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Optimal Quantization for Distribution Synthesis
Georg B̈ocherer and Bernhard C. Geiger

Abstract

Finite precision approximations of discrete probability distributions are considered, applicable for distribution
synthesis, e.g., probabilistic shaping. Two algorithms are presented that find the optimalM -type approximation
Q of a distributionP in terms of the variational distance‖Q − P‖1 and the informational divergenceD(Q‖P ).
Bounds on the approximation errors are derived and shown to be asymptotically tight. Several examples illustrate
that the variational distance optimal approximation can bequite different from the informational divergence optimal
approximation.

Index Terms

distribution synthesis, distribution quantization,M -type approximation, variational distance, informational
divergence, Kullback-Leibler divergence.

I. INTRODUCTION

Probabilistic models are often used for information processing. In practice, such models are represented
with finite precision, e.g., discrete probabilities are represented by rational numbers with finitely many
digits. If each probability can be written as an integer multiple of 1/M for some integerM , then the
resulting distribution is called anM-type distribution. The integerM characterizes the precision by which
the rational distribution approximates the true distribution. Additionally,M influences the space needed
to store the rational distribution and the complexity to process it. This work studies approximating target
distributionst = (t1, t2, . . . ) by M-type distributions.

A. Quality-of-Synthesis Criteria

One way to measure how good̂t approximatest is the variational distance

‖t− t̂‖1 =
∑

i

|ti − t̂i| (1)

which is symmetric in its argumentst, t̂. Another criterion is the informational divergence

D(t̂‖t) =
∑

i : t̂i>0

t̂i log
t̂i
ti

(2)

where the expectation is taken w.r.t. the approximating distribution t̂. The informational divergence with
exchanged order of arguments is

D(t‖t̂) =
∑

i : ti>0

ti log
ti

t̂i
. (3)
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Note that the expectation in (3) is taken with respect to the target distributiont. The informational
divergence is asymmetric, i.e., (2) and (3) are different ingeneral.

In this work we are interested in the scenario where the approximating distributiont̂ synthesizesthe
distributiont, i.e, we take expectation with respect to the approximatingdistribution t̂. We will therefore
consider (1) and (2) as quality-of-synthesis criteria. Several rationales for this choice are as follows:

1) Empirical Probability: In distribution synthesis, the approximation̂t is the “true” distribution and
describes a random experiment where the random variableI takes on the integer values1, 2, 3, . . .
according tot̂, i.e., Pr(I = i) = t̂i. Denote byi1, i2, . . . , im the outcomes of performing the random
experimentm times. By the law of large numbers,

∑m
j=1 log

t̂ij
tij

m
≈ D(t̂‖t). (4)

There is no such interpretation for the measures (1) and (3).
2) Infinite Support:Many important probability distributions have infinite support, e.g., Poisson, Boltz-

mann, Borel, and Yule-Simon distributions.M-type distributions have finite support, and if the target
distributiont has infinite support, then the measure (3) is infinity. The measures (1) and (2) do not have
this issue.

3) Probabilistic Shaping:Suppose the target distributiont is the capacity-achieving input distribution
of some communication channel and suppose further thatt̂ is the actual input distribution generated
by a communication system. Denote byW the transition probability matrix of the channel. The mutual
informationI(t̂,W ) that results from using the approximationt̂ at the channel input is bounded as

C ≥ I(t̂,W )
(a)
= C− D(t̂W‖tW )
(b)
≥ C− D(t̂‖t) (5)

wheret̂W andtW are the output distributions that result from the input distributionst̂ andt, respectively,
and whereC is the capacity of the channel. The equality in (a) follows by[2, Sec. III],[3, Proposition 3.11]
and (b) by the data processing inequality [4, Lemma 3.11]. The bound (5) shows that as (2) approaches
zero, the mutual informationI(t̂,W ) approaches capacity.

B. Related Work

For probabilistic shaping, Gallager suggested in [5, p. 208] to chooset̂ as anM-type approximation
of the capacity-achieving distributiont. Several works propose to usedyadic distributionsin Gallager’s
scheme, which areM-type distributions whereM is an integer power of two and where every probability
can be written as2k/M for some integerk. The authors in [6] calculate a dyadic approximation by
rounding the entries oft, which minimizes the variational distance (1). The authorsin [7] calculate the
dyadic approximation oft that minimizes (2) by Geometric Huffman Coding [2]. Gallager’s scheme also
works for M-type distributions that are not dyadic. In [8], the authorscalculate anM-type distribution
by a sub-optimal algorithm that aims at minimizing (3). In [1], we proposed to useM-type distributions
that minimize (2) in Gallager’s scheme.

The authors in [9], [10] propose a quantization algorithm that minimizes the variational distance (1),
the Euclidean distance, and theL∞ norm. The authors also use a Taylor series approximation to analyze
their algorithm in terms of the informational divergence (3) for M significantly larger than the support
size of the distribution.

Resolution coding uses anM-type input distribution to approximate a target output distribution [11].
For the identity channel, [11, Sec. III.B] constructs anM-type approximation that is asymptotically
optimal for the variational distance (1). In [12, Sec. VI.A], informational divergence (2) optimalM-type
approximations are constructed. The authors in [13] derivefundamental limits of resolution coding for the
identity channel with respect to various approximation measures including (1) and a normalized version



3

of (2). For noisy channels, resolution coding with respect to variational distance (1) is considered in [11],
informational divergence (2) is considered in [14] and a normalized version of (2) is considered in [11],
[15]. Most of the work presented in [11], [13]–[15] focuses on fundamental limits, i.e., the existence of
asymptotically optimalM-type approximations is shown but no practical algorithms to construct them are
provided.

C. Contributions and Outline

We propose two simple algorithms that find theM-type approximationstid and tvd minimizing the
informational divergence (2) and the variational distance(1), respectively. We provide bounds on the
approximation errors for target distributions with finite and countably infinite supports. The bounds
are asymptotically tight, i.e., any target distribution can be approximated arbitrarily well by anM-
type approximation with sufficiently largeM . In Sec. V, we show that variational distance (1) and
informational divergence (2) lead to fundamentally different M-type approximations. In particular, we
provide an example where the variational distance optimal approximationtvd results in an informational
divergence equal to one for arbitrarily largeM . Furthermore, we show that the informational divergence
minimizing approximationtid can have significantly smaller support size than the variational distance
minimizing approximationtvd.

II. PRELIMINARIES

Let t be a target probability distribution with a finite or countably infinite support. We denote byn the
support size oft. If the support is infinite, thenn = ∞. Without loss of generality, we assume thatt is
ordered so thatt1 ≥ t2 ≥ · · · . We define the complement of the cumulative distribution function as

Tk :=
∑

i>k

ti. (6)

Let M be a positive integer. A distributionp is M-type, if each entry can be written aspi = ci/M for some
non-negative integerci ≤M . We want to determine theM-type distributionp that best approximates the
target distributiont. Two quality measures for approximation are considered, namely, the informational
divergence and the variational distance as defined in (2) and(1), respectively. Pinsker’s inequality [16,
Lem. 11.6.1] bounds the informational divergence from below in terms of the variational distance:

‖p− t‖1 ≤
√

2D(p‖t). (7)

There have been several works on bounding the informationaldivergence from above in terms of the
variational distance; see [17] for a recent improvement andan overview over available bounds. The most
useful for our purposes is adapted from [18]:

Lemma 1 ([18, Thm. 7]). For two probability distributionsp and t,

D(p‖t) ≤
1

2

r log r

r − 1
‖p− t‖1 (8)

wherer := sup
i : pi>0

pi
ti
≥ 1.

In Lemma 1 and throughout the remainder of this work,log denotes the natural logarithm.
Note that the upper bound (8) depends on the distributions not only via the variational distance‖p−t‖1,

but also viar. We therefore call (8)distribution dependent. Any reverse Pinsker’s inequality must be
distribution dependent, see [19, Sec. I.A]. Note further that Lemma 1 was refined in [17, Thm. 1].
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Algorithm 1. Variational distance optimal approximation.

Initialize tvd = 0

Computetvdi ←
⌊Mti⌋
M

, i = 1, . . . ,min{n,M}.
Computeei ← ti − tvdi , i = 1, . . . ,min{n,M}.
ComputeL← M −M ·

∑min{n,M}
i=1 tvdi .

repeat L times
Choosej = min{argmax

i
ei}. //choose the smallest index first.

Updatetvdj ← tvdj + 1
M

.
Updateej ← tj − tvdj .

end repeat
Returntvd.

III. VARIATIONAL DISTANCE OPTIMAL QUANTIZATION

A. Algorithm 1

An M-type approximation of a target distributiont can be calculated as follows. First, round off the
entries oft and then distribute the remaining mass among the entries with the largest error. We call this
methodAlgorithm 1, see the top of Page 4.

Formally, we first calculate the pre-approximation

t̃vd
i =

⌊Mti⌋

M
, i = 1, . . . , n. (9)

Note that in Algorithm 1 we can restrict this computation to the firstmin{n,M} indices oft since, by
assumption,t is ordered, and since not more thanM masses can be distributed. Thus, ifn > M , we can
be sure thattvdi = 0 for i > M .

In general, the entries of̃tvd do not sum to one. The pre-approximation gives rise to the non-negative
errors

ei := ti − t̃vd
i ≥ 0, i = 1, . . . , n (10)

which sum to therest mass
n∑

i=1

ei =
L

M
(11)

for some integerL. Note that the rest mass is bounded as0 ≤ L ≤M , and it is equal to zero if and only
if the target distributiont is itself M-type.

Example 1. For the 2-type target distributiont = (1
2
, 1
2
) andM = 2, we havet̃vd = t and rest mass0,

i.e., L = 0. For the 3-type target distributiont = (1
3
, 1
3
, 1
3
) andM = 2, we havet̃vd = (0, 0, 0) and rest

mass1, i.e.,L = M .

Let L be a set of the indices with the|L| = L largest error terms, i.e., we have

i ∈ L, j /∈ L ⇒ ei ≥ ej . (12)

We distribute the remainingL unit masses to the indices inL, i.e., we choose

tvdi =

{

t̃vd
i + 1

M
, i ∈ L

t̃vd
i , otherwise.

(13)
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Note that the setL is not unique, and consequently the approximationtvd is not unique either. We illustrate
this by an example.

Example 2. Let t = (3
4
, 1
4
) and supposeM = 2. Then

t̃vd
1 =

1

2
, t̃vd

2 = 0 (14)

and

e1 = e2 =
1

4
. (15)

Thus, eitherL = {1} or L = {2}. The corresponding approximationstvd = (1, 0) and tvd = (1/2, 1/2)
both lead to the same approximation error, namely‖tvd − t‖1 =

1
2
.

Algorithm 1 resolves this ambiguity by taking entries with lower indices first. From now on,tvd denotes
the uniqueM-type approximation oft that is calculated by Algorithm 1.

B. Elementwise Properties

From (10) and (13), we see that for each indexi, we have

|ti − tvdi | <
1

M
(16)

and tvd is a uniform approximationof t. Also by (10) and (13), it follows that the approximationtvd

assigns no mass to entries oft that are equal to zero, i.e., we have

ti = 0 ⇒ tvdi = 0. (17)

Furthermore, iftvd assigns zero mass to some entryti, then it also assigns zero mass to all entries smaller
than ti:

Lemma 2. tj < ti and tvdi = 0 ⇒ tvdj = 0.

Proof: Assumetj < ti. In the pre-approximation step, Algorithm 1 ensures thattvdi ≥
⌊Mti⌋
M

, hence
tvdi = 0 implies 1/M > ti > tj . Thus, the errors after pre-approximation satisfyei = ti, ej = tj , and
ej < ei. Algorithm 1 can only assign a remaining unit mass totj and not toti if ej ≥ ei. Whence,tvdj = 0.

To prove the optimality of Algorithm 1, we make use of the following lemma.

Lemma 3. Let t be a target distribution with finite or countably infinite support and letM be a positive
integer. EveryM-type approximationp of t that is optimal w.r.t. the variational distance satisfies(16).

Proof: See Section VI-A.

C. Optimality of Algorithm 1 and Performance Bounds

Proposition 1. Let t be an ordered target distribution with finite or countably infinite support and letM
be a positive integer. Among allM-type distributionsp, p = tvd minimizes‖p− t‖1.

Proof: According to Lemma 3, any optimal approximation satisfies (16). Hence, any optimal approx-
imationp∗ can be written as

p∗i =

{

t̃vd
i + 1

M
, i ∈ L′

t̃vd
i , otherwise

(18)
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where t̃vd is the pre-approximation (9) and whereL′ is some set of indices with|L′| = L, whereL is
given by (11). We have

‖p∗ − t‖1 =
∑

i∈L′

(
1

M
− ei

)

+
∑

i/∈L′

ei (19)

where the error termsei are defined in (10). The residual (19) is minimized ifL′ consists of the indices
of theL largest error termsei. According to (12), the approximation calculated by Algorithm 1 has this
property.

We next bound the variational distance in terms ofM . If the target distributiont has finite support of
cardinalityn, then

‖tvd − t‖1 =

n∑

i=1

|tvdi − ti|

(a)
≤

n∑

i=1

1

M

=
n

M
(20)

where (a) follows by (16). Forn = ∞, the bound (20) is infinity for any finiteM . Thus, we need a
different approach to derive a useful bound for the case of infinite support. The next lemma lets us tighten
bound (20) ifM ≥ n and it will also lead to a useful bound forn = ∞. The underlying observation is
that we can apply Algorithm 1 also to asub-probabilitydistribution, i.e., a target vector whose entries
are positive and sum to a value less than or equal to one.

Lemma 4. Let t be an ordered sub-probability distribution withk ≤ M entries and total mass1 − Tk,
and letM be a positive integer. Then we have

‖tvd − t‖1

{

≤ k
2M

+
MT 2

k

2k
, always

= Tk, if Tk ≥
k
M

(21)

≤
k

2M
+ Tk. (22)

Note that forTk = k/M both cases in (21) coincide.
Proof: The proof is given in Sec. VI-B.

A distribution can be split into two sub-probability distributions, one containing the firstk indices, and
one containing the tail of the distribution. More specifically, we can splitt into two vectorst1:k andttail
with the same length but disjoint support sets: The entries of t1:k := (t1, . . . , tk, 0, 0, 0, . . . ) are zero for
indices larger thank, while for ttail := (0, 0, . . . , tk+1, . . . , tn) the firstk entries are zero. Lettvd1:k denote
the approximation that results from applying Algorithm 1 tot1:k. We have

‖tvd1:k − t‖1 = ‖t
vd
1:k − t1:k‖1 + Tk (23)

where ‖tvd1:k − t1:k‖1 can be bounded by Lemma 4. This divide-and-conquer approachis useful when
the number of entries of the target distribution exceeds thetype M of the approximating distribution.
Approach (23) is also used in the proof of the following proposition, which states various bounds on the
approximation error oftvd.

Proposition 2. Let t be an ordered target distribution and letM be a positive integer.
1) If t has finite support of cardinalityn ≤M , then

‖tvd − t‖1 ≤
n

2M
. (24)
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2) If t has finite or countably infinite support of cardinalityn > M , then

‖tvd − t‖1 ≤
k

2M

(

1 +
MTk

k

)2

≤
2k

M
(25)

wherek is the support size oftvd.
3) For n =∞, the support sizek of tvd satisfiesk

M→∞
−→ ∞ and k/M

M→∞
−→ 0.

Proof: The proof is given in Sec. VI-C.
We next give examples that illustrate the tightness of the bounds.

Example 3. For n < ∞, the bound (24) is tight for a uniform target distribution and M = 3n/2. For
M < n, the bound (25) is tight for, e.g.,M = 5 and t1 = t2 = t3 = 4/15 and ti < 1/15 for all i > 3 (n
arbitrary).

D. Asymptotic Optimality

For target vectors with finitely many entries, the bound (24)guarantees that the approximation error
of tvd can be made arbitrarily small by choosingM large enough. The same is true for infinitely many
entries. This follows by bound (25) together with Statement3) of Proposition 2. Furthermore, by (16) the
M-type approximation converges uniformly to the target distribution. We summarize these observations
as a corollary to Proposition 2.

Corollary 1. Let t be an ordered target distribution with finite or countably infinite support. ForM →∞,
the approximationtvd converges uniformly to the target distributiont.

ForM ≥ n the variational distance decreases withO(1/M). ForM < n no such convergence guarantee
can be given. This is illustrated in the next example.

Example 4. Consider the Yule-Simon distribution [20] withti = ρB(i, ρ + 1), whereρ > 0 and where
B(·, ·) is the beta-function. Lemma 2 ensures that Algorithm 1 assigns unit masses to at most the firstM
indices. ForM > 1, we have

‖tvd − t‖1 =

∞∑

i=1

|tvdi − ti| ≥ TM

= MB(M, ρ+ 1) (26)

≥
K(ρ)

(M + ρ+ 1)ρ
(27)

whereK(ρ) is a positive constant that does not depend onM , see Sec. VI-D for the derivation. Thus,
the convergence of Algorithm 1 is at bestO(1/Mρ).

IV. I NFORMATIONAL DIVERGENCE OPTIMAL QUANTIZATION

We now considerM-type quantization with respect to the informational divergence, i.e., we want to
solve the problem

minimize
p

D(p‖t)

subject to p is M-type.
(28)



8

Algorithm 2. Informational divergence optimal quantization.

Initialize ci ← 0, i = 1, . . . , n.
for m = 1, 2, . . . ,M

Choosej = min{argmin
i

∆i(ci + 1)}. //choose the smallest index first.

Updatecj ← cj + 1.
end for
Returnc.

A. Equivalent Problem

Recall that each entrypi of anM-type distribution can be written aspi = ci/M for some non-negative
integerci. We have

D(p‖t) =
∑

i : ci>0

ci
M

log
ci
M

ti

=
1

M

( ∑

i : ci>0

ci log
ci
ti

)

− logM (29)

so that Problem (28) is equivalent to

minimize
c1,...,cn

∑

i : ci>0

ci log
ci
ti

subject to ci ∈ {0, 1, 2, . . . ,M}, i = 1, . . . , n
n∑

i=1

ci = M.

(30)

If c∗ is a solution of Problem (30), thenp∗ = c∗/M is a solution of Problem (28).

B. Algorithm 2

To solve problem (30), we write the objective function as a telescoping sum

∑

i : ci>0

ci log
ci
ti

=

n∑

i=1

ci∑

k=1

[

k log
k

ti
− (k − 1) log

k − 1

ti

]

=

n∑

i=1

ci∑

k=1

∆i(k) (31)

where the increment function is

∆i(k) = k log k − (k − 1) log(k − 1) + log
1

ti
. (32)

Evaluating∆i(x) as a function of a real numberx and taking the derivative,

∂

∂x
∆i(x) = log

x

x− 1
, (33)

we conclude that∆i(k) is strictly monotonically increasing ink. Moreover, rewriting (32) as

∆i(k) = k log
k

k − 1
+ log(k − 1) + log

1

ti
≥ log(k − 1). (34)
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(which holds trivially for k = 1) shows that the increment function grows without bound withk. The
following lemma summarizes the properties of the incrementfunction.

Lemma 5. For all m > 0, the increment function∆i(k) grows without bound withk and satisfies

ℓ > m⇒ ∆i(ℓ) > ∆i(m) (35)

ti > tj ⇒ ∆i(m) < ∆j(m). (36)

An allocation c can be obtained by initially assigning the zero vector0 to a pre-allocatioñc and
successively incrementing the entry ofc̃ by one for which the corresponding increment cost∆(c̃i + 1) is
smallest. AfterM iterations, the constraint

∑

i c̃i = M is fulfilled andc = c̃ is a valid allocation. If more
than one entry of̃c has the smallest increment cost in some step, then either of them can be chosen, so
the allocation obtained by this strategy is not unique. We illustrate this by the following example.

Example 5. Supposet = (4
5
, 1
5
) andM = 2. We have∆1(1) = log 5

4
and∆2(1) = log 5, so after the first

step,c̃ = (1, 0). In the second step, we have

∆1(2) = 2 log(2) + log
5

4
= log 5, ∆2(1) = log 5, (37)

so the final allocation is eitherc1 = (2, 0) or c2 = (1, 1). The corresponding approximations arep1 = (1, 0)
andp2 = (1

2
, 1
2
). Both approximations lead to the same informational divergence, namely

D(p1‖t) = D(p2‖t) = log
5

4
. (38)

Algorithm 2 resolves this ambiguity by incrementing entries with lower index first. From now on, we
denote bytid the uniqueM-type approximation oft that is calculated by Algorithm 2.

C. Elementwise Properties

The informational divergence is a weighted sum oflog
tidi
ti

. We therefore expect that for a good
approximationtid, the ratiotidi /ti is close to one. The next lemma states this property.

Lemma 6. Let t be a target distribution with finite or countably infinite support and letM be a positive
integer. EveryM-type approximationp of t that is optimal w.r.t. the informational divergence satisfies

pi
ti

<
e

t1
, ∀i ≤ k (39)

wherek is the support size ofp. In particular

1

Mtk
≤

e

t1
. (40)

Proof: See Section VI-E.
Lemma 6 directly implies

ti = 0⇒ tidi = 0. (41)

Furthermore, iftid assigns zero mass to some entryti, then it also assigns zero mass to all entries smaller
than ti:

Lemma 7. tj < ti and tidi = 0 ⇒ tidj = 0.

Proof: The statement follows by (36) form = 1.
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D. Optimality and Performance Bounds

Proposition 3. Let t be an ordered target distribution with finite or countably infinite support and letM
be a positive integer. Among allM-type distributionsp, p = tid minimizesD(p‖t).

Proof: See Section VI-F.
The increment in them-th iteration of Algorithm 2 does not depend onM . This means that the algorithm

not only calculates the optimalM-type quantization, but actuallyall optimal m-type quantizations for
m = 1, 2, . . . ,M . We state this property as a corollary of Proposition 3.

Corollary 2. Let c be the pre-allocation calculated by Algorithm 2 in them-th iteration and define

tidm :=
(c1
m
, . . . ,

cn
m

)

.

Among allm-type distributionsp, p = tidm minimizesD(p‖t).

We next bound the informational divergence in terms ofM . We start with the case when the support
size of the target distribution is finite(n <∞). We have

D(tid‖t)
(a)
≤ D(tvd‖t)

(b)
≤

∑

i : tvdi >0

tvdi

(
tvdi
ti
− 1

)

(c)
≤

∑

i : tvdi >0

tvdi

(
ti +

1
M

ti
− 1

)

≤
1

tnM
(42)

where (a) follows by the optimality oftid, (b) by log(x) ≤ x− 1, and (c) by (16). Forn =∞, we have
ti

i→∞
→ 0, so bound (42) becomes useless. The next proposition tightens (42) forn <∞ andM ≥ n and

it provides a bound forM < n, which is important when the support oft is infinite.

Proposition 4. Let t be an ordered target distribution and letM be a positive integer.
1) If t has finite support of cardinalityn ≤M , then

D(tid‖t) < log

(

1 +
n

2tnM2

)

. (43)

2) If t has finite or countably infinite support of cardinalityn > M , then

D(tid‖t) <
1

2

r log r

r − 1

(
k

2M
+ 2Tk

)

(44)

with r = 1
1−Tk

+ e
t1

.

3) For n =∞, the support sizek of tid satisfiesk
M→∞
−→ ∞ and k/M

M→∞
−→ 0.

Proof: See the Section VI-G.
We briefly discuss the intuition behind the bounds in Proposition 4. The bound (43) follows by evaluating

the informational divergence of the variational distance optimal approximationtvd. To derive bound (44),
we apply Lemma 1. First, we determine the support sizek of tid. Then, we use Algorithm 1 to approximate
the sub-probability distributiont1:k. This lets us bound both the ratior and the variational distance in
Lemma 1. Note that (43) and (44) are not tight for finiteM .
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E. Asymptotic Optimality

For target distributions with finite support, bound (43) guarantees that the informational divergence can
be made arbitrarily small by choosingM large enough. This result is also valid for target distributions
with infinite support by using Statement 3) of Proposition 4 in (44). We summarize these observations as
a corollary to Proposition 4.

Corollary 3. Let t be an ordered target distribution with finite or countably infinite support. ForM →∞,
the informational divergence oftid and t approaches zero.

For M ≥ n, the informational divergence approaches zero asO(1/M2) by bound (43). ForM < n, no
such speed of convergence guarantee can be stated. We illustrate this by the following example.

Example 6. By Lemma 7,tid assigns mass only to at most the first (largest)M indices. As in Example 4,
we consider the Yule-Simon distribution. By Pinsker’s inequality (7) and Example 4, the convergence of
Algorithm 2 is at bestO(1/M2ρ).

V. COMPARISON OFINFORMATIONAL DIVERGENCE AND VARIATIONAL DISTANCE

A. Elementwise Properties

The variational distance optimal approximationtvd guarantees a bounded per-entry approximation error
|ti − tvdi | by (16). Correspondingly, the informational divergence optimal approximationtid guarantees a
bounded per-entry ratiotidi /ti by (39). The approximationstvd and tid can violate the per-entry bounds
of the other. We illustrate this by the following two examples.

Example 7. Let t1 = 1/M and t2 = · · · = tn = M−1
(n−1)M

, for n > M . Hencetvd = ( 1
M
, . . . , 1

M
), and

tvd2
t2

=
(n− 1)M

M(M − 1)
=

n− 1

M − 1
(45)

can be arbitrarily large. The approximationtid guarantees that, by (39), we have

tid2
t2
≤

e

t1
= eM (46)

independent ofn.

Example 8. Let t = (0.97, 0.01, 0.01, 0.01) and M = 256. It follows that L = 2 and we obtain
tvd = (248, 3, 3, 2)/256 from Algorithm 1. Algorithm 2, however, yieldstid = (247, 3, 3, 3)/256, where

t1 − tid1 =
1.32

M
(47)

violates (16).
Let t = (0.4, ε, ε, . . . , ε)T andM = 2. It follows thatL = 2 and we obtaintvd = (1/2, 1/2, . . . , 0, 0)T

from Algorithm 1. However, ifn is sufficiently large such thatε < 0.1, it can be shown that Algorithm 2
yields tid = (1, 0, . . . , 0, 0)T , where

tid1 − t1 =
1.2

M
(48)

violates (16).
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Fig. 1. Support sizes oftvd and tid for the Yule-Simon distribution withρ = 0.2.

B. Support

Suppose the target distributiont has infinite support. By Statement 3) in Proposition 2 and Statement
3) in Proposition 4, the supports of the approximationstvd and tid both increase without bound and
sublinearly withM . However, the following example shows that the support oftvd can grow much faster
than the support oftid. The reason is that assigning probability masses to indiceswith small target
probabilities has a much higher cost in terms of informational divergence than in terms of variational
distance. We illustrate this phenomenon by the following example.

Example 9. Consider the Yule-Simon distribution (see Example 4) withρ = 0.2 and letM take values
from 1 to 10000 in steps of 10. The resulting support sizes oftvd and tid are displayed in Fig. 1. The
support size oftvd is around twice the support size oftid. The considered Yule-Simon distribution has a
heavy tail withT10000 ≈ 0.15. In other words, the first 10000 entries oft contain only 85% of the total
probability mass.

The next example shows that the support oftvd is not always larger than the support oftid.

Example 10. In Example 5 we showed that fort = (4/5, 1/5) and M = 2 both t̂1 = (1, 0) and
t̂2 = (1/2, 1/2) are optimal in terms of the informational divergence. As it can be easily shown,̂t1 is
the unique approximation that is optimal in terms of the variational distance. We now modify the target
distribution tot = (4/5 − ǫ, 1/5 + ǫ) with 0 < ǫ < 1/20. The vectort̂1 remains the unique variational
distance optimal approximation and̂t2 is now the unique informational divergence optimal approximation.
The support of̂t2 is strictly larger than the support of̂t1.

C. Asymptotic Optimality

Corollaries 1 and 3 state thattvd and tid are asymptotically optimal w.r.t. variational distance and
informational divergence, respectively. By Pinsker’s inequality (7),tid is also asymptotically optimal w.r.t.
the variational distance. In contrast, the variational distance optimal approximationtvd is in general not
asymptotically optimal w.r.t. the informational divergence. This is illustrated by the following example.

Example 11. Consider the distributiont that is constructed from the geometric distributiont̃i = 2−i as
follows: First, t1 = t̃1. Then, the next probability mass̃t2 is split into so many pieces that forM = 2 the
informational divergence equalslog 2. For M = 2, Algorithm 1 yieldstvd2 = (1

2
, 1
2
), where the first entry

is approximated perfectly. The informational divergence of tvd2 and t evaluates to

D(tvd2 ‖t) =
1

2
log

1

2t2

!
= log 2 (49)
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from which t2 = 1/8 follows. Thus,t2 = t3 = 1/8, which sums to1/4. Repeating the procedure for
M = 8, the first three indices are approximated without error, andthe two remaining masses are placed on
the following indices, such thattvd8 = (1

2
, 1
8
, 1
8
, 1
8
, 1
8
). To ensure that the informational divergence remains

equal tolog 2, one again must split the next probability masst̃3 into sufficiently many pieces. It follows
that t4 = · · · = t19 = 1/128, which sum to1/8. Repeating this procedure yieldst satisfying

tj = 21−2i ,

if
i−1∑

k=0

22
k−k−1 ≤ j ≤

i∑

k=0

22
k−k−1 − 1,

i ∈ N. (50)

For this, the subsequence{Mi}i∈N = {22
i−1} yields an informational divergence equal tolog 2, while

the variational distance is bounded by2/2i, i.e., twice the remaining mass of the geometric distribution.
Hence, by Corollary 1,‖tvd − t‖1

M→∞
→ 0, while lim supM→∞D(tvd‖t) = log 2.

VI. PROOFS

A. Proof of Lemma 3

We prove that every optimalp satisfies (16) by contradiction: Suppose thatpi ≤ ti −
1
M

for somei.
Since bothti and pi must sum to one, there must be aj for which pj > tj . Definep◦ by p◦i = pi +

1
M

,
p◦j = pj −

1
M

, andp◦ℓ = pℓ for all ℓ 6= i, j. We calculate

‖p− t‖1 − ‖p
◦ − t‖1 = ti − pi − ti + p◦i + |pj − tj| − |p

◦
j − tj|

=
1

M
+ |pj − tj | − |pj −

1

M
− tj | (51)

=
1

M
+ |pj − tj | −

∣
∣
∣
∣
|pj − tj| −

1

M

∣
∣
∣
∣

(52)

> 0. (53)

where (53) follows becausepj > tj . We conclude that an optimal algorithm cannot lead topi ≤ ti −
1
M

.
That pi ≥ ti +

1
M

is sub-optimal follows along the same lines.

B. Proof of Lemma 4

We claim that the two bounds in (21) relate as

Tk ≤
k

2M
+

MT 2
k

2k
. (54)

This can be seen from
(

k

2M
+

MT 2
k

2k

)

− Tk =
M

2k

(
k2

M2
− 2

k

M
Tk + T 2

k

)

=
M

2k

(
k

M
− Tk

)2

≥ 0. (55)

The general bound in (22) follows by loosening the right-hand side (left-hand side) of (54) ifTk ≤ k/M
(if Tk ≥ k/M).

We next consider the two casesTk ≥ k/M andTk ≤ k/M separately.
Case Tk ≥ k/M: We show that‖tvd − t‖1 = Tk and the general bound follows by (54). We have

k

M
≤ Tk = 1−

k∑

i=1

ti =

k∑

i=1

(tvdi − ti). (56)
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In Algorithm 1, the rest massL/M after the initialization step cannot be smaller thanTk. Thus

L

M
≥ Tk ≥

k

M
(57)

which impliesL ≥ k. Thus, in the finalization step of Algorithm 1, each of the entries j = 1, . . . , k will
get assigned at least one more mass1/M , so

for eachj = 1, . . . , k : (tvdi − ti) ≥ 0. (58)

Altogether, we have

‖tvd − t‖1 =
k∑

i=1

|tvdi − ti|
(a)
=

k∑

i=1

(tvdi − ti)
(b)
= Tk (59)

where (a) follows by (58) and where (b) follows by (56).
Case Tk ≤ k/M: If tvdi − ti ≥ 0 for all i = 1, . . . , k, then‖tvd − t‖1 = Tk by (59) and (54) implies

that the general bound claimed by the lemma holds. It remainsto show that the general bound also holds
when

tvdj − tj < 0 for somej (60)

which implies

tvdi − ti <
1

M
, i = 1, . . . , k. (61)

In particular, (60) impliesL < k for the rest mass after the initialization step in Algorithm1, which
implies further that in the finalization step, each entryi = 1, . . . , k gets assigned at most one additional
mass1/M . The error mass after the initialization step is

k∑

i=1

ei =
k∑

i=1

ti −
k∑

i=1

⌊Mti⌋

M

=
L

M
− Tk. (62)

Now reorder thek errors such that̃ei ≥ ẽi+1. We bound the mean error from below and above by

1

L

L∑

i=1

ẽi ≥
L

Mk
−

Tk

k
≥

1

k − L

k∑

i=L+1

ẽi. (63)

Equality holds if ẽi = L
Mk
− Tk

k
for all i = 1, . . . , k. After the update step in Algorithm 1, theL largest

errors ẽi are replaced by the final errors1/M − ẽi. The other errors remain unchanged. We bound

k∑

i=1

|tvdi − ti| =

L∑

i=1

(
1

M
− ẽi

)

+

k∑

i=L+1

ẽi

(a)
≤

L

M
+

(
L

Mk
−

Tk

k

)

(k − 2L) (64)

where (a) follows by (63). The maximum is achieved forL = (k +MTk)/2, which yields

‖tvd − t‖1 ≤
k

2M
+

MT 2
k

2k
. (65)
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C. Proof of Proposition 2

1) : The proof follows from Lemma 4 fork = n andTk = Tn ≡ 0.
2) : Let k be the support size oftvd, and lett1:k be the sub-probability distribution obtained by taking

the firstk indices oft. Then, we have

‖tvd − t‖1 = ‖t
vd − t1:k‖1 + Tk. (66)

If k is the support size, then by Lemma 2 the firstk indices getM masses. Since the algorithm satisfies (16),
we have

Tk = 1−

k∑

i=1

ti =

k∑

i=1

(tvdi − ti) ≤
k

M
. (67)

Thus we can bound‖tvd − t1:k‖1 by Lemma 4 and get

‖tvd − t‖1 ≤
k

2M
+

MT 2
k

2k
+ Tk

=
k

2M

(

1 +
2MTk

k
+

M2T 2
k

k2

)

=
k

2M

(

1 +
MTk

k

)2

. (68)

3) : The support sizek of tvd grows without bound withM because for everyl there exists anM such
that tl > 1/M , hence this index gets probability mass already in the initialization step of Algorithm 1.

We show that the support sizek ≡ k(M) grows sublinearly withM by contradiction. Suppose there
exists a0 < c ≤ 1 such that

lim sup
M→∞

k(M)

M
= c. (69)

Thus, for eachǫ > 0, there exists a sequence{Mi}i∈N, M1 < M2 < M3 < · · · , such that

(c− ǫ)Mi < k(Mi) < (c+ ǫ)Mi, i ∈ N. (70)

Now choosei < j ∈ N. Applying the algorithm forMi andMj increases the support size fromk(Mi)
to k(Mj). In total, the algorithm hasMj masses to distribute, some of which are distributed to the first
k(Mi) indices. In particular, in the first step the algorithm assigns

k(Mi)∑

l=1

⌊Mjtl⌋ (71)
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masses to the firstk(Mi) indices. The difference in support sizes is thus bounded from above by

k(Mj)− k(Mi) ≤Mj −

k(Mi)∑

l=1

⌊Mjtl⌋

< Mj −

⌊(c−ǫ)Mi⌋∑

l=1

⌊Mjtl⌋

= Mj



1−

⌊(c−ǫ)Mi⌋∑

l=1

⌊Mjtl⌋

Mj





= Mj



T⌊(c−ǫ)Mi⌋ +

⌊(c−ǫ)Mi⌋∑

l=1

(

tl −
⌊Mjtl⌋

Mj

)




< Mj

(

T⌊(c−ǫ)Mi⌋ +
(c− ǫ)Mi

Mj

)

. (72)

Now choosei large enough such thatT⌊(c−ǫ)Mi⌋ < ǫ and choosej large enough such thatMi/Mj < 1/4.
We have

k(Mj)− k(Mi)

Mj
< ǫ+

c− ǫ

4
. (73)

A lower bound on the support size difference is obtained from(70):
k(Mj)− k(Mi)

Mj

> (c− ǫ)− (c+ ǫ)
Mi

Mj

>
3c

4
−

5ǫ

4
. (74)

Combining (73) and (74) yields an upper bound onc:
3c

4
−

5ǫ

4
<

c− ǫ

4
+ ǫ. (75)

After rearranging we havec < 4ǫ for any ǫ > 0, and thus

lim sup
M→∞

k(M)

M
= 0. (76)

D. Proof of (27)

We make use of the following lower bound on the beta function [21, eq. (2)]

B(x, y) ≥
xx−1yy−1

(x+ y)x+y−1
(77)

which in our case gives

M ·B(M, ρ+ 1) ≥
MM (ρ+ 1)ρ

(M + ρ+ 1)M+ρ

=
MM

(M + ρ+ 1)M
(ρ+ 1)ρ

(M + ρ+ 1)ρ

=
(ρ+ 1)ρ

(1 + ρ+1
M

)M
1

(M + ρ+ 1)ρ

≥
(ρ+ 1)ρ

eρ+1

1

(M + ρ+ 1)ρ
(78)

where (78) follows because(1 + ρ+1
M

)M approacheseρ+1 from below. This shows the existence of the
constantK(ρ) in (27).
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E. Proof of Lemma 6

The caseM = 1 (hencek = 1) is trivial; we focus onM ≥ 2. Suppose thatp is anM-type distribution
(not necessarily optimal) and thatp◦ is such thatp◦i = pi +

1
M
≤ 1, p◦j = pj −

1
M
≥ 0 andpℓ = p◦ℓ for all

ℓ 6= i, j. We now show thatD(p‖t) > D(p◦‖t) holds if p violates the statement of Lemma 6, i.e., thatp

is not optimal is not optimal in this case. To this end, noticethat

D(p‖t)− D(p◦‖t) = pi log
pi
ti

+ pj log
pj
tj
−

(

pi +
1

M

)

log
pi +

1
M

ti
−

(

pj −
1

M

)

log
pj −

1
M

tj

(a)
= pj log

pj
tj
−

(

pj −
1

M

)

log
pj −

1
M

tj
−

1

M
(∆i(Mpi + 1)− logM)

(b)
>

1

M
log

pj
tj

+

(

pj −
1

M

)

log
pj

pj −
1
M

︸ ︷︷ ︸

>0

−
1

M
(∆i(M)− logM)

>
1

M
log

pj
tj

+
M − 1

M
log

M − 1

M
︸ ︷︷ ︸

≥− 1

M

+
1

M
log ti

≥
1

M
log

pj
tj
−

1

M
log

e

ti

where(a) is due to (32) and(b) follows by (35). Hence, if
pj
tj
≥

e

ti
(79)

for any pair of indicesi and j, then above difference of informational divergences is positive as well.
Thus, an optimalp may not fulfill (79) for any such pair of indices. The best bound is obtained fori = 1,
hence Lemma 6 follows. The result for indexk results frompk ≥ 1/M .

F. Proof of Proposition 3

To prove optimality, we need the following lemma.

Lemma 8. Let c∗ be an optimal allocation. Letc be a pre-allocation with
∑

i ci < M and ci ≤ c∗i for
i = 1, . . . , n. Define

j = argmin
i

∆i(ci + 1). (80)

Then there exists an optimal allocatioñc with

cj + 1 ≤ c̃j (81)

ci ≤ c̃i, i = 1, . . . , n. (82)

Proof: Suppose we have

cj + 1 > c∗j . (83)

Sincecj ≤ c∗j by assumption, (83) implies

cj + 1 = c∗j + 1. (84)

Since
∑

i ci < M and
∑

i c
∗
i = M , there must be at least oneℓ 6= j with

c∗ℓ ≥ cℓ + 1. (85)
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By decreasingc∗ℓ by one and increasingc∗j by one, the change of the objective function is∆j(c
∗
j + 1)−

∆ℓ(c
∗
ℓ). We bound this change as follows:

∆j(c
∗
j + 1)−∆ℓ(c

∗
ℓ)

(a)
≤ ∆j(c

∗
j + 1)−∆ℓ(cℓ + 1) (86)

(b)
= ∆j(cj + 1)−∆ℓ(cℓ + 1)
(c)
≤ 0 (87)

where (a) follows by (85) and Lemma 5, (b) follows by (84), and(c) follows by the definition ofj in
(80).

We must consider two cases. First, suppose we have strict inequality in either (86) or (87). Then the
objective function is decreased, which contradicts the assumption thatc∗ is optimal. Thus, the supposition
(83) is false and the statements of the lemma hold forc̃ = c∗. Second, suppose we have equality both in
(86) and (87). In this case, define the allocation

c̃ℓ = c∗ℓ − 1, c̃j = c∗j + 1, c̃i = c∗i for i 6= j, ℓ. (88)

Equality in (86)–(87) implies optimality of̃c. By (84) and (85), we can verify that̃c fulfills the statements
of the lemma. This concludes the proof of Lemma 8.

We are now ready to prove Proposition 3. By Lemma 8, there is anoptimal allocationc̃ such that in
each iteration of Algorithm 2 we have

ci ≤ c̃i, i = 1, . . . , n. (89)

After Algorithm 2 terminates, we have

M =
∑

i

ci ≤
∑

i

c̃i = M. (90)

Statements (89) and (90) can be true simultaneously only ifci = c̃i for all i = 1, . . . , n. Consequently,
the constructed allocationc is optimal.

G. Proof of Proposition 4

1) CaseM ≥ n: By Proposition 3,tid is optimal w.r.t. the informational divergence and

D(tid‖t) ≤ D(tvd‖t). (91)

Moreover,

D(tvd‖t) =

n∑

i=1

tvdi log
tvdi
ti

(a)

≤ log

(
n∑

i=1

(tvdi )2

ti

)

= log

(

1 +

n∑

i=1

(tvdi − ti)
2

ti

)

(92)

where(a) is Jensen’s inequality (see also the proof of [17, Thm. 3]) and where the sum inside the logarithm
is Pearson’sχ2-distanceχ2(tvd‖t). Note that (92) equalsD2(t

vd‖t), the Rényi divergence of second order.
The inequality in(a) is then a direct consequence of the fact that Rényi divergence is non-decreasing in
the order [22, Thm. 3].
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We now bound (92) by
n∑

i=1

(tvdi − ti)
2

ti
≤

1

tn

n∑

i=1

(tvdi − ti)
2

=
1

tn

n∑

i=1

|tvdi − ti| |t
vd
i − ti|
︸ ︷︷ ︸

< 1

M
by (16)

<
1

tnM
‖tvd − t‖1

(a)
≤

n

2tnM2
(93)

where (a) follows by Statement 1) in Proposition 2.
2) CaseM < n: Let k be the support size oftid. Define the auxiliary distributioñt := t1:k/(1− Tk).

Because of the normalization by1 − Tk, the entries of̃t sum to one and̃t is a distribution. Denote by
t̃vd the approximation that results from applying Algorithm 1 tot̃. We have

D(tid‖t) ≤ D(t̃vd‖t)
(a)
≤

1

2

r log r

r − 1
‖t̃vd − t‖1

with r = max
i≤k

t̃vdi
ti

(94)

where (a) follows by Lemma 1. It remains to bound the ratior and the variational distance‖t̃vd− t‖1.
Boundingr: By (16), we have

t̃vdi < t̃i +
1

M
=

ti
1− Tk

+
1

M
. (95)

Thus, for eachi ≤ k, we have

t̃vdi
ti

<
1

1− Tk
+

1

tiM
≤

1

1− Tk
+

1

tkM
(96)

which implies

r <
1

1− Tk
+

1

tkM
(a)
≤

1

1− Tk

+
e

t1
(97)

where (a) follows by (40) in Lemma 6.
Bounding‖t̃vd − t‖1: We bound

‖t̃vd − t‖1 = ‖t̃
vd − t1:k‖1 + Tk

= ‖t̃vd − t̃(1− Tk)‖1 + Tk

(a)
≤ ‖t̃vd − t̃‖1 + ‖t̃Tk‖1 + Tk

= ‖t̃vd − t̃‖1 + 2Tk

≤
k

2M
+ 2Tk (98)

where (a) follows by the triangle inequality. Using (97) and(98) in (94) completes the proof.
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3) : The supportk grows without bound because the increment functions∆i grow without bound by
(34), i.e., for every positive integerℓ there exists anM large enough such that, for alli = 1, . . . , ℓ− 1,

log
1

tℓ
< ∆i(ci + 1) (99)

where the sum over allci is less thanM . In other words, after assigning a specific number of masses to
indices 1 toℓ− 1, assigning a mass to indexℓ must have lower cost than assigning additional masses to
the firstℓ− 1 indices.

The resultk(M)/M
M→∞
→ 0 can be seen as follows. IncreasingM by one increases the support sizek

at most by one. This is a consequence of the update rule in Algorithm 2. Thus, the sequencek ≡ k(M)
contains each integer1, 2, 3, . . . at least once and we can define a sequenceM(k), k = 1, 2, 3, . . . . Note
that some integers may not occur in the sequenceM(k). By (40) in Lemma 6, we can bound thek-th
probability tk by

tk >
t1

eM(k)
(100)

and we have

1 =
∞∑

k=1

tk >
∞∑

k=1

t1
eM(k)

. (101)

If M(k) grows only linearly withk, then the sum on the right-hand side diverges, which contradicts that
the probabilities need to sum to one. Thus,M(k) grows super-linearly withk and equivalently,k(M)
grows sub-linearly withM .
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[2] G. Böcherer and R. Mathar, “Matching dyadic distributions to channels,” inProc. Data Compression Conf. (DCC), Mar. 2011, pp.
23–32.
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