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Abstract—Lattice coding over a Gaussian wiretap channel,
where an eavesdropper listens to transmissions between aaftrs-
mitter and a legitimate receiver, is considered. A new lattte

invariant called the secrecy gain [[1] is used as a code design

criterion for wiretap lattice codes since it was shown to che

new lattice invariant calledecrecy gainwhich was shown to
characterize the confusion at the eavesdropper. This stgyge
the study of the secrecy gain of lattices as a way to undetstan
how to design a good Gaussian wiretap codaimodular

acterize the confusion that a chosen lattice can cause at thelattices were shown to be good candidates[ih [9] and for

eavesdropper: the higher the secrecy gain of the lattice, th
more confusion. In this paper, a formula for the secrecy gain
of unimodular lattices is derived. Secrecy gains of extrenlaodd
unimodular lattices as well as unimodular lattices in dimersion
n, 16 < n < 23 are computed, covering the4 extremal odd
unimodular lattices and all the 111 non-extremal unimodular
lattices (both odd and even) providing thus a classificatiorof
the best wiretap lattice codes coming from unimodular lattces
in dimension n, 8 < n < 23. Finally, to permit lattice encoding
via Construction A, the corresponding error correction codes are
determined.

Index Terms—Gaussian channel, Lattice codes, Secrecy gain,
Theta series, Wiretap codes, Unimodular lattices.

I. INTRODUCTION

even unimodulardattices, both secrecy gains for a special
class of lattices calle@xtremallattices were computed and
the asymptotic behavior of the average secrecy gain as a
function of the dimensionn was investigated. These two
papers were further developed in [10], where coding exasnple
were detailed and it was shown that msgrows to infinity,

all even unimodular lattices behave in the same way, so that
optimizing the secrecy gain makes sense in small dimensions

The work of [9], [10] deals with even unimodular lattices,
which only exist in dimensions a multiple of 8. We pursue the
study of unimodular lattices by considering odd unimodular
lattices, which on the contrary exist in every dimension and
in great number, giving thus more flexibility in the code
design. We will also show examples of odd unimodular latice

In his seminal work, Wyner [2] introduced the wiretap,, y,erforming even unimodular lattices. Our contribusican
channel, a discrete memoryless channel where the Senﬂlgrsummarized as follows:

Alice transmits confidential messages to a legitimate vecei

Bob, in the presence of an eavesdropper Eve. Both reliable,
and confidential communication between Alice and Bob is
shown to be achievable at the same time, by exploiting the
physical difference between the channel to Bob and that to,
Eve, without the use of cryptographic means. Many results
of information theoretical nature are available in therétere

for various classes of channels ranging from Gaussian point
to-point channels to relay networks (see €.g. [3] for a syrve
capturing the trade-off between reliability and secrecy an
aiming at determining the highest information rate that lsan
achieved with perfect secrecy, the so-caléetrecy capacity
Coding results focusing on constructing concrete codes tha

We develop a general formula for the secrecy gain of
both odd and even unimodular lattices that generalizes
the existing one for even unimodular lattices.

We obtain the secrecy gain of unimodular lattices in
dimensionn, 8 < n < 23, covering the4 extremal odd
unimodular lattices as well as all thel1 non-extremal
unimodular lattices.

We classify the best Gaussian wiretap codes from uni-
modular lattices in dimension, 8 < n < 23, together
with their corresponding self-dual codes enabling lattice
encoding via Construction A.

can be implemented in a specific channel are much fewer (se@he remainder of this paper is organized as follows. In
[4], [5] for examples of wiretap codes dealing with channelSection 1l, we first give a brief introduction to unimodular

with erasures).

lattices and theitheta seriesas well as recall the definition of

In this paper, we will focus on Gaussian wiretap channelghe secrecy gain and the previous results concerning thiisela
whose secrecy capacity was established In [6]. Examplesiofariant. The main results are given in Section 1. An éaipl
existing Gaussian wiretap codes were designed for bingtymula for the secrecy gain of unimodular lattices is dediy

inputs, as in[[F7],[[8]. A different approach was adoptedih [1which generalizes the one for the even case_in [10]. Secrecy
where lattice codes were proposed, using as design critariogains of extremal odd unimodular lattices are computed to
complete the study of extremal unimodular lattices. Finak-
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Physical and Mathematical Sciences, Nanyang Technolobinaversity, 21 crecy gains of unimodular lattices in |rr_1enS|Dﬂh_ n = 23'_
Nanyang Link, Singapore 637371 (emails:linf0007@e.owsg and fred- both odd and even, are computed, ending the classification of
e”qﬁe@“tu-e‘jﬁ-s?- Part of tzis ;’V‘)’k appeaffed art] W iﬂl{ ., unimodular wiretap lattice codes in dimensions < n < 23.
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o [esearch o b ane o ggier for this work IS supgurby In Section 1V, encoding of the best codes via Construction A

the Singapore National Research Foundation under the Rbes€aant NRF- )
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Il. PRELIMINARIES AND PREVIOUS RESULTS It can be shown that is an integral lattice if and only i\ C
which is modelé&" Especially, ifA = A* thenA is called aunimodularlattice.
(letncan further be shown that is a unimodular lattice if and
only if A is integral and det\ = 1. Finally, thenorm(squared

eavesdropper trying to intercept data through another Sas length)[|x||* = x-x of a lattice point in a unimodular lattice
channel with noise variance?. wheres? < o2. in order to A is of course an integer. If the norm is an even integer for any
c b ° theleho lattice point inA, thenA is called aneven unimodulatattice

have a positive secrecy capacity [6]. More precisely, ) R )
is P y capacty [6] P y or atype Il lattice. Otherwise, it is called andd unimodular
y =x+vp 1) lattice or atype | Iqttice. . . -
z =X+ Ve, There are certain lattices which play the role of building
_ ) ) blocks in analyzing lattices. They are denoted Ay, D,
where x is the transmitted signaly, and v. denote the p. p. g and are calledirreducible root lattices [L1].
Gaussian noise vectors at Bob's, respectively Eve's sialeh € ypimodular lattices are then decomposed into a number of

component of b20th vectors with zero mean, and respectiygch |attices. More precisely, an-dimensional unimodular
variances; andoy, and finallyy andz are the received signals|atice A is described as one containing a sublattice which is
at Bob’s, respectively Eve’s side. In this paper, we chaoseine direct sum

to b_e a cpdeword coming from a specia_llly des@gned lattice AMBA DD Ay

of dimensionn, namely, we consider lattice coding. Let us _ . . _ _
thus start by recalling some concepts concerning |atti'[res,0f a number of irreducible root lattices of total dimension
particular, unimodular lattices. and consequently a lattice point afcan be written as

Consider a Gaussian wiretap channel,
as follows: Alice wants to send data to Bob on a Gaussi
channel whose noise variance is given by. Eve is the

X =X31 + X2+ + Xk,

A. Unimodular lattices .
where each component; is chosen as one of a standard

A lattice A is a discrete set of points iR", which can be system of representatives for the cosets.pfn A* and called

described in terms of itgenerator matrixA/ by a glue vectorfor A,. Informally speakingA is obtained by
R n gluing together the componemts, As, ---, Ay by the glue
A={x=uMuez"}, vectors. The existence of glue vectors will be indicated by *
where all through this paper. Let us see an example of the simplest
Vit V12t UVl case that is calledelf-glue
M| Vv vz o U2 Example 2.1:We use(r™) to denote a string of: r's here.
The IatticeD;“2 = Do U Dqo + (%12) contains D> as a
Unl Un2 ' Unn sublattice and a lattice point dD}, can be written ax =
and the row vectors; = (vi1, - ,vi), i =1, 2, -+, n X1 X1 € D12 + (02) Orx=3x1, X1 € Di2 + (%12)’ where
form a basis of the lattice. The matrix the vectors(0'?) and (5 ~) are the glue vectors fab,.
A complete list of unimodular lattices of dimensian 0 <
A=MM", n < 23 that contain no vector of norrhis given in [12], each

lattice is described by its components. Thissing numbenf
a lattice (sphere) packing is the number of spheres thahtouc
one sphere. The kissing humbers of these unimodular lattice
are also given in the same table.

Let us recall the definition of thédacobi theta functionand
the theta serief lattices before we end this subsection. Let
A lattice A is called anintegral lattice if its Gram matrix # = {a +ib € C[b > 0} denote the upper half plane and let
is an integral matrix. TheleterminantdetA of a lattice A is ¢ = ¢"", wherer € H.
the determinant of the matriX, which is independent of the ~ Definition 2.2: Jacobi theta functions are defined as fol-
choice of the matrix)/. A fundamental regiorfor a lattice lOWs:

where M” denotes the transpose o1, is called theGram
matrix of the lattice. It is easy to see that thigj)th entry of
A is the inner product of théth andjth row vectors ofM,
denoted by

A(i,j) =V;" Vj.

— n+1)2
is a building block which when repeated many times fills the Ua(7) = Enezqfﬁ 2,
whole space with just one lattice point in each copy. Theee ar U3(1) = Znezq™ ,
many different ways of choosing a fundamental region for a 94(1) = Ynez(—q)"

lattice A, but the volume of the fundamental region is uniquely They are very important functions in analytic number the-
determined by\ and called the volume of, which is exactly ory. For example, thediscriminant functionAs(r) can be
vdetA. Let us see an example of a fundamental region Ofr@presented by (7) and () [2];

lattice. AVoronoi cellVa (x) of a lattice pointk in A consists

of the points in the space that are closextthan to any other As(7) = %6133 gTWil(T)
lattice points ofA. =27 foz(%) . -
The dual of a lattice A of dimensionn is defined to be =qll{1-=¢""H)(1—q¢"™)}

= q— 8¢ +28¢% — 64¢* + 126¢° + 224¢5 + - - - .
AN ={xeR":x-A€Z, €A} (2)
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Definition 2.3: The theta series of a lattick is defined by is the unnormalized second moment &f. Since \/detA,
I and U(V,,) are invariants ofA;, to minimize P, . is then
OA(T) = Xxeaq™ . to minimize
. . It 2 2 z
If we combine the terms with the same exponent, the theta Z e IIMI7/200 (6)
series of an integral latticA can be written as tEA

which is easily recognized as the theta series\gfat = =
OA(T) = B2 o Ang". @ y Tecod el

2mo2 "
By doing that we can interpret the theta series\ads a book I\ﬁon\_/ated by the above argument, the confusion brought by
keeping device recording the number of vectars A with the latticeA. with respect to no coding (namely, use a scaled
normn in the coefficientd,,. Take the one-dimensional latticeversion of the latticeZ™ with the same volume) is measured

Z for example and recall the definition of the Jacobi functio@s follows:

93(7). We have Definition 2.5: [1] Let A be ann-dimensional lattice of
volumev™. The secrecy function ok is given by
93(7) =0z(1) =1+2¢" +2¢* +2¢° +--- . (4) Ouzn (7]
—_ o vz \T
Similarily, the theta series of thie-dimensional latticeZ” is (1) = ENG) T EH.
then The secrecy gainis then the maximal value of the secrec
Oz (1) = Os(7)". (5) y 9 Y

function with respect ta- and is denoted by .

Theta series of lattices are well studied object in analytic
number theory. Here is a well known result concerning theta i
series of unimodular lattices. 1.30p

Lemma 2.4:(Hecke)[12] If A is a unimodular lattice then i / \

Oa(7) € C[Y5(7), As(7)]- 1:25 / \

1.20
This lemma tells us that the theta series of any unimodular :} ; /
lattice can be generated 9y (7) andAg(7). These objectswe " %9
have discussed in the last part of this subsection are &ctual
modular forms Interested readers may refer fo [13] for an

1.10f

introduction. 1_05f
. WOr———— e T
B. Previous results 6 ) ) 0 2 4 6
Lattice encoding for the wiretap channgl (1) is done via a y (dB)

generic coset coding stratedy [1]: l&t C A, be two nested
lattices. A k-bit message is mapped to a cosetAp/A.,
after which a vector is randomly chosen from the coset as th
encoded word. The lattick, can be interpreted as introducin oint (calledweak secrecy gajnat r — i in their
confusion for Eve, while\; is intended to ensure reliability dety)

for Bob. Since a message is now corresponding to a co§&grecy function through tioisson summation formu[aQ].

of codewords instead of one single codeword, the probgbilffor example, Fig. 1 shows the secrecy function (1) of E,

of correct decoding is then summing over the whole coséfere 1) we seyy = —ir and restrict to real positive values
(suppose that we do not have power constraint and are ngjlizof ¥, since by [(6) we are only interested in the values of
the whole lattice to do the encoding). Here we are interestts (7) With 7 = yi, y > 0 and 2)y is plotted in decibels to

Fig. 1. Secrecy function of’g

A large class of lattices was shown to have a symmetry

in computing Eve’s probability of correct decision transform the multiplicative symmetry point into an ackti
symmetry point. The symmetry point can be seen tg be0
P, = Z / 1 e~ Iy =xI*/202 gy, dB corresponding tg/ = 1, and hence ta- = 4. This class
ien. IV (geV/2m)" of lattices contains lattices whose duals are obtained from

themselves by possibly a rotation, reflection, and change of
scale. Let us now focus on unimodular lattices, for which we
haveA* = A by definition. It was a conjecture by Belfiore and

With a change of variable and applying tfhaylor expansion
to the exponential function, the value &% . is approximated

in [10] by Solé [9], that for these lattices,= 4 is not only the symmetry
Z 61 /202 /et ( UVy,) ) point, but also the point achieving the secrecy gain:
e Te 1- 2 )
teA, (gev2m)" 202/deth, — = (i) — V3 (i) 7
XA—HA(Z)—G) = (7)
where A0

UWVy,) = /V ||x||2du This conjecture was recently proven by A.-M. Ernvall-Hygin
A

B , [14], [15] for a special class of lattices callextremal even
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unimodular lattices The idea of the proof is to write the
secrecy function of a latticA as a function of the quantity

_ 16A¢(1) _ 93(r)9i(7) 1.5; / \

TEH.

o5(r)  9B(r) 147
She shows that i / \

z €0, H3 \
12f

—_
p;,(Y)

n
and that the maximuni of z is achieved at- = i. The rest
of the proof consists of showing that the functigr(z) is
increasing in[0 ,4] Later we will prove the conjecture for
extremal odd unimodular lattices as well as unimodulaickest
in small dimensions using this idea.

10f ————— P
-6 -4 -2 0 2 4 6
y(dB)

IIl. THE SECRECY GAIN OF UNIMODULAR LATTICES

- . i i +
For the sake of convenience, we will assume that tﬁéq' 2. Secrecy function oDy,

symmetry pointr = ¢ is really the maximum of the secrecy
function through this section. We will then justify the ctai B.

Extremal odd unimodular lattices
for the specific lattices we discuss, but note that the génera .
conjecture is still open. In order to find good Gaussian wiretap lattice codes, we

look for unimodular lattices with high secrecy gain. We star
by restricting our search to the class of extremal unimadula
A. A general formula lattices

We are now ready to give our first result, namely a generalDefinition 3.2: Let A be a lattice of dimension. A is said
formula for the secrecy gain of unimodular lattices. Frorp be an extremal lattice if its minimal norm ig 4 1E|
LemmaZ.4 we have the following decomposition of the theta By definition, an extremal unimodular lattice of dimen-

series of a unimodular lattica: sion ncontains no vector of norm, 2,---,[%], thus the
coefficients ofg, ¢2, ---, ¢/¥!in the theta series given ial(3)
T) = Z a: 95 % (1) AL(T), ar € Z. (8) are all0's. But by expandmd]S), we can form another formal
sum with coefficients represented as linear combinations of
Consequently, the reciprocal of the secrecy gaim aé a;'s. Then by comparing the firstg] + 1 terms of the two
oo formal sums, we have a system {g | linear equations in
/xa = 1;)3?1()17)1 [§] unknownsay, ag, -, ajz) (ao is obviously 1), from
P e OV which a unique solution can be found. In this way, the secrecy
- ”"(A”( . gain of each extremal unimodular lattice can be computed. We
ZT 0 ar( 38 Z) )" illustrate this technique by computing the secrecy gaigf
_ylEl, (o Y zw‘*(z)) and Oa;.
7“ 0 r 1695 (4)

Secrecy gain ofD7,. The theta series aby, looks like
Zr 0 aT(QG) ’

S =1+0g+ Asq* + -+, Ay #0.
where the first equality follows froni7), the second frdrh, (8) Dy ™ F0g - Asg e Ao 7
the fourth from [2), and the final equality from the followingOn the other hand, by(8).1(4) arid (2),
two useful equations concerning the Jacobi theta functins o, ( ) =982(7) + a9 As(7)

7=i[02: =142+ )2 +a(1+2¢+ ) (g+-)
¥9(i) = 94(i) andV3(i) = v/204(i). 9) =1+24g+---)+ailg+--)
To summarize:

Theorem 3.1:The secrecy gain of a unimodular lattige Ve now have one linear equation in one unknawn

of dimensionn can be written as M +a; =0
1
XA = ST (10)  which givesa; = —24, yielding the secrecy gain
Zr 0 CLT(QF) 1 ]
where thea;’s are the coefficients i{]8). Xpf, =1 =~ 5 (11)
This generalizes the formula for the even cas€ in [10]. 20

Fig. 2 gives the plot of the secrecy function of the odd Secrecy gain of0»3. The theta series of thBhorter Leech
unimodular latticeD}, mentioned in Example 2.1 (see thd-attice Ox3 again looks like
paragraph fqllowmg Fig. 1 for an explan_atlon of t_he vqr«abl 00y, (1) =14 0g + 0¢% + Asg® +---, Ay #0.
y). The maximum can be seen to @ewmch we will verify
in the next subsection. 1The definition of extremal has changed. Here we use the eagision.
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TABLE | 923 (1)

SECRECY GAINS OF EXTREMAL ODD UNIMODULAR LATTICES E0,(1) = g§31(7)74619§5(7-m8(,-)
[ dim | Tlattice [ theta series [ secrecy gain| AR
| 12 | Df, [ 912 —240iAs | 5 | That the maximum of each secrecy function is achieved-at
|14 | (EHT [ 0 -28934s | F | 1, namely,r = i follows similarly. The proof is completed.
[15 [ A [oF-3095As [ 77|
[23 ] Oz [ 9% —4601°Ag | Z | A unimodular lattice containing vectors of norm can
always be written as the direct sum of a unimodular lattice
without vectors of norml and a cubic lattic&Z* [12]. From
On the other hand, by (8)J(4) and (2) the definition of the secrecy function, we have that the sgcre
O0,,(1) = 923(7) + a19% (1) Ag (1) + asdl (1) A2(r) gain is determined by the component that contains no vector
—(1+2g+---)% of norm1. In fact,
+ar(l+2¢+--)(g = 8¢> +-++) O 0]
taz(l+2¢+-)7(q —8¢> +---)? M TONEG)  eal) M
= (14 46q +1012¢> + -- ) _ , _ _
tai(q+22¢2 + ) +az(@+---) By refering to the enumeration of unimodular lattices|[12],
=1+ (46 + a1)q the latticesEs, Dy, (E7)* and Aj; are the only unimodular
+(1012 + 22a; + ag)g® + - . lattices that do not contain vectors of nordmin dimensions

less thanl6. The secrecy gain oFs was computed in[]9],
[10] and observe that the secrecy gains of these threedsttic
{ 46 + a4 =0 are already given in Table I. Thus we in fact have all the best

This time, we have two linear equationsdn and as

1012 4+22a1 +as =0 '’ unimodular lattices in dimension, 8 < n < 16, namely,
Egx @ Z in dimension9, Eg & Z? in dimensionl0, B & Z3
in dimensionl1, D}, in dimension12, D}, ©Z in dimension
o, = 146 _32 (12) 13 (£2)" in dimensionl4 and Af; in dimensionl5.

‘ - 9 We will deal with unimodular lattices in dimension 16 <

26
By applying this method, we have computed the secrely< 23 in the next subsection.

gain for each extremal odd unimodular lattice in dimension
n, n > 10 (see[12] for a classification), as shown in Table Ic. Unimodular lattices in small dimensions
A similar table for the even case can be found[in [9].] [10].
Proposition 3.3: The secrecy conjecture is true, namely, th%
maximum of the secrecy function is achievedrat= ¢ for . . .
modular lattices, namely, non-extremal unimodular lettithat

e?<tremal .Odd unimodular lattices and the secrecy gains S not contain vectors of normin dimensions.6 <n <23.
given as in Table I.

; i +
Proof. The secrecy gains are computed as illustrated in tk"ewe show the computatlon of the_ secrecy gair(Bg) ™ to

n illustrate the technique before deriving a general fornuafla
examples ofD], andO,3. Now we only need to show that the

secrecy gains of these unimodular lattices are indeed\zmihiethe secrecy gan for all thhll lattices and proving the secrecy
atT = 7. Recall the definition of secrecy function and the thet%onjecture for these lattices.
: Secrecy gain of(D2)*. The lattice(D3)* does not contain

. i . .
series ofD);,, which we have just computed. We have that any vector of norml. Thus the corresponding coefficied

which givesa; = —46 andas = 0, yielding

The computation of secrecy gain of extremal unimodular
ttices can easily be adapted to cover a large family of uni-

Ep+ (1) = e 19:13219(4” ~ in the theta series 8. Its kissing number i224, which means
12 _ 5,(7)=2405(1)As(7) that the first nonzero coefficient, = 224 and the theta series
-5 of (D2)™" looks like
_ 95(r)94(r) i ;
wherez = W' Recall also that it was shown in_[14] @(D§)+(T) —140g+224¢% + Asg® +--- . (13)

3
that z € [0,1] and 1 is achieved atr = i. It then suffices

to show that the denominator is decreasingoint], which is ©On the other hand, by (8).1(4) arid (2),
obviously true, since its derivative is negative[ih ;]. Thus O(p2y+ (1) = 93 (7) + a1 98 (1) As(7) + az A2(7)

the maximum of the secrecy function is achievedzat 1, =(1+2g+---)
namely,T = i. . +a1(1+2¢4---)8(q—8¢2+---)
We do the same for the other three extremal odd unimodular +as(q—8¢2+---)?

lattices, namely: = (1+32¢+480¢2 + ---)

EE+(T) = 5m 19_%4(;-) +ai(g+8¢° +--) +aa(g® +--)

(E£7) RGO ) =1+ (324 ay)q + (480 + 8ay + az)g® + - - .
- 1_28z>
B . This time, we have two linear equationsdn andas
= — Y3°(1)
Sag,(m) = 19;,51<r)—3319§<r)A8<r> 32+ a; = 0

R {480+8a1+a2 = 224’
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which givesa; = —32 andas = 0, yielding of the denominator. Note thate [0, i], 16 < n < 23 and the
1 largest kissing number for these lattice7i&). Now,
X(p2)+ = —=5 = 2. (14) , (e
(D5) By D'(z) =-2+ 2 E 2237;+KEA;Z
n 2n(n—23)+K (A

We now derive a general formula for the secrecy gain of all = j6§4 tz ( 72§§+K(A)
the 111 non-extremal unimodular lattices. = 50

Proposition 3.4: The secrecy gain conjecture is true, < L0240+ KA
namely, the secrecy gain is achieved-at i for non-extremal = w
unimodular lattices in dimensiort < n < 23 and the secrecy < 7605#
gain is given by < 0.

YA = - 1( RO (15) This tells us that the denominatér(z) is decreasing in0, %]
— 2y o and the maximum of the secrecy function is achieved-aty,

where K (A) denotes the kissing number af namely,~ = i. The proof is completed.

Proof. The theta series of a lattick in question looks like . .
Table 11 summarizes the secrecy gains we have computed.

OA(T) =14+ 0g+ K(A)g® + Asq® + - - . (16) Observe that

1) In dimension 16, the odd unimodular latticg DZ)*
On the other hand, by(8).1(4) and (2) has secrecy gair2, which outperforms its two even

Oa(r) =8(7) + alﬁg_s(q—)AS (7) + a219g—16(7—)A§ (1) counterpart§ £2)* and D]‘S, both with secrecy gairigﬁ.
=(1+2¢+--)"
4Ea1(1 j_ 2q + ) )8 (g =8P+ ---) 2) In fact, when the dimension is fixed the secrecy gain is
+as(1+2¢+ )" 10(g —8¢2 4 ---)2 totally determined by the kissing numbég. The lattice
n n with the best secrecy gain (in boldface) is the one with the
=(1+2 < ) q+22 <2> ?+-) smallest kissing number, which can also be seen directly
from (13). This agrees with the observation [in1[10] that
+a1(1+2 ( " I 8 > g+ )qg—8¢4+--) the best secrecy gain is achieved by extremal lattices,
for being extremal in this special case is equivalent to
+aa(¢® +---)

having A, = 0. We do not know yet if the secrecy gain
is connected to the kissing number in general.

In [1Q], a lower bound on the minimal secrecy gain as a
function of n from Siegel-Weil formula for even unimodular
lattices was computed. In Fig. 3, the points corresponding t
best unimodular lattices are compared to the bound. Note tha
Now by comparing the two expressions ©f,, we have two all the points are the secrecy gains of odd lattices, exaapt f
linear equations im; andas Eg in dimension8. We observe that when grows, the gap
between the lower bound and the best lattices decreases, as
suggested in [10], where it was shown that wheimcreases,
the difference of secrecy gain becomes negligible.

=(1+2ng+2n(n—1)¢*+---)
+a1(qg+ (2n —24)¢> +--+)
+as(q* +--)
=14+ 2n+a1)g
+(2n(n — 1)+ (2n — 24)a; + az)g*> + - .

2n + aq = 0
2n(n—1)+ (2n —24)a; + a2 = K(A)

which givesa; = —2n andas = 2n(n—23)+ K (A), yielding

from the conjecture V. GAUSSIAN WIRETAP CODES FROM UNIMODULAR
1 LATTICES
XA=TT 2n W As mentioned in Section Il, the secrecy gain of a lattice

characterizes the amount of confusion at Eve that is gained

We have yet to show that the maximum is indeed achievgg sing this latticeA as A, in the lattice coset coda, C
at7 = i. Recalling the definition of secrecy function and th, Now that we have established the secrecy gain of all the
theta series we have just computed, the secrecy functidn ofynimodular lattices in dimension smaller thas, we need

can be written as to be able to use these lattices, particularly those with the

Za(r) = ; 93 (7) M highest secrecy gain to provide lattice coset codes. To do so
OO =205 A A+ En(n=28)+K(A)05T ()AL (Tjattice encoding should be performed, which can be handled
C1-2mpy 2l 2RI o2 via Construction A, assuming that we can associate to the
= D%Z), chosen lattice a suitable error correction code. We will use

some terminology from classical error correction codesis t

2n(n-23)+K(A) 92()Yi(7)  gession. Unfamiliar readers can refer[tol [16].

whereD(z) = 1— 222+ T 2% andz = “25s

3
Recall again that it was shown in[14] thate [0, 1] and o . .
. hi dat — i. It suffi to sh that the d inat Oy, in the table denotes an empty component of dimensiamamely, one
IS achieved ar = ¢. It sumices 1o snhow that the denominatotyntaining no vector of norm less than or equaltoAlso, for the sake of

D(z) is decreasing irf0, 1]. We now examine the derivativesimplicity, we omit the “” which denotes the existence of glue vectors.
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SECRECY GAINS OF NONEXTREMAL UNIMODULAR LATTICES OF
DIMENSION®, 16 < n < 23

TABLE Il

dim lattice kissing number| secrecy gain
22 A A20, 92 238
22 ASA30, 76 L=
22 AlPO, 60 2251‘”
22 A22 44 8
23 Ai5Fs 480 =
23 A1gAy 400 s
23 D11 41101 352 =
23 A11ErAs 288 ==
23 A9E7E6O: 288 15
23 Dy EZ02 288 =
23 A11EsA20: 288 =
23 Dy A2 256 22
23 A13A8A10; 256 =
23 A11DgA301 256 22
23 DgAZ20, 224 15
23 D2A70, 224 1=
23 A11A7440, 208 2
23 A1049A24,04 208 =0
23 EgD30, 192 o
23 EsDgAZ0 192 o2
23 D7A7D5A30: 192 o7
23 AsFEsAcA20, 192 o
23 A10As D502 192 o
23 AgDg D5 A1 02 192 o
23 D20 160 15
23 AgA5A30, 160 =
23 DgD5A20 160 =
23 | A7DgA5A3A101 160 1z
23 Ag Ag D5 A207 160 1=
23 AgA7A5 410 160 L=
23 AsAZAZ0: 144 20
23 AZA Az Ay 144 £
23 A7 AZAZ0; 144 =0
23 D2A30, 128 o
23 A7D3A20, 128 3
23 A7A5ATA10, 128 o
23 D5AZDyA? 128 o
23 A2D4A403 128 8
23 AsD5 A2 A0 128 18
23 A3A4A103 112 =
23 | AgA5A44A342A,0, 112 20
23 D32A%0; 96 =
23 AZA3A%0, 96 =
23 As Dy A3A3O, 96 1=
23 D4A3AZ03 96 1=
23 AsAZAZA O3 96 122
23 A4 A0, 80 20
23 A2A2A2A204 80 o0
23 A3ASO3 64 o
23 A3A3A20, 64 a2
23 A§AS0s 48 R
23 A1%07 32 22

[ dim | lattice | kissing number[ secrecy gain|
16 E2 480 B
16 Dig 480 D
16 D2 224 2

[ 17 Ai1Es 204 2
18 A7 Ay 308 2
18 DioErA 308 22
18 D3 180 2
18 A2 180 =
19 B3O, 216 =
19 A11 D70 216 i
19 AZDs 152 22
20 D30 760 2
20 D12 Eg 504 22
20 D13Dg 376 ©
20 EZDg 312 i
20 Ai5Ds 280 =5
20 DZD, 248 22
20 A11Eg A3 216 ==
20 D3 A3 184 2
20 A2 A2 184 o
20 AZD50, 152 =
20 D} 120 k
20 AZ 120 g
21 Ag001 420 =
21 A13E701 308 =
21 A11D904 276 o
21 A12450: 228 =
21 D7A7Es01 212 g
21 AgDgA501 180 B
21 A3A40, 164 23
21 A7D2A30; 148 o
21 A3A4,0, 132 20
21 A3D4A10, 116 1
21 A0, 100 23
21 AT 84 32
22 DiaE7 Ay 492 2
22 EsE? 492 o
22 D2 A2 364 o
22 A15D60; 300 £
22 Dio D} 300 g
22 DgE7Dg Ay 300 <
22 A13D7A104 268 iz
22 DsD?A? 236 o
22 A2,09 220 n
22 E3AZ 204 =
22 A11 D5 As Ay 204 =
22 AgD7A50; 204 15
22 | AgEsD5A10: 204 1o
22 DZD3 A3 172 =
22 AZ2Dg Oy 172 =2
22 | AgA7D4A10; 172 -
22 AgAZO, 156 =
22 AZAZA? 140 15
22 D2AZ0, 140 =
22 | A7D5A5A3410; 140 s
22 AZAZ0,9 124 20
22 D3} AS 108 o
22 AZA3AJO; 108 o2
22 AZD4A20, 108 2
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A Y ) TABLE Il

TYPE| CODES OF LENGTHn (8 < n < 23)

3.0f /
25] /
I "/

2.0f

]
c
3

| | weight  distribution |
| | (1,01532,15,0,1) |
[ 14,7,4] | (1,014,49,49,14,0,1) |
| | (1,012,64,102,64,12,0,1) |
(1,09,75,171,171,75,9,0,1)
(1,0,17,51,187,187,51,17,0,1)
1 (1,05,80,250,352,250,80,5,0,1)
[ PP ] (1,0,9,72,246,368,246,72,9,0,1)
150 1 (1,0,13,64,242,384,242,64,13,0,1)
® & o o 1 (20, 10, 4] (1,0,17,56,238,400,238,56,17,0,1)
[ ] (1,0,21,48,234,416,234,48,21,0,1)
o e (1,0,29,32,226,448,226,32,29,0,1)
8 10 12 14 16 18 20 22 (1,0,45,0,210,512,210,0,45,0,1)

Dimensionn (22,11, 6] (2,00,77,330,616,616,330,77,0,0,1)
(1,0,4,73,318,628,628,318,73,4,0,1]
Fig. 3. Lower bound of the minimal secrecy gain as a functibm drom (1,0,8,69,306,640,640,306,69,8,0,1]
Siegel-Weil formula for even unimodular lattices. Pointsrespond to best 99.11. 4 (1,0,12,65,294,652,652,294,65,12,0,1)1
unimodular lattices. [22,11,4] (1,0,16,61,282,664,664,282,61,16,0[1)2
(1,0,20,57,270,676,676,270,57,20,0 [1)1
(1,0,28,49,246,700,700,246,49,28,0[1)2

XAn
(]

R | k|| R R k| k] R k| Rl R R R P -

A. Construction A

There is a classic way of constructing lattices from binary _ )
linear codes calle€Construction A Let p : Z" — F2 be the Of dimensionn (8 < n < 23). The rest of the work consists
map of componentwise reduction modulo 2 definedsnLet ©f finding out the corresponding lattice for each code, tgtou
C be a binary[n, k,d] code. Therp~1(C) is a free Abelian Theorenl4B.

group of rankn and hence is a lattice iR". Proposition 4.4:Best unimodular lattices of dimension
Definition 4.1: The latticel' generated by’ is defined by 8 < n < 23 and their corresponding codes are as classified in
Table IV.
1 ; .
o= —p *O). Proof. First by Tables | and Il as well as the observations
V2 following Propositions313 arld 3.4, the best unimodulaidas

To help identify which, if any, error correction code correare as shown in Table IV. Now we find their corresponding
sponds to a given lattice, we use the following known resultsodes. That the code for the lattiég is the[8, 4, 4] Extended
Hamming codavas mentioned in[10]. We only need to show
Theorem 4.2:[11] Let C be a binary linear code and:  the correspondence for all the even dimensions fidhto

be the lattice generated ly. Then 22. And since by Theorerfi 4.2, the lattices generated by the
1) C c C* if and only if I'¢ is an integral lattice; type | codes in Table Il are odd unimodular lattices, the
2) C is doubly even if and only if" is an even lattice; ~ correspondence can be shown by finding the corresponding
3) C'is self-dual if and only ifT'¢ is unimodular. lattice for each type | code. For = 12, 14 and 16, there

A self-dual code is always an even code. It is callegge IS only one code of the respective length and only one odd
Il code if it is doubly even antype | otherwise [16]. It then unimodular lattice of the respective dimension, hence it is
follows from TheoreniZ]2 thaC is a type | (respectively clear. Let us now deal with the rest of the even dimensions
type 11) code if and only ifl¢ is a type | (respectively type One by one, fron22 to 18. Since according to the observation
1) lattice. following Proposition[34, the best unimodular lattice® ar

Theorem 4.3:[12] Let C be a binary[n, k, d] linear code those with the smallest kissing numbers, we can directlcbea
with weight distributionW¢ (k), k = 0,1,---,n. Then the for the codes that give the smallest kissing numbers. For

kissing numberk (I'¢) of the latticeT' generated by is n = 22, [22,11,6] has a minimum distance df, which is
given by greater thar. According to Theorerii 413, the generated lattice
has kissing numbet4, which is the smallest a type | code of
: length 22 can give. By refering to Table Il, we know that it
KElc)=q 2n+16Wc(4) if d=4, is the lattice(A22)*. Forn = 20, [20, 10, 4] with We (4) = 5
2n it d>4. will give the smallest kissing number and applying Theorem
Theorem 4B gives a way to find the corresponding ulE3 again yieldd< (A¢) = 120. There are two odd unimodular
modular lattice for each self-dual code, assuming thatethdattices both with the same kissing numhbef, namely,(A2)*
is only one unimodular lattice having the computed kissingnd (D3)". Finally, for n = 18, we have a similar situation.
number. When we have more than one unimodular lattice witthe cod€[18, 9, 4] with W (4) = 9 gives the smallest kissing
the same kissing number, more considerations are neededumber180 and there are two odd unimodular latticéd3)*
distinguish them. Table IIl gives the list of type | codes oénd (D?)", both with the same kissing numbgs0.
lengthn (8 < n < 23) [17]. According to Theorerii 412, the For the odd dimensions, the unimodular lattices cannot be
lattices generated by these codes are odd unimodularelattiobtained from Construction A, since the conditions in Tle@or

2 We(d) if d < 4,
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TABLE IV . . .
BEST UNIMODULAR LATTICES OF DIMENSIONR, 8 < n < 23 anp THE  Which together with[(TI7) gives
CORRESPONDING CODES

Ao =2A. +V2CT + i[n,k,d].

[ dim | lattice | codes | V2
190 isgzzz 2’j’i By doing so, we can alternatively choodg = 2A. instead
11 Es @ 73 8,4,4 Of \/ﬁzn
12 DY, [12,6,4]
+ >
13 D, 07 12,6,4 V. CONCLUSION AND FUTURE WORK
14 (B2)T 14,7, 4
15 Al A recent line of work on lattice codes for Gaussian wiretap
16 (D§)++ [16,8, 4] channels introduced a new lattice invariant called secgady
1 Z(AEE"‘) o . as a code design criterion which captures the confusion that
18 | (A§)" or (Dg) [18,9,4] with W (4) =9 latti di . d d So f |
9 (AZD5) T attice coding can introduce at an eavesdropper. So fay, on
20 | (ADT or (DT | 20,10,4] with W (4) =5 the secrecy gain of even unimodular lattices was studied.
21 (14237,2)++ In this paper, we pursued the study of unimodular lattices
gg (Aol ) 22,11, 6] by investigating the case of odd unimodular lattices, which
23

exist in greater number and, unlike even lattices, in any
dimension. We provided a general formula for the secrecy
S%ﬁin of unimodular lattices in general. We then computed the
secrecy gain for odd unimodular lattices, both extremat] an
in small dimensions. As a result, we gave a classification of
the best unimodular lattice wiretap codes in small dimemsio
Future work on unimodular wiretap lattice codes concerns

[4.2 are necessary and sufficient and there does not exist
dual binary codes of odd length. The proof is completed.

B. Coset encoding the asymptotic behavior of odd unimodular lattices. More
With Construction A, a unimodular lattick can be written generally, it is of interest to generalize the existing work
as unimodular lattices to other classes of lattices.
1 1
V22" + —n,k,d) or | ) —=(2Z" + ),
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