Cn)]
·
≤ E [min {L log(L), L log (µ(Cn))}] (D.3)

≤ min {L log(L), L · E [log (µ(Cn))]} . (D.4)

In order to derive E [log(µ(Cn))], we note that µ(Cn) is very similar to the probability of error

in ordinary channel coding, which is given by

1

M

M
∑

m=1

∑

m′ 6=m

∑

y∈Yn

W (y|xm) ·
exp{ng(P̂xm′y)}

∑M
m̃=1 exp{ng(P̂xm̃y)}

, (D.5)

and hence, we rely on the derivation in [7, Subsection 5.1] and only provide a proof sketch.

Assessing the 1/ρ–th moment of µ(Cn), for any ρ > 1, we get that

E

{

[µ(Cn)]
1/ρ
} ·
≤

∑

QX′|X∈Q(QX)

E

{

[N(QXX′)]1/ρ
}

· exp {−nΓ(QXX′ , R− ǫ)/ρ} . (D.6)

The 1/ρ–th moment of N(QXX′) is upper-bounded by [7]

E

{

[N(QXX′)]1/ρ
}

≤ exp
{

n ·
(

[2R − IQ(X;X ′)]+/ρ− [IQ(X;X ′)− 2R]+
)}

, (D.7)

and then

lim
ρ→∞

(

E

{

[N(QXX′)]1/ρ
})ρ

≤

{

exp{n · [2R − IQ(X;X ′)]} 2R ≥ IQ(X;X ′)
0 2R < IQ(X;X ′)

. (D.8)
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Substituting it back into (D.6) gives

lim
ρ→∞

(

E

{

[µ(Cn)]
1/ρ
})ρ

·
≤

∑

{QX′|X∈Q(QX): IQ(X;X′)≤2R}

en·[2R−IQ(X;X′)] · exp {−nΓ(QXX′ , R − ǫ)} (D.9)

.
= exp

{

−n · min
{QX′|X∈Q(QX): IQ(X;X′)≤2R}

[

Γ(QXX′ , R− ǫ) + IQ(X;X ′)− 2R
]

}

, (D.10)

and hence, it follows from the identity

E[log µ(Cn)] = lim
ρ→∞

log
(

E[µ(Cn)]
1/ρ
)ρ

(D.11)

that

E [log(µ(Cn))]
·
≤ −n · min

{QX′|X∈Q(QX): IQ(X;X′)≤2R}

[

Γ(QXX′ , R− ǫ) + IQ(X;X ′)− 2R
]

. (D.12)

According to (D.4),

lim
n→∞

−
1

n
E [logPe(Cn)]

≥ lim
n→∞

−
1

n
min {L log(L), L · E [log (µ(Cn))]} (D.13)

= max

{

lim
n→∞

−
1

n
L log(L), lim

n→∞
−
1

n
L · E [log (µ(Cn))]

}

(D.14)

≥ max

{

0, min
{QX′|X∈Q(QX): IQ(X;X′)≤2R}

L ·
[

Γ(QXX′ , R − ǫ) + IQ(X;X ′)− 2R
]

}

(D.15)

= min
{QX′|X∈Q(QX): IQ(X;X′)≤2R}

L ·
[

Γ(QXX′ , R− ǫ) + IQ(X;X ′)− 2R
]

+
, (D.16)

and it follows from the arbitrariness of ǫ > 0 that

lim
n→∞

−
1

n
E [log Pe(Cn)] ≥ Etrc(R,L), (D.17)

which proves Theorem 2.

Appendix E

Proof of Theorem 3

Let us first recall the following result from [8], which provides an expurgated error exponent in

the settings of ordinary channel coding.

34



Theorem 6 (Theorem 2 in [8]) There exists a sequence of constant composition codes, {Cn, n =

1, 2, . . . }, with composition QX , such that

lim inf
n→∞

[

−
1

n
log max

m
pm(Cn)

]

≥ Eex(R,QX), (E.1)

where,

Eex(R,QX) = min
{QX′|X∈Q(QX): IQ(X;X′)≤R}

[

Γ(QXX′ , R) + IQ(X;X ′)−R
]

. (E.2)

Assume that we use this sequence of good constant composition codes. Then, we continue from

(D.2) and arrive at

Pe(Cn)
·
≤ min

{

LL, (µ(Cn))
L
}

(E.3)

= min







LL,

(

M
∑

m=1

pm(Cn)

)L






(E.4)

≤ min







LL,

(

M
∑

m=1

exp {−n · Eex(R,QX)}

)L






(E.5)

= min
{

LL, exp {−n · L · [Eex(R,QX)−R]}
}

(E.6)

= exp
{

−n · L · [Eex(R,QX)−R]+
}

, (E.7)

which proves Theorem 3.

Appendix F

Proof of Theorem 5

Assume that we draw a codebook C0 = {x1,x2, . . . ,xM0}, where xi, i ∈ {1, 2, . . . ,M0}, is drawn

i.i.d. according to PX , and M0 = 2M = enR. Let C(M, C0) be the set of all subsets (codebooks)

of C0 with size M . Denote ξn
△
= |C(M, C0)| =

(

2M
M

)

and let us enumerate the codebooks in

C(M, C0) by m ∈ {1, 2, . . . , ξn} and denote them by Cm
n .

We assume, without loss of generality, that the permutation induced by the channel is the

identity permutation, denoted by π0. The probability of error, associated with Cm
n ∈ C(M, C0)
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is given by

Pe(C
m
n ) =

∑

y1∈Y
n

· · ·
∑

yM∈Yn

M
∏

m=1

W (ym|xm)1{π̂(y1, . . . ,yM ) 6= π0} (F.1)

=
∑

y1∈Y
n

· · ·
∑

yM∈Yn

M
∏

m=1

W (ym|xm)1















⋃

π∈Π(M)
π 6=π0

{

M
∏

m=1

W (ym|xπ(m)) ≥

M
∏

m=1

W (ym|xm)

}















(F.2)

≤
∑

y1∈Y
n

· · ·
∑

yM∈Yn

M
∏

m=1

W (ym|xm)
∑

π∈Π(M)
π 6=π0

√

∏M
m=1 W (ym|xπ(m))

√

∏M
m=1 W (ym|xm)

(F.3)

=
∑

y1∈Y
n

· · ·
∑

yM∈Yn

∑

π∈Π(M)
π 6=π0

√

√

√

√

M
∏

m=1

W (ym|xm)

√

√

√

√

M
∏

m=1

W (ym|xπ(m)) (F.4)

=
∑

y1∈Y
n

· · ·
∑

yM∈Yn

∑

π∈Π(M)
π 6=π0

M
∏

m=1

√

W (ym|xm)W (ym|xπ(m)) (F.5)

=
∑

π∈Π(M)
π 6=π0

M
∏

m=1

∑

ym∈Yn

√

W (ym|xm)W (ym|xπ(m)). (F.6)

Now, raising it to the 1/σ-th power for some σ ≥ 1 and averaging over the codebook yields

E

[

Pe(C
m
n )1/σ

]

≤ E



















∑

π∈Π(M)
π 6=π0

M
∏

m=1

∑

ym∈Yn

√

W (ym|Xm)W (ym|Xπ(m))









1/σ










(F.7)

≤ E









∑

π∈Π(M)
π 6=π0





M
∏

m=1

∑

ym∈Yn

√

W (ym|Xm)W (ym|Xπ(m))





1/σ








(F.8)

=
∑

π∈Π(M)
π 6=π0

E











M
∏

m=1

∑

ym∈Yn

√

W (ym|Xm)W (ym|Xπ(m))





1/σ





(F.9)

△
=

∑

π∈Π(M)
π 6=π0

G(π, σ). (F.10)
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Step 1: The Permutation is a Transposition

Assume, without loss of generality, a permutation with π(1) = 2, π(2) = 1, and π(m) = m,

∀m ≥ 3. Then, we get that

G(π, σ) =







∑

x1∈X

∑

x2∈X

PX(x1)PX(x2)





∑

y1∈Y

√

W (y1|x1)W (y1|x2)





1/σ

×





∑

y2∈Y

√

W (y2|x2)W (y2|x1)





1/σ






n

(F.11)

=





∑

x1∈X

∑

x2∈X

PX(x1)PX(x2) [B(x1, x2)]
2/σ





n

(F.12)

=
(

E

[

B(X1,X2)
2/σ
])n

(F.13)

= [Ξ(σ)]n. (F.14)

Step 2: The Permutation is a Cycle

In this case, assume, without loss of generality, that π(i) = i + 1 for 1 ≤ i ≤ k − 1, π(k) = 1

and π(m) = m, ∀m ≥ k + 1. We have that

G(π, σ) =





∑

x1∈X

· · ·
∑

xk∈X

(

k
∏

i=1

PX(xi)

)

(B(x1, x2)B(x2, x3) · · ·B(xk−1, xk)B(xk, x1))
1/σ





n

(F.15)

=
(

E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−1,Xk)B(Xk,X1))
1/σ
])n

. (F.16)

In order to proceed, observe the following. First, we have that for any x, x′ ∈ X , B(x, x′) ≤ 1,

which follows immediately by the Cauchy–Schwarz inequality. We also have the following result,

which is proved in Appendix G.

Lemma 1 For a symmetric channel and a uniform input distribution,

E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−2,Xk−1)B(Xk−1,Xk))
1/σ
]

= [Ω(σ)]k−1 . (F.17)

37



Let us continue from (F.16) and conclude that

G(π, σ) =
(

E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−1,Xk)B(Xk,X1))
1/σ
])n

(F.18)

≤
(

E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−1,Xk))
1/σ
])n

(F.19)

= [Ω(σ)](k−1)n (F.20)

≤ [Ω(σ)]
2
3
kn , (F.21)

where the last step is due to the fact that Ω(σ) ≤ 1.

Step 3: A Unified Upper Bound for a Transposition and a Cycle

Let us now define

Υ(σ)
△
= min

{

−
1

2
log Ξ(σ),−

2

3
log Ω(σ)

}

. (F.22)

Now, for a transposition:

G(π, σ) = [Ξ(σ)]n (F.23)

= exp {−n [− log Ξ(σ)]} (F.24)

= exp

{

−2n

[

−
1

2
log Ξ(σ)

]}

(F.25)

≤ exp {−2nΥ(σ)} , (F.26)

and for a k-cycle:

G(π, σ) ≤ [Ω(σ)]
2
3
kn (F.27)

= exp

{

−kn

[

−
2

3
log Ω(σ)

]}

(F.28)

≤ exp {−knΥ(σ)} . (F.29)

Step 4: A Composition of Disjoint Cycles

Let i = {i1, i2, . . . , ik} and j = {j1, j2, . . . , jℓ} be two arbitrary disjoint sets of indices of

arbitrary lengths k and ℓ. Assume a permutation π composed by two disjoint cycles defined
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over the sets i and j. Then, it follows from the independence of codewords that

G(π, σ)

=
(

E

[

(B(Xi1 ,Xi2) · · ·B(Xik ,Xi1) ·B(Xj1 ,Xj2) · · ·B(Xjℓ ,Xj1))
1/σ
])n

(F.30)

=
(

E

[

(B(Xi1 ,Xi2) · · ·B(Xik ,Xi1))
1/σ · (B(Xj1 ,Xj2) · · ·B(Xjℓ ,Xj1))

1/σ
])n

(F.31)

=
(

E

[

(B(Xi1 ,Xi2) · · ·B(Xik ,Xi1))
1/σ
]

· E
[

(B(Xj1 ,Xj2) · · ·B(Xjℓ ,Xj1))
1/σ
])n

(F.32)

≤ exp {−knΥ(σ)} · exp {−ℓnΥ(σ)} (F.33)

= exp {−(k + ℓ)nΥ(σ)} . (F.34)

This result can be easily extended by induction to permutations composed by an arbitrary

number of disjoint cycles. Assume such a permutation with c disjoint cycles of arbitrary lengths

{ℓ1, ℓ2, . . . , ℓc}. Denote L = ℓ1 + ℓ2 + . . .+ ℓc. Then, for such a permutation, one arrives at

G(π, σ) ≤ exp {−LnΥ(σ)} . (F.35)

Step 5: Wrapping Up

Let us recall the fact that every permutation is equivalent to a composition of disjoint cycles

[6]. Let Πj(M), j ∈ {2, 3, . . . ,M}, be the set of all permutations where exactly j bees changed

their places. At this point, it is important to notice that the bound in (F.35) holds for any

permutation for which the sum of lengths of all cycles is the same one. Continuing from (F.10),

E

[

Pe(C
m
n )1/σ

]

≤
∑

π∈Π(M)
π 6=π0

G(π, σ) (F.36)

=
∑

π∈Π2(M)

G(π, σ) +
M
∑

j=3

∑

π∈Πj(M)

G(π, σ) (F.37)

≤
∑

π∈Π2(M)

exp {−n[− log Ξ(σ)]} +

M
∑

j=3

∑

π∈Πj(M)

exp {−jnΥ(σ)} (F.38)

≤ M2 exp {−n[− log Ξ(σ)]}+

M
∑

j=3

M j exp {−jnΥ(σ)} (F.39)

= exp {−n[− log Ξ(σ)− 2R]}+
M
∑

j=3

exp {−jn[Υ(σ)−R]} (F.40)

≤ exp {−n[− log Ξ(σ)− 2R]}+

∞
∑

j=3

exp {−jn[Υ(σ)−R]} (F.41)
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= exp {−n[− log Ξ(σ)− 2R]}+
exp {−3n[Υ(σ)−R]}

1− exp {−n[Υ(σ)−R]}
(F.42)

.
= exp {−n[− log Ξ(σ)− 2R]}+ exp {−3n[Υ(σ)−R]} , (F.43)

Where (F.38) follows from (F.35). Note that

exp {−3n[Υ(σ)−R]}

= exp

{

−3nmin

{

−
1

2
log Ξ(σ)−R,−

2

3
log Ω(σ)−R

}}

(F.44)

.
= exp

{

−3n

[

−
1

2
log Ξ(σ)−R

]}

+ exp

{

−3n

[

−
2

3
log Ω(σ)−R

]}

(F.45)

= exp

{

−
3

2
n [− log Ξ(σ)− 2R]

}

+ exp {−n [−2 log Ω(σ)− 3R]} . (F.46)

Substituting it back into (F.43) yields

E

[

Pe(C
m
n )1/σ

] ·
≤ exp {−n[− log Ξ(σ)− 2R]}+ exp

{

−
3

2
n [− log Ξ(σ)− 2R]

}

+ exp {−n [−2 log Ω(σ)− 3R]} (F.47)

.
= exp {−n[− log Ξ(σ)− 2R]}+ exp {−n [−2 log Ω(σ)− 3R]} (F.48)

.
= exp [−n ·min {− log Ξ(σ)− 2R,−2 log Ω(σ)− 3R}] . (F.49)

Let us denote

E(R,σ)
△
= min {− log Ξ(σ)− 2R,−2 log Ω(σ)− 3R} , (F.50)

such that, for every m ∈ {1, 2, . . . , ξn},

E

[

Pe(C
m
n )1/σ

] ·
≤ exp {−n ·E(R,σ)} . (F.51)

Now, according to Markov’s inequality, it follows that

P

{

1

ξn

ξn
∑

m=1

Pe(C
m
n )1/σ > 2 exp {−n ·E(R,σ)}

}

≤
1

2
, (F.52)

which means that there exists a code with

1

ξn

ξn
∑

m=1

Pe(C
m
n )1/σ ≤ 2 exp {−n · E(R,σ)} . (F.53)

We conclude that there exists a code Cn with M codewords for which

Pe(Cn)
1/σ ≤ 2 exp {−n ·E(R,σ)} , (F.54)
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and so

Pe(Cn)
·
≤ exp {−n · σ · E(R,σ)} , (F.55)

thus,

lim inf
n→∞

−
1

n
log Pe(Cn) ≥ σ · E(R,σ). (F.56)

Since it holds for every σ ≥ 1, the negative exponential rate of the error probability can be

bounded as

lim inf
n→∞

−
1

n
log Pe(Cn) ≥ sup

σ≥1
{σ ·E(R,σ)} , (F.57)

and the proof of Theorem 5 is now complete.

Appendix G

Proof of Lemma 1

First, note that

E

[

B(X,X ′)1/σ
∣

∣

∣
X
]

=
∑

x′∈X

PX(x′)





∑

y∈Y

√

W (y|X)W (y|x′)





1/σ

(G.1)

has the same value for every realization of X, thanks to the symmetry of the channel and the

fact that PX is uniform across X . Averaging the right-hand-side of (G.1) yields

E

[

B(X,X ′)1/σ
∣

∣

∣X
]

=
∑

x∈X

∑

x′∈X

PX(x)PX(x′)





∑

y∈Y

√

W (y|x)W (y|x′)





1/σ

(G.2)

=
∑

x∈X

∑

x′∈X

PX(x)PX(x′)B(x, x′)1/σ (G.3)

= Ω(σ), (G.4)

hence, it follows that E
[

B(X,X ′)1/σ
]

= Ω(σ) as well. Now,

E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−2,Xk−1)B(Xk−1,Xk))
1/σ
]

= E

[

E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−2,Xk−1)B(Xk−1,Xk))
1/σ
∣

∣

∣
X1, . . . ,Xk−1

]]

(G.5)

= E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−2,Xk−1))
1/σ · E

[

B(Xk−1,Xk)
1/σ
∣

∣

∣X1, . . . ,Xk−1

]]

(G.6)
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= E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−2,Xk−1))
1/σ · E

[

B(Xk−1,Xk)
1/σ
∣

∣

∣Xk−1

]]

(G.7)

= E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−2,Xk−1))
1/σ · Ω(σ)

]

(G.8)

= E

[

(B(X1,X2)B(X2,X3) · · ·B(Xk−2,Xk−1))
1/σ
]

· Ω(σ), (G.9)

which proves the lemma upon repeating this process k − 1 times.
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