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Achievability Performance Bounds for

Integer-Forcing Source Coding
Elad Domanovitz and Uri Erez

Abstract

Integer-forcing source coding has been proposed as a low-complexity method for compression of distributed correlated
Gaussian sources. In this scheme, each encoder quantizes its observation using the same fine lattice and reduces the result
modulo a coarse lattice. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank
set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. It has been observed that the
method works very well for “most” but not all source covariance matrices. The present work quantifies the measure of bad
covariance matrices by studying the probability that integer-forcing source coding fails as a function of the allocated rate, where
the probability is with respect to a random orthonormal transformation that is applied to the sources prior to quantization. For
the important case where the signals to be compressed correspond to the antenna inputs of relays in an i.i.d. Rayleigh fading
environment, this orthonormal transformation can be viewed as being performed by nature. The scheme is also studied in the
context of a non-distributed system. Here, the goal is to arrive at a universal, yet practical, compression method using equal-rate
quantizers with provable performance guarantees. The scheme is universal in the sense that the covariance matrix need only be
learned at the decoder but not at the encoder. The goal is accomplished by replacing the random orthonormal transformation by
transformations corresponding to number-theoretic space-time codes.

I. INTRODUCTION

Integer-forcing (IF) source coding, proposed in [1], is a scheme for distributed lossy compression of correlated Gaussian

sources under a minimum mean squared error distortion measure. Similar to its channel coding counterpart, in this scheme, all

encoders use the same nested lattice codebook. Each encoder quantizes its observation using the fine lattice as a quantizer and

reduces the result modulo the coarse lattice, which plays the role of binning. Rather than directly recovering the individual

quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized

signals, and then inverts it. An appealing feature of integer-forcing source coding, not shared by previously proposed practical

methods (e.g., Wyner-Ziv coding) for the distributed source coding problem, is its inherent symmetry, supporting equal distortion

and quantization rates. A potential application of IF source coding is to distributed compression of signals received at several

relays as suggested in [1] and further explored in [2].

Similar to IF channel coding, IF source coding works well for “most” but not all Gaussian vector sources. Following

the approach of [3], in the present work we quantify the measure of bad source covariance matrices by considering a

randomized version of IF source coding where a random orthogonal transformation is applied to the sources prior to quantization.

Specifically, we derive bounds on the worst-case (with respect to a compound class of Gaussian sources) outage probability

when the precoding matrices are drawn from the circular real ensemble (CRE); that is, they are uniformly distributed with

respect to the Haar measure. While in general such a transformation implies joint processing at the encoders, we note that

in some natural scenarios, including that of distributed compression of signals received at relays in an i.i.d. Rayleigh fading

environment, the random transformation is actually performed by nature.1 In fact, it was already empirically observed in [1]

that IF source coding performs very well in the latter scenario.

We then consider the performance of IF source coding when used in conjunction with judiciously chosen (deterministic)

unitary precoding. Such precoding requires joint processing of the different sources prior to quantization and is thus precluded

in a distributed setting. Nonetheless, the scheme has an important advantage with respect to traditional centralized source coding

of correlated sources. Whereas the traditional approach requires utilizing the statistical characterization of the source at the

encoder side, e.g., via the application of appropriate transform coding, the considered compression scheme, in contrast, applies

a universal transformation, i.e., a transformation that is independent of the source statistics. Furthermore, no bit loading is

needed. That is, the components of the output of the transformation are all quantized at the same rate and hence the operation of

the encoder does not depend on the source statistics. This characteristic may be advantageous in scenarios where the complexity

of the encoder should be kept to a minimum whereas larger computational resources are available in the reconstruction stage

where of course knowledge of the statistics of the source has to be obtained and utilized in some manner. We refer the reader to
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1This follows since the left and right singular vector matrices of an i.i.d. Gaussian matrix K are equal to the eigenvector matrices of the Wishart ensembles

KKT and KTK, respectively. The latter are known to be uniformly (Haar) distributed. See, e.g., Chapter 4.6 in [4].

http://arxiv.org/abs/1712.05431v2


2

[5] which describes a practical method by which the decoder may estimate the statistics of the source from the modulo-reduced

quantized samples, whereas the encoder may remain oblivious to the source statistics.

For such a centralized application of IF source coding, we are able to derive stronger performance guarantees than those

we derive for the distributed setting. Namely, in the centralized setting, we show that by employing transformations derived

from algebraic number-theoretic constructions, successful source reconstruction can be guaranteed for any Gaussian source in

the considered compound class. Thus, we need not allow for outage events. For general Gaussian sources, such guarantees

require performing precoding jointly over space and time. In contrast, for the case of parallel (independent) Gaussian sources

with different variances, space-only precoding suffices. This distinction closely mirrors the well-known results concerning

transformations for achieving maximal diversity for communication over fading channels, as described in [6].

The rest of this paper is organized as follows. Section II formulates the problem of distributed compression of Gaussian

sources in a compound vector source setting and provides some relevant background on IF source coding. Section III describes

randomly precoded IF source coding and its empirical performance. Section IV derives upper bounds on the probability of

failure of randomly-precoded IF as a function of the excess rate. In Section V, deterministic linear precoding is considered. A

bound on the worst-case necessary excess rate is derived for any number of sources with any correlation matrix when space-

time precoding derived from non-vanishing determinant codes is used. Further, we show that this bound can be significantly

tightened for the case of uncorrelated sources.

II. PROBLEM FORMULATION AND BACKGROUND

In this section we provide the problem formulation and briefly recall the achievable rates of IF source coding as developed

in [1]. We refer the reader to the latter for an introduction and overview of IF source coding.

A. Distributed Compression of Gaussian Sources

We start by recalling the classical problem of distributed lossy compression of jointly Gaussian real random variables under

a quadratic distortion measure. Specifically, we consider a distributed source coding setting with K encoding terminals and

one decoder. Each of the K encoders has access to a vector of n i.i.d. realizations of the random variable xk, k = 1, ...,K .2

The random vector x = (x1, . . . , xK)T (corresponding to the different sources) is assumed to be Gaussian with zero mean

and covariance matrix Kxx , E
(
xx

T
)
.

Each encoder maps its observation xk to an index using the encoding function

Ek : Rn →
{
1, ..., 2nRk

}
, (1)

and sends the index to the decoder.

The decoder is equipped with K decoding functions

Dk :
{
1, ..., 2nR1

}
× · · · ×

{
1, ..., 2nRK

}
→ Rn, (2)

where k = 1, ...,K . Upon receiving K indices, one from each terminal, it generates the estimates

x̂k = Dk (E1(x1), ..., EK(xK)) , k = 1, ...,K. (3)

A rate-distortion vector (R1, ..., RK ; d1, ..., dK) is achievable if there exist encoding functions, E1, ..., EK , and decoding

functions, D1, ...,DK , such that 1
nE
(
‖xk − x̂k‖2

)
≤ dk, for all k = 1, ...,K .

We focus on the symmetric case where d1 = · · · = dK = d and R1 = · · · = RK = R/K where we denote the sum rate

by R. The best known achievable scheme (for this symmetric setting; see [1], Section I) is that of Berger and Tung [7], for

which the following (in general, suboptimal) sum rate is achievable

K∑

k=1

Rk ≥ 1

2
log det

(

I+
1

d
Kxx

)

, RBT. (4)

As shown in [1], RBT is a lower bound on the achievable rate of IF source coding. We will refer to RBT as the Berger-Tung

benchmark. To simplify notation, we note that d can be “absorbed” into Kxx. Hence, without loss of generality, we assume

throughout that d = 1.

B. Compound Source Model And Scheme Outage Formulation

Consider distributed lossy compression of a vector of Gaussian sources

x ∼ N (0,Kxx). (5)

2The time axis will be suppressed in the sequel and vector notation will be reserved to describe samples taken from different sources.



3

We define the following compound class of Gaussian sources, having the same value of RBT, via their covariance matrix:

K(RBT) =

{

Kxx ∈ RK×K :
1

2
log det (I+Kxx) = RBT

}

. (6)

We quantify the measure of the set of source covariance matrices by considering outage events, i.e., those events (sources)

where integer forcing fails to achieve the desired level of distortion even though the rate exceeds RBT. More broadly, for a given

quantization scheme, denote the necessary rate to achieve d = 1 for a given covariance matrix Kxx as Rscheme(Kxx). Then,

given a target rate R > RBT and a covariance matrix Kxx ∈ K(RBT), a scheme outage occurs when Rscheme(Kxx) > R.

To quantify the measure of “bad” covariance matrices, we follow [3] and apply a random orthonormal precoding matrix to

the (vector of) source samples prior to encoding. As mentioned above, this amounts to joint processing of the samples and

hence the problem is no longer distributed in general. Nonetheless, as in the scenario described in Section IV-A, in certain

statistical settings, this precoding operation is redundant as it can be viewed as being performed by nature.

Applying a precoding matrix to the source vector, we obtain a transformed source vector

x̃ = Px, (7)

with covariance matrix

Kx̃x̃ = PKxxP
T . (8)

It follows that the achievable rate of a quantization scheme for the precoded source is Rscheme(Kx̃x̃). When P is drawn at

random, the latter rate is also random. The worst-case (WC) scheme outage probability is defined in turn as

PWC
out,scheme (RBT,∆R)

= sup
Kxx∈K(RBT)

Pr (Rscheme(Kx̃x̃) > RBT +∆R) , (9)

where the probability is over the ensemble of precoding matrices considered and ∆R is the gap to the Berger-Tung benchmark.

In the sequel, we quantify the tradeoff between the quantization rate R (or equivalently, between the excess rate ∆R =
R−RBT) and the outage probability PWC

out,IF (RBT,∆R) as defined in (9).

C. Integer-Forcing Source Coding

In a manner similar to IF equalization for channel coding, IF can be applied to the problem of distributed lossy compression.

The approach is based on standard quantization followed by lattice-based binning. However, in the IF framework, the decoder

first uses the bin indices for recovering linear combinations with integer coefficients of the quantized signals, and only then

recovers the quantized signals themselves.

For our purposes, it suffices to state only the achievable sum rate of IF source coding. We refer the reader to [1] for the

derivation and proofs.

Theorem 1 ( [1], Theorem 1). For any distortion d > 0 and any full-rank integer matrix A = [a1 · · · aK ]T ∈ ZK×K , there

exists a (sequence of) nested lattice pair(s) Λ ∈ Λf such that IF source coding can achieve any sum rate satisfying

R > RIF(Kxx, d;A) ,
K

2
log

(

max
k=1,...,K

a
T
k

(

I+
1

d
Kxx

)

ak

)

(10)

We further note that this sum rate is achieved via symmetric rate allocation, i.e., by allocating Rk = RIF(Kxx, d;A)/K
bits to each of the K encoders. Since we assume d = 1, it follows that IF source coding can achieve any (sum) rate satisfying

R > Ropt
IF (Kxx)

, RIF(Kxx;A
opt)

=
K

2
log



 min
A∈Z

K×K

detA6=0

max
k=1,...,K

a
T
k (I+Kxx)ak



 , (11)

where a
T
k is the kth row of the integer matrix A.

The matrix I+Kxx is symmetric and positive definite, and therefore it admits a Cholesky decomposition

I+Kxx = FF
T . (12)

With this notation, we have

Ropt
IF (Kxx) =

K

2
log



 min
A∈Z

K×K

detA6=0

max
k=1,...,K

‖FT
ak‖2



 . (13)
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Denote by Λ(FT ) the K-dimensional lattice spanned by the matrix F
T , i.e.,

Λ(FT ) ,
{
F

T
a : a ∈ ZK

}
. (14)

Then the problem of finding the optimal matrix A is equivalent to finding the shortest set of K linearly independent vectors in

Λ(FT ). In other words, the rate per encoder achieved by IF source coding can be expressed using the kth successive minimum

of the lattice Λ(FT ), where we recall that in general, for a full-rank K ×K matrix G:

Definition 1. (successive minima) Let Λ(G) be a lattice spanned by the full-rank matrix G ∈ RK×K . For k = 1, ...,K , we

define the k’th successive minimum as

λk(G) , inf {r : dim (span (Λ(G) ∩ BK(r))) ≥ k} (15)

where BK(r) =
{
x ∈ RK : ‖x‖ ≤ r

}
is the closed ball of radius r around 0. In words, the k-th successive minimum of a

lattice is the minimal radius of a ball centered around 0 that contains k linearly independent lattice points.

Thus, (13) can be restated as saying that IF source coding can achieve any rate greater than

Ropt
IF (Kxx) =

K

2
log
(
λ2
K(FT )

)
. (16)

Just as successive interference cancellation significantly improves the achievable rate of IF equalization in channel coding

(see, e.g., [8]), an analogous scheme can be implemented in the case of IF source coding. Specifically, for a given full-rank

integer matrix A, let L be defined by the Cholesky decomposition

A (I+Kxx)A
T = LL

T (17)

and denote the mth element of the diagonal of L by ℓm,m. Then, as shown in [9] and [10], the achievable rate of successive

IF source coding (which we denote as IF-SUC) for this choice of A is given by

RIF−SUC(Kxx;A) = K · max
k=1,...,K

RIF−SUC,k(Kxx;A), (18)

where

RIF−SUC,k(Kxx;A) =
1

2
log
(
ℓ2k,k

)
. (19)

We refer the reader to pages 36-37 in [9] for details. Finally, by optimizing over the choice of A, we obtain

Ropt
IF−SUC(Kxx) , RIF−SUC(Kxx;A

opt
SUC)

= min
A∈Z

K×K

detA6=0

RIF−SUC(Kxx;A). (20)

While the gap between RIF (and even more so RIF−SUC) and RBT is quite small for most covariance matrices, it can

nevertheless be arbitrarily large. We next quantify the measure of bad covariance matrices by considering randomly-precoded

IF source coding.

III. CRE-PRECODED IF SOURCE CODING AND ITS EMPIRICAL PERFORMANCE

Recalling (11), and with a slight abuse of notation, the rate of IF source coding for a given precoding matrix P is denoted

by

Ropt
IF (Kxx,P) , Ropt

IF (PKxxP
T )

=
K

2
log



 min
A∈Z

K×K

detA6=0

max
k=1,...,K

a
T
k

(
I+PKxxP

T
)
ak



 . (21)

Since Kxx is symmetric, it allows orthonormal diagonalization

I+Kxx = UDU
T . (22)

When unitary precoding is applied, we have

I+PKxxP
T = PUDU

T
P

T . (23)

To quantify the measure of “bad” sources, we consider precoding matrices that are uniformly (Haar) distributed over the

group of orthonormal matrices. Such a matrix ensemble is referred to as CRE and is defined by the unique distribution on

orthonormal matrices that is invariant under left and right orthonornal transformations [11]. That is, given a random matrix P

drawn from the CRE, for any orthonormal matrix Ù, both PÙ and ÙP are equal in distribution to P. Since PU
T is equal
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in distribution to P for CRE precoding, for the sake of computing outage probabilities, we may simply assume that UT (and

also U) is drawn from the CRE.

For a specific choice of integer vector ak, we define (again, with a slight abuse of notation)

RIF(D,U; ak) ,
1

2
log
(
a
T
k UDU

T
ak

)

=
1

2
log
(

‖D1/2
U

T
ak‖2

)

, (24)

and correspondingly

Ropt
IF (D,U) ,

K

2
log



 min
A∈Z

K×K

detA6=0

max
k=1,...,K

‖D1/2
U

T
ak‖2



 . (25)

Let Λ be the lattice spanned by G = D
1/2

U
T . Then (25) may be rewritten as

Ropt
IF (D,U) =

K

2
log
(
λ2
K(Λ)

)
. (26)

Let us denote the set of all diagonal matrices having the same value of RBT, i.e.,

D(RBT,K) = {D : det (D) = 22RBT}. (27)

We may thus rewrite the worst-case outage probability of IF source coding, defined in (9), as

PWC
out,IF (RBT,∆R)

= sup
D∈D(RBT,K)

Pr
(
Ropt

IF (D,U) > RBT +∆R
)
, (28)

where the probability is with respect to the random selection of U that is drawn from the CRE.

To illustrate the worst-case performance of CRE-precoded IF, we present its empirical performance for the case of a two-

dimensional compound Gaussian source vector, where the outage probability (28) is computed via Monte-Carlo simulation.

Figure 1 depicts the results for different values of RBT. Rather than plotting the worst-case outage probability, its complement

is depicted, i.e., we plot the probability that the rate of IF falls below RBT +∆R. As can be seen from the figure, the WC

outage probability (as a function of ∆R) converges to a limiting curve as RBT increases.
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Fig. 1. Empirical results for (the complement of) the worst-case outage probability of IF source coding when applied to a two-dimensional compound Gaussian
source vector as a function of ∆R, for various values of RBT.
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Figure 2 depicts the results for the single (high) rate RBT = 16. The required compression rate required to support a given

worst-case outage probability constraint is marked, for several outage probabilities. We observe that:

• For 10% worst-case outage probability, a gap of ∆R = 3.292 bits (or 1.646 bits per source) is required.

• For 5% worst-case outage probability, a gap of ∆R = 4.293 bits (or 2.1465 bits per source) is required.

• For 1% worst-case outage probability, a gap of ∆R = 6.665 bits (or 3.3325 bits per source) is required.
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Fig. 2. Zoom in on the empirical worst-case outage probability for a two-dimensional compound Gaussian source vector with RBT = 16.

IV. UPPER BOUNDS ON THE OUTAGE PROBABILITY FOR CRE-PRECODED INTEGER-FORCING SOURCE CODING

In this section we develop achievability bounds for randomly-precoded IF source coding. As the derivation is very much

along the lines of the results for the analogous problem in channel coding as developed in [3], we refer to results from the

latter in many points.

The next lemma provides an upper bound on the outage probability of precoded IF source coding as a function of RBT and

the rate gap ∆R (as well as the number of sources and dmax defined below). Denote

A(β, δ,K) =

{

a ∈ ZK : 0 < ‖a‖ <

√

β

δ

}

. (29)

Lemma 1. For any K Gaussian sources such that D ∈ D(RBT,K), and for U drawn from the CRE, we have

Pr
(
Ropt

IF (D,U) < RBT +∆R
)

≤
∑

a∈A(β,1/dmax,K)

Kα(K)
K−1

2 2−
K−1

K (RBT+∆R)

‖a‖K−1

2RBT

√
dmax

(30)

where dmax = max
i

Di,i, the set A(β, 1/dmax,K) is defined in (29), and where α(K) is defined in (35) below.

Proof. Let Λ∗ denote the dual lattice of Λ and note that it is spanned by the matrix

(GT )−1 = D
−1/2

U
T . (31)

The successive minima of Λ and Λ∗ are related by (Theorem 2.4 in [12])

λ1(Λ
∗)2λK(Λ)2 ≤ K + 3

4
γ̄2
K , (32)

where

γ̄K = max{γi : 1 ≤ i ≤ K} (33)
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with γK denoting Hermite’s constant.

The tightest known bound for Hermite’s constant, as derived in [13], is

γK ≤
(
2

π

)

Γ

(

2 +
K

2

)2/K

. (34)

Since this is an increasing function of K , it follows that γ̄K is smaller than the r.h.s. of (34). Combining the latter with the

exact values of the Hermite constant for dimensions for which it is known, we define

α(K) =

{
K+3
4 γ2

K , K = 1− 8, 24
K+3
4

2
πΓ
(
2 + K

2

)2/K
, otherwise

. (35)

Therefore, we may bound the achievable rates of IF via the dual lattice as follows

Ropt
IF (D,U) ≤ K

2
log

(

α(K)
1

λ1(Λ∗)2

)

. (36)

Hence, we have

Pr
(
Ropt

IF (D,U) > RBT +∆R
)

≤ Pr

(
K

2
log

(

α(K)
1

λ1(Λ∗)2

)

> RBT +∆R

)

= Pr
(

λ1(Λ
∗)2 < α(K)2−

2

K (RBT+∆R)
)

. (37)

Denote

β = α(K)2−
2

K
(RBT+∆R). (38)

We wish to bound (37), or equivalently, we wish to bound

Pr
(
λ2
1(Λ

∗) < β
)
= Pr

(

λ1(Λ
∗) <

√

β
)

(39)

for a given matrix D ∈ D(RBT,K). Note that the event λ1(Λ
∗) <

√
β is equivalent to the event

⋃

a∈ZK\{0}
||D−1/2

U
T
a|| <

√

β. (40)

Applying the union bound yields

Pr
(

λ1(Λ
∗) <

√

β
)

≤
∑

a∈ZK\{0}
Pr
(

||D−1/2
U

T
a|| <

√

β
)

. (41)

Note that whenever
||a||√
dmax

≥ √
β, we have

Pr
(

||D−1/2
U

T
a|| <

√

β
)

= 0. (42)

Therefore, substituting 1/dmax in (29), the set of relevant vectors a is

A(β, 1/dmax,K) =
{

a ∈ ZK : 0 < ||a|| <
√

βdmax

}

. (43)

It follows from (41) and (42) that

Pr
(

λ1(Λ
∗) <

√

β
)

≤
∑

a∈A(β,1/dmax,K)

Pr
(

‖D−1/2
U

T
a‖ <

√

β
)

. (44)

The rest of the proof follows the footsteps of Lemma 2 in [3] and is given in Appendix A.

While Lemma 1 provides an explicit bound on the outage probability, in order to calculate it, one needs to go over all diagonal

matrices in D(RBT,K) and for each such diagonal matrix, sum over all the relevant integer vectors in A(β, 1/dmax,K). Hence,

the bound can be evaluated only for moderate compression rates and for a small number of sources. The following theorem,

that may be viewed as the counterpart of Theorem 1 in [3], provides a looser, yet very simple closed-form bound. Another

advantage for this bound is that it does not depend on the Berger-Tung achievable rate.

Theorem 2. For any K sources such that D ∈ D(RBT,K), and for U drawn from the CRE we have

Pr
(
Ropt

IF (D,U) > RBT +∆R
)
≤ c(K)2−∆R, (45)
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where

c(K) = Kα(K)
K
2 (K + cmax)

πK/2

Γ(K/2 + 1)
, (46)

α(K) =
K + 3

4

2

π
Γ

(

2 +
K

2

)2/K

(47)

and

cmax =







(

2 +
√
K
2

)K

−
(

1−
√
K
2

)K

1 ≤ K < 4
(

1 +
√
K
)K

K ≥ 4
. (48)

Note that c(K) is a constant that depends only on the number of sources K .

Proof. See Appendix B.

Similarly to the case of IF channel coding (cf., Section IV-C in [3]), analyzing Theorem 2 reveals that there are two main

sources for looseness that may be further tightened:

• Union bound - While there is an inherent loss in the union bound, in fact, some terms in the summation (44) may be

completely dropped.3 Specifically, using Corollary 1 in [3], the set A(β, 1/dmax,K) appearing in the summation in (1)

may be replaced by the smaller set B(β, 1/dmax,K) where

B(β, d,K) =
{

a ∈ ZK : 0 < ‖a‖ <

√

β

d
and ∄0 < c < 1 s.t. ca ∈ ZK

}

. (49)

• Dual Lattice - Bounding via the dual lattice induces a loss reflected in (32). This may be circumvented for the case of a

two-dimensional source vector by using IF-SUC, as accomplished in Lemma 2 and Theorem 3 which we present next.

Lemma 2. For a two-dimensional Gaussian source vector such that D ∈ D(RBT,K), and for U drawn from the CRE, we

have

Pr
(
Ropt

IF−SUC(D,U) > RBT +∆R
)

≤
∑

a∈B(β,dmin,K)

2
√
β

‖a‖2RBT
1√
dmin

(50)

where dmin = min
i

Di,i and A(β, dmin,K) is defined in (29),

Proof. See Appendix C.

Theorem 3. For a two-dimensional Gaussian source vector such that D ∈ D(RBT,K), and for U drawn from the CRE, we

have

Pr
(
Ropt

IF−SUC(D,U) > RBT +∆R
)
≤ c′(K)2−∆R, (51)

where

c′(K) = 2π
(

5 + 3
√
2
)

. (52)

Proof. See Appendix C.

Figure 3 depicts the bounds derived as well as results of a Monte Carlo evaluation of (9) for the case of a two-dimensional

Gaussian and CRE precoding.4 When calculating the empirical curves and the lemmas, we assumed high quantization rates

(RBT = 14). The lemmas were calculated by going over a grid of values of d1 and d2 satisfying d1d2 = 22·14.

3Similar to the derivation in Section IV-C in [3], a simple factor of 2 can be deduced (regardless of the rate and number of sources) by noting that a and
−a result in the same outcome and hence there is no need to account for both cases.

4The bounds are computed after applying a factor of 2 to the lemmas in accordance to footnote 3. Again, rather than plotting the worst-case outage
probability, we plot its complement.
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Fig. 3. Upper bounds on the outage probability of IF source coding for various values of source dimension K .
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Fig. 4. Cloud radio access network communication scenario. Two relays compress and forward the correlated signals they receive from several users.

A. Application: Distributed Compression for Cloud Radio Access Networks

Since we described IF source coding as well as the precoding over the reals, we outline the application of IF source coding

for the cloud radio access network (C-RAN) scenario assuming a real channel model. We then comment on the adaptation of

the scheme to the more realistic scenario of a complex channel.

Consider the C-RAN scenario depicted in Figure 4 where M transmitters send their data (that is modeled as an i.i.d. Gaussian

source vector) over a K ×M MIMO broadcast channel H ∈ RK×M . The data is received at K receivers (relays) that wish

to compress and forward it for processing (decoding) at a central node via rate-constrained noiseless bit pipes.

As we wish to minimize the distortion at the central node subject to the rate constraints, this is a distributed lossy source

coding problem. See depiction in Figure 4.

Here, the covariance matrix of the received signals at the relays is given by

Kxx = SNRHH
T + I. (53)
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We note that we can “absorb” the SNR into the channel and hence we set SNR = 1, so that

Kxx = HH
T + I. (54)

We further assume that the entries of the channel matrix H are Gaussian i.i.d., i.e. ∀i,jHi,j ∼ N (0, σ2). As mentioned in the

introduction, the SVD of this matrix

H = ŨΣ̃Ṽ
T (55)

satisfies that Ũ and Ṽ belong to the CRE. We may therefore express the (random) covariance matrix as

Kxx = Ũ(Σ̃+ I)(Σ̃+ I)T ŨT , (56)

where Ũ is drawn from the CRE. It follows that the precoding matrix P is redundant (as we assumed that P is also drawn

from the CRE). Thus, the analysis above holds also for the considered scenario.

Specifically, assuming the encoders are subject to an equal rate constraint, then for a given distortion level, the relation

between the compression rate of IF source coding and the guaranteed outage probability (for meeting the prescribed distortion)

is bounded using Theorem 2 above.

We note that just as precoded IF channel coding can be applied to complex channels as described in [3], so can precoded

IF source coding be extended to complex Gaussian sources. In describing an outage event in this case we assume that the

precoding matrix is drawn from the circular unitary ensemble (CUE). The bounds derived above (replacing K with 2K in

all derivations) for the relation between the compression rate of IF source coding and the worst-case outage probability hold

for the C-RAN scenario over complex Gaussian channels H ∈ CK×M , where the CUE precoding can be viewed as been

performed by nature.

V. PERFORMANCE GUARANTEES FOR INTEGER-FORCING SOURCE CODING WITH DETERMINISTIC PRECODING

In this section, we consider the performance of IF source coding when used in conjunction with judiciously chosen

(deterministic) precoding. Worst-case performance will be measured in a stricter sense than in previous sections; namely,

no outage is allowed. We begin by establishing an additive bound applicable for general Gaussian sources, in the form of a

constant gap from the Berger-Tang benchmark. Similar to the bound established in [14] for IF channel coding (specifically,

Theorem 5 in the latter), the derived gap depends only on the number of sources and the properties of the non-vanishing

code which is used as the underlying universal transformation. We note that the derived bound on the gap is even larger than

that in the channel coding counterpart and thus its applicability is limited. The reason for the difference in the derived gap

is that unlike in the bound of [14], we were unable to use the transference theorem of Banaszczyk [15] and thus resorted to

Minkowski’s theorem (as recalled in Appendix C, Theorem 6).

Then, in Section V-B, we consider the special case of independent Gaussian sources having different variances. Here, we use

a very different approach for analysis, by which we are able to establish a much tighter bound on the gap to the Berger-Tung

benchmark. The derived performance guarantees are tight enough to be useful in practical scenarios, at least for a small number

sources.

A. Additive Bound for General Sources

Similar to the case of channel coding, we can derive a worst-case additive bound for the gap to the Berger-Tung benchmark.

Achieving this guaranteed performance requires joint algebraic number-theoretic based space-time precoding at the encoders.

The following theorem is due to Or Ordentlich [16].

Theorem 4 (Ordentlich). For any K sources with covariance matrix Kxx and Berger-Tung benchmark RBT, the excess rate

with respect to the Berger-Tung benchmark (normalized per the number of time-extensions used) of space-time IF source coding

with an NVD precoding matrix with minimum determinant δmin is bounded by

RIF −RBT ≤ 2K3 log(2K2) +K2 log
1

δmin
. (57)

Proof. See Appendix D.

We note that the gap to the Berger-Tung benchmark is large (even larger than the one derived for channel coding IF in [14])

and is thus of limited applicability. Nevertheless, we first note that although the guaranteed gap is large, numerical evidence

indicates that true gap is most likely much smaller. Hence, we believe the bound may be significantly tightened. Furthermore,

if we relax the no outage restriction, the much tighter bounds of Section IV (using random precoding drawn from the CRE)

are directly applicable.
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B. Uncorrelated Sources

For the special case of uncorrelated Gaussian sources, much tighter bounds (in comparison to Theorem 4) on the worst-case

quantization rate of IF for a given distortion level may be obtained. First, space-time precoding may be replaced with precoding

over space only. This allows to obtain a tighter counterpart to Theorem 4, as derived in Section 2.4.2 of [9].

We next derive yet tighter performance guarantees, also following ideas developed in [9], by numerically evaluating the

performance of IF source coding over a “densely” quantized set of source (diagonal) covariance matrices belonging to the

compound class, and then bounding the excess rate w.r.t. to the evaluated ones for any possible source vector in the compound

class.

In the case of uncorrelated sources, the covariance matrix Kxx is diagonal. Hence, (56) becomes

Kxx = Σ̃Σ̃
T

, S, (58)

where

S =








s21 0 · · · 0
0 s22 · · · 0
... 0

. . .
...

0 0 · · · s2K







. (59)

We denote s = diag(S). The compound set of sources may be parameterized by

S(RBT) =

{

S :

K∑

i=1

1

2
log
(
1 + s2i

)
= RBT

}

. (60)

We note that we may associate with each diagonal element a “rate” corresponding to an individual source

Ri =
1

2
log
(
1 + s2i

)
. (61)

Thus, the compound class of sources may equivalently be represented by the set of rates

R(RBT) =

{

(R1, R2, . . . , RK) ∈ RK :

K∑

i=1

Ri = RBT

}

. (62)

We define a “quantized” rate-tuple set as follows. The interval [0, RBT] is divided into N sub-intervals, each of length

∆ = RBT/N . Thus, the resolution is determined by the parameter ∆. The quantized rate-tuples belong to the grid

R∆(RBT) =
{(

R∆
1 , R

∆
2 , . . . , R

∆
K

)
∈ ∆ · RBT · Z+K

:

K∑

i=1

R∆
i = RBT

}

. (63)

We may similarly define the (non-uniformly) quantized set S∆(RBT) of diagonal matrices such that the diagonal entries satisfy

s2i,∆ = 22R
∆

i − 1, i = 1, . . . ,K , where R
∆ ∈ R∆(RBT).

Theorem 5. For any Gaussian vector of independent sources with covariance matrix S such that S ∈ S(RBT), the rate of IF

source coding with a given precoding matrix P is upper bound by

Ropt
IF (S,P) ≤ max

S∆∈S∆(RBT)
Ropt

IF

(
S
∆,P

)
+K log η (64)

where

η =

√
√
√
√ 2

2
(

RBT

K

)

− 1

2
2
(

RBT
K −(K−1)∆RBT

)

− 1

. (65)

Proof. Assume we have a covariance matrix S in the compound class. Hence, its associated rate-tuple satisfies (R1, R2, . . . , RK) ∈
R(RBT). Assume without loss of generality that

R1 ≤ R2 ≤ . . . ≤ RK . (66)
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By (24), the rate of IF source coding associated with a specific integer linear combination vector a is

RIF,k(S,P;A) =
1

2
log
(
a
T
k P (I+ S)PT

ak

)
. (67)

Denote

v = a
T
kP. (68)

We will need the following two lemmas, whose proofs appear in Appendices E and F, respectively.

Lemma 3. For any diagonal covariance matrix S, associated with a rate-tuple (R1, R2, . . . , RK) ∈ R(RBT), there exists a

diagonal covariance matrix S
∆, associated with a rate-tuple (R∆

1 , R∆
2 , . . . , R

∆
K) ∈ R∆(RBT), such that

si ≤ η2s2i,∆ (69)

for 1 ≤ i ≤ K , where η is defined in (65).

Lemma 4. Consider a Gaussian vector with a diagonal covariance matrix S and let A be an invertible integer matrix. Then

for any β ≥ 1, we have

RIF,k(β
2
S,P;A) ≤ log (β) +RIF,k(S,P;A). (70)

Using Lemma 3, we denote by S
∆ the covariance matrix associated with S, and whose existence is guaranteed by the

lemma. Recalling (21), we have

Ropt
IF (S∆,P) =

K

2
log



 min
A∈Z

K×K

detA6=0

max
k=1,...,K

RIF(S
∆,P; ak)



 . (71)

Denoting A
opt
∆ as the optimal integer matrix for the quantized source S

∆, it follows that

Ropt
IF (S,P) = RIF(S,P;Aopt)

≤ RIF(S,P;Aopt
∆ ), (72)

where the inequality follows since A
opt
∆ is the optimal integer matrix for S∆ and not necessarily for S. From (67) and by the

definition of v in (68), we have

RIF,k(η
2
S
∆,P;Aopt

∆ ) =
1

2
log

(
K∑

i=1

v2i (1 + η2s2i,∆)

)

≥ 1

2
log

(
K∑

i=1

v2i (1 + s2i )

)

= RIF,k(S,P;Aopt
∆ ). (73)

Using Lemma 4, we further have that

RIF,k(η
2
S
∆,P;Aopt

∆ ) ≤ 1

2
log(η2) +RIF,k(S

∆,P;Aopt
∆ ). (74)

Combining (73) and (74), we obtain

RIF,k(S,P;Aopt
∆ ) ≤ RIF(η

2
S
∆,P;Aopt

∆ )

≤ log(η) +RIF,k(S
∆,P;Aopt

∆ ). (75)

We therefore have (75) we have

RIF(S,P;Aopt
∆ ) = K max

k=1,...,K
RIF,k(S,P;Aopt

∆ )

≤ K max
k=1,...,K

(
log(η) +RIF,k(S

∆,P;Aopt
∆ )

)

= K log(η) +RIF(S
∆,P;Aopt

∆ ). (76)

Thus, recalling (72), we conclude that

RIF(S,P;Aopt) ≤ RIF(S
∆,P;Aopt

∆ ) +K log(η) (77)
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and therefore, for any S ∈ S(RBT), we have

Ropt
IF (S,P) ≤ max

S∆∈S∆
Ropt

IF (S∆,P) +K log(η). (78)

This concludes the proof of the theorem.

As an example for the achievable performance, Figure 5 gives the empirical worst-case performance for two and three (real)

sources that is achieved when using IF source coding and a fixed precoding matrix over the grid R∆(RBT) for ∆ = 0.01.

The precoding matrix was taken from [6]. The explicit precoding matrix used for two sources is P = cyclo2 where

cyclo2 =

[
−0.5257311121 −0.8506508083
−0.8506508083 0.5257311121

]

, (79)

and for three sources P = cyclo3 where

cyclo3 =





−0.3279852776 −0.5910090485 −0.7369762291
−0.7369762291 −0.3279852776 0.5910090485
−0.5910090485 0.7369762291 −0.3279852776



 . (80)

Rather than plotting the gap from the Berger-Tung benchmark, we plot the efficiency RIF

RBT
, i.e., the ratio of the (worst-case)

rate of IF source coding and RBT. We also plot the upper bound on RIF(S,P) given by Theorem 5. As is apparent from

Figure 5, the guaranteed efficiency approaches 1 quite rapidly as the quantization rate grows.
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Fig. 5. Empirical and guaranteed (upper bound) worst-case efficiency of IF source coding for two and three uncorrelated Gaussian sources, when using the
precoding matrices cyclo2 and cyclo3 given in (79)-(80), respectively, and taking ∆ = 0.01 for the calculation of Theorem 5.

VI. SUMMARY

It has been observed in previous works that integer-forcing source coding is a very effective method for compression of

distributed Gaussian sources, for “most” but not all source covariance matrices. In the present work we have quantified the

measure of bad covariance matrices by characterizing the probability that integer-forcing source coding fails as a function of

the allocated rate, where the probability is with respect to a random orthonormal transformation that is applied to the sources

prior to quantization. This characterization is directly applicable to the case where the signals to be compressed correspond to

the antenna inputs of relays in an i.i.d. Rayleigh fading environment, as in such a scenario the transformation can be viewed

as being done by nature.

Integer-forcing source coding is also useful in a non-distributed scenario, where the integer-forcing scheme offers a universal,

yet practical, compression method using equal-rate quantizers. Specifically, quantization is performed after passing the sources
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through an algebraic number theoretic based space-time transformation, followed by a modulo operation. We have obtained

constant-gap universal bounds on the maximal possible rate loss when integer-forcing source is used in such a scenario. Further,

we have shown that when it is known that the sources are uncorrelated but may be of different variances, applying a space-only

transformation is sufficient to attain universal performance guarantees and moreover that the resulting bound on the maximal

possible rate loss is much smaller than for the general case. An interesting avenue for further research is to try to generalize the

numerical bounding technique applied in Section V-B to obtain tighter bounds for the performance of precoded integer-forcing

source coding of general Gaussian sources.

APPENDIX A

PROOF OF THEOREM 1

Following the footsteps of Lemma 2 in [3] and adopting the same geometric interpretation described there, we may interpret

Pr
(
‖D−1/2

U
T
a‖ <

√
β
)

as the ratio of the surface area of an ellipsoid that is inside a ball with radius
√
β and the surface

area of the entire ellipsoid. The axes of this ellipsoid are defined by xi =
‖a‖√
di

.

Denote the vector o‖a‖ as a vector drawn from the CRE with norm ‖a‖. Using Lemma 1 in [3] and since we assume that

U
T is drawn from the CRE, we have that the right hand side of (44) is equal to

∑

a∈A(β,1/dmax,K)

Pr
(

‖D−1/2
o‖a‖ <

√

β
)

=
∑

a∈A(β,1/dmax,K)

CAPell(x1, · · · , xK)
L(x1, · · · , xK)

(81)

where

CAPell(x1, · · · , xK) < K
πK/2

Γ(1 +K/2)

√

β
K−1

, CAPell, (82)

and

L(x1, · · · , xK) >
πK/2

Γ(1 +K/2)

‖a‖K
∏K

i=1

√
di

K∑

i=1

√
di

‖a‖ (83)

>
πK/2

Γ(1 +K/2)

‖a‖K−1
√
dmax

2RBT

, L. (84)

Substituting (82) and (84) in (81), we obtain

∑

a∈A(β,1/dmax,K)

CAPell(x1, · · · , xK)
L(x1, · · · , xK)

<
∑

a∈A(β,1/dmax,K)

CAPell

L

=
∑

a∈A(β,1/dmax,K)

K
√
β
K−1

‖a‖K−1

2RBT

√
dmax

. (85)

Recalling (see (38)) that β = α(K)2−
2

K (RBT+∆R), we obtain

Pr
(
Ropt

IF−SUC(D,U) > RBT +∆R
)

<
∑

a∈A(β,1/dmax,K)

Kα(K)
K−1

2 2−
K−1

K (RBT+∆R)

‖a‖K−1

2RBT

√
dmax

. (86)

APPENDIX B

PROOF OF THEOREM 2

To establish Theorem 2, we follow the footsteps of the proof of Theorem 2 in [3] to obtain
∑

a∈A(β,1/dmax,K)

Pr
(

‖D−1/2
U

T
a‖ <

√

β
)

≤
∑

a∈A(β,1/dmax,K)

K
√
β
K−1

‖a‖K−1

2RBT

√
dmax

(87)
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where A(β, 1/dmax,K) and β are defined in (29) and (38), respectively. Noting that

A(β, 1/dmax,K) ⊆
{

a : ‖a‖ ≤
⌊√

βdmax

⌋

+ 1
}

,

the summation in (87) can be bounded as

≤
⌊
√
βdmax⌋∑

k=0

∑

k<‖a‖≤k+1

K
√
β
K−1

kK−1

2RBT

√
dmax

(88)

We apply Lemma 1 in [17] (a bound for the number of integer vectors contained in a ball of a given radius). Using this bound

while noting that when ‖a‖ = 1 there are exactly K integer vectors, the right hand side of (88) may be further bounded as

≤ K
√
β
K−1

2RBT

√
dmax

Vol(BK(1))×



K +

⌊
√
βdmax⌋∑

k=1

(

k + 1 +
√
K
2

)K

−
(

max
(

k −
√
K
2 , 0

))K

kK−1




 (89)

where we note that (89) trivially holds when
⌊√

βdmax

⌋
= 0 since A(β, 1/dmax,K) is the empty set in this case and hence

the left hand side of (81) evaluates to zero.

The right hand side of (89) can further be rewritten as

K
√
β
K−1

2RBT

√
dmax

Vol(BK(1))×









K
︸︷︷︸

I

+

⌊√
K
2

⌋

∑

k=1

(

k + 1 +
√
K
2

)K

kK−1

︸ ︷︷ ︸

II

+

⌊√βdmax⌋
∑

k=
⌊√

K
2

⌋

+1

[(

k + 1 +
√
K
2

)K

−
(

k −
√
K
2

)K
]

kK−1

︸ ︷︷ ︸

III











. (90)

We search for c1 and c2 (independent of k) such that

(

k + 1 +

√
K

2

)K

≤ c1k
K−1 (91)

for 1 ≤ k ≤
⌊√

K
2

⌋

, and





(

k + 1 +

√
K

2

)K

−
(

k −
√
K

2

)K


 ≤ c2k
K−1 (92)

for k ≥ 1, since it will then follow that

II + III ≤
⌊√βdmax⌋
∑

k=1

max(c1, c2)

=
⌊√

βdmax

⌋

max(c1, c2). (93)

We note that since (again assuming
⌊√

βdmax

⌋
≥ 1)

K ≤
⌊√βdmax⌋
∑

k=1

K, (94)
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it will thus follow that

I + II + III ≤
⌊√βdmax⌋
∑

k=1

[K +max(c1, c2)]

=
⌊√

βdmax

⌋

[K +max(c1, c2)] . (95)

An explicit derivation for c1 and c2 appears in Appendix B of [3] (where 2Nt should be replaced with K), from which we

obtain

c1 =
(

1 +
√
K
)K

c2 =





(

2 +

√
K

2

)K

−
(

1−
√
K

2

)K


 . (96)

In is also shown in Appendix B of [3] that for K ≥ 4, c2 ≤ c1 holds. For 1 ≤ K < 4 we observe that c1 ≤ c2. This is so

since K < 4 implies that 1−
√
K
2 > 0, and hence indeed for K < 4 we have

c2 =





(

2 +

√
K

2

)K

−
(

1−
√
K

2

)K




=

(

1 +
√
K + 1−

√
K

2

)K

−
(

1−
√
K

2

)K

≥ (1 +
√
K)K

= c1. (97)

Recalling now (95) and denoting

cmax =

{

c2 1 ≤ K < 4

c1 K ≥ 4
, (98)

it follows that

I + II + III ≤
⌊√

βdmax

⌋

(K + cmax). (99)

Using (99) and substituting the volume of a unit ball Vol(BK(1)) = πK/2

Γ(K/2+1) , it follows that right hand side of (89) is

upper bounded by

K
√
β
K−1

2RBT

√
dmax

πK/2

Γ(K/2 + 1)

√

βdmax(K + cmax) (100)

= K
√

β
K
2RBT(K + cmax)

πK/2

Γ(K/2 + 1)
. (101)

Finally, we substitute β, as defined in (38), into (101) to obtain
∑

a∈A(β,1/dmax,K)

Pr
(

‖D−1/2
U

T
a‖ <

√

β
)

≤ K
(

α(K)2−
2

K (RBT+∆R)
)K/2

2RBT(K + cmax)

≤ K (α(K))
K/2

2−(RBT+∆R)2RBT(K + cmax)

≤ K (α(K))
K/2

(K + cmax)2
−∆R

= c(K)2−∆R, (102)

where c(K) is as defined in (48).

APPENDIX C

PROOF OF LEMMA 2 AND THEOREM 3

We first recall a theorem of Minkowski [18, Theorem 1.5] that upper bounds the product of the successive minima.
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Theorem 6 (Minkowski). For any lattice Λ(FT ) that is spanned by a full rank K ×K matrix F
T

K∏

m=1

λ2
m(FT ) ≤ KK(detFT )2. (103)

To prove Theorem 3, we further need the following two lemmas.

Lemma 5. For a Gaussian source vector with covariance matrix Kxx ∈ K(RBT), and for any full-rank integer matrix A,

the sum-rate of IF-SUC satisfies

K∑

m=1

RIF−SUC,m(Kxx;A) = RBT + log | det(A)|, (104)

where RIF−SUC,m(Kxx;A) is defined in (19).

Proof.

K∑

m=1

RIF−SUC,m(Kxx;A) =
1

2

K∑

m=1

log(ℓ2m,m)

=
1

2
log

(
K∏

m=1

ℓ2m,m

)

=
1

2
log det(LLT )

=
1

2
log det

(

A

(

I+
1

d
Kxx

)

A
T

)

= RBT + log | det(A)| (105)

Theorem 3 in [19] shows that for successive IF (used for channel coding) there is no loss (in terms of achievable rate) in

restricting A to the class of unimodular matrices. We note that same claim holds also in our framework (that of successive

integer-source coding) by replacing G, the matrix spanning the lattice which was defined in Theorem 3 as

(
I+ SNRHH

T
)−1

= GG
T (106)

with F, as defined in (12), and noting that the optimal A can be expressed (in both cases) as

A
opt
SIC/SUC = min

A∈Z
K×K

detA6=0

max
k=1,...,K

ℓ2k,k, (107)

where ℓk,k are the diagonal elements of the corresponding L matrix (derived from the Cholesky decomposition) in each case.

Having established that the optimal A is unimodular, it now follows that
∑K

m=1 RIF−SUC,m(Kxx;A
opt
SUC) = RBT.

We are now ready to prove the following lemma that is analogous to Theorem 3 in [20]. First, denote by

RIF,k(Kxx;A) ,
1

2
log
(
a
T
k (I+Kxx) ak

)
(108)

the effective rate that of the k’th equation as appears in the definition of the achievable rate of integer-forcing source coding

in (11). Then, we have the following.

Lemma 6. For a Gaussian source vector with covariance matrix Kxx ∈ K(RBT), and for the optimal integer matrix A
opt,

the sum-rate of IF is upper bounded as

K∑

m=1

RIF,m(Kxx;A
opt) ≤ RBT +

K

2
log(K). (109)

Proof.

K∑

m=1

RIF,m(Kxx;A
opt) =

K∑

m=1

1

2
log
(
λ2
m(FT )

)
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=
1

2
log

(
K∏

m=1

λ2
m(FT )

)

≤ 1

2
log
(
KK | det(F )|2

)

= RBT +
K

2
log (K) . (110)

where the inequality is due to Theorem 6 (Minkowski’s Theorem).

Now, for the case of two sources we have by Lemma 5

RIF−SUC,1(Kxx;A
opt
SUC) +RIF−SUC,2(Kxx;A

opt
SUC) = RBT, (111)

or equivalently

RIF−SUC,2(Kxx;A
opt
SUC) = RBT −RIF−SUC,1(Kxx;A

opt
SUC). (112)

We further have by lemma 6 that

RIF,1(Kxx;A
opt) +RIF,2(Kxx;A

opt) ≤ RBT + 1. (113)

We note that the (optimal) integer matrix A
opt used for IF in (113) is in general different than the (optimal) matrix A

opt
SUC used

for IF-SUC in (111)-(112). Nonetheless, when applying IF-SUC, one decodes first the equation with the lowest rate. Since for

this equation SUC has no effect, it follows that the first row of A is the same in both cases and hence

RIF−SUC,1(Kxx;A
opt
SUC) = RIF,1(Kxx;A

opt). (114)

Since source 1 is decoded first, it follows that RIF,1 > RIF,2 and hence

RIF,1(Kxx;A
opt) ≤ RBT + 1

2
. (115)

Therefore,

Ropt
IF−SUC(Kxx) = 2max

(
RIF−SUC,1(Kxx;A

opt
SUC), RIF−SUC,2(Kxx;A

opt
SUC)

)

≤ 2max

(
RBT + 1

2
, RBT −RIF,1(Kxx;A

opt)

)

= max
(
RBT + 1, 2RBT − 2RIF,1(Kxx;A

opt)
)
. (116)

Henceforth, we analyze the outage for RBT > 1 and target rates that are no smaller than RBT + 1, so that the inequality

2RBT − 2RIF,1(Kxx) > RBT + 1 is satisfied. Thus, we consider excess rate values satisfying ∆R > 1. Our goal is to bound

Pr
(
Ropt

IF−SUC(Kxx) ≥ RBT +∆R
)

= Pr
(
2RBT − 2RIF,1(Kxx;A

opt
SUC) ≥ RBT +∆R

)

= Pr

(

RIF,1(Kxx;A
opt) ≤ RBT −∆R

2

)

= Pr

(
1

2
log(λ2

1(F
T )) ≤ RBT −∆R

2

)

= Pr
(
λ2
1(F

T ) ≤ 2RBT−∆R
)

(117)

Let β = 2RBT−∆R. We wish to bound (117), or equivalently

Pr
(
λ2
1(F

T ) ≤ β
)
= Pr

(

λ1(F
T ) ≤

√

β
)

(118)

for a given matrix D corresponding to Kxx (via the relation (22)). Note that the event λ1(Λ) <
√
β is equivalent to the event

⋃

a∈ZK\{0}
||D1/2

U
T
a|| <

√

β. (119)

Applying the union bound yields

Pr
(

λ1(Λ) <
√

β
)

≤
∑

a∈ZK\{0}
Pr
(

||D1/2
U

T
a|| <

√

β
)

. (120)
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Using the same derivation as in Lemma 2 in [3], we get

Pr
(
Ropt

IF−SUC(D,U) ≥ RBT +∆R
)

≤
∑

a∈A(β,dmin,K)

K
√
β
K−1

‖a‖K−12RBT
1√
dmin

. (121)

Since we are analyzing the case of two sources, we have

Pr
(
Ropt

IF−SUC(D,U) ≥ RBT +∆R
)

≤
∑

a∈A(β,dmin,K)

2
√
β

‖a‖2RBT
1√
dmin

. (122)

This establishes Lemma 2.

Applying a similar argument as appears in Appendix B (as part of the proof of Theorem 2), and noting that K < 4 implies

that cmax = c2, we get

Pr
(
Ropt

IF−SUC(D,U) ≥ RBT +∆R)
)

≤ 2β

2RBT

(

2 + 3 + 3
√
2
)

π. (123)

Finally, substituting β as defined in (38), we obtain

Pr
(
Ropt

IF−SUC(D,U) ≥ RBT +∆R
)

≤ 2π · 2RBT−∆R

2RBT

(

2 + 3 + 3
√
2
)

= 2π
(

5 + 3
√
2
)

2−∆R. (124)

APPENDIX D

ADDITIVE (WORST-CASE) BOUND FOR NVD SPACE-TIME PRECODED SOURCES

Combining space-time precoding and integer forcing in the context of channel coding was suggested in [21], as we next

briefly recall. We then present the necessary modifications for the case of source coding.

We derive below an additive bound using a unitary precoding matrix satisfying a non-vanishing determinant (NVD) property.

As the theory of NVD space-time codes has been developed over the complex field, it will prove convenient for us to employ

complex precoding matrices. To this end, we may assume that we stack samples from two time slots where the samples stacked

at the first time slot represent the real part of a complex number and the samples stacked at the second time slot represent the

imaginary part of a complex number. Hence, we have

Kx̂x̂ = I2×2 ⊗Kxx, (125)

where ⊗ is the Kronecker product. We note that the Berger-Tung benchmark of this stacked source vector is

RBT(Kx̂x̂) = 2RBT(Kxx). (126)

Next, in order to allow space-time precoding, we stack T times the K “complex” outputs of the K sources and let x̄c ∈
R2KT×1 denote the effective source vector. Its correlation matrix, which we refer to as the effective covariance matrix, takes

the form

K = IT×T ⊗Kx̂x̂. (127)

We assume a precoding matrix, that in principle can be either deterministic or random, is applied to the effective source

vector. We analyze performance for the case where the precoding matrix Pst,c is deterministic, specifically a precoding matrix

induced by a perfect space-time block code, operating on the stacked source x̄c having covariance matrix as given in (127).

An explanation on how to extract the precoding matrix from a space-time code can be found in Section IV in [14].

We denote the corresponding precoding matrix over the reals as Pst ∈ R2KT×2KT . We denote

I+PstKP
H
st = FFT . (128)

As we assume that the precoding matrix is unitary, the Berger-Tung benchmark (normalized by the total number of time

extensions used) remains unchanged, i.e.,

1

2T

1

2
log det

(
I+PstKP

H
st

)
=

1

2T

1

2
log
(
detFT

)2

= RBT. (129)
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As noted above, we assume that the generating matrix of a perfect code [22], [23] is employed as a precoding matrix.

A space-time code is called perfect if:

• It is full rate;

• It satisfies the non-vanishing determinant (NVD) condition;

• The code’s generating matrix is unitary.

Let δmin denote the minimal non-vanishing determinant of this code. Such codes further use the minimal number of time

extensions possible, i.e., T = K . Thus, we have a total of K2 stacked complex samples. Subsisting 2K2 as the dimension

(number of real samples jointly processed) in (16), the rate of IF source coding for the time-stacked samples is given by

Ropt
IF (K,Pst) = (2K2)

1

2
log
(
λ2
2K2(FT )

)
. (130)

To bound λ2
2K2(FT ), we note that for every 2K2-dimensional lattice, we have

λ
2(2K2−1)
1 (FT )λ2

2K2(FT ) ≤
2K2

∏

m=1

λ2
m(FT ). (131)

Using Minkowski’s theorem (Theorem 6 in Appendix C), it follows that

λ2
2K2(FT ) ≤ (2K2)2K

2

(detFT )2
1

λ
2(2K2−1)
1 (FT )

. (132)

Hence, the rate of IF source coding (normalized by the number of time extensions) can be bounded as:

1

2K
R

opt
IF (K,Pst)

=
1

2K
(2K2)

1

2
log
(

λ
2
2K2 (F

T )
)

≤
K

2
log

(

(2K2)2K
2

(detFT )2
1

λ
2(2K2−1)
1 (FT )

)

= K
3 log(2K2) +

K

2
log(det(FT )2)−

K(2K2 − 1)

2
log(λ2

1(F
T ))

= K
3 log(2K2) + 2K2

RBT −
K(2K2 − 1)

2
log(λ2

1(F
T )). (133)

We next use the results derived in [14] for channel coding (using NVD precoding). We note that since the covariance matrix

is positive semi-definite, it may be written as

Kxx = HH
T . (134)

The covariance matrix of the stacked source vector may be written as

Kx̂x̂ = ĤĤ
T , (135)

where we may take Ĥ = I2×2 ⊗H.

There are many such choices of H and any such choice corresponds to a channel matrix Ĥ that can be viewed as the real

representation of a complex channel matrix (which in the present case is real, i.e., has no imaginary part) in the context of

[14]. The effective covariance matrix can similarly be rewritten as

K = HHT , (136)

where H = IT×T ⊗ Ĥ.

Using the channel coding terminology of [14], we further define the minimum distance at the receiver dmin(H, L) as

dmin(H, L) , min
a∈QAMK(L)\0

‖Ha‖, (137)

where

QAM(L) ,{−L,−L+ 1, . . . , L− 1, L}
+ i{−L,−L+ 1, . . . , L− 1, L}. (138)

Setting SNR = 1 and for Ĥ ∈ R2K×2K (which is the real representation of Hc ∈ CK×K), Lemma 2 in [14] states that

1

4K4
min

a∈Z2K\0
a
T
(
I+P

H
stHHHPst

)
a
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≥ 1

4K4
min

L=1,2,···

(
L2 + SNRdmin(HPst, L)

)
. (139)

Using Corollary 1 in [14], we get

1

4K4
min

a∈Z2K\0
a
T
(
I+P

H
stHHHPst

)
a

≥ 1

4K4
min

L=1,2,···

(

L2 +
[

δ
1

K

min2
CWI

K − 2K2L2
]+
)

≥ 1

4K4
min

L=1,2,···



L2 +

[

δ
1

K

min2
CWI

K

2K2
− L2

]+




≥ 1

8K6
δ

1

K

min2
CWI
K , (140)

where CWI =
1
2 log det

(
I+H

H
H
)

is the mutual information of H. Since CWI is the rate of a 2K×2K real matrix (resulting

from a K ×K complex matrix), it equals RBT(Kx̂x̂) defined in (126). Hence, we obtain

min
a∈Z2K\0

a
T
(
I+P

H
stHHHP

H
st

)
a ≥ 1

2K2
δ

1

K

min2
2RBT

K (141)

which in turn yields

λ2
1(FT ) = min

a∈Z2K\0
a
T
(
I+PstHHT

P
T
st

)
a

≥ 1

2K2
δ

1

K

min2
2RBT

K . (142)

Finally, plugging the bound (142) into (133), we arrive at

1

2K
Ropt

IF (K,Pst)

≤ 2K2RBT +K3 log(2K2) +
K(2K2 − 1)

2
log(2K2)

+
K(2K2 − 1)

2K
log(

1

δmin
)− K(2K2 − 1)

2K
2RBT

≤ RBT + 2K3 log(2K2) +K2 log
1

δmin
. (143)

APPENDIX E

PROOF OF LEMMA 3

A Gaussian source component with a specific rate Ri can be transformed to a different Gaussian source with rate R∆
i by

appropriate scaling. Specifically, scaling each source component i by

αi =

√

22R
∆

i − 1

22Ri − 1
(144)

results in parallel (uncorrelated) sources

x̂i = αixi (145)

with variances

ŝ2i = α2
i s

2
i . (146)

By (61), we therefore have

R̂i =
1

2
log
(
1 + ŝ2i

)

=
1

2
log
(
1 + α2

i s
2
i

)

=
1

2
log

(

1 +
22R

∆

i − 1

22Ri − 1
s2i

)

=
1

2
log

(

1 +
22R

∆

i − 1

22Ri − 1
(22Ri − 1)

)
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=
1

2
log
(

1 + 22R
∆

i − 1
)

= R∆
i . (147)

We associate with any rate tuple (R1, R2, . . . , RM ) ∈ R(RBT) a rate tuple (R∆
1 , R

∆
2 , . . . , R∆

M ) ∈ R∆(RBT), according to

the following transformation

R∆
i =

⌈
Ri

∆RBT

⌉

·∆RBT, i = 1, 2, . . . ,K − 1,

R∆
K = RK −

K−1∑

i=1

(R∆
i −Ri). (148)

For i = K we have

R∆
K ≥ RK − (K − 1)∆RBT. (149)

It follows that the scaling factor needed to achieve R∆
K is bounded by

α2
K =

22R
∆

K − 1

22RK − 1

≥ 22(RK−(K−1)∆RBT) − 1

22RK − 1

≥ 2
2
(

RBT

K −(K−1)∆RBT

)

− 1

2
2
(

RBT

K

)

− 1

. (150)

where (150) follows since it is readily verified that the function ax−1
x−1 is monotonically increasing in x, for x ≥ 1 and 0 ≤ a ≤ 1.

Denoting η = 1
αk

, it follows from (150) that

η2 =
2
2
(

RBT
K

)

− 1

2
2
(

RBT

K −(K−1)∆RBT

)

− 1

. (151)

Now for 1 ≤ i ≤ K − 1 we have by (148) that R∆
i ≥ Ri. Hence, for such i it trivially holds that (since η ≥ 1)

s2i ≤ s2i,∆ (152)

≤ η2s2i,∆. (153)

Thus, the lemma follows by observing that from (150) it follows that s2K ≤ η2s2K,∆ as well.

APPENDIX F

PROOF OF LEMMA 4

Recalling (68), we note that (67) can be written as

RIF,k(S,P;A) =
1

2
log

(
K∑

i=1

v2i (1 + s2i )

)

. (154)

Therefore, when scaling the Gaussian input vector by a factor of β ≥ 1, we have

RIF,k(β
2
S,P;A) =

1

2
log

(
K∑

i=1

v2i (1 + β2s2i )

)

≤ 1

2
log

(

β2
K∑

i=1

v2i (1 + s2i )

)

=
1

2
log
(
β2
)
+RIF,k(S,P;A)

= log (β) +RIF,k(S,P;A). (155)
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