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Abstract

This article studies the limiting behavior of a class of retbpopulation covariance matrix estimators, originally
due to Maronna in 1976, in the regime where both the numbewvaitable samples and the population size grow
large. Using tools from random matrix theory, we prove tfiat,sample vectors made of independent entries having
some moment conditions, the difference between the sanoplriance matrix and (a scaled version of) such robust
estimator tends to zero in spectral norm, almost surelys Té8ult can be applied to various statistical methodsnarisi
from random matrix theory that can be made robust withowtrialg) their first order behavior.

I. INTRODUCTION

Many multi-variate signal processing detection and edionaechniques are based on the empirical covariance
matrix of a sequence of samples, ..., z, from a random population vectar ¢ C. AssumingE[z] = 0 and
E[zz*] = Cn, the strong law of large numbers ensures that, for indepenaled identically distributed (i.i.d.)
samples,

Sy = l Xn:xle — Cy
n =1

almost surely (a.s.), as the numbenf samples increases. Many subspace methods, such as ttiplensipnal
classifier (MUSIC) algorithm and its derivatives [1], [2ledwily rely on this property by identifying'y with Sy,
leading to appropriate approximations of functionals’gf in the largen regime. However, this standard approach
has two major limitations: the inherent inadequacy to sreathple sizes (when is not too large compared t)

and the lack of robustness to outliers or heavy-tailedibigtion of z. Although the former issue was probably the
first historically recognized, it is only recently that sifigant advances have been made using random matrix theory

[3]. As for the latter, it has spurred a strong wave of intereghe seventies, starting with the works from Huber
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[4] on robust M-estimation. The objective of this articlets provide a first bridge between the two disciplines
by introducing new fundamental results on robust M-estasamn the random matrix regime where bagthandn
grow large at the same rate.

Aside from its obvious simplicity of analysis, tEample covariance matrigSCM) Sy is an object of primal
interest since it is the maximum likelihood estimator@f; for x Gaussian. Wher is not Gaussian, the SCM
as an approximation af'y may however perform very poorly. This problem was identifieanultiple areas such
as multivariate signal processing or financial asset managg but was particularly recognized in adaptive radar
and sonar processing where the signals under study arectdrdzad by impulsive noise and outlying data. Robust
estimation theory aims at tackling this problem [5]. Amonger solutions, the so-called robust M-estimators of the
population covariance matrix, originally introduced bybdu [4] and investigated in the seminal work of Maronna
[6], have imposed themselves as an appealing alternatiteet@SCM. This estimator, which we denoféy, is

defined implicitly as a solution &f

n

. 1 1 oA "
Cn = - Zu <NI1 C’Nla:i> T, (1)

=1
for « a nonnegative function with specific properties. Thesaredtirs are particularly appropriate as they are the

maximum likelihood estimates af'y for specific distributions oft and some specific choices af such as the
family of elliptical distributions [7]. For any such, Cy is, up to a scalar, a consistent estimate ¢ for N
fixed andn — oo, see e.g. [8]. The robust estimators are also used to copedigitributions ofr with heavy tails

or showing a tendency to produce outliers, such as whef? has a K-distribution often met in the context of
adaptive radar processing with impulsive clutter [9]. listhrticle, the concept of robustness is to be understood
along this general theory.

A second angle of improvement of subspace methods has heesnérged due to advances in random matrix
theory. The latter aims at studying the statistical prapsrbf matrices in the regime where bath andn grow
large. It is known in particular that, if = Ayy with y € CM, M > N, a vector of independent entries with zero
mean and unit variance, then, under some condition€' gn= Ax A}, andy, in the largeN,n (and M) regime,
the eigenvalue distribution of (almost ever§), converges weakly to a limiting distribution described ifily
by its Stieltjes transform [10]. Whe@'y is the identity matrix for allN, this distribution takes an explicit form
known as the Martenko-Pastur law [11]. Under some additionoment conditions on the entries gf it has
also been shown that the eigenvaluesSaf cannot lie infinitely often away from the support of the limg
distribution [12]. In the past ten years, these two resuits subsequent works have been applied to revisit classical
signal processing techniques such as signal detectiomsshEL3] or subspace methods [14], [15]. In these works,
traditionaln-consistentletection and estimation methods were improved {¥on)-consistenapproaches, i.e. they
provide estimates that are consistent in the lakge regime rather than in the fixel and largen regime. These

improved estimators are often referred to as G-estimators.

10ur expression differs from the standard convention whﬁ{r@&lmi is traditionally not scaled by/N. The current form is however more

convenient for analysis in the larg¥, n regime.
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In this article, we study the asymptotic first order propertof the robust M-estimat€y of Cy, given by (1),
in the regime wheréeV, n (and M) grow large simultaneously, hereafter referred to as thelam matrix regime.
Although the study of the SCMy for vectorsz with rather general distributions is accessible to randoatrim
theory, as in e.g. the case of elliptical distributions [1B equivalent analysis faf'y is often very challenging.
In the present article, we restrict ourselves to vectood the typex = Axy with y having independent zero-mean
entries. One important technical challenge brought by ta&imCy, usually not met in random matrix theory, lies
in the dependence structure between the veqtotglvx;‘C]lei)%xi}?:l (as opposed to the independent vectors
{z;}_, for the matrixSy). We fundamentally rely on the set of assumptions on thetfana: taken by Maronna
in [6] to overcome this difficulty. Our main contribution cgiats in showing that, in the largh, n regime, and
under some mild assumption.'’y — aSy|| — 0, a.s., for some constant > 0 dependent only om. This result
is in particular in line with the conjecture made in [17] amtiag to which|Cy — aSx| =2 0 for the function
u(s) = 1/s studied extensively by Tyler [18], [19]; however, the fupatu(s) = 1/s does not enter our present
scheme as it creates additional difficulties which leaveciwgecture open.

A major practical consequence of our result is that the mais, at the core of many random matrix-based
estimators, can be straightforwardly replaceddy without altering the first order properties of these estormt
We generically call the induced estimatoobust G-estimatorsAs an application example, we shall briefly introduce
an application to robust direction-of-arrival estimat@ecounting for largeV, n based on the earlier estimator [20].

The remainder of the article is structured as follows. ®&cti provides our theoretical results along with an
application to direction-of-arrival estimation. Sectibhthen concludes the article. All technical proofs areailed
in the appendices.

Notations:The arrow >’ denotes almost sure convergence. Boe CV*N Hermitian,\; (A) < ... < An(A)
are its ordered eigenvalues. The nojfm|| is the spectral norm for matrices and the Euclidean norm éators.
For A, B Hermitian, A = B means thatd — B is nonnegative definite. The notatiofi* denotes the Hermitian

transpose ofd. We also write; = /—1.

II. MAIN RESULTS
A. Theoretical results

Let X = [z1,...,2,] € CNX", wherex; = Any; € CV, with y; = [yi1,...,vim]" € CM having independent
entries with zero mean and unit varianegy € CV*M andCy £ Ay A% € CN*V be a positive definite matrix.

We denotecy £ N/n, ey = M/N, and define the sample covariance mafiix of the sequences,...,x, by
. 1 1 —
SyE-XX*== iy
N7 n ; Tits

Letu: RT — RT (RT = [0, 00)) be a function fulfilling the following conditions:

() u is nonnegative, nonincreasing, and continuouskdn
(ii) the functiong : RT — RT, s~ su(s) is nondecreasing and bounded, witlp, ¢(x) = ¢ > 1. Moreover,

¢ is increasing in the interval whekg(s) < ¢ .
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Classical M-estimatoré’y defined by (1) for such function include the Huber estimator, with(s) = %s
for s € [0, oo — 1], Poo > 1, @aNdG(s) = Poo fOr s > Poo — 1. Sinceu(s) is constant fors < ¢, — 1 and decreases
for s > ¢, — 1, this estimator weights the majority of the samplgs. . ., z,, by a common factor and reduces the
impact of the outliers. The widely used functiais) = (1 +¢)(t + z)~! for somet > 0 shows similar properties,
here with¢,, = 1 + t.2 Other classicat functions, adapted to specific distributions of the samptaa be found
in the survey [8]. In any of these scenarios, robustness earphtrolled by properly setting...

To pursue, we need the following statistical assumptiontherlarge dimensional random matrices under study.

Al. The random variableg;;, i < n, j < M, are independent either real or circularly symmetric canpl
(i.e. E[y7;] = 0) with E[y;;] = 0 andE[|y;;|*] = 1. Also, there exists; > 0 anda > 0, such that, for alki, j,
E[lyi;[*+7] < av.

A2. ¢y > 1 and, asn — oo,

0 < liminfey <limsupey <1, limsupé, < oo.
n n n

A3. There exista’_, Cy > 0 such that
C_ < limi%f{/\l(CN)} < limsup{An(Cn)} < Ci.
N

Note that the assumptions neither request the entrigg@be identically distributed nor impose the existence of
a continuous density. This assumption is adequate for @ langge of application scenarios such as factor models
in finance or general signal processing models with indepenhdntry-wise non-Gaussian noise (e.g. distributed
antenna array processing), although the requirement efpmadence in the entries gfis somewhat uncommon in
the classical applications of robust estimation theorye &htry-wise independence is however central in this articl
for the emergence of a concentration of the quadratic foﬁrﬁé&lxi, i = 1,...,n. Further generalizations,
e.g. to elliptical distributions for:, would break this effect and would certainly entail a muctiedént asymptotic
behavior ofC'y. These important considerations are left to future work.

Technically,A1-A3 mainly ensure that the eigenvalues§ andCy lie within a compact set away from zero,
a.s., for allN, n large, which is a consequence (although non immediate)2jf [15]. Note also thaA2 demands
liminfx ¢y > 0, so that the following resultdo notcontain the results from [6], [19], in whiclV is fixed and
n — oo, as special cases. With these assumptions, we are now itiopas provide the main technical result of

this article.

Theorem 1:AssumeA1-A3 and consider the following matrix-valued fixed-point egotin Z ¢ CNV*¥,

1 1
Z = - Elu (N:v;‘Z_lxi) ;T (2)

Then, we have the following results.

2Note that this function intervenes in the maximume-likebdoestimator of the scatter matrix of Student-t distributaddom vectors [8].
Here we do not make any such maximum-likelihood considamatdr the selection of..
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(I) There exists a unique solution to (2) for all largga.s. We denot€'y this solution, defined as
Cy = lim Z®
t—o0
whereZ(® = Iy and, fort € N,

1« 1
7 — - Zlu (Nx;‘(Z(t))_lxi) ;T

(1) Defining C'x arbitrarily when (2) does not have a unique solution, we alsee

Hgb—l(l)éN - S*N’ 230,

Proof: The proof is provided in Appendix A. ]

An immediate corollary of Theorem 1 is the asymptotic cles=nof the ordered eigenvalues@fl(l)C’N and

Sn.
Corollary 1: Under the assumptions of Theorem 1,

max |¢~ (D)X (Cn) — Mi(Sn)| =5 0.

i<N

Proof: The proof is provided in Appendix A. ]

Some comments are called for to understand Theorem 1 in thexdoof robust M-estimation.

Theorem 1—(1) can be first compared to the result from Mardéna heorem 1] which states that a solution
to (2) exists for each seftry,...,z,} under certain conditions on the dimension of the space gghby then
vectors, as well as on(s), N, andn (in particularu(s) must satisfyg., > n/(n — N) in [6]). Our result may
be considered more interesting in practice in the sensethikadystem size®” andn no longer condition., and
therefore do not constrain the definitionofs). Theorem 1—(l) can also be compared to the results on unégsen
[6], [19] which hold for all N, n under some further conditions aiis), such ass(s) is strictly increasing [6]. The
latter assumption is particularly demanding as it may tejeme M-estimators such as the Huber M-estimator for
which ¢(s) is constant for large. Theorem 1—(1) trades these assumptions against a recgritdfor N andn to be
“sufficiently large” and for{z1,...,z,} to belong to a probability one sequence. Precisely, we ddritat there
exists an integen, depending on the random sequer¢e;, ..., z,)}5>;, such that for alln > ng, existence and
uniqueness are established under no further conditionttreudefinition (i)—(ii) ofu(s) and A1-A3.

Theorem 1—(ll), which is our main result, states thatNaandn grow large with a non trivial limiting ratio, the
fixed-point solutionC'y (either always defined under the assumptions of [6], [19]efineéd a.s. for large enough
N) is getting asymptotically close to the sample covarianedrioy up to a scaling factor. This implies in particular
that, while C'y is an n-consistent estimator of (a scaled version 6% for n — co and N fixed, in the large
N, n regime it has many of the same first order statisticsSgs This suggests that many results holding fo¢
in the largeN, n regime should also hold faf'y, at least concerning first order convergence. For instaasill
be seen through Corollary 2, one expects consistent estiméh the largeN, n regime) based on functionals of

Sy to remain consistent when usirztgl(l)C’N in place of Sy in the expression of the estimator. However, it is
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important to note that, in general, one cannot say much oonskorder statistics, i.e. regarding the comparison of
the asymptotic performance of both estimators. The matii¢e, parametrizable through, should then be seen
as a class of alternatives féty which may possibly improve estimators based%nin the large (but finite)V, n
regime. Note also that Theorem 1 is independent of the chafitiee distribution of the entries af (as long as the
moment conditions are satisfied) or of the choice of the fonct, which is in this sense similar to the equivalent
result in the classical fixed* largen regime [8].

In a similar context, it is shown in [12] and [21] that the eigelues ofSy are asymptotically contained in
the support of their limiting compactly supported disttibn if and only if the entries ofy have finite fourth
order moment. This first suggests that the technical assomptl which requiresy to have uniformly bounded
8 + n moment may be relaxed tg; having only finite fourth order moments for Theorem 1 to hditlis being
said, since most of the aforemention@¥, n)-consistent estimators involvingx or Sy rely on a non-degenerate
behavior of these eigenvalues (see e.g. [22, Chapters 1&stldetails), the finite fourth order moment condition
cannot possibly be further relaxed for these estimatorsetadable. As a consequence, althodghmight seem
very restrictive in a robust estimation framework as it dists the possibility to consider distributions fwith
heavy tail behavior, it is a close to necessary conditionrédnust estimation in the random matrix regime to be
meaningful.

In terms of applications to signal processing, recall fingtttthen-consistency results on robust estimation [6],
[19] imply that many metrics based on functionals@f can be consistently estimated by replacitig by Cx.
The inconsistency of the sample covariance matrix to thalfadipn covariance in the random matrix regime, along
with Theorem 1, suggest instead that this approach will laageneral to inconsistent estimators in the lafgen
regime, and therefore to inaccurate estimates for modeedes of N, n, M. However, any metric based driy,
and for which an(IV, n)-consistent estimator involvingy exists, is very likely to bé N, n)-consistently estimated
by replacingSy by gb*l(l)CA’N. The interest of this replacement obviously lies in the floléty to improve the

metric through an appropriate choicewafin particular wheny exhibits outlier behavior or has heavy tails.

B. Application example

A specific example can be found in the context of MUSIC-likéneation methods for array processing. In this
example,K signal sources imping on a collection 8f collocated sensors with angles of arrival ..., 0. The

datax; € CV received at time at the array is modeled as

K
v =Y \/Prs(0k) 2k + ow;
K=1

wheres(6) € C¥ is the deterministic unit norm steering vector for signaipinging the sensors at anglez; ; € C
is the signal source modeled as a zero mean, unit variandéirdgte 8+ order moment random variable, i.i.d. across
t and independent acrossp;, > 0 is the transmit power of sourde(py < Pmax 1OF SOMEPLax > 0) andow; € CN
is the received noise at timg independent acrogs with i.i.d. zero mean, variancg® > 0, and finite8 + » order
moment entries. Write; = Ayy;, with Ay 2 [S(0)P2,0ly], S(©) = [s(61), ..., s(0k)], P = diag(p1, . . ., Pk),
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andy; = (214, .- .,zK_,t,wiT)T € CN*+X_ Then, with N, n large andK finite, AssumptionsA1-A3 are met and

Theorem 1 can be applied. This yields the following corgllaf Theorem 1.

Corollary 2 (Robust G-MUSIC)DenoteEy, € CVN*(V=K) g matrix containing in columns the eigenvectors of
Cn with eigenvalues? andé,, the eigenvector of’y with eigenvaluel, 2 A, (Cy) (recall thath; < ... < Ay),

with C'y defined as in Theorem 1. Then, A5n — oo in the regime of AssumptioA2, and K fixed,

¥(0) = 4(0) == 0

where
1(0) = s(0)" Ew Eyys(0)
7(0) = ﬁ:ﬁiS(@)*éié?S(@)
and .

N Ak i :
T+ S (55— 72) L iSN-K
_NN-K (A e ; _
TN (xﬁxk e L i>N-K

B =

A ~ =1 . « “
with 4y <... < jin the eigenvalues ofiag(A) — %\/X\/X A=A, )T
Proof: The Corollary is exactly the algorithm [14] withy replaced byCy. The validity of this operation is
proved in Appendix E. ]

The function~(0) is the defining metric for the MUSIC algorithm [1], the zerok which contain thef,,
1 € {1,...,K}. Corollary 2 proves that thé&V, n-consistent G-MUSIC estimator of(6) proposed by Mestre in
[14] can be extended into a robust G-MUSIC method. The latierely consists in replacing the sample covariance
matrix Sy as in [14] by the robust estimat@¥y. The anglesy; are then estimated as the deepest minima of
4(6). This technique can be seen through simulations to perfatiebthan either MUSIC or G-MUSIC in the
finite (N, n) regime in the case of impulsive noise in the sens@bffor an appropriate choice of the functian
However, proving so requires the study of the second oragissts ofv(#), which goes beyond the reach of the

present article and is left to future work.

IIl. CONCLUSION

We have proved that a large family of robust estimates of fadjmn covariance matrices is consistent with the
sample covariance matrix in the regime of both large pomra¥V and sample: sizes, this being valid irrespective
of the sample distribution. This result opens up a new araasdarch for robust estimators in the random matrix
regime. The results can be applied to improve a variety afadigrocessing techniques relying on random matrix
methods but not accounting for noise impulsiveness yet. et performance gain of such improved methods

however often relies on second order statistics which véllifvestigated in future work.
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APPENDIXA

PROOF OFTHEOREM 1 AND COROLLARY 1

Proof of Theorem 1:In order to prove the existence and uniqueness of a solutid@)tfor all largen, we

use the framework of standard interference functions fra8j.[

Definition 1: A function h = (h1,...,h,) : R} — R} is said to be a standard interference function if it fulfills
the following conditions:

1) Positivity: if g1, ...,q¢, >0, thenh;(q1, ..., ) > 0, for all j.

2) Monotonicity:if ¢1 > ¢},...,q, > ¢, then for allj, h;(q1,...,qn) > hj(di,. ... q)-

3) Scalability: for all o > 1 and for allj, ah;(qi,...,qn) > hj(aq, ..., aq,).

Theorem 2:If an n-variate functiom(q, . . ., g,) is a standard interference function and there eXigts. . ., ¢,,)
such that for allj, ¢; > h;(q1, ..., gs), then the system of equations
qj =hi(q1,. .-, qn) ()
for j =1,...,n, has at least one solution, given h'ynHoo(q?), . ,qff)), where
¢ =ni@”, .. )
for t > 1 and any initial valueg” ... ¢{” > 0.
Proof: The proof is provided in Appendix D. ]

Remark 1:Note that our definition of a standard interference functiiffers from that of [23] in which the
scalability requirement reads: for all ah;(q1,...,q.) > hj(aq,...,aq,). Changing the strict inequality to a
loose one alters the consequences for the theorem abovee whig existence is ensured. However, for our present

purposes withy(s) possibly possessing a flat region, requesting a strict mlé@gjuvould be too demanding.

Since{r1,...,z,} spansC¥ for all largen a.s. (as a consequence of Proposition 2 in Appendix F), we can
define for these: the functionsh;, j =1,...,n,
1 1< -
hi(qus---5qn) £ Nx; <ﬁ ZU(%‘)IM?> Ly (4)
=1
We first show thatv = (hq,...,h,) meets the conditions of Theorem 2 for all largea.s. Due toA1l, from

standard arguments using the Markov inequality and the IBRaatelli lemma, we have thahin; <, ||;|| # 0
for all largen a.s. (this is also a corollary of Lemma 2 below). Therefore, alearly haveh; > 0 for all j, for
all largen a.s. Also, sinceu is non-increasing, taking, ...,q, andgi, ..., q, such thatg, > ¢; > 0 for all 4,

u(q)) < u(g;) and then

1O R N
" 2“(%)%% = n X;U(Qz)xz%
1= i=
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From [24, Corollary 7.7.4], this implies

n -1 1 n -1
( Zu(q{)x@f) = (- U(QZ)le?>
=1 n =1

from which h;(qi,...,q,) > hi(q, ..., g,), proving the monotonicity of..
Fora > 1, ¢(agq;) > ¢(q:), so thatu(ag;) > % Therefore

S

1< 11

— i) L] = —— i) L]

- igl u(ag; )z o ;:1 u(g;)x;x
From [24, Corollary 7.7.4] again, we then have

n

—1 —1
1< . 1 .
o (g ZM%‘W%) = (5 Z“(aqi)$i$i>
=1 i=1
so thatah;(qi,...,qn) > hj(aqi,...,aq,). Thereforeh is a standard interference function. In order to prove
that (4) admits a solution, from Theorem 2, we now need to @ttt there existéq, . .., q,) such that for all

J,» q; > hj(qi,...,qn). Note that this may not hold for all fixed/,n as discussed in [6, pp. 54]. We will prove
instead that a solution exists for all largea.s.

To pursue, we need random matrix results and additionatioota Takec_, ¢, such thal) < c_ < liminfy ey
andlimsupy cy < ¢y < 1, and denoteX(;) = [21, ..., Zi—1, Tit1, . .., Tn] € CV*(=D We start with the follow-

ing fundamental lemmas, which allow for a control of the jaionvergence of the quadratic fornjti;@:;‘ S*g,l:ci —1.

Lemma 1:AssumeAl1-A3. There existg > 0 such that
. 1 N

Proof: The proof is provided in Appendix B. [ ]

for all largen a.s.

Lemma 2:AssumeAl1-A3. Then, a.s.,

1 A
max{lﬁxfsg,lxi - 1’} — 0.

i<n
Proof: The proof is provided in Appendix C. ]
Letgi =...=g¢q, £ ¢>0. Then,
1 1 . g 1 ..,
hilgi,....qn) = ——=x;S Lo, = ———z; Sy T
(0 0) = iy N = G N

Takee > 0 such that(1 + ¢)/(¢0 — €) < 1. This is always possible sincg,, > 1. Choose nowy such that
#(q) = doo — €, Which also exists since is increasing o0, ¢~ (¢oo—)) With image [0, ¢~,). From Lemma 2,

for all largen a.s.,

1
sup ahi(q1a---7Qn)(¢oo —g)—1| <e.

K2
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10

Therefore,

1+¢
¢oo_5

from which h;(q, ..., q) < ¢ for all i. From Theorem 2, we therefore prove the existence of a soluti (3) with

<1

1
_hi qi;..-5qn) <
. ( )

h; given in (4). Since these quadratic forms define the solstiointhe fixed-point equation (2), this proves the
existence of a solutiod'y for all largen a.s. Note that Lemma 2 is crucial here and that,dgr close to one,
there is little hope to prove existence for all fixdd n, consistently with the results [6], [19].
We now prove uniqueness. Take a solut@p and denotel;, = %x;‘é&lxi, which we order agl; < ... <d,
without loss of generality. Denote aldd = diag({u(d;)},). By definition
d; = %xf (%XDX*) 1 ;.

From the non increasing property of we have the inequality
XDX* = u(d,) X X*

which implies after inversion

1 1 1
XX = (XDX™
i (XX = (DX
and therefore, recalling that ' X X* = Sx,
11 L.,
< _ *
d, < W) N:CnSN Tn
or equivalently, since:(d,,) > 0,
1 ..
¢(dn) < 239N Tn
Similarly,
1 1 A
dy > —aiSy!
L= Wd) NoN 7

from which we also have

1 A
o(dy) > Nx’;lexl.
Since ¢ is non-decreasing, we also hawél,) < ¢(d;) < ¢(d,,) for i <n, and we therefore obtain
1 L a 1 A
leSlel < ¢(d;) < anSlezrn.
Take0 < ¢ < min{1, (¢poo — 1)}. From Lemma 2, for all large a.s.,
0<l—e<¢(d) <l+e< oo

Since ¢ is continuous and increasing @f, ¢~ (¢, —)) with image contained iff0, ¢, ), ¢ is invertible there

and we obtain that for all large a.s.,

o7 (1—e)<di<¢ ' (L+e). (6)
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11

We can now prove the almost sure uniquenesg'qf for all large n. Takee in (5) to satisfy the previous
conditions and to be such that=!(1+¢))?/¢ 1 (1 —¢) < ¢~ !(¢oo—), Which is always possible as the left-hand
side expression is continuous dnwith limit ¢~ (1) < ¢! (¢ —) ase — 0.

We now follow the arguments of [23, Theorem 1]. Assu(d%l), . .,d%l)) and (d§2>, . .,dﬁf)) are two distinct
solutions of the fixed-point equatiafy = h;(dy,...,d,) for j = 1,...,n, whereh; is defined by (4). Then (up to
a change in the indicesand?), there existg: such that, for some: > 1, adg) = d,(f) andadgl) > d§2) fori # k.
From (5), for sufficiently large: a.s. the ratiox = dg)/df) is also constrained to satisfy < ¢~!(1+¢)/¢ "1 (1—¢).
Using this inequality and the upper bound in (5), we have fbrja

(¢ '(1+¢))?
¢~ (1—¢)
Sinceg is increasing orf0, ¢~ (¢« —)), we have in particulap(ad'”) > ¢(d'") from whichau(ad{") > u(d"),

0<ad < < 0 o).

for all j and then, with similar arguments as previoualyy-(dgl), cee d%l)) > hj(ozdgl), . ,ad%l)) for all 5. Using

the monotonicity ofh, we conclude in particular
d? = h(d?,...,d?) < hi(ad?, ... adD)
< ah(d?P,....dD) = ad]
which contradictsad,(cl) = d,(f) and proves the uniqueness©f; and Part (1) of Theorem 1.
We now prove Part (I) of the theorem. In order to proceed, teet sigain from (5). Since is arbitrary, we

conclude that

max |d; — ¢_1(1)| 250,
Applying the continuous mapping theorem, we then have

max |u(dl) — u(¢71(1))| 230.

i<n
Noticing thate—1(1)u(¢=1(1)) = ¢(¢~1(1)) = 1, and therefore that(¢—1(1)) = 1/¢~1(1), this can be rewritten
max u(d;) — (b%(l) 2%0. (6)

Now, we also have the matrix inequalities

1 1
min {u(dl) - = } —XX*
n

i<n

<1 _ (000~ i )

K3

1 1
= ) — ———  — *
= e { ) e
From Proposition 2 in Appendix FH,%XX*H < K for someK > 0 and for alln a.s. From (6), we then conclude
that
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which completes the proof of Theorem 1. ]

Proof of Corollary 1: The identity follows from [24, Theorem 4.3.7], accordingwtich, for1 <i < N,
i (SN) <N (¢71(1)6N) + AN (SN - ¢71(1)ON)
i (SN) >N (¢71(1)6N) — AN (SN - ¢71(1)ON) .

The result follows by noticing that the second term in bogitihand sides tends to zero a.s. according to Theorem 1.

APPENDIXB

PROOF OFLEMMA 1

If the set of the eigenvalues GEX@X(*;) is contained within the set of the eigenvalues;lloXX*, then the
result is immediate from Proposition 2 in Appendix F. We charéfore assume the existence of eigenvalues of
%X(i)X(*i) which are not eigenvalues gfX X*. By definition, the eigenvalues dng(i)X(*i) solve the equation in
A

det (%X(i)X(*i) - /\IN) = 0.
Take A not to be also an eigenvalue %D(X*. Then, developing the above expression, we get
det (%X(i)X(*i) - )\IN)
= det (lXX* — lxlacf — )\IN>
n n
= det Q(\) det <IN —Q(\)2 %xier()‘);)

= det Q(\) (1 - %wa(/\)lfvi>

with the notationQ(A\) £ 1 X X* — Xy, where we usedlet(Iy + AB) = det(I, + BA) in the last line, for
A c CN*P and B € CP*N, with p = 1 here.
Therefore, since\ cannot cancel the first determinant,

1 * —1 1 * 1 * -
—zfQN) ey = —xf | = XX — My x; = 1.
n n n

3

Let us study the function

Al /1 -1
fon,i(x):—SCi —XX"—zxly x;.

n n
First note, from a basic study of the asymptotes and limit,0f(z), that the eigenvalues oﬁX(i)X(*i) are

interleaved with those O%XX* (a property known as Weyl's interlacing lemma) and in paitc that

1 1 1
(o) o (L) <on (L), -
n n n
Since/\l(%XX*) is a.s. away from zero for all larg® (Proposition 2), only/\l(%X(i)X(*i)) may remain in the

neighborhood of zero for at least onec n, for all largen.
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We will show that this is impossible. Precisely, for all larg a.s., we will show thaff,, ;(z) < 1 for anyi <n
and for allz in some interval0, £), £ > 0, confirming that no eigenvalue o}fX(i)X(*i) can be found there. For
this, we first use the fact that thg, ;(«) can be uniformly well estimated for all < 0 through Proposition 1 in
Appendix F by a quantity strictly less than one. We then shwat the growth of thef,, ;(z) for « in a neighborhood
of zero can be controlled, so to ensure that none of them esdcfor all = < £. This will conclude the proof.

We start with the study of,, ;(z) on R~. From Lemma 3,

-1
Lor (AX X —aly)

fn,z(x) - —1 .
1+ Loy (LX) X —ely)

Define

- » cnen(x)
fn(x) - 1+CN€N(x)

with ey (z) the unigue positive solution of (see Proposition 1)
0= [ t
& z) =
N (I+cnen(z))" 1t —2
Then, withQ(z) £ L X X* — zln, Qi(z) £ X)X () — «In,

dFEN (t). (8)

L} ix_ll'i cyen(x
Fual@) = )] = | 2220 ven (@)

1+ L2:Q;(2) 1oy ~ 1+enen(z)

1 * -1

< |—zfQi(x) " z; —enen(x)
n

K3

< %foZ(x)71x1 — %trCNQi(:zr)ly

+ ’l trCnQi(z) " — 1 trCnQ(z) ™"
n n

9)

+ ’%tr CnQ(z)™! — cnen(x)

Using (a + b + ¢)P < 3P(aP + bP + ¢P) for a,b,c > 0, andp > 1 (HOlder’s inequality), and applying Lemma 5,
Lemma 4, and Proposition 1 to the right-hand side terms qfré®pectively, withp = 4 + /2, we obtain

B [|fuste) — Ful)| ] £

for some constanfl independent of, where we implicitly usedA1. Therefore, using Boole’s inequality on the

above event foi < n, and the Markov inequality, for alf > 0,

P (max | fo.s(0) = )] > )

- . K
< ZP(Vnz(f) - fn(f)‘ > <) < W-
i=1

The Borel Cantelli lemma therefore ensures, foraak 0,

rlngaz( |fn1(:17) — fn (:c)‘ 2%0. (20)
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We now extend the study of, ;(z) to z in a neighborhood of zero. From Proposition\2( X X*) > C_ (1 —
\/a)2 for all largen a.s. (recall thalimsupy cxy < ¢4 < 1) so thatf, ;(x) is well-defined and continuously
differentiable onU = (—¢,¢) for 0 < e < C_(1 — /cy)?, for all largen a.s. Takexr € U. Since the smallest
eigenvalue of%XX* — zly is lower bounded by”_ (1 — \/Z)Q — ¢ for all largen, and that

1 1 as
max | —||z;[|? — = tr Cn| =2 0
i<n [N n

(using similar arguments based on the Boole and Markov ialdgueasoning as above), we also have that for all
largen a.s.

/ C+C+ A /
0< fn,i(x) < (C_(l _ \/a)Z _ 8)2 =K

where we usedimsupy 1 tr Cy < ¢4 C,.

From this result, along with the continuity g¢f, ;, for x € U and for all largen a.s.,
fni(@) < fri(—z) + 22K
In particular, for§ = min{e/2, (1 —c4)/(2K")},

fr,i(€) < fr,i(=€) + (1 —c). (11)

Sinceen(0) = 1 + eyen(0) by definition (15),

fn(0) =cn <y

and £, (z) is continuous and increasing @n, so that

(=€) < cy.

Recalling (10), we then conclude that, for all large.s.

max f.i(—€) < s

i<n

which, along with (11), gives, for all large a.s.

max fni(§) < 1.

Since f,, ;(x) is continuous and increasing 4@, £), the equationf,, ;() = 1 has no solution on this interval

for any: < n, for all largen a.s., which concludes the proof.

APPENDIXC
PROOF OFLEMMA 2

-1
N, (i)

2 < p<4+n/2 (seeAl) ande > 0 as in Lemma 1. Denotin@,, the expectation with respect to, and

Define Sy () = Sy — 22,27 and denoted its inverse when it exists or the identity matrix otherwiSake
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¢i = I{AI(SN,('L))>5} ’

¥ 1 p
Mo, S (i) Ti trCNSN )
1+ 196*5’ 11):10Z HtrCNSN_(i)
—:v SNl(Z ltrC'NS’*l !
= Eoi |0 1 1
(14 LapSyloe) (1+ 2ronsyl,)
1 R p
< Eg, [q&l —x; S’_ (@)Ti — trCNSX,I(i) ] .
Recalling thatz; = Any; with y; having independent zero mean and unit variance entries) fremma 5, we
have
E,, |¢ WS rrOnSyle |
S R IZC*S;[( ) + %trCNS’]?,l(i)
¢iKp % V2p %
<
<57 |(Gruensily?) " + (v )

for some constank’, depending only orp, with v, any value such thak||y;;|] < v, (well defined fromA1).
Using - tr A < (L tr A)* for A € CV*Y nonnegative definite ankl > 1, with hereA = (CNSN( )2k =p/2,

this gives
B, |6 7Sy o xtrOvSy iy p]
Zi * 1 - o—1
1+ =] SN(l 1—|—%trCNSN_’(Z.)

0K, [ 2 1 5

<F (V‘f +”2p) o tr(On Sy’
K P P K/

< = (i +rmp) (rC2eD)E 2 F (12)
nz nz2

where, in (12), we usetr AB < ||[A| tr B for A,B = 0, ¢; < 1, ||Sy’ Wl < et wheng; =1, anditrC% <
C+O_2’_.

This being valid irrespective ok ;), we can take the expectation of the above expression ygrto obtain

1 A—1 p
B g, —IS % ltrC'NSN(i <£{D.
1+ 1x*S‘ T trCNSN() ~ nt
Therefore, from Lemma 3,
1 G—1 p
1 . —tr CnS i K’
E | ¢; —foK,lzci — NA()l < -2
n L+ 4 trOnSy n?
Using Boole’s inequality on the events above withh = 1,...,n, and Markov inequality, fot > 0,
1 . ltr C']\;S’f1
P | max< ¢; —foK,l:ci >(
i<n n 1—|——tI‘ONSN(l
K, (P
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Choosing4 < p < 4 + n/2, the right-hand side is summable. The Borel-Cantelli lenth&n ensures that

1 G—1
1 & n tr CNS i a.s
max { ¢; —fo&lxi — NA’( )1 — 0.
i<n n L+ L trOnSY)
But, from Lemma 1min;{¢;} =1 for all largen a.s. Therefore, we conclude
1 G—1
1 . StrCnSy s
max { |—z; Sy w; — T N )1 — 0. (13)
isn | |n L+ L trOnSy
SinceSNy(l-) —ely > 0 for these largen, we also have
& trOnSy) L OnSy'
nlax 1 o—1 1 o—1
i<n 1+HtrCNSN.(i) 1+EtrONSN
1 g—1 1 g—1
~trCOnSy — 2 trOnSy |, 1C
— max N N, (4) < -t
n ¢

i<n 1 G—1 1 o—1

= (14 dwonsyly) (1+ dronsy)
where, in the last inequality, we used Lemma 4 with= Cy, A = SN,(i) —ely andx = ¢, along with the fact
that (1 + )~ <1 for = > 0.

From Proposition 1, sincal(S‘N) > A1(§N7(i)) > ¢ for these large: (see (7)), we also have

1 A—1 CN a.s.
—t —
" I“CNSN 1= o~ =0
and thus, fromey (1 —cen) /(1 +en(1 —en)™t) = cn,
LironSyt as
“—NJ\Cl —en| 250,
1+ 2trCnSy
Putting things together, this finally gives
1 A a.s.
Inax{ —fo;,lzci —CcN } -0
i<n n

an expression which, sineey > c¢_ > 0 for all large N, can be divided by:y, concluding the proof.

APPENDIXD

PROOF OFTHEOREM 2

The proof immediately follows from the arguments of [23]. ¥ithe scalability assumption is satisfied with strict
inequality, the result is exactly [23, Theorem 2]. When thelability assumption is reduced to a loose inequality,
[23, Theorem 1] does not hold, and therefore uniquenesotémensatisfied. Nonetheless, the existence of a solution
follows from the proof of [23, Lemma 1] which does not call filve scalability assumption. Indeed, since there

exists(qi,...,q,) such thaty; > h(q,...,qy) for all 7, the algorithm

¢ =ni@”, .. )

with ¢\* = g;, satisfies;’" < ¢'”) for all j. Assumingg|"*" < ¢\ for all j, the monotonicity assumption ensures
that qj(.t”) < qj(.t“) which, by recursion, means thqf) is a non-increasing sequence. Now, sirq(}té is in the
image ofh;, q§t> > 0 by positivity, and therefor@E“ converges to a fixed-point (not necessarily unique). Such a
fixed-point therefore exists. Note that [23, Lemma 2] pregicn algorithm for reaching this fixed-point, starting

with ¢{” = 0 for all j.
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APPENDIXE

PROOF OFCOROLLARY 2

If Cy is replaced bySy in the statement of the result, then Theorem 2 is exactly T2@orem 2], which is a
direct consequence of [14, Theorem 3] with some updatedrtentm theji; found in the discussion around [22,
Theorem 17.1]. In order to prove Theorem 2, we need to justiéysubstitution of5 by C. First observe that
the result is independent of a scaling 8, and therefore we can freely substituie by ¢‘1(1)ON instead of
Cy. Using the notations of Mestre in [14], we first need to extfd®l Proposition 4]. Call§;(z) the equivalent
of g (z) designed from the eigenvectors ¢f 1 (1)Cy instead of those oy (referred to asky, in [14] with M
in place of N, and N in place ofn). Then, on the chosen rectangular contoii; (m), both 35 (2) and gas(2)
are a.s. bounded holomorphic functions for all lafgethis is due to the exact separation [15, Theorem 3] of the
eigenvalues ofSy and the fact that Corollary 1 ensures the convergence battheeeigenvalues 0{1)*1(1)(:“]\;
and of Sy.

From [14, Equation (29)]ga:(z) consists of the functionéM(z) and m s (z) for which we also callB%(z)
and 7§, (z) their equivalents for—'(1)Cy. We need to show that the respective differences of thesetifurs
go to zero. From the definition [14, Equation (4)] if;(z), Theorem 1 and the fact thag tr(A~! — B~1)| <
|A=Y|B=1||||A — B| for invertible A, B € CN*V, we have immediately that

a.s. O

sup [ba(2) = 655 (2)
z€0R, (m)

Similarly, using [14, Equation (6)], anfl*(A~! — B~1)b| < |a*b||A~(|||B~!||||A — B|| for a,b € CV, we find

a.s.

sup  |riar (2) — iy (2)] =3 0.

z€0Ry (m)
By the dominated convergence theorem, this gives
7{ (g,%(z) —gum(z)) dz 2%0
IRy (m)

which then immediately extends [14, Proposition 4] to thespnt scenario. The second step to be proved is that
the residue calculus performed in [14, Equations (32)}(88)xies over to the present scenario. The poles within
the contour&R; (m) are the)\, and theji;, found in the contour. The indicédssuch that theik and /i, are within

OR, (m) are the same fofn andqb‘l(l)C'N for all large N, due to the exact separation property and Corollary 1.

This completes the proof.

APPENDIXF

USEFUL LEMMAS AND RESULTS

Lemma 3 (A matrix-inversion lemmalet € CV, A € CN*¥, andt € R. Then, whenever the inverses exist

o (A+tea®) e =" A e(1 + ta* A )
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Lemma 4 (Rank-one perturbation)et v € CV, A, B € CV*N nonnegative definite, and > 0. Then
tr B(A+w* +aly) ' —tr B(A+azly) ' <z '|B].

Lemma 5 (Trace lemma)25, Lemma B.26] Letd € CV*Y be non-random angd = [yi,...,yn]" € CV be a

vector of independent entries withly;] = 0, E[|y:|?] = 1, andE[|y;|] < v, for all £ < 2p, with p > 2. Then,
Elly*Ay —tr A|"] < C, ((V4 tr AA*)% + Vap tr(AA*)%)

for C, a constant depending gnonly.
Proposition 1 (A random matrix resultlet X = [z1,...,x,] € CV*" with z; = Ayy;, Ay € CN*M M >
N, wherey; = [yi1,-..,yim] € CM has independent entries satisfyifiy;;] = 0, E[|y;;|*] = 1, E[lyi;|°] < ve

for all ¢ < 2p and Cxy £ AnA% is nonnegative definite withCy|| < C; < oo. Assumecy = N/n and

¢y = M/N > 1 satisfylimsupy ¢y < 0o andlimsupy ¢y < 0o, asN,n, M — co. Then, forz < 0, andp > 2,
1 -1
—trCqn (—XX*—ZIN) —en(z)
n

Ell

p
K
< p
¥ ] (14)
for K, a constant depending only gn v, for ¢ < 2p, andz, while ex(z) is the unique positive solution of

T N3

t
en(2) :/(l—i—cNeN(z))*lt—z

where FE~ is the eigenvalue distribution af'y. The functionR~ — R*, 2~ ex(2) is increasing.

dFE (t) (15)

Moreover, for anyNy, as N,n — oo with limsupy cy < oo, for z € R\ 8yn,, whereSy, is the union of the

supports of the eigenvalue distributionS%JKX* forall N > Ny,

-1
ltrC’N (lXX*—ZIN) —en(2) 2%0. (16)
N n

Proof: To prove the first part of Proposition 1, we follow the stepshaf proof of [26]. Note first that we can
appendAy into an M x M matrix by adding rows of zeros, without altering the lefalaside of (14). Using the
notations of [26], we consider the simple case whéfe= 0 ando}; = C7', whereC;* denotes thé-th eigenvalue
of Cy. Although this updated proof of [26] would impogey to be diagonal, it is rather easy to generalize to
non-diagonalCy (see e.g. [27], [28]). The proof then extends to the non.idake when using Lemma 5 instead
of [26, (B.1)]. The second part follows from the first part imdiately forz < 0. In order to extend the result to
z € R\ 8x,, note that both left-hand side terms in (16) are uniformlyimbed in any compacd away from8y,

and including part ofR~, and are holomorphic ofb. From Vitali's convergence theorem [29], their difference

therefore tends to zero di, which is what we need. [ |
Proposition 2 (No eigenvalue outside the suppottt X = [z1,...,2,] € CN*" with 2; = Ayy;, Ay €
CN*M " wherey; = [yi1,...,yim] € CM has independent entries satisfyilijy;;] = 0, E[ly;;/*] = 1 and

E[lyi;|*™] < o for somen,a > 0, Cx £ AyA% has bounded spectral norm, addn, M — oo with
limsupy N/n < 1, and1 < limsupy M/N < oco. Let Ny be an integer anda,b] € RU {0}, b > a, a

segment outside the closure of the union of the suppofs“~, N > N, with F*4 the limiting support of the
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eigenvalues O%XX* when Cy has the same spectrum dsfor all N and N/n — t. Then, for all largen a.s.,
no eigenvalue of- X X* is found in[a, b].

Proof: AppendingA into an M x M matrix filled with zeros, this unfolds from [15, Theorem 3pi(fwhich
conditions 1)-3) are met), with the suppoR§/™“~ appended with the singletdio}. Now, for Ay € CN*M | such
that Ay A}, is positive definite, zero is not an eigenvalue%loX’X* for all N, a.s., which gives the result. Condition
1) of [15, Theorem 3] holds here by definition. Condition 3)oistained by taking)(x) = #2*". Condition 2) is
obtained by taking: a random variable with Pareto distributidh(z < z) = (1 — a?'2'"P)1,5, for p=5+17

anda = aiti; by Markov inequality,

1
Z P(yi; >z) <az™* "= P(z > ).
M2 G <ns

This z has finite4 4+  order moment, which therefore enforces Condition 2). ]
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