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Optimal Quantization for Distribution Synthesis
Georg Bicherer and Bernhard C. Geiger

Abstract

Finite precision approximations of discrete probabilitgtdbutions are considered, applicable for distribution
synthesis, e.g., probabilistic shaping. Two algorithms jaresented that find the optimaf-type approximation
@ of a distributionP in terms of the variational distandg) — P||; and the informational divergend@(Q||P).
Bounds on the approximation errors are derived and showre taslgmptotically tight. Several examples illustrate
that the variational distance optimal approximation carmjbiée different from the informational divergence optimal
approximation.

Index Terms

distribution synthesis, distribution quantizatioh/-type approximation, variational distance, informatibna
divergence, Kullback-Leibler divergence.

. INTRODUCTION

Probabilistic models are often used for information prea®s. In practice, such models are represented
with finite precision, e.g., discrete probabilities areresgnted by rational numbers with finitely many
digits. If each probability can be written as an integer ipldt of 1/M for some integerM, then the
resulting distribution is called am/-type distribution The integerM characterizes the precision by which
the rational distribution approximates the true distridt Additionally, M influences the space needed
to store the rational distribution and the complexity toqass it. This work studies approximating target
distributionst = (t,t,,...) by M-type distributions.

A. Quality-of-Synthesis Criteria
One way to measure how gogdapproximateg is the variational distance

It — &l = > [t — il (1)
which is symmetric in its argumentst. Another criterion is the informational divergence

D(Et) = Y filog

i:£;>0

H~|Hw

(2)

where the expectation is taken w.r.t. the approximatintritiistion ¢. The informational divergence with
exchanged order of arguments is

D(t||t) = Z ti log T (3)

i t;>0
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Note that the expectation if](3) is taken with respect to #mget distributiont. The informational
divergence is asymmetric, i.el)] (2) and (3) are differengemeral.

In this work we are interested in the scenario where the aqpating distributiont synthesizeshe
distributiont, i.e, we take expectation with respect to the approximatiistyibutiont. We will therefore
consider[(ll) and_{2) as quality-of-synthesis criteria.eBalrationales for this choice are as follows:

1) Empirical Probability: In distribution synthesis, the approximatieris the “true” distribution and
describes a random experiment where the random varialiigkes on the integer values 2,3, ...
according tot, i.e., Pr(I = i) = t;. Denote byiy, i,,...,1i, the outcomes of performing the random
experimentn times. By the law of large numbers,

ti.
Z;nzl log i
m
There is no such interpretation for the measurés (1) @nd (3).

2) Infinite Support:Many important probability distributions have infinite fgpt, e.g., Poisson, Boltz-
mann, Borel, and Yule-Simon distributions/-type distributions have finite support, and if the target
distributiont¢ has infinite support, then the measure (3) is infinity. Thesuess[(Il) and_{2) do not have
this issue.

3) Probabilistic Shaping:Suppose the target distributigns the capacity-achieving input distribution
of some communication channel and suppose further #hiatthe actual input distribution generated
by a communication system. Denote By the transition probability matrix of the channel. The muitua
information(¢, W) that results from using the approximatiérat the channel input is bounded as

~ D(E||t). (4)

C>1¢, W) 2 C - DEW|tW)
(b) N
> C—D(t[t) (5)

wheretIW andtV are the output distributions that result from the inputrilisitionst andt, respectively,
and whereC is the capacity of the channel. The equality in (a) followdq2iySec. Il1],[3, Proposition 3.11]
and (b) by the data processing inequality [4, Lemma 3.11¢ Bbund [(b) shows that ds| (2) approaches
zero, the mutual informatiofi(¢, W) approaches capacity.

B. Related Work

For probabilistic shaping, Gallager suggested.in [5, p.]20&hooset as anli/-type approximation
of the capacity-achieving distributioh Several works propose to uslgadic distributionsn Gallager’s
scheme, which ar@/-type distributions wheré/ is an integer power of two and where every probability
can be written a®*/M for some integerk. The authors in[[6] calculate a dyadic approximation by
rounding the entries of, which minimizes the variational distandg (1). The authar§/] calculate the
dyadic approximation of that minimizes[(R) by Geometric Huffman Coding [2]. Galldgescheme also
works for M-type distributions that are not dyadic. In [8], the authoadculate anM/-type distribution
by a sub-optimal algorithm that aims at minimizing (3). Irj, [ve proposed to usé/-type distributions
that minimize [(2) in Gallager's scheme.

The authors in[[9],[[10] propose a quantization algorithrattminimizes the variational distandd (1),
the Euclidean distance, and tlhe, norm. The authors also use a Taylor series approximatiomatyze
their algorithm in terms of the informational divergenté {8r M significantly larger than the support
size of the distribution.

Resolution coding uses al/-type input distribution to approximate a target outputrisition [11].
For the identity channel/ [11, Sec. Ill.B] constructs afrtype approximation that is asymptotically
optimal for the variational distancg](1). In_[12, Sec. Vl.Adformational divergence 2) optimal/-type
approximations are constructed. The authors$ in [13] ddumdamental limits of resolution coding for the
identity channel with respect to various approximation suees including[{1l) and a normalized version



of (2). For noisy channels, resolution coding with respectariational distancé {1) is considered linl[11],
informational divergencd (2) is considered in![14] and anmalized version of[(2) is considered in [11],
[15]. Most of the work presented in [11], [13]-[15] focuses wndamental limits, i.e., the existence of
asymptotically optimal\/-type approximations is shown but no practical algorithmsdnstruct them are

provided.

C. Contributions and Outline

We propose two simple algorithms that find thé-type approximationgid and ¢'¢ minimizing the
informational divergencel{2) and the variational distaiie respectively. We provide bounds on the
approximation errors for target distributions with finitedacountably infinite supports. The bounds
are asymptotically tight, i.e., any target distributionrnche approximated arbitrarily well by af/-
type approximation with sufficiently largé/. In Sec.[W, we show that variational distan¢é (1) and
informational divergence [2) lead to fundamentally difer )/-type approximations. In particular, we
provide an example where the variational distance optippf@imationt*? results in an informational
divergence equal to one for arbitrarily largé. Furthermore, we show that the informational divergence
minimizing approximationt'd can have significantly smaller support size than the vanali distance
minimizing approximationt¥d.

[I. PRELIMINARIES

Let t be a target probability distribution with a finite or countamfinite support. We denote by the
support size ot. If the support is infinite, them = oco. Without loss of generality, we assume tltaits
ordered so that; > ¢, > ---. We define the complement of the cumulative distributionction as

i>k
Let M be a positive integer. A distributigmis M -type, if each entry can be written as= ¢;/M for some
non-negative integer; < M. We want to determine th&/-type distributionp that best approximates the
target distributiont. Two quality measures for approximation are considered)ema the informational
divergence and the variational distance as definedlin (2)(@ndespectively. Pinsker’s inequality [16,
Lem. 11.6.1] bounds the informational divergence from Weiio terms of the variational distance:

Ip—tll: < /2D(pl|t). (7)

There have been several works on bounding the informatidivekgence from above in terms of the
variational distance; see [17] for a recent improvementamaverview over available bounds. The most
useful for our purposes is adapted from|[18]:

Lemma 1 ([18, Thm. 7]) For two probability distributiongp and ¢,

1rlogr
S (8)

2r—1

D(pllt) <

wherer := sup B > 1.
i:pi>0 Ug
In Lemmall and throughout the remainder of this wadelg, denotes the natural logarithm.
Note that the upper boundl (8) depends on the distributiohemly via the variational distandep —t||;,
but also viar. We therefore call[{8Histribution dependentAny reverse Pinsker’s inequality must be

distribution dependent, see [19, Sec. I.A]. Note furthet themma_ll was refined in [17, Thm. 1].




Algorithm 1. Variational distance optimal approximation.

Initialize t'4 = 0
Computetyd « 24l — 1 . min{n, M}.
Computee; < t; — 7%, i = 1,..., min{n, M}.
ComputeL < M — M . Y mntnM}jvd,
repeat L times
Choosej = min{argmaxe;}. //choose the smallest index first.

Updatet® « ¢3¢ + .
Updatee; < t; — 3.
end repeat
Returnt'd.

[1l. VARIATIONAL DISTANCE OPTIMAL QUANTIZATION
A. Algorithm 1

An M-type approximation of a target distributigncan be calculated as follows. First, round off the
entries oft and then distribute the remaining mass among the entrig¢sti largest error. We call this
methodAlgorithm 1, see the top of Padé 4.

Formally, we first calculate the pre-approximation

Mt;
a—ld:%, ’lzl,,n (9)
Note that in Algorithn L we can restrict this computation e ffirstmin{n, M} indices oft since, by
assumptiont is ordered, and since not more th&h masses can be distributed. Thuspif- M, we can
be sure thaty! = 0 for i > M.
In general, the entries af® do not sum to one. The pre-approximation gives rise to therewative
errors

e;i=t;—19>0, i=1,...,n (10)
which sum to thaest mass
- L
= 11
;e i (11)

for some integel.. Note that the rest mass is boundedas L. < M, and it is equal to zero if and only
if the target distributiort is itself M-type.

Example 1. For the 2-type target distributioh= (1,1) and M = 2, we havet"? = t and rest mass,
i.e., L = 0. For the 3-type target distributioh= (1, 1, 1) and M = 2, we havet*? = (0,0,0) and rest
massl, i.e., L = M.

Let £ be a set of the indices with th&| = L largest error terms, i.e., we have
ieﬁ,j¢£:>€i2€j. (12)
We distribute the remaining unit masses to the indices i, i.e., we choose

i+ L el
e SR (13)
¥, otherwise



Note that the sef is not unique, and consequently the approximatidris not unique either. We illustrate
this by an example.

Example 2. Let t = (2, 1) and supposé/ = 2. Then
1
=5 B'=0 (14)
and
1

€1 = €3 = Z (15)

Thus, either = {1} or £ = {2}. The corresponding approximation¥' = (1,0) and ¢ = (1/2,1/2)
both lead to the same approximation error, namjgf — ¢/, = 1.
Algorithm 1 resolves this ambiguity by taking entries witwler indices first. From now ort/¢ denotes
the uniqueM -type approximation ot that is calculated by Algorithrl 1.

B. Elementwise Properties
From (10) and[(I3), we see that for each indewe have
1
t— Y < — 16
it < — (16)
and t'¢ is a uniform approximatiorof ¢. Also by (10) and[(I3), it follows that the approximatier
assigns no mass to entriestothat are equal to zero, i.e., we have
=0 = t9=0. (17)

Furthermore, ift'! assigns zero mass to some entrythen it also assigns zero mass to all entries smaller
thant;:

Lemma 2. ¢; < t; andt}® =0 = ¢4 = 0.

Proof: Assumet; < t;. In the pre-approximation step, Algorithm 1 ensures thiat> % hence
ty4 = 0 implies 1/M > t; > t;. Thus, the errors after pre-approximation satisfy= t;, ¢; = ¢;, and
e; < e;. Algorithm[1 can only assign a remaining unit masg,tand not tot; if ¢; > e;. Whence;ﬁ;d =0.

[ |
To prove the optimality of Algorithmill, we make use of the daling lemma.

Lemma 3. Lett be a target distribution with finite or countably infinite saget and letA/ be a positive
integer. EveryM-type approximatiorp of ¢ that is optimal w.r.t. the variational distance satisfis).

Proof: See Sectiof VI-A. ]

C. Optimality of Algorithm 1 and Performance Bounds
Proposition 1. Let ¢t be an ordered target distribution with finite or countablyiinite support and lef\/
be a positive integer. Among all/-type distributiongp, p = "¢ minimizes||p — ¢||;.

Proof: According to Lemmal3, any optimal approximation satisfie®) (Hence, any optimal approx-
imation p* can be written as

7vd 1 ; /
) {ti +L ier (18)

Pi= ) otherwise



wheret" is the pre-approximatiori{9) and whef# is some set of indices withl'| = L, whereL is

given by [11). We have
1
Ip* =t =) (M - ei) +) e (19)

ieL! i¢L

where the error terms; are defined in[(10). The residual (19) is minimizedCif consists of the indices

of the L largest error terms;. According to [(12), the approximation calculated by Algom 1 has this

property. [ |
We next bound the variational distance in terms\éf If the target distributiort has finite support of

cardinality n, then

[ =ty = > [ty =t
i=1
(@)

1
SZM
Zﬁl

- (20)

where (a) follows by[(16). Fon = oo, the bound[(20) is infinity for any finité//. Thus, we need a
different approach to derive a useful bound for the casefofiia support. The next lemma lets us tighten
bound [20) if M > n and it will also lead to a useful bound far= oco. The underlying observation is
that we can apply Algorithmi]1 also to sub-probabilitydistribution, i.e., a target vector whose entries
are positive and sum to a value less than or equal to one.

Lemma 4. Lett be an ordered sub-probability distribution with < M entries and total mass$ — 7y,
and let M be a positive integer. Then we have

vd _ <k 4 M always
127 —¢]x . § (21)
=Ty, if T, > 57
k
< Wi + 1. (22)
Note that for7,, = /M both cases in(21) coincide.
Proof: The proof is given in Se¢._VIiB. [

A distribution can be split into two sub-probability diftutions, one containing the firgtindices, and
one containing the tail of the distribution. More specifigalve can splitt into two vectorst;., andt,;
with the same length but disjoint support sets: The entrfes .o := (¢1,...,,0,0,0,...) are zero for

indices larger thark, while for ¢.; := (0,0, ...,t..1,...,t,) the firstk entries are zero. Letd denote
the approximation that results from applying Algorithin 1t{g.. We have
[£75 — tlh = I1E5% — tirll + T (23)

where ||ty — t,.|l; can be bounded by Lemnid 4. This divide-and-conquer apprizaciseful when
the number of entries of the target distribution exceedstype M of the approximating distribution.
Approach [(2B) is also used in the proof of the following prsition, which states various bounds on the
approximation error ot"d.

Proposition 2. Let t be an ordered target distribution and 18 be a positive integer.
1) If t has finite support of cardinality < M, then
n

| ||1_2M (24)



2) If t has finite or countably infinite support of cardinality> M, then

k MT\? 2k
vd _ < — k <
I tHl_z]”(l‘f‘ p ) < (25)

wherek is the support size af'd.
3) For n = oo, the support sizé of t'¢ satisfiesk "=5° oo and k/M “=5° 0.

Proof: The proof is given in Se¢._VIiC. n
We next give examples that illustrate the tightness of thenbe.

Example 3. For n < oo, the bound[(24) is tight for a uniform target distributiondah/ = 3n/2. For
M < n, the bound[(25) is tight for, e.gM =5 andt; =ty = t3 = 4/15 andt; < 1/15 for all i > 3 (n
arbitrary).

D. Asymptotic Optimality

For target vectors with finitely many entries, the bound (8darantees that the approximation error
of t'4 can be made arbitrarily small by choosidg large enough. The same is true for infinitely many
entries. This follows by bound (25) together with Staten®@nof Proposition 2. Furthermore, by (16) the
M-type approximation converges uniformly to the targetriistion. We summarize these observations
as a corollary to Propositidd 2.

Corollary 1. Lett be an ordered target distribution with finite or countablyimite support. ForhM — oo,
the approximationt'® converges uniformly to the target distributign

For M > n the variational distance decreases witfi /) ). For M < n no such convergence guarantee
can be given. This is illustrated in the next example.

Example 4. Consider the Yule-Simon distribution [20] with = pB(i,p + 1), wherep > 0 and where
B(-,-) is the beta-function. Lemmnid 2 ensures that Algorifim 1 assigit masses to at most the firgt
indices. ForM > 1, we have

I8¢ —tll =D 16—t > T
=1
= MB(M,p+1) (26)
K(p)
> 27
T (M+p+1) 7)
where K (p) is a positive constant that does not dependMdnsee Sed._VI-D for the derivation. Thus,
the convergence of Algorithid 1 is at beS{1/1/7).

IV. INFORMATIONAL DIVERGENCE OPTIMAL QUANTIZATION

We now considerM/-type quantization with respect to the informational dgesce, i.e., we want to
solve the problem
minimize D(p||t)
g . (28)
subject to p is M-type



Algorithm 2. Informational divergence optimal quantization.
Initialize ¢; + 0,7=1,...,n
form=1,2,.... M
Updatec; < ¢; + 1.
end for
Returne.

Choosej = min{argmin A;(¢; + 1)}. /lchoose the smallest index first.

A. Equivalent Problem

integerc;. We have

D(plit) = )

10 M
2. 7%
i:¢;>0

Recall that each entry; of an M-type distribution can be written as = ¢;/M for some non-negative
t;
1
so that Problem (28) is equivalent to

i
minimize

Z cilogg

subject to

-----

i:¢;>0 v

ciG{O,l 2

(29)
MY,
iCi:M

i=1,
B. Algorithm2

S

(30)

If ¢ is a solution of Probleni(30), them* = c¢*/M is a solution of Probleni(28).

i:¢; >0

Z cilog% zzzl[klog

To solve problem[(30), we write the objective function as lageoping sum
where the increment function is

E—(l{;—l)logk_l
i=1 k=1 ti
=>_ > Aik)

1=1 k=1

)

(31)
Ai(k) = klogk — (k — 1) log(k — 1) + log l
B,

EvaluatingA;(z) as a function of a real numberand taking the derivative,

5y Di(7) = log

(32)
r—1
A;(k) = klog . ﬁ .

> log(k —1).

+ log(k — 1) 4 log —

(33)

e
we conclude that\;(k) is strictly monotonically increasing ih. Moreover, rewriting[(32) as

(2

(34)



(which holds trivially for & = 1) shows that the increment function grows without bound withThe
following lemma summarizes the properties of the increnfenttion.

Lemma 5. For all m > 0, the increment functior\; (k) grows without bound wittt and satisfies

C>m = A;(0) > A;(m) (35)

An allocation ¢ can be obtained by initially assigning the zero vedioto a pre-allocationc and

successively incrementing the entry @by one for which the corresponding increment cAsE; + 1) is
smallest. After/ iterations, the constraint_, ¢, = M is fulfilled andc = ¢ is a valid allocation. If more

than one entry ot has the smallest increment cost in some step, then eithéreaf tan be chosen, so
the allocation obtained by this strategy is not unique. Westitate this by the following example.

Example 5. Suppose = (3,1) and M = 2. We haveA, (1) =log 2 and A,(1) = log 5, so after the first

55
step,é = (1,0). In the second step, we have

A1(2) = 21log(2) + log% =logh, Ay(l)=1logh, (37)

so the final allocation is either; = (2,0) or c¢; = (1, 1). The corresponding approximations gre= (1, 0)

andp, = (%, %). Both approximations lead to the same informational digeag, namely

D(p1 ) = D(ps]lt) = log > (39)

Algorithm [2 resolves this ambiguity by incrementing ergrigith lower index first. From now on, we
denote byt'd the uniqueM -type approximation ot that is calculated by Algorithria] 2.

C. Elementwise Properties
The informational divergence is a weighted sum log tt—d We therefore expect that for a good
approximationt'd, the ratiotid/t; is close to one. The next lemma states this property.

Lemma 6. Lett be a target distribution with finite or countably infinite saget and letA/ be a positive
integer. EveryM-type approximatiorp of ¢ that is optimal w.r.t. the informational divergence saésfi

Di €

—<—, Vi<k (39)

t; t1

wherek is the support size gb. In particular
1 e
— <. 40
Mty = t (40)
Proof: See Sectioh VI-E. |
Lemmal6 directly implies

t;=0=t9=0. (41)

Furthermore, ift'd assigns zero mass to some entrythen it also assigns zero mass to all entries smaller
thant;:

Lemma 7. t; <t; andt{’ =0 = ¢! = 0.
Proof: The statement follows by (86) fon = 1. [ |
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D. Optimality and Performance Bounds
Proposition 3. Let ¢t be an ordered target distribution with finite or countablyiinite support and lef\/
be a positive integer. Among all/-type distributiongp, p = t'¢ minimizesD(p||t).

Proof: See Section VI-F. |
The increment in then-th iteration of Algorithmi 2 does not depend &h. This means that the algorithm
not only calculates the optimal/-type quantization, but actuallgll optimal m-type quantizations for
m=1,2,..., M. We state this property as a corollary of Proposifibn 3.

Corollary 2. Let ¢ be the pre-allocation calculated by Algoritim 2 in theth iteration and define
Hd .— (ﬂ C_”)
mi= )

Among allm-type distributionsp, p = t'4 minimizesD(p||t).

We next bound the informational divergence in terms\of We start with the case when the support
size of the target distribution is finite: < co). We have

. (a)
D(E4t) < D(E]¢)

() tyd
< t\_/d 7 -1
> (1)
i tY4>0
©) t + L
< tvd M _q
> o (1)
i ty4>0
<1 (42)
~ t,M

where (a) follows by the optimality of®, (b) by log(z) <z — 1, and (c) by [(IB). Fon = co, we have
t; "=5° 0, so bound[{4R2) becomes useless. The next proposition tigtf&) forn < oo and M > n and
it provides a bound fo\/ < n, which is important when the support ofis infinite.

Proposition 4. Let t be an ordered target distribution and 18 be a positive integer.
1) If t has finite support of cardinality < M, then

D(t[t) < log (1 + —— ). 4
( ||><og( +2tan) (43)
2) If t has finite or countably infinite support of cardinality> M, then
: lrlogr [ k
id - v
D(t|t) < 571 (2 ,+2Tk) (44)

with r = ﬁ + £
3) For n = oo, the support sizé of ti¢ satisfiest “.=5° co and k/M “=5° 0.

Proof: See the Section VI-G. |
We briefly discuss the intuition behind the bounds in Prajmsd. The bound(43) follows by evaluating
the informational divergence of the variational distanpéral approximatiort?. To derive bound{44),
we apply Lemmall. First, we determine the support sip€t'¢. Then, we use Algorithiil 1 to approximate
the sub-probability distributior,.,.. This lets us bound both the rattoand the variational distance in
Lemmall. Note tha{{43) and (44) are not tight for finite



11

E. Asymptotic Optimality

For target distributions with finite support, bound](43) gudees that the informational divergence can
be made arbitrarily small by choosing large enough. This result is also valid for target distiitnus
with infinite support by using Statement 3) of Proposifiom444). We summarize these observations as
a corollary to Propositioh]4.

Corollary 3. Lett be an ordered target distribution with finite or countablyiimte support. ForM — oo,
the informational divergence af and ¢t approaches zero.

For M > n, the informational divergence approaches zer®&s/M?) by bound [(4B8). FoM/ < n, no
such speed of convergence guarantee can be stated. Weatkustis by the following example.

Example 6. By Lemma[7,t'¢ assigns mass only to at most the first (largégtjndices. As in Examplgl4,
we consider the Yule-Simon distribution. By Pinsker’s inality () and Examplél4, the convergence of
Algorithm [2 is at besO(1/M?").

V. COMPARISON OFINFORMATIONAL DIVERGENCE AND VARIATIONAL DISTANCE
A. Elementwise Properties

The variational distance optimal approximatiti guarantees a bounded per-entry approximation error
t; — t¥4] by (18). Correspondingly, the informational divergencéiropl approximationt'é guarantees a
bounded per-entry ratig?/¢; by (39). The approximations™d andt'¢ can violate the per-entry bounds
of the other. We illustrate this by the following two exangle

Example 7. Lett; = 1/M andty = --- =t, = % for n > M. Hencet' = (1, ..., +;), and
39 (n—1)M  n-1 (45)
ty MM-1) M-1
can be arbitrarily large. The approximatiofl guarantees that, by (39), we have
id
B oy (46)
2 U

independent of..

Example 8. Let ¢ = (0.97, 0.01, 0.01, 0.01) and M = 256. It follows that L = 2 and we obtain
tvd = (248, 3, 3, 2)/256 from Algorithm[1. Algorithm2, however, yields! = (247, 3, 3, 3)/256, where

132

t — i = i

(47)
violates [(16).

Lett = (04, ¢, ¢,..., e)l andM = 2. It follows that L = 2 and we obtairt*? = (1/2, 1/2,..., 0, 0)T
from Algorithm[1. However, ifn is sufficiently large such that < 0.1, it can be shown that Algorithin 2
yieldst'd = (1, 0,..., 0, 0)T, where -

td ¢ = 7 (48)

violates [(16).
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Fig. 1. Support sizes of*? andt'® for the Yule-Simon distribution with = 0.2.

B. Support

Suppose the target distributignhas infinite support. By Statement 3) in Proposifion 2 andeBtant
3) in Proposition 4, the supports of the approximatigits and t'¢ both increase without bound and
sublinearly with)/. However, the following example shows that the support'éfcan grow much faster
than the support otid. The reason is that assigning probability masses to indidés small target
probabilities has a much higher cost in terms of informatlodivergence than in terms of variational
distance. We illustrate this phenomenon by the followingregle.

Example 9. Consider the Yule-Simon distribution (see Examiple 4) witk 0.2 and let M take values
from 1 to 10000 in steps of 10. The resulting support sizes"dfandt'¢ are displayed in Fig.]1. The
support size ot¥! is around twice the support size tif. The considered Yule-Simon distribution has a
heavy tail withT o000 ~ 0.15. In other words, the first 10000 entries bttontain only 85% of the total
probability mass.

The next example shows that the support®fis not always larger than the support .

Example 10. In Example[5 we showed that far = (4/5,1/5) and M = 2 both ¢, = (1,0) and
t, = (1/2,1/2) are optimal in terms of the informational divergence. Asahde easily showrt, is
the unique approximation that is optimal in terms of the a@onal distance. We now modify the target
distribution tot = (4/5 —¢,1/5 + ¢) with 0 < ¢ < 1/20. The vectort, remains the unique variational

distance optimal approximation amglis now the unique informational divergence optimal appradion.
The support oft, is strictly larger than the support of.

C. Asymptotic Optimality

Corollaries[1 and]3 state that! and ¢ are asymptotically optimal w.r.t. variational distancedan
informational divergence, respectively. By Pinsker'sguality (7),t¢ is also asymptotically optimal w.r.t.
the variational distance. In contrast, the variationatattise optimal approximatioti? is in general not
asymptotically optimal w.r.t. the informational divergen This is illustrated by the following example.

Example 11. Consi~der the distributiont that is const[ucted from the geometric distributign= 2~ as
follows: First,t; = ¢;. Then, the next probability masgg is split into so many pieces that far = 2 the

informational divergence equalsg 2. For M = 2, Algorithm [T yieldsty! = (3, 1), where the first entry
is approximated perfectly. The informational divergenéeyd andt evaluates to
1

1
D(t3%t) = 5108 o = log 2 (49)
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from which ¢, = 1/8 follows. Thus,t, = t3 = 1/8, which sums tol /4. Repeating the procedure for
M = 8, the first three indices are approximated without error, thiedwo remaining masses are placed on

the following indices, such tha! = (1, ¢, £, 3. 4). To ensure that the informational divergence remains

equal tolog2 one again must split the next probability magsnto sufficiently many pieces. It follows
thatty, = --- = t;9 = 1/128, which sum tol/8. Repeating this procedure yieldssatisfying
tj — 21_2i,

i—1 i
if Z2zk—k—1 <j< Z2zk—k—1 —1,
k=0 k=0
i € N. (50)

For this, the subsequend@V/;};cy = {2 '} yields an informational divergence equal lig; 2, while
the variational distance is bounded by2’, i.e., twice the remaining mass of the geometric distrduti

mmawamm@mw—wﬂ““ommmmw%m(Mmzmw.

VI. PROOFS
A. Proof of Lemm&l3

We prove that every optima satisfies[(16) by contradiction: Suppose that t; — 1 for somez
Since botht and p; must sum to one, there must bej dor which p; > ¢;. Define p° by pZ =pi + VR
P;=pj— M, andp; = p, for all ¢ # 4, j. We calculate

Ip = tlly — 1" — ¢l = i = pi — o+ 55 + |y — 5] — 75 —

1 1
=47 tIpi =l =lpi — 57 — 4l (51)
1
=57 Tl =4l =l =4l = 57 ’ (52)
> 0. (53)
where [53) follows because > ¢;,. We conclude that an optimal algorithm cannot leaghtec t; — -
Thatp; > t; + 7 Is sub-optimal foIIows along the same lines. D
B. Proof of Lemmal4
We claim that the two bounds i (21) relate as
ko MT?
< — .
T, < Wi + ok (54)
This can be seen from
ko MT? M [ k2 k )
(m* ok ) ~li=gr <—_2MTk+Tk
M [k ?
= (=—-T,) >o.
2k<M O =0 (®5)

The general bound in_(22) follows by loosening the rightéhaide (left-hand side) of (54) if, < k/M
(if Ty > k/M).

We next consider the two casés > k/M andT, < k/M separately.

Case T}, > k/M: We show that|t*d — t||; = T, and the general bound follows by {54). We have

k k k
LA Z =3 @ ). (56)
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In Algorithm 1], the rest mas&/M after the initialization step cannot be smaller tti@n Thus

L k

— >T, > — 57

=2 1> o (57)
which implies L > k. Thus, in the finalization step of Algorithmd 1, each of therigst; = 1, ...,k will
get assigned at least one more maga/, so

foreachj =1,...,k: (t/9—t;) > 0. (58)

Altogether, we have
k k
Je =t =Dl -4l @ 2t )T (59)
=1 =

where (a) follows by[(58) and where (b) follows HIKSG).

Case T}, < k/M: If /4 —t; >0foralli=1,...,k then|[t'd —¢t||, = T} by (B9) and [(B4) implies
that the general bound claimed by the lemma holds. It rentaistiow that the general bound also holds
when

¥4 —t; < 0 for somej (60)
which implies
t;d—t,-<M, i=1,... .k (61)
In particular, [(6D) implies. < k for the rest mass after the initialization step in AlgoritHin which
implies further that in the finalization step, each entey 1,. ..,k gets assigned at most one additional

massl/M. The error mass after the initialization step is

Z Lt g M
i=1 =1 =1
L

=— —1T;. 62
=T, (62)

Now reorder thet errors such thag; > ¢;.;. We bound the mean error from below and above by

~
ko

> - N g (63)

Equality holds ife; = Mk Tk forall i = 1,..., k. After the update step in Algorithin 1, the largest
errorse; are replaced by the final errotg M — ¢é;. The other errors remain unchanged. We bound

k L 1 k

i=L+1
(a) L L Tk
M + (M—k - ?) (k —2L) (64)
where (a) follows by[(63). The maximum is achieved foe= (k + MT},)/2, which yields
ko MIE

¢
=53+ o

(8 (65)
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C. Proof of Proposition 2

1) : The proof follows from Lemmal4 fok = n andT}), = T,, = 0.
2) : Let k be the support size af4, and lett,., be the sub-probability distribution obtained by taking
the firstk indices oft. Then, we have

1874 =l = 18" = ol + T (66)

If k& is the support size, then by Lemina 2 the firghdices get\/ masses. Since the algorithm satisfies (16),
we have

k k
k
_ _ vd
Tk_l—;ti_;(ti —t) < o7 (67)
Thus we can boungt'® — t,..||; by Lemma% and get
k MT?
vd < v k
Iz t, < 51 + o + T
2MT; 2772
2M k k2
k MT,\°
= (1 .
o ( W ) (68)

3) : The support sizé& of t*¢ grows without bound with\/ because for everythere exists ad/ such
that¢, > 1/M, hence this index gets probability mass already in theailitition step of Algorithnill.

We show that the support size= k(M) grows sublinearly with\/ by contradiction. Suppose there
exists a0 < ¢ < 1 such that

) k(M)

lim su =c. 69

mSup = (69)
Thus, for eachk > 0, there exists a sequeng@/;},cn, M; < My < M3 < ---, such that

Now choosei < j € N. Applying the algorithm for)/; and M/; increases the support size fran)M;)
to k£(M;). In total, the algorithm had/; masses to distribute, some of which are distributed to tise fir
k(M;) indices. In particular, in the first step the algorithm assig

k(M;)

> Myt (71)

=1
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masses to the firgt(1/;) indices. The difference in support sizes is thus boundeah fabove by
k(M;)

(C — €>Mz
< M] <TL(C—6)ML'J + Mj . (72)
Now choose large enough such thdt._.);,) < ¢ and choosg large enough such that/;/M; < 1/4.
We have k(M) — k(M)
j) — i C— €
i <€+ I (73)
A lower bound on the support size difference is obtained f(@g):
—€) — == 74
i > (¢ —€) (C+E)Mj>4 1 (74)
Combining [78) and(74) yields an upper bound©n
3c be c—e¢
After rearranging we have < 4¢ for any e > 0, and thus
: k(M)
lim su = 0. 76
J\/[—>oop M (76)
0]
D. Proof of (27)
We make use of the following lower bound on the beta funct@h leq. (2)]
xm—lyy—l
> -
Blay) 2 (e (77)
which in our case gives
MY (p+1)°
- >
M-B(M,p+1) > Ol +p F 1)
MM (p+ 1)
S M Ap+ DM (M A p 1)
_ (p+1)y 1
(LM (M A+ p+ 1)
1) 1
> (p+1) (78)

ertt (M+p+1)

where [78) follows becausgl + &7)" approaches**! from below. This shows the existence of the
constantK (p) in (217).
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E. Proof of Lemm&l6

The caseVl = 1 (hencek = 1) is trivial; we focus onM > 2. Suppose thgb is an M-type distribution
(not necessarily optimal) and that is such thap; = p; + ﬁ <1,p;=pj— % > 0 andp, = p; for all
¢ #1i,j. We now show thaD(p||t) > D(p°||t) holds if p violates the statement of Lemr& 6, i.e., tpat
is not optimal is not optimal in this case. To this end, noticat

1 1

o Di Dj 1 Di+ 3f 1 Pi— 27
D(pl|lt) — D t) =p;log— +p;log—= — [ p; + — | log ———* — —— 1

(pl|t) (p°|It) =p Ogt,- Pj Ogtj <p +M) og t Pj Wi 0g t

1
() pj 1 pi—a 1
= pjlog=* — (pj - —) log =—2 — — (A(Mp; + 1) — log M)

t; M t; M
® 1. p; 1 D 1
>—log—j+(p-——)log ! —— (Ay(M) —logM
M M P — & a7 (i) )
>0
1 P M—1 M —
—log =L 1 log t;
>Mogtj+ i 0g i +Mog
>=3r
1 Dj 1 e
> —log~L — — log —
=M% T M %
where(a) is due to [(3R) andb) follows by (35). Hence, if
Pis & (79)

t; ~t
for any pair of indicesi and j, then above difference of informational divergences isitp@sas well.

Thus, an optimap may not fulfill (79) for any such pair of indices. The best bdus obtained for = 1,
hence Lemmal6 follows. The result for indéxresults fromp, > 1/M. O

F. Proof of Propositioni 3
To prove optimality, we need the following lemma.

Lemma 8. Let ¢* be an optimal allocation. Let be a pre-allocation withy >, ¢; < M and¢; < ¢ for
1=1,...,n. Define

J = argmin A(¢; + 1). (80)
Then there exists an optimal allocati@with
¢ +1<¢ (81)
i <¢, 1=1...,n. (82)
Proof: Suppose we have
cj+1> ¢ (83)

Sincec; < ¢ by assumption,[(83) implies
cj+1l=cj+1 (84)
Since) ,¢; < M and ), ¢; = M, there must be at least orie# j with
¢, > co+ 1. (85)



18

By decreasing:; by one and increasing; by one, the change of the objective functionAig(c; + 1) —
Ay(c;). We bound this change as follows:

A4 1) — Agleh) € A+ 1) — Agler+ 1) (86)
D Aj(e;+1) = Al + 1)
(gc) 0 (87)
where (a) follows by[(85) and Lemma 5, (b) follows Hy (84), &)l follows by the definition of; in

(80).
We must consider two cases. First, suppose we have strigtatigy in either [(86) or[(87). Then the

objective function is decreased, which contradicts theragsion thatc* is optimal. Thus, the supposition
(B3) is false and the statements of the lemma holdefer ¢*. Second, suppose we have equality both in
(88) and [(8Y). In this case, define the allocation

G=c—1, &=c+1, &=c forijL. (88)

Equality in [86)-[(87) implies optimality of. By (84) and [(85), we can verify thatfulfills the statements
of the lemma. This concludes the proof of Lemhia 8. [ |

We are now ready to prove Proposition 3. By Lemima 8, there ismimal allocatione such that in
each iteration of Algorithnil2 we have

Cz<éza Zzl,,’n (89)

After Algorithm[2 terminates, we have

Statements[ (89) an@ (90) can be true simultaneously onty = ¢; for all 7 = 1,...,n. Consequently,
the constructed allocatioa is optimal. O

G. Proof of Propositio 4
1) CaseM > n: By Propositionf Bt is optimal w.r.t. the informational divergence and

D(¢||t) < D(E™Jt). (91)

Moreover,

d - d tyd
D(t"e|t) = E t7% log =
( || ) i g t,

i=1

(a) "L ()2
2 1og (Z mt_>>
i=1
~ (B = t1,)?
=1 1 - 92
og ( + ; - (92)

where(a) is Jensen'’s inequality (see also the proof of [17, Thm. 33)&here the sum inside the logarithm
is Pearson’sc2-distancey?(¢"¢||t). Note that[[9R) equal®,(t*!||t), the Rényi divergence of second order.
The inequality in(a) is then a direct consequence of the fact that Rényi divegésn non-decreasing in
the order[[22, Thm. 3].
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We now bound[(92) by

n vd 2 n
t; t, 4 !
i=1 i=1
e
tn =1 Z

<ﬁ by {I8)
< — ||t — ¢
e =
@ n
< -
- 2t,M?

where (a) follows by Statement 1) in Propositldn 2.

2) CaseM < n: Let k be the support size df?. Define the auxiliary distributiom := t,.;./(1 — Tj).
Because of the normalization by— T, the entries oft sum to one and is a distribution. Denote by
t4 the approximation that results from applying Algoritiim 1ttoNVe have

(93)

; . 8 1rlogr, -,
D(t|[t) < D(E dIIt) st —th
2r—
: £y
with » = max (94)
i<k

where (a) follows by Lemm@l 1. It remains to bound the ratiand the variational distandg*? — ¢||;.
Boundingr: By (16), we have

+—. (95)

Thus, for each < k, we have

tyd 1 1 1 1
L < 96
t; 1—Tk+tiM_1—Tk+tkM (96)

which implies

1

< -

1T, M
@ 1 e
< — 97
—1-1 + tq 07)

where (a) follows by[(40) in Lemmi 6.
Bounding||t*¢ — ¢||;: We bound
[ = ¢l = [[£¢ = tosll + T

= [t = t(1 = Tl + Ty
@ -4 = -
< |1t =ty + ([ETh ||y + T
= [t — ||, + 2T}

k
< — + 27, 98

Wi + 21 (98)

where (a) follows by the triangle inequality. Usirig (97) a@8) in (94) completes the proof.
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3) : The support: grows without bound because the increment functidngrow without bound by
(34), i.e., for every positive integérthere exists an\/ large enough such that, for al=1,...,¢ —1,

1ogtl < Ai(e; +1) (99)
¢

where the sum over atl; is less thanV/. In other words, after assigning a specific number of magsses t
indices 1 tof — 1, assigning a mass to indéxmust have lower cost than assigning additional masses to
the first/ — 1 indices.

The resultk(M) /M M3 can be seen as follows. Increasing) by one increases the support size
at most by one. This is a consequence of the update rule inritigo2. Thus, the sequende= k(M)
contains each integdr, 2,3, ... at least once and we can define a sequevicé), £k = 1,2,3,.... Note
that some integers may not occur in the sequehiié). By (40) in Lemma_b, we can bound tlieth

probability ¢, by

t1
and we have
o0 o0 tl
1= . 101
Ztk>Z€M(k) (101)
k=1 k=1

If M (k) grows only linearly withk, then the sum on the right-hand side diverges, which coictsathat
the probabilities need to sum to one. Thig(k) grows super-linearly withk and equivalentlyf (M)
grows sub-linearly with\/. O
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