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A Classification of Unimodular Lattice Wiretap
Codes in Small Dimensions

Fuchun Lin and Frédérique Oggier

Abstract—Lattice coding over a Gaussian wiretap channel,
where an eavesdropper listens to transmissions between a trans-
mitter and a legitimate receiver, is considered. A new lattice
invariant called the secrecy gain [1] is used as a code design
criterion for wiretap lattice codes since it was shown to char-
acterize the confusion that a chosen lattice can cause at the
eavesdropper: the higher the secrecy gain of the lattice, the
more confusion. In this paper, a formula for the secrecy gain
of unimodular lattices is derived. Secrecy gains of extremal odd
unimodular lattices as well as unimodular lattices in dimension
n, 16 ≤ n ≤ 23 are computed, covering the4 extremal odd
unimodular lattices and all the 111 non-extremal unimodular
lattices (both odd and even) providing thus a classificationof
the best wiretap lattice codes coming from unimodular lattices
in dimension n, 8 < n ≤ 23. Finally, to permit lattice encoding
via Construction A, the corresponding error correction codes are
determined.

Index Terms—Gaussian channel, Lattice codes, Secrecy gain,
Theta series, Wiretap codes, Unimodular lattices.

I. I NTRODUCTION

In his seminal work, Wyner [2] introduced the wiretap
channel, a discrete memoryless channel where the sender
Alice transmits confidential messages to a legitimate receiver
Bob, in the presence of an eavesdropper Eve. Both reliable
and confidential communication between Alice and Bob is
shown to be achievable at the same time, by exploiting the
physical difference between the channel to Bob and that to
Eve, without the use of cryptographic means. Many results
of information theoretical nature are available in the literature
for various classes of channels ranging from Gaussian point-
to-point channels to relay networks (see e.g. [3] for a survey)
capturing the trade-off between reliability and secrecy and
aiming at determining the highest information rate that canbe
achieved with perfect secrecy, the so-calledsecrecy capacity.
Coding results focusing on constructing concrete codes that
can be implemented in a specific channel are much fewer (see
[4], [5] for examples of wiretap codes dealing with channels
with erasures).

In this paper, we will focus on Gaussian wiretap channels,
whose secrecy capacity was established in [6]. Examples of
existing Gaussian wiretap codes were designed for binary
inputs, as in [7], [8]. A different approach was adopted in [1],
where lattice codes were proposed, using as design criterion a
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new lattice invariant calledsecrecy gain, which was shown to
characterize the confusion at the eavesdropper. This suggests
the study of the secrecy gain of lattices as a way to understand
how to design a good Gaussian wiretap code.Unimodular
lattices were shown to be good candidates in [9] and for
even unimodularlattices, both secrecy gains for a special
class of lattices calledextremal lattices were computed and
the asymptotic behavior of the average secrecy gain as a
function of the dimensionn was investigated. These two
papers were further developed in [10], where coding examples
were detailed and it was shown that asn grows to infinity,
all even unimodular lattices behave in the same way, so that
optimizing the secrecy gain makes sense in small dimensions.

The work of [9], [10] deals with even unimodular lattices,
which only exist in dimensions a multiple of 8. We pursue the
study of unimodular lattices by considering odd unimodular
lattices, which on the contrary exist in every dimension and
in great number, giving thus more flexibility in the code
design. We will also show examples of odd unimodular lattices
outperforming even unimodular lattices. Our contributions can
be summarized as follows:

• We develop a general formula for the secrecy gain of
both odd and even unimodular lattices that generalizes
the existing one for even unimodular lattices.

• We obtain the secrecy gain of unimodular lattices in
dimensionn, 8 < n ≤ 23, covering the4 extremal odd
unimodular lattices as well as all the111 non-extremal
unimodular lattices.

• We classify the best Gaussian wiretap codes from uni-
modular lattices in dimensionn, 8 < n ≤ 23, together
with their corresponding self-dual codes enabling lattice
encoding via Construction A.

The remainder of this paper is organized as follows. In
Section II, we first give a brief introduction to unimodular
lattices and theirtheta seriesas well as recall the definition of
the secrecy gain and the previous results concerning this lattice
invariant. The main results are given in Section III. An explicit
formula for the secrecy gain of unimodular lattices is derived,
which generalizes the one for the even case in [10]. Secrecy
gains of extremal odd unimodular lattices are computed to
complete the study of extremal unimodular lattices. Finally, se-
crecy gains of unimodular lattices in dimension16 ≤ n ≤ 23,
both odd and even, are computed, ending the classification of
unimodular wiretap lattice codes in dimensionn, 8 < n ≤ 23.
In Section IV, encoding of the best codes via Construction A
is discussed.

http://arxiv.org/abs/1201.3688v1
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II. PRELIMINARIES AND PREVIOUS RESULTS

Consider a Gaussian wiretap channel, which is modeled
as follows: Alice wants to send data to Bob on a Gaussian
channel whose noise variance is given byσ2

b . Eve is the
eavesdropper trying to intercept data through another Gaussian
channel with noise varianceσ2

e , whereσ2
b < σ2

e , in order to
have a positive secrecy capacity [6]. More precisely, the model
is

y = x+ vb

z = x+ ve,
(1)

where x is the transmitted signal,vb and ve denote the
Gaussian noise vectors at Bob’s, respectively Eve’s side, each
component of both vectors with zero mean, and respective
varianceσ2

b andσ2
e , and finallyy andz are the received signals

at Bob’s, respectively Eve’s side. In this paper, we choosex

to be a codeword coming from a specially designed lattice
of dimensionn, namely, we consider lattice coding. Let us
thus start by recalling some concepts concerning lattices,in
particular, unimodular lattices.

A. Unimodular lattices

A lattice Λ is a discrete set of points inRn, which can be
described in terms of itsgenerator matrixM by

Λ = {x = uM |u ∈ Z
n},

where

M =









v11 v12 · · · v1n
v21 v22 · · · v2n
· · · · · ·
vn1 vn2 · · · vnn









and the row vectorsvi = (vi1, · · · , vin), i = 1, 2, · · · , n
form a basis of the lattice. The matrix

A = MMT ,

whereMT denotes the transpose ofM , is called theGram
matrix of the lattice. It is easy to see that the (i,j)th entry of
A is the inner product of theith andjth row vectors ofM ,
denoted by

A(i,j) = vi · vj .

A lattice Λ is called anintegral lattice if its Gram matrix
is an integral matrix. ThedeterminantdetΛ of a latticeΛ is
the determinant of the matrixA, which is independent of the
choice of the matrixM . A fundamental regionfor a lattice
is a building block which when repeated many times fills the
whole space with just one lattice point in each copy. There are
many different ways of choosing a fundamental region for a
latticeΛ, but the volume of the fundamental region is uniquely
determined byΛ and called the volume ofΛ, which is exactly√

detΛ. Let us see an example of a fundamental region of a
lattice. A Voronoi cellVΛ(x) of a lattice pointx in Λ consists
of the points in the space that are closer tox than to any other
lattice points ofΛ.

The dual of a latticeΛ of dimensionn is defined to be

Λ∗ = {x ∈ R
n : x · λ ∈ Z, λ ∈ Λ}.

It can be shown thatΛ is an integral lattice if and only ifΛ ⊂
Λ∗. Especially, ifΛ = Λ∗ thenΛ is called aunimodularlattice.
It can further be shown thatΛ is a unimodular lattice if and
only if Λ is integral and detΛ = 1. Finally, thenorm (squared
length)||x||2 = x·x of a lattice pointx in a unimodular lattice
Λ is of course an integer. If the norm is an even integer for any
lattice point inΛ, thenΛ is called aneven unimodularlattice
or a type II lattice. Otherwise, it is called anodd unimodular
lattice or atype I lattice.

There are certain lattices which play the role of building
blocks in analyzing lattices. They are denoted byAn, Dn,
E6, E7, E8 and are calledirreducible root lattices [11].
Unimodular lattices are then decomposed into a number of
such lattices. More precisely, ann-dimensional unimodular
lattice Λ is described as one containing a sublattice which is
the direct sum

Λ1 ⊕ Λ2 ⊕ · · · ⊕ Λk

of a number of irreducible root lattices of total dimensionn,
and consequently a lattice point ofΛ can be written as

x = x1 + x2 + · · ·+ xk,

where each componentxi is chosen as one of a standard
system of representatives for the cosets ofΛi in Λ∗

i and called
a glue vectorfor Λi. Informally speaking,Λ is obtained by
gluing together the componentsΛ1, Λ2, · · · , Λk by the glue
vectors. The existence of glue vectors will be indicated by “+”
all through this paper. Let us see an example of the simplest
case that is calledself-glue.

Example 2.1:We use(rm) to denote a string ofm r’s here.
The latticeD+

12 = D12 ∪ D12 + (12
12
) containsD12 as a

sublattice and a lattice point ofD+
12 can be written asx =

x1, x1 ∈ D12 + (012) or x = x1, x1 ∈ D12 + (12
12
), where

the vectors(012) and (12
12
) are the glue vectors forD12.

A complete list of unimodular lattices of dimensionn, 0 ≤
n ≤ 23 that contain no vector of norm1 is given in [12], each
lattice is described by its components. Thekissing numberof
a lattice (sphere) packing is the number of spheres that touch
one sphere. The kissing numbers of these unimodular lattices
are also given in the same table.

Let us recall the definition of theJacobi theta functionsand
the theta seriesof lattices before we end this subsection. Let
H = {a+ ib ∈ C|b > 0} denote the upper half plane and let
q = eπiτ , whereτ ∈ H.

Definition 2.2: Jacobi theta functions are defined as fol-
lows:

ϑ2(τ) = Σn∈Zq
(n+ 1

2 )
2

,

ϑ3(τ) = Σn∈Zq
n2

,

ϑ4(τ) = Σn∈Z(−q)n
2

.

They are very important functions in analytic number the-
ory. For example, thediscriminant function∆8(τ) can be
represented byϑ2(τ) andϑ4(τ) [12]:

∆8(τ) = 1
16ϑ

4
2(τ)ϑ

4
4(τ)

= 2−8ϑ8
2(

τ+1
2 )

= q
∏∞

m=1{(1− q2m−1)(1 − q4m)}8
= q − 8q2 + 28q3 − 64q4 + 126q5 + 224q6 + · · · .

(2)
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Definition 2.3: The theta series of a latticeΛ is defined by

ΘΛ(τ) = Σλ∈Λq
λ·λ.

If we combine the terms with the same exponent, the theta
series of an integral latticeΛ can be written as

ΘΛ(τ) = Σ∞
n=0Anq

n. (3)

By doing that we can interpret the theta series ofΛ as a book
keeping device recording the number of vectorsλ ∈ Λ with
normn in the coefficientAn. Take the one-dimensional lattice
Z for example and recall the definition of the Jacobi function
ϑ3(τ). We have

ϑ3(τ) = ΘZ(τ) = 1 + 2q1 + 2q4 + 2q9 + · · · . (4)

Similarily, the theta series of thek-dimensional latticeZk is
then

ΘZk(τ) = ϑ3(τ)
k. (5)

Theta series of lattices are well studied object in analytic
number theory. Here is a well known result concerning theta
series of unimodular lattices.

Lemma 2.4:(Hecke)[12] IfΛ is a unimodular lattice then

ΘΛ(τ) ∈ C[ϑ3(τ),∆8(τ)].

This lemma tells us that the theta series of any unimodular
lattice can be generated byϑ3(τ) and∆8(τ). These objects we
have discussed in the last part of this subsection are actually
modular forms. Interested readers may refer to [13] for an
introduction.

B. Previous results

Lattice encoding for the wiretap channel (1) is done via a
generic coset coding strategy [1]: letΛe ⊂ Λb be two nested
lattices. A k-bit message is mapped to a coset inΛb/Λe,
after which a vector is randomly chosen from the coset as the
encoded word. The latticeΛe can be interpreted as introducing
confusion for Eve, whileΛb is intended to ensure reliability
for Bob. Since a message is now corresponding to a coset
of codewords instead of one single codeword, the probability
of correct decoding is then summing over the whole coset
(suppose that we do not have power constraint and are utilizing
the whole lattice to do the encoding). Here we are interested
in computing Eve’s probability of correct decision

Pc,e =
∑

t∈Λe

∫

VΛ
b
(x+t)

1

(σe

√
2π)n

e−||y−x||2/2σ2
edy.

With a change of variable and applying theTaylor expansion
to the exponential function, the value ofPc,e is approximated
in [10] by

∑

t∈Λe

e−||t||2/2σ2
e

√
detΛb

(σe

√
2π)n

(

1− U(VΛb
)

2σ2
e

√
detΛb

)

,

where

U(VΛb
) =

∫

VΛ
b

||x||2du

is the unnormalized second moment ofΛb. Since
√

detΛb

and U(VΛb
) are invariants ofΛb, to minimize Pc,e is then

to minimize
∑

t∈Λe

e−||t||2/2σ2
e , (6)

which is easily recognized as the theta series ofΛe at τ =
i

2πσ2
e

.
Motivated by the above argument, the confusion brought by

the latticeΛe with respect to no coding (namely, use a scaled
version of the latticeZn with the same volume) is measured
as follows:

Definition 2.5: [1] Let Λ be ann-dimensional lattice of
volumevn. The secrecy function ofΛ is given by

ΞΛ(τ) =
ΘvZn(τ)

ΘΛ(τ)
, τ ∈ H.

The secrecy gainis then the maximal value of the secrecy
function with respect toτ and is denoted byχΛ.

-6 -4 -2 0 2 4 6
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Fig. 1. Secrecy function ofE8

A large class of lattices was shown to have a symmetry
point (called weak secrecy gain) at τ = i

(detΛ)
1
n

in their

secrecy function through thePoisson summation formula[10].
For example, Fig. 1 shows the secrecy functionΞE8(τ) of E8,
where 1) we sety = −iτ and restrict to real positive values
of y, since by (6) we are only interested in the values of
ΘE8(τ) with τ = yi, y > 0 and 2)y is plotted in decibels to
transform the multiplicative symmetry point into an additive
symmetry point. The symmetry point can be seen to bey = 0
dB corresponding toy = 1, and hence toτ = i. This class
of lattices contains lattices whose duals are obtained from
themselves by possibly a rotation, reflection, and change of
scale. Let us now focus on unimodular lattices, for which we
haveΛ∗ = Λ by definition. It was a conjecture by Belfiore and
Solé [9], that for these lattices,τ = i is not only the symmetry
point, but also the point achieving the secrecy gain:

χΛ = ΞΛ(i) =
ϑn
3 (i)

ΘΛ(i)
. (7)

This conjecture was recently proven by A.-M. Ernvall-Hytönen
[14], [15] for a special class of lattices calledextremal even
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unimodular lattices. The idea of the proof is to write the
secrecy function of a latticeΛ as a function of the quantity

z =
16∆8(τ)

ϑ8
3(τ)

=
ϑ4
2(τ)ϑ

4
4(τ)

ϑ8
3(τ)

, τ ∈ H.

She shows that
z ∈ [0,

1

4
]

and that the maximum14 of z is achieved atτ = i. The rest
of the proof consists of showing that the functionfΛ(z) is
increasing in[0, 14 ]. Later we will prove the conjecture for
extremal odd unimodular lattices as well as unimodular lattices
in small dimensions using this idea.

III. T HE SECRECY GAIN OF UNIMODULAR LATTICES

For the sake of convenience, we will assume that the
symmetry pointτ = i is really the maximum of the secrecy
function through this section. We will then justify the claim
for the specific lattices we discuss, but note that the general
conjecture is still open.

A. A general formula

We are now ready to give our first result, namely a general
formula for the secrecy gain of unimodular lattices. From
Lemma 2.4 we have the following decomposition of the theta
series of a unimodular latticeΛ:

ΘΛ(τ) =

[n8 ]
∑

r=0

arϑ
n−8r
3 (τ)∆r

8(τ), ar ∈ Z. (8)

Consequently, the reciprocal of the secrecy gain ofΛ is

1/χΛ = ΘΛ(i)
ϑ3(i)n

=
∑[n

8
]

r=0 arϑ
n−8r
3 (i)∆r

8(i)
ϑn

3 (i)

=
∑[n8 ]

r=0 ar(
∆8(i)
ϑ8
3(i)

)r

=
∑[n8 ]

r=0 ar(
ϑ4
2(i)ϑ

4
4(i)

16ϑ8
3(i)

)r

=
∑[n8 ]

r=0 ar(
1
26 )

r,

where the first equality follows from (7), the second from (8),
the fourth from (2), and the final equality from the following
two useful equations concerning the Jacobi theta functionsat
τ = i [12]:

ϑ2(i) = ϑ4(i) andϑ3(i) =
4
√
2ϑ4(i). (9)

To summarize:
Theorem 3.1:The secrecy gain of a unimodular latticeΛ

of dimensionn can be written as

χΛ =
1

∑[n8 ]
r=0 ar(

1
26 )

r
, (10)

where theai’s are the coefficients in (8).
This generalizes the formula for the even case in [10].
Fig. 2 gives the plot of the secrecy function of the odd

unimodular latticeD+
12 mentioned in Example 2.1 (see the

paragraph following Fig. 1 for an explanation of the variable
y). The maximum can be seen to be85 , which we will verify
in the next subsection.
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Fig. 2. Secrecy function ofD+

12

B. Extremal odd unimodular lattices

In order to find good Gaussian wiretap lattice codes, we
look for unimodular lattices with high secrecy gain. We start
by restricting our search to the class of extremal unimodular
lattices.

Definition 3.2: Let Λ be a lattice of dimensionn. Λ is said
to be an extremal lattice if its minimal norm is[n8 ] + 1.1

By definition, an extremal unimodular latticeΛ of dimen-
sion n contains no vector of norm1, 2, · · · , [n8 ], thus the
coefficients ofq, q2, · · · , q[n8 ] in the theta series given in (3)
are all0’s. But by expanding (8), we can form another formal
sum with coefficients represented as linear combinations of
ai’s. Then by comparing the first[n8 ] + 1 terms of the two
formal sums, we have a system of[n8 ] linear equations in
[n8 ] unknownsa1, a2, · · · , a[n8 ] (a0 is obviously1), from
which a unique solution can be found. In this way, the secrecy
gain of each extremal unimodular lattice can be computed. We
illustrate this technique by computing the secrecy gain ofD+

12

andO23.
Secrecy gain ofD+

12. The theta series ofD+
12 looks like

ΘD+
12
(τ) = 1 + 0q +A2q

2 + · · · , A2 6= 0.

On the other hand, by (8), (4) and (2),

ΘD+
12
(τ) = ϑ12

3 (τ) + a1ϑ
4
3∆8(τ)

= (1 + 2q + · · · )12 + a1(1 + 2q + · · · )4(q + · · · )
= (1 + 24q + · · · ) + a1(q + · · · )
= 1 + (24 + a1)q + · · · .

We now have one linear equation in one unknowna1

24 + a1 = 0,

which givesa1 = −24, yielding the secrecy gain

χD+
12

=
1

1− 24
26

=
8

5
. (11)

Secrecy gain ofO23. The theta series of theShorter Leech
LatticeO23 again looks like

ΘO23(τ) = 1 + 0q + 0q2 +A3q
3 + · · · , A3 6= 0.

1The definition of extremal has changed. Here we use the earlier version.
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TABLE I
SECRECY GAINS OF EXTREMAL ODD UNIMODULAR LATTICES

dim lattice theta series secrecy gain

12 D+

12
ϑ12
3

− 24ϑ4
3
∆8

8

5

14 (E2
7
)+ ϑ14

3
− 28ϑ6

3
∆8

16

9

15 A+

15
ϑ15
3 − 30ϑ7

3∆8
32

17

23 O23 ϑ23
3

− 46ϑ15
3
∆8

32

9

On the other hand, by (8), (4) and (2)

ΘO23(τ) = ϑ23
3 (τ) + a1ϑ

15
3 (τ)∆8(τ) + a2ϑ

7
3(τ)∆

2
8(τ)

= (1 + 2q + · · · )23
+a1(1 + 2q + · · · )15(q − 8q2 + · · · )
+a2(1 + 2q + · · · )7(q − 8q2 + · · · )2

= (1 + 46q + 1012q2 + · · · )
+a1(q + 22q2 + · · · ) + a2(q

2 + · · · )
= 1 + (46 + a1)q
+(1012 + 22a1 + a2)q

2 + · · · .
This time, we have two linear equations ina1 anda2

{

46 + a1 = 0
1012 + 22a1 + a2 = 0

,

which givesa1 = −46 anda2 = 0, yielding

χO23 =
1

1− 46
26

=
32

9
. (12)

By applying this method, we have computed the secrecy
gain for each extremal odd unimodular lattice in dimension
n, n ≥ 10 (see [12] for a classification), as shown in Table I.
A similar table for the even case can be found in [9], [10].

Proposition 3.3:The secrecy conjecture is true, namely, the
maximum of the secrecy function is achieved atτ = i for
extremal odd unimodular lattices and the secrecy gains are
given as in Table I.

Proof. The secrecy gains are computed as illustrated in the
examples ofD+

12 andO23. Now we only need to show that the
secrecy gains of these unimodular lattices are indeed achieved
at τ = i. Recall the definition of secrecy function and the theta
series ofD+

12, which we have just computed. We have that

ΞD+
12
(τ) =

ϑ12
3 (τ)

ϑ12
3 (τ)−24ϑ4

3(τ)∆8(τ)

= 1
1− 24z

16

,

wherez =
ϑ4
2(τ)ϑ

4
4(τ)

ϑ8
3(τ)

. Recall also that it was shown in [14]

that z ∈ [0, 14 ] and 1
4 is achieved atτ = i. It then suffices

to show that the denominator is decreasing in[0, 1
4 ], which is

obviously true, since its derivative is negative in[0, 1
4 ]. Thus

the maximum of the secrecy function is achieved atz = 1
4 ,

namely,τ = i.
We do the same for the other three extremal odd unimodular

lattices, namely:

Ξ(E2
7)

+(τ) =
ϑ14
3 (τ)

ϑ14
3 (τ)−28ϑ6

3(τ)∆8(τ)

= 1
1− 28z

16

,

ΞA+
15
(τ) =

ϑ15
3 (τ)

ϑ15
3 (τ)−30ϑ7

3(τ)∆8(τ)

= 1
1− 30z

16

,

ΞO23 (τ) =
ϑ23
3 (τ)

ϑ23
3 (τ)−46ϑ15

3 (τ)∆8(τ)

= 1
1− 46z

16

.

That the maximum of each secrecy function is achieved atz =
1
4 , namely,τ = i follows similarly. The proof is completed.

A unimodular lattice containing vectors of norm1 can
always be written as the direct sum of a unimodular lattice
without vectors of norm1 and a cubic latticeZk [12]. From
the definition of the secrecy function, we have that the secrecy
gain is determined by the component that contains no vector
of norm 1. In fact,

χΛ⊕Zk =
ϑn
3 (i)

ΘΛ(i)ϑk
3(i)

=
ϑn−k
3 (i)

ΘΛ(i)
= χΛ.

By refering to the enumeration of unimodular lattices [12],
the latticesE8, D+

12, (E2
7)

+ andA+
15 are the only unimodular

lattices that do not contain vectors of norm1 in dimensions
less than16. The secrecy gain ofE8 was computed in [9],
[10] and observe that the secrecy gains of these three lattices
are already given in Table I. Thus we in fact have all the best
unimodular lattices in dimensionn, 8 < n < 16, namely,
E8 ⊕ Z in dimension9, E8 ⊕ Z2 in dimension10, E8 ⊕ Z3

in dimension11, D+
12 in dimension12, D+

12⊕Z in dimension
13, (E2

7)
+ in dimension14 andA+

15 in dimension15.
We will deal with unimodular lattices in dimensionn, 16 ≤

n ≤ 23 in the next subsection.

C. Unimodular lattices in small dimensions

The computation of secrecy gain of extremal unimodular
lattices can easily be adapted to cover a large family of uni-
modular lattices, namely, non-extremal unimodular lattices that
do not contain vectors of norm1 in dimensions16 ≤ n ≤ 23.

We show the computation of the secrecy gain of(D2
8)

+ to
illustrate the technique before deriving a general formulaof
the secrecy gain for all the111 lattices and proving the secrecy
conjecture for these lattices.

Secrecy gain of(D2
8)

+. The lattice(D2
8)

+ does not contain
any vector of norm1. Thus the corresponding coefficientA1

in the theta series is0. Its kissing number is224, which means
that the first nonzero coefficientA2 = 224 and the theta series
of (D2

8)
+ looks like

Θ(D2
8)

+(τ) = 1 + 0q + 224q2 +A3q
3 + · · · . (13)

On the other hand, by (8), (4) and (2),

Θ(D2
8)

+(τ) = ϑ16
3 (τ) + a1ϑ

8
3(τ)∆8(τ) + a2∆

2
8(τ)

= (1 + 2q + · · · )16
+a1(1 + 2q + · · · )8(q − 8q2 + · · · )
+a2(q − 8q2 + · · · )2

= (1 + 32q + 480q2 + · · · )
+a1(q + 8q2 + · · · ) + a2(q

2 + · · · )
= 1 + (32 + a1)q + (480 + 8a1 + a2)q

2 + · · · .
This time, we have two linear equations ina1 anda2

{

32 + a1 = 0
480 + 8a1 + a2 = 224

,
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which givesa1 = −32 anda2 = 0, yielding

χ(D2
8)

+ =
1

1− 32
26

= 2. (14)

We now derive a general formula for the secrecy gain of all
the 111 non-extremal unimodular lattices.

Proposition 3.4:The secrecy gain conjecture is true,
namely, the secrecy gain is achieved atτ = i for non-extremal
unimodular lattices in dimension16 ≤ n ≤ 23 and the secrecy
gain is given by

χΛ =
1

1− 2n
26 + 2n(n−23)+K(Λ)

212

, (15)

whereK(Λ) denotes the kissing number ofΛ.
Proof. The theta series of a latticeΛ in question looks like

ΘΛ(τ) = 1 + 0q +K(Λ)q2 +A3q
3 + · · · . (16)

On the other hand, by (8), (4) and (2)

ΘΛ(τ) = ϑn
3 (τ) + a1ϑ

n−8
3 (τ)∆8(τ) + a2ϑ

n−16
3 (τ)∆2

8(τ)
= (1 + 2q + · · · )n
+a1(1 + 2q + · · · )n−8(q − 8q2 + · · · )
+a2(1 + 2q + · · · )n−16(q − 8q2 + · · · )2

= (1 + 2

(

n

1

)

q + 22

(

n

2

)

q2 + · · · )

+a1(1 + 2

(

n− 8
1

)

q + · · · )(q − 8q2 + · · · )
+a2(q

2 + · · · )
= (1 + 2nq + 2n(n− 1)q2 + · · · )
+a1(q + (2n− 24)q2 + · · · )
+a2(q

2 + · · · )
= 1 + (2n+ a1)q
+(2n(n− 1) + (2n− 24)a1 + a2)q

2 + · · · .
Now by comparing the two expressions ofΘΛ, we have two
linear equations ina1 anda2

{

2n+ a1 = 0
2n(n− 1) + (2n− 24)a1 + a2 = K(Λ)

,

which givesa1 = −2n anda2 = 2n(n−23)+K(Λ), yielding
from the conjecture

χΛ =
1

1− 2n
26 + 2n(n−23)+K(Λ)

212

.

We have yet to show that the maximum is indeed achieved
at τ = i. Recalling the definition of secrecy function and the
theta series we have just computed, the secrecy function ofΛ
can be written as

ΞΛ(τ) =
ϑn

3 (τ)

ϑn

3 (τ)−2nϑn−8
3 (τ)∆8(τ)+(2n(n−23)+K(Λ))ϑn−16

3 (τ)∆2
8(τ)

= 1

1− 2n
16 z+ 2n(n−23)+K(Λ)

162
z2

= 1
D(z) ,

whereD(z) = 1− 2n
16 z+

2n(n−23)+K(Λ)
162 z2 andz =

ϑ4
2(τ)ϑ

4
4(τ)

ϑ8
3(τ)

.

Recall again that it was shown in [14] thatz ∈ [0, 1
4 ] and 1

4
is achieved atτ = i. It suffices to show that the denominator
D(z) is decreasing in[0, 14 ]. We now examine the derivative

of the denominator. Note thatz ∈ [0, 1
4 ], 16 ≤ n ≤ 23 and the

largest kissing number for these lattice is760. Now,

D
′

(z) = −n
8 + 2n(n−23)+K(Λ)

27 z

≤ −n
8 + 2n(n−23)+K(Λ)

29

= −64n+2n(n−23)+K(Λ)
29

< −1024+0+K(Λ)
29

= K(Λ)−1024
29

≤ 760−1024
29

< 0.

This tells us that the denominatorD(z) is decreasing in[0, 1
4 ]

and the maximum of the secrecy function is achieved atz = 1
4 ,

namely,τ = i. The proof is completed.

Table II 2 summarizes the secrecy gains we have computed.
Observe that

1) In dimension 16, the odd unimodular lattice(D2
8)

+

has secrecy gain2, which outperforms its two even
counterparts(E2

8)
+ andD+

16, both with secrecy gain169 .

2) In fact, when the dimensionn is fixed the secrecy gain is
totally determined by the kissing numberA2. The lattice
with the best secrecy gain (in boldface) is the one with the
smallest kissing number, which can also be seen directly
from (15). This agrees with the observation in [10] that
the best secrecy gain is achieved by extremal lattices,
for being extremal in this special case is equivalent to
havingA2 = 0. We do not know yet if the secrecy gain
is connected to the kissing number in general.

In [10], a lower bound on the minimal secrecy gain as a
function of n from Siegel-Weil formula for even unimodular
lattices was computed. In Fig. 3, the points corresponding to
best unimodular lattices are compared to the bound. Note that
all the points are the secrecy gains of odd lattices, except for
E8 in dimension8. We observe that whenn grows, the gap
between the lower bound and the best lattices decreases, as
suggested in [10], where it was shown that whenn increases,
the difference of secrecy gain becomes negligible.

IV. GAUSSIAN WIRETAP CODES FROM UNIMODULAR

LATTICES

As mentioned in Section II, the secrecy gain of a latticeΛ
characterizes the amount of confusion at Eve that is gained
by using this latticeΛ asΛe in the lattice coset codeΛe ⊂
Λb. Now that we have established the secrecy gain of all the
unimodular lattices in dimension smaller than24, we need
to be able to use these lattices, particularly those with the
highest secrecy gain to provide lattice coset codes. To do so,
lattice encoding should be performed, which can be handled
via Construction A, assuming that we can associate to the
chosen lattice a suitable error correction code. We will use
some terminology from classical error correction codes in this
session. Unfamiliar readers can refer to [16].

2Ok in the table denotes an empty component of dimensionk, namely, one
containing no vector of norm less than or equal to2. Also, for the sake of
simplicity, we omit the “+” which denotes the existence of glue vectors.



TO BE SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY.LAST UPDATED ON NOVEMBER 13, 2018 7

TABLE II
SECRECY GAINS OF NON-EXTREMAL UNIMODULAR LATTICES OF

DIMENSIONn, 16 ≤ n ≤ 23

dim lattice kissing number secrecy gain

16 E2
8

480 16

9

16 D16 480 16

9

16 D2

8
224 2

17 A11E6 204
32

15

18 A17A1 308 32

15

18 D10E7A1 308 32

15

18 D3

6
180

16

7

18 A2

9
180

16

7

19 E3
6O1 216 64

27

19 A11D7O1 216 64

27

19 A2

7
D5 152

32

13

20 D20 760 32

17

20 D12E8 504 32

15

20 D12D8 376 16

7

20 E2
7
D6 312 64

27

20 A15D5 280 128

53

20 D2
8
D4 248 32

13

20 A11E6A3 216 128

51

20 D3
6
A2

1
184 64

25

20 A2
9
A2

1
184 64

25

20 A2
7D5O1 152 128

49

20 D5

4
120

8

3

20 A4

5
120

8

3

21 A20O1 420 256

109

21 A13E7O1 308 128

51

21 A11D9O1 276 64

25

21 A12A8O1 228 256

97

21 D7A7E6O1 212 8

3

21 A9D6A5O1 180 128

47

21 A3
8A4O1 164 256

93

21 A7D
2
5
A3O1 148 64

23

21 A3
6
A2O1 132 256

91

21 A3
5D4A1O1 116 128

45

21 A5
4
O1 100 256

89

21 A7

3
84

32

11

22 D14E7A1 492 64

27

22 E8E
2
7 492 64

27

22 D2
10
A2

1
364 64

25

22 A15D6O1 300 8

3

22 D10D
2
6 300 8

3

22 D8E7D6A1 300 8

3

22 A13D7A1O1 268 128

47

22 D8D
2
6A

2
1 236 64

23

22 A2
10
O2 220 256

91

22 E2
6A

2
5 204 128

45

22 A11D5A5A1 204 128

45

22 A9D7A5O1 204 128

45

22 A9E6D5A1O1 204 128

45

22 D2
6
D2

4
A2

1
172 32

11

22 A2
7
D6O2 172 32

11

22 A9A7D4A1O2 172 32

11

22 A8A
2
6
O2 156 256

87

22 A2
7A

2
3A

2
1 140 128

43

22 D2
5
A2

5
O2 140 128

43

22 A7D5A5A3A1O1 140 128

43

22 A2
6A

2
4O2 124 256

85

22 D4
4
A6

1
108 64

21

22 A3
5
A3A

3
1
O1 108 64

21

22 A2
5D4A

2
3O2 108 64

21

dim lattice kissing number secrecy gain
22 A4

4
A2

2
O2 92 256

83

22 A6
3
A2

1
O2 76 128

41

22 A10
2 O2 60 256

81

22 A22

1
44

16

5

23 A15E8 480 128

51

23 A19A4 400 256

97

23 D11A11O1 352 128

47

23 A11E7A5 288 128

45

23 A9E7E6O1 288 128

45

23 D9E
2
6O2 288 128

45

23 A14E6A2O1 288 128

45

23 D9A
2
7 256 32

11

23 A13A8A1O1 256 32

11

23 A11D8A3O1 256 32

11

23 D8A
2
7O1 224 128

43

23 D2
7
A7O2 224 128

43

23 A11A7A4O1 208 256

85

23 A10A9A2A1O1 208 256

85

23 E6D
3
5
O2 192 64

21

23 E6D6A
2
5O1 192 64

21

23 D7A7D5A3O1 192 64

21

23 A8E6A6A2O1 192 64

21

23 A10A6D5O2 192 64

21

23 A9D6D5A1O2 192 64

21

23 D4
5
O3 160 128

41

23 A9A5A
2
4O1 160 128

41

23 D6D5A
2
5
O2 160 128

41

23 A7D6A5A3A1O1 160 128

41

23 A8A6D5A2O2 160 128

41

23 A8A7A5A1O2 160 128

41

23 A8A
2
5A

2
2O1 144 256

81

23 A2
7
A4A3A2 144 256

81

23 A7A
2
6
A2

1
O2 144 256

81

23 D2
5A

4
3O1 128 16

5

23 A7D
2
4
A2

3
O2 128 16

5

23 A7A5A
2
4A1O2 128 16

5

23 D5A
2
5
D4A

2
1

128 16

5

23 A2
6
D4A4O3 128 16

5

23 A6D5A
2
4A2O2 128 16

5

23 A3
5
A4A1O3 112 256

79

23 A6A5A4A3A2A1O2 112 256

79

23 D2
4A

4
3O3 96 128

39

23 A2
5
A3A

4
2
O2 96 128

39

23 A5D4A
3
3A

3
1O2 96 128

39

23 D4A
3
4
A2

2
O3 96 128

39

23 A5A
2
4
A2

3
A1O3 96 128

39

23 A4A
5
3O4 80 256

77

23 A2
4
A2

3
A2

2
A2

1
O3 80 256

77

23 A4
3
A8

1
O3 64 64

19

23 A3
3A

4
2A

2
1O4 64 64

19

23 A6
2
A6

1
O5 48 256

75

23 A16

1
O7 32

128

37
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L

n

Fig. 3. Lower bound of the minimal secrecy gain as a function of n from
Siegel-Weil formula for even unimodular lattices. Points correspond to best
unimodular lattices.

A. Construction A

There is a classic way of constructing lattices from binary
linear codes calledConstruction A. Let ρ : Zn → Fn

2 be the
map of componentwise reduction modulo 2 defined onZ

n. Let
C be a binary[n, k, d] code. Thenρ−1(C) is a free Abelian
group of rankn and hence is a lattice inRn.

Definition 4.1: The latticeΓC generated byC is defined by

ΓC :=
1√
2
ρ−1(C).

To help identify which, if any, error correction code corre-
sponds to a given lattice, we use the following known results:

Theorem 4.2:[11] Let C be a binary linear code andΓC

be the lattice generated byC. Then
1) C ⊂ C⊥ if and only if ΓC is an integral lattice;
2) C is doubly even if and only ifΓC is an even lattice;
3) C is self-dual if and only ifΓC is unimodular.
A self-dual code is always an even code. It is called atype

II code if it is doubly even andtype I otherwise [16]. It then
follows from Theorem 4.2 thatC is a type I (respectively
type II) code if and only ifΓC is a type I (respectively type
II) lattice.

Theorem 4.3:[12] Let C be a binary[n, k, d] linear code
with weight distributionWC(k), k = 0, 1, · · · , n. Then the
kissing numberK(ΓC) of the latticeΓC generated byC is
given by

K(ΓC) =







2dWC(d) if d < 4,
2n+ 16WC(4) if d = 4,

2n if d > 4.

Theorem 4.3 gives a way to find the corresponding uni-
modular lattice for each self-dual code, assuming that there
is only one unimodular lattice having the computed kissing
number. When we have more than one unimodular lattice with
the same kissing number, more considerations are needed to
distinguish them. Table III gives the list of type I codes of
lengthn (8 < n ≤ 23) [17]. According to Theorem 4.2, the
lattices generated by these codes are odd unimodular lattices

TABLE III
TYPE I CODES OF LENGTHn (8 < n ≤ 23)

Codes weight distribution num

[12, 6, 4] (1,0,15,32,15,0,1) 1

[14, 7, 4] (1,0,14,49,49,14,0,1) 1

[16, 8, 4] (1,0,12,64,102,64,12,0,1) 1

[18, 9, 4]
(1,0,9,75,171,171,75,9,0,1) 1

(1,0,17,51,187,187,51,17,0,1) 1

[20, 10, 4]

(1,0,5,80,250,352,250,80,5,0,1) 1
(1,0,9,72,246,368,246,72,9,0,1) 1

(1,0,13,64,242,384,242,64,13,0,1) 1
(1,0,17,56,238,400,238,56,17,0,1) 1
(1,0,21,48,234,416,234,48,21,0,1) 1
(1,0,29,32,226,448,226,32,29,0,1) 1
(1,0,45,0,210,512,210,0,45,0,1) 1

[22, 11, 6] (1,0,0,77,330,616,616,330,77,0,0,1) 1

[22, 11, 4]

(1,0,4,73,318,628,628,318,73,4,0,1) 1
(1,0,8,69,306,640,640,306,69,8,0,1) 1

(1,0,12,65,294,652,652,294,65,12,0,1)1
(1,0,16,61,282,664,664,282,61,16,0,1)2
(1,0,20,57,270,676,676,270,57,20,0,1)1
(1,0,28,49,246,700,700,246,49,28,0,1)2

of dimensionn (8 < n ≤ 23). The rest of the work consists
of finding out the corresponding lattice for each code, through
Theorem 4.3.

Proposition 4.4:Best unimodular lattices of dimensionn,
8 < n ≤ 23 and their corresponding codes are as classified in
Table IV.
Proof. First by Tables I and II as well as the observations
following Propositions 3.3 and 3.4, the best unimodular lattices
are as shown in Table IV. Now we find their corresponding
codes. That the code for the latticeE8 is the[8, 4, 4] Extended
Hamming codewas mentioned in [10]. We only need to show
the correspondence for all the even dimensions from12 to
22. And since by Theorem 4.2, the lattices generated by the
type I codes in Table III are odd unimodular lattices, the
correspondence can be shown by finding the corresponding
lattice for each type I code. Forn = 12, 14 and 16, there
is only one code of the respective length and only one odd
unimodular lattice of the respective dimension, hence it is
clear. Let us now deal with the rest of the even dimensions
one by one, from22 to 18. Since according to the observation
following Proposition 3.4, the best unimodular lattices are
those with the smallest kissing numbers, we can directly search
for the codes that give the smallest kissing numbers. For
n = 22, [22, 11, 6] has a minimum distance of6, which is
greater than4. According to Theorem 4.3, the generated lattice
has kissing number44, which is the smallest a type I code of
length 22 can give. By refering to Table II, we know that it
is the lattice(A22

1 )+. Forn = 20, [20, 10, 4] with WC(4) = 5
will give the smallest kissing number and applying Theorem
4.3 again yieldsK(ΛC) = 120. There are two odd unimodular
lattices both with the same kissing number120, namely,(A4

5)
+

and (D5
4)

+. Finally, for n = 18, we have a similar situation.
The code[18, 9, 4] with WC(4) = 9 gives the smallest kissing
number180 and there are two odd unimodular lattices,(A2

9)
+

and (D3
6)

+, both with the same kissing number180.
For the odd dimensions, the unimodular lattices cannot be

obtained from Construction A, since the conditions in Theorem
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TABLE IV
BEST UNIMODULAR LATTICES OF DIMENSIONn, 8 < n ≤ 23 AND THE

CORRESPONDING CODES

dim lattice codes

9 E8 ⊕ Z [8, 4, 4]
10 E8 ⊕ Z2 [8, 4, 4]
11 E8 ⊕ Z3 [8, 4, 4]

12 D+

12
[12, 6, 4]

13 D+

12
⊕ Z [12, 6, 4]

14 (E2
7
)+ [14, 7, 4]

15 A+

15

16 (D2
8)

+ [16, 8, 4]
17 (A11E6)+

18 (A2
9)

+ or (D3
6)

+ [18, 9, 4] with WC(4) = 9
19 (A2

7
D5)+

20 (A4
5
)+ or (D5

4
)+ [20, 10, 4] with WC(4) = 5

21 (A7
3)

+

22 (A22
1
)+ [22, 11, 6]

23 O23

4.2 are necessary and sufficient and there does not exist self-
dual binary codes of odd length. The proof is completed.

B. Coset encoding

With Construction A, a unimodular latticeΛ can be written
as √

2Zn +
1√
2
[n, k, d] or

⋃

ci∈C

1√
2
(2Zn + ci),

whereC = [n, k, d] is the binary linear code that generates
Λ. The encoding is normally done by mappingk bits of
information for a codeword ofC and n⌈log2(m)⌉ bits of
information for a bounded set ofZn around the origin given by
{0, 1, . . . ,m− 1}. In the case of coset encoding for a wiretap
channel, we can adapt this encoding by settingΛe = Λ, and
Λb =

√
2Zn, in which case,k bits of information are indeed

used for a codeword ofC, thus determining a coset, while the
other bits are either random or least significant. In doing so,
we are increasing the confusion at the eavesdropper, however,
there is no special coding for Bob. Let us write

Λe =
√
2Zn +

1√
2
[n, k, d]. (17)

Since
Z
n = 2Zn + [n, n, 1],

we have that
1√
2
Z
n =

√
2Zn +

1√
2
[n, n, 1],

which combined with (17) yields

Λe =
1√
2
Z
n +

1√
2
[n, n, 1] +

1√
2
[n, k, d]

=
1√
2
Z
n +

1√
2
C†

where by definition[n, k, d] +C† = [n, n, 1]. Scaling this last
equation, we further obtain

2Λe =
√
2Zn +

√
2C†

which together with (17) gives

Λe = 2Λe +
√
2C† +

1√
2
[n, k, d].

By doing so, we can alternatively chooseΛb = 2Λe instead
of

√
2Zn.

V. CONCLUSION AND FUTURE WORK

A recent line of work on lattice codes for Gaussian wiretap
channels introduced a new lattice invariant called secrecygain
as a code design criterion which captures the confusion that
lattice coding can introduce at an eavesdropper. So far, only
the secrecy gain of even unimodular lattices was studied.
In this paper, we pursued the study of unimodular lattices
by investigating the case of odd unimodular lattices, which
exist in greater number and, unlike even lattices, in any
dimension. We provided a general formula for the secrecy
gain of unimodular lattices in general. We then computed the
secrecy gain for odd unimodular lattices, both extremal, and
in small dimensions. As a result, we gave a classification of
the best unimodular lattice wiretap codes in small dimensions.

Future work on unimodular wiretap lattice codes concerns
the asymptotic behavior of odd unimodular lattices. More
generally, it is of interest to generalize the existing workon
unimodular lattices to other classes of lattices.
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