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A Few steps more towards NPT bound
entanglement

tukasz Pankowski-2% Marco Piani®%*, Michat Horodecki*%), Pawel Horodeck} %

Abstract—We consider the problem of existence of bound information theory [[7], and have been also compared to a
entangled states with non-positive partial transpose (NPJL As single heat bath in thermodynamics, since to create ther latt

one knows, existence of such states would in particular impl e has to spend work (as in Joule experiment), yet no work
nonadditivity of distillable entanglement. Moreover it would rule

out a simple mathematical description of the set of distilliale Can be obtained back from it by a cyclic process [8], [9].
states. Distillability is equivalent to so calledn-copy distillability Bound entangled states, although directly not useful for
for some n. We consider a particular state, known to be 1-copy quantum communication, are not entirely useless. They ean b
nondistillable, which is supposed to be bound entangled. Wetudy  helpful indirectly, via activation like process: in conjtion

the problem of its two-copy distillability, which boils down to ity some distillable state, they allow for better performa
show that maximal overlap of some projector@ with Schmidt '

rank two states does not exceed /2. Such property we call the of some tasks[[10], [11]. It was even recently shown that.
half-property. We first show that the maximum overlap can be any bound entangled state can perform nonclassical task via
attained on vectors that are not of the simple product form wth ~ kind of activation [12]. This is the first result showing that
respect to cut between two copies. We then attack the problem entanglement always allows for nonclassical tasks. Finill

in twofold way: a) prove the half-property for some classesf 45 3150 shown that some bound entangled states can be useful
Schmidt rank two states b) bound the required overlap from

above for all Schmidt rank two states. We have succeeded to for. production of secure qryptographlc_kgfy [13]. [14j1'_ [15]
prove the half-property for wide classes of states, and to homd ~ This has lead to the possibility of obtaining unconditidyal

the overlap from above by ¢ < 3/4. Moreover, we translate secure key via channels which cannot reliably convey quantu
the problem into the following matrix analysis problem: bound information [16], [17].

the sum of the squares of the two largest sin ; ot ;
matrix A I+ 1T <qg> B with A, B tracelegszl x 4 grr?f!?rric\:aasd,m;dc}f Since bound entangled states prgsgnt qualitatively d"“ef
TeATA+ TvB' B = L. _type of entangleme_nt_from the dlst|llab_le states behaving
in a strange way, it is more than desired to have some
characterization of the set. It has been shown [18] that tatg s
with positive partial transposéPPT) [19] is non-distillable.
A long standing open problem is whether the converse is also
|. INTRODUCTION true. Since the discovery of bound entanglement the questio
The Phenomenon of bound entanglement lies at the heartAfe all states which do not have positive partial transpose
entanglement theoriZ[1]. A bound entangled state of a htpartdistillable?” has remained open.
system is one which is entangled, but cannot be used forProvided it has a positive answer, we would have com-
guantum communication. A possibility of transmitting oshi putable criterion allowing to distinguish between bound an
via bipartite states is connected with thdistillability [2], [3] free entanglement. However the importance of the problem
i.e. the possibility of obtaining asymptotically pure mally is not merely due to technical (in)convenience. As a matter
entangled states by local operations and classical commupfi fact, in [20] dramatic consequences of a negative answer
cation from many copies of a given state. Such maximallyave been discovered. Namely, for some hypothetical bound
entangled states can be then used for transmitting qubits ésytangled state with a non-positive partial transpose (NPT)
means of teleportation. It is known that all entangled twbitju there exists another bound entangled staseich that the joint
states are distillablé [4]; however, already fo® 3 or 2 ® 4 statep ® o is no longer a bound entangled state. [In|[11] it
systems there exist bound entangled states — entangled sta@as shown that an arbitrary NPT bound entangled state would
that cannot be distilled. Such states involve irreverisibil exhibit such a phenomenon (it also follows from [[21] via
to create them by LOCC one needs pure entanglenmiént [$&miotkowski isomorphism). Such a phenomenon of “superac-
[6], but no pure entanglement can be obtained back frolimation” has been indeed found in a multipartite case [28] a
them. They constitute a sort of a “black hole” of quanturtranslated into extreme nonadditivity of multipartite gtiam
channel capacities [23]. (In a multipartite case, thougdh st

Index Terms—Quantum Physics, Quantum Information The-
ory, Bound entanglement, Entanglement distillation

()" Institute of Informatics, University of Gamk, Gdisk, Poland very strange, this can be easier to understand than in aitgpar
(2) . . . . . a 1 . .
de;&\sgtglt:n%f Theoretical Physics and Astrophysics, Ursiigrof Gdask, o556 que to a rich state structure allowed by many possible
(3) Faculty of Applied Physics and Mathematics, @sla University of SPlits between the parties.) In quantum communication lan-
Technology, Gdask, Poland guage the phenomenon of “superactivation” would mean that

() This work is supported by EU grant SCALA FP6-2004-IST nolll& -ty channels (supported by two-way classical communiojtio
* Present affiliation: Institute for Quantum Computing andp@ément of

Physics and Astronomy, University of Waterloo, Waterloo ,ON2L 3G1 none of them separately can Cor_wey quantum |_r1f0rmat|0q if
Canada put together, can be used for reliable transmission of gubit


http://arxiv.org/abs/0711.2613v2

Analogous problem for channels that are not supported bgn also find relevant literature. There have been sevena mo
classical communication was recently solved by Smith amdcent attempts. Unfortunately the proofs given in two efnth
Yard [24] (see alsd [25] in this context). Another implicati [40], [41] turned out to have some gaps. The last partialltesu
of the existence of NPT bound entangled states is that tisedue to[[42] where a notion of-copy correlated distillability
basic measure of entanglement — tlistillable entanglement was introduced, and used to characterize the convex hull of
— would be non-convex. the non-distillable states.

The problem of existence of NPT bound entanglement haswe have seen that a considerable effort has been put so far
been attacked many times since the beginningl_In [26] it wasthout providing the final solution, but definitely enriclgi
shown that it is enough to concentrate on one parametenfamibhenomenology” of the problem. In such situation we have
of the Werner states [27]: if NPT bound entangled statetecided to consider a modest goal. Namely we analyze two-
exist at all, some of the Werner states must be NPT bouadpy distillability only, and we focus on a single state,wina
entangled too. There also exists the following characitidm from the “suspicious” family of the Werner states. We choose
of distillable states [18]: A state is distillable, if somamber a dimensionC* ® C*, in which case, the problem reduces to
of copies ¢®™ can be locally projected to obtain a two-analysis of suitable properties of sompmjector. Namely, we
qubit NPT state. The state is then calleetopy distillable. ask whether
Therefore, a state is non-distillable if it is netcopy distillable
for all n. The whole problem is to relate this rather non sup(2|Q[¢2) <
operational characterization to the NPT property. o2

Subsequently, two attempts to solve the problem have beghere( is our projector on bipartite systei!® ® C'16, and
then made independently 28], [29]. In particular the atghosupremum is taken over all states with at most two Schmidt
have singled out a set of the Werner states which is expectaefficients. If it is true it would mean that our state would
to contain only non-distillable states. Moreover for anthey be two-copy non-distillable. The above condition is essdgt
have shown a subset of the Werner states containing solalgpecial case of the condition obtained[in![28].] [29]. There
n-copy non-distillable states (see al$o][30] in this contexiexists numerical evidence that it is indeed true, however th
However the subsets are decreasing wheimcreases. One analytical proof is still lacking.
might ask at this point, whethen-copy non-distillability To begin with, we have not been able to solve even this
implies the same for+ 1. Then to solve the problem it would modest problem. However we have obtained numerous partial
be enough to check whether a state is 1-copy non-distillabfesults. First of all we have shown that the maximum overlap
which for the Werner states is not hard to do. However it wasin be attained on vectors that are not of the simple product
shown in [31] that this is not true. For amystates have beenform with respect to cut between two copies. Then we have
found, which aren-copy non-distillable, but arén + 1)-copy focused research on two main approaches. One is to provide
distillable. the largest class of Schmidt rank two stateswhich satisfy

Another way to attack the problem would be the followingthe above inequality (a staté, satisfying the inequality is
let us take a larger but mathematically more tractable aésssaid to have thénalf-property. The other is to provide some
operations than LOCC — the ones that preserve PPT statesitrivial bound on the quantity,| Q|42 ). Regarding the first
[32], [21]. If one can show that there are some NPT statapproach we have provided several classes of states sagisfy
that are not distillable by this larger class of operatidghen the half-property. In particular we have translated thebfem
it would be also true for LOCC, and the problem would b&to a concise matrix analysis problem, and have solvedrit fo
solved. However in[21] it have been shown that all NPT statesde class of matrices — normal matrices. This translat&s in
are distillable by PPT preserving operations. This showas tta wide class of states, possessing the half-property. We have
such an approach cannot solve our problem. also shown that the problem reduces to determining whether

There are some sufficient conditions for distillabilitygEif some family of symmetric mixed states has Schmidt number
a state violates the reduction criterion, then it is distile [26]. greater than two (i.e. cannot be written as mixture of states
In [33], [34] Clarisse provided a systematic way of findingvith Schmidt rank two). This allows to attack the problem by
such conditions. His conditions are related to a descnpdio means of entanglement measures. We have performed suitable
the set ofl-copy distillable states by means of some mapmalysis for the negativity, which however provided snralle
and associated witnesses, in analogy to describing the slasss of states with the half-property than the previousocbt
of separable states by means of entanglement withesses amks far as the second approach is concerned, we have first
positive maps[[35],[[36]. There remains the main problem afhalyzed the easier problem, of supremum @reductstates
checking such conditions on-copies, to be able to prove(Schmidt rank one). We obtained that it givi®. By Schwarz
alson-copy distillability. Another connection with separabjli inequality one obtains that the supremum over Schmidt rank
problem was found in[[37] where it was shown that thevo states can be at most twice as much, giving tBgh.
problem of existence of NPT bound states is equivalent kowever, as we argue, such approach, if continued for larger
showing that some operators labeled /byare entanglement number of copies, can give only the trivial bouhdor n —
witnesses. This connection was exploited [in] [38] to provide. We subsequently prove that our quantity is for sstrectly
exact numerical evidence fa@-copy undistillability of one- lessthan3/4. By continuity we are able to push it te 0.7497.
copy undistillable qutrit Werner states. We also provide a couple of other results, that may be useful

For further attempts to solve the problem see [39] where of@ further investigation of the problem.
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The paper is organized as follows. In sectidn Il we specify In [18] the characterization of the distillable states was
the main problem. In particular we introduce project@r obtained in terms of so called-copy distillability. Namely
related to two-copy distillability (and its generalizatito we say that a state is-copy distillable, if 9®" can be locally
more copies) and define thealf-property Then we show projected to a obtain two-qubit NPT state. Equivalentlyadest
(Sec[dM) that one cannot solve the problem by showing thatis n-copy distillable if it satisfies
the Schmidt rank two states, achieving the maximum are . rom
product with respect to cut between the copies. Subsequent lélf (g2]0" “"|d2) <0 (5)
(Sec.[1V) the problem of the half-property is translatedint
matrix analysis problem, regarding maximization of the sumihere the infimum is taken over all pure states with Schmidt
of the squares of the two largest singular values of matrignk two, and the superscript denotes the partial transposi-
A®I+I® B under some constraints. We solve the problefipn. Now a state is distillable iff it is:-copy distillable for
for normal matrices4, B and obtain a wide class of statessomen. Hence to prove that a state is non-distillable one has
satisfying the half-property. Next we show (SEg. V) that ari@ show that for all
two pair state for which at least one system from each pair ) ron
is effectively two-level one, satisfies the half-properfen glzf (f2lo”™"[d2) > 0. (6)
we turn to an easier problem of optimizing the overlap of
Q with product states (SeE_MI). We compute maximum for For the suspicious Werner states it is known that they are
general case ofi-copies, obtaining/8 for two copies. This one copy undistillable more over it was numerically checked
gives bound3 /4 for the overlap of all Schmidt rank-two stateghat they are also two and three copy undistillable [28]].[29
with Q. We then show the half-property for superpositiondS @ matter of fact for alln an n-copy undistillable subset
of the product states attaining maximum. Then (§ecl. VII) wef the suspicious Werner states is known, but the subsets are
observe a trade-off between two parts of the oveflapQ|¢,) shrinking withn giving an empty set in the limit ok — oc.
— the “diagonal” and the “coherence” part, if the former is Anyway, it is likely that even the most entangled state from
large, then the latter must be small. Since coherence pé€ suspicious region is undistillable. In this paper wel wil
is bounded by diagonal one, this allows us to go slightfpcus just on this boundary state (i.e. with = py) and
below 3/4, namely we obtain~ 0.7497. Finally we apply moreover we consider only th€* @ C* case (this gives
entanglement measures, and two-positive maps to the pnoble= 2 or & = —1). The reason is that the problemmfcopy
in Sec.[VII, providing some exemplary results, which foglistillability forthe boundary state in this dimension vegs to
a while are not stronger than the ones obtained in previoagalyzing the overlap of rank two states with soprejector.
sections. We also point that entanglement measure thatiwoul Since we will be mostly concerned with two copy und|st|l-
distinguish between separable, bound entangled andatidgil lability let us begin withn = 2. The normalization 0]‘9F
states must be discontinuous. has no impact on the existence of satisfying [6), thus for

d = 4 we can simplify the expression of;,
RN Sritiuoptro T s e L B
is known that i ound entangled states exist then 1 1 1 1

such state must exist among the Werner states. The lattes sta - (P+ ® Pr+Prob)-(Prob+Po PJ(FS))
are of the form

where
ow =pos + (1 —p)ea (2)
where PE=1-Py, Pp=0) Wl |g) = Z|”
Ps Pa =0
0s == 0a= — (3) 9)
ds da If we replace the minus sign with the plus sign in formula

with P, and P, being the projectors onto the symmetric and) we get the identity. Thus it is evident that two-copy
the antisymmetric subspaces of the Hilbert sp@fex C? undistillability, i.e. [6) withn = 2, is equivalent to
andd, = d(d + 1)/2 andd, = d(d — 1)/2 their dimensions.

. . 1
Alternatively the Werner states may be written as (P2]Q|p2) < 3 (10)
ow = I;_iav (4) for all Schmidt rank two state@, in the cutAA’ : BB, or,
d* +od using a shorthand notation, for al, € SR2(AA’ : BB’),
wherea € [-1,1] (V = P; — P, is a swap operator). It with
is known that they are separable and PPT for 1 while Q=P:®P, +P, @ P} (11)

for p < po = ZtL they are distillable and fop € [po, 3)

they are NPT and it is not known whether they are distillabl&Ve will call equation[(ID) thénalf-property Thus our Werner
Actually it is conjectured that for the whole regipre [po, %) state is two copy undistillable iff all rank two statés satisfy
the states are NPT bound entangled [28], [29] (We will calhe half-property. In particular, equality in the half-peyty
them thesuspiciousWerner states). (@I0) for someg, is equivalent to equality i {6) with = 2.



Thus to prove two copy undistillability we would have to For any state of the fornd, ® ¢, its projection onQ is
show that all two pair rank two states, satisfy the half- given by
property. We will show that this is the case for a wide range

of ¢, states. (P2 ® 01| Q |2 ® p1) =p+q —2pg < % (18)
We will use the notion ofy;, to denote the state of Schmidt h

rank k in Alice versus Bob cut. If not explicitly specified it Where

should_ be clea_\r from the context whether we mean a state  y — (4| Py |¢y) < 2’ q = (¢1|Py|on) < 1 (19)

on a single pair, i.e¢; € SRi(A : B) or on both pairs, i.e d d

or € SRi(AA’ : BB'). and the maximal value is attainable foe= % and, ford = 4,

In some cases we will consider the projec@rfor any anygq.
dimensiond, though only ford = 4 it is connected with two  If we take superpositions of two states of that form with

copy distillability of the boundary state. one of them swapped
Analogously to the two copy case one can relateopy , ,
distillability of the boundary Werner state with the overlaf ) = Vrlg2) @ [61) + V1 —7[d1) ® |¢h)  (20)
rank two states with some projectois,. Namely ford = 4 satisfying
we have 9
P = / P ! = ) 21
: o ¢1|Py|p1) = (91| P1[¢1) =0 (22)
whereP, andP_ are projectors satisfyin@, +P_ = ", (O1IP|91) = (01[P+]01)
We defineQ,, as then
1
1 n B
Qn.=P_ = 3 (]®n —(1- %lp+)® ) (13) (YIQY) 5 (23)
1. on States of the form) have in general Schmidt rank higher than
S0 that(¢s|Qul¢2) < 5 Iff (P2]oy[d2) = 0. two but there are also rank two states among them such as the
Lemma 1. For d = 4 projectors Q,, satisfy the following following class of states
ive f I
rectirsive formta [6) = Vrlon @ [w2) + VI rW3) @ 01)  (24)
Ql = P+7 (14) where 1
Qni1=Qn® Q1 +Qr @ Q1. (15) [¥3) = —Z5(00) + [11)). (25)

Proof: Forn = 1 it is evident, forn > 1 by substituting

0, transformed to The classp can be rewritten in Alice versus Bob cut as
n

’ ’ 1
AA":BB’"\ __
(1—2P,)®" = 7 20, (16) |p ) = —2|oo>® (v/r|01) + V1 —7|10))
into @,+1 we obtain the recursive formula. | + L (v/r|10) + V1 —7]01)) @ [11)  (26)
We have@,; = Q and @3 has the form V2

0 P. % PLo Pty ptep. opt which shows thaty are rank two states in this cut.
3= ® +® ++ +® +®+

1 1
TP PP + P @ P @ Py (17) B. Form of ¢o states maximizing overlap with® P

In contrast to the previous section we shall show here that
two pair ¢o 4P which maximizes overlap withf ® P,

In [43] a class of states of the formy ® ¢, was shown to must be of the formp*Z ® ¢, 7. (This result is inspired
provide local minimum for[{6) withi = 3, « = —%, n = 2. by [40]) Of course, the maximum attainable value of the
This suggests the following question: is it that all locahimia  projection onP,. for one pair Schmidt rank two state 2gd.
are of the formy; ® ¢-? In our specific case it translates intd_et ¢, be a two pair state which attains this value. Then we
the same question about the maximum. It is easy to see thatve
states of the formps, ® ¢; may attain equality in the half- 9
property and nothing more. We will now examine a question [{d2]0) " = 2/d, (27)

whether there are other rank two states which attain egualfhere is some normalized state from subspdce P, , i.e.
in the half-property and are not of this form. The answer i§is of the form

unfortunately positive. 1
6) = _ajlejf;)an @ 7 Slityas.  (28)
7 A

I1l. EXISTENCE OF NONTRIVIAL MAXIMA OF (¢2|Q|p2)

A. Example of equality in superpositions

. . Moreover also
We show that there are nontrivial superposition®e& ¢,

and ¢} ® ¢, which are rank two states and attain equality in sup |<¢2|¢>|2 = 2 (29)
the half-property. $2€SR2 d



On the other hand we know that for agy Moreover there exist® € Hp which reaches the equality

S 1@l = wi + 1, (30) (0] Plga) = (alth) (¥l 2), (39)
2€
namely [)) = pio2 if [|Plgo)|| # 0 or anyy € Hp

[P]p2)]l

where 1, uo are the two largest Schmidt coefficientsfin otherwise. From these two observations we get

the same cut thap, has rank two, i.eAA’ : BB’. Thus, as

the Schmidt coefficients ap has the forma;/+/d and each (¢2|P|d2) = sup [{¢pa]ih)]?. (40)
of them occursi times in the composition, we have YeEHP
942 From [40) and the fact stated in equatifn](30) we conclude
[(galg)]? = = (31) .
d ’ sup. (2| Plo2) = Sup - sup [(2]¥)] (41)
Whereay.x = max; a;. Thereforea,.. = 1, i.e. $2E5Rz weHe ¢22€ °,
= sup (ug + p3) (42)
|9) = [2)aly)BlY+) 2B, (32) YeHF

. whereu; and uy are the two largest Schmidt coefficients of
where |z), |y) are some states. Writins) = c1|r1)|s1) + " i He2 d -
c2|r2)|s2) we get Let us now reformulate the problem in terms of matrices.
Consider the following state—operator isomorphism

) = aili)li) «— X = aili)(jl.  (43)

, , In this isomorphism(z)|yy) = TrXTX and the Schmidt
a1 = Z(AA’ (rilz)alt)a) (B (s1ly) Bli)5) (34)  coefficients of a state) are equal to the singular values of
i the corresponding operatdf. Therefore by lemmgl2 and the
ay = (aar(ra|z)ali)a) (s (s2ly)Bli)s) (35)  equality between the Schmidt coefficients/ofind the singular
i values of X we have

Since |1, laz] < 1, to get[{¢2|¢)] = 2 we must have sup{a| P|¢2) = sup(0? + 02) (44)
2 X

1| = |az] = 1 and e = ¢ = 5. It follows that [r1)
and|rz) beIonqto the subspa@e><xﬂ§> I. Which means that \yhere o, and o, are the two largest singular values of
r1(2)) = |z)alfi2)) ar, Wherel|iy3)) 4 are some orthogonal gperatorX and the supremum is taken over all operatars

(ci]an| + colaz])? (33)

SHS

1
|<¢2|¢>|2 =7 lcran -1-02CY2|2 <

where

states. Similar relations hold f¢s,) and|sz). Thus which correspond to states froip through the state—operator
02 = [2) aly) (70)ar30) 0 + P2} l52) ) V2, (36) [SOMOrPRISMIEES)
i.e. we obtain the desired form. A. Half-property in terms of matrices
. i Let us now apply the above consideration to our particular
IV. STATES HAVING “NORMAL” PROJECTION ONG® projector Q. All statesyg € Ho whereQ = PL ® Py +

Here we show that if a two pair Schmidt rank two staté&; ® Pf have the form
¢2 has the projection o) which is isomorphic to a normal
operator through a state—operator isomorphism then &feesi VQ) = VPIvaple) + V1-pln)lbe) (45
the half-property. To this end we will reformulate our optiwherep € [0,1] and
mization task in terms of the two largest Schmidt coeffigent
of states of the subspace defined by the proje@tofhen we W) L1v+), ) L 1) (46)
will use the state—operator isomorphism to obtain optitieza.  The image ofy) states in the above state—operator isomor-
problem involving matrices and finally will solve the probile phism have the form
for normal matrices.

We have the following lemma, which is a generalization of X = \/E AT+ /1;1’ I®B (47)
a similar one for product statels |44] d d

Lemma 2. For any projectorP acting on a bipartite system WhereN }
TrA=TrB=0 (orthogonality, i.e.[(46)) (48)
sup (2| Plg2) = sup (ui +p3) (37) s o
$2€SR YEHP TrA"A=TrB'B=1. (normalization) (49)
where 1, and ., are the two largest Schmidt coefficients o8y absorbing coefficients into operators the formulatiothef
v andHp is the subspace defined by the projectar image ofy, states can be simplified to
Note that this lemma immediately generalizes to rank X=AQI+I®B (50)
states for arbitrary fixed > 1.
Proof: Let us observe that for ath € Hp where

1
(62 Plda) > (6o ]w) (1 ). (38) TrA=TrB =0, TrATA+TB'B= . (51)



Thus we have reduced the problem of the half-property to the second setting we consider only one term of the
the following optimization task: show that for all operatdf alternative (as under the constraints we can exchahgad

of the form [50) satisfying constraints {51) we have B) and in both settings we take arbitrary indices (as under the
) , 1 constraints we can independently permateand b;).
o1ty <3 (52)  Thus to prove the theorem we have to show that the

whereo; andos are the two largest singular values of operatofPHOWIng inequalities hold

X. 2 2 _ 1
. . < -
In the next section we show that this holds for normal 1+ baf” + oz + b < 5 (60)
matricesX which gives a wide class of statés satisfying a1 + b1|? + a1 + b < 1 (61)
the half-property. -2

under the constraintg (b8) and [59) with = 4. The first
B. Half-property for states having “normal” projection o  inequality comes directly from the parallelogram identity

Let us first note that the operatof given in equation 2 _ 2 2y a2 2 2
(50) is normal (i.e.XtX = XXT) iff operatorsA and B 24+ yl" =20l + Iy — le =yl < 202"+ [y) (62)
are normal. As normal matrices are diagonalizable and theihich implies
singular values are equal to moduli of eigenvalues we arrive ) 9 ) 9 9 9
at an optimization problem over numbers rather than matrice a1 + 01" + az + b2|” < 2(jar|” + [b1]” + |az[” + [ba[%)
which we will now solve. Namely we have <ol 1 (63)

d 2
Theorem 1. Let X,; be a subset of normal operato?$ of the

form (50) satisfying constraint€5T). Then ford — 4 we have The second inequality is much more involved and we have
moved it to the appendix (propositibh 6) where we prove that

1
2 2
sup (01 +03) < 5 (53) 3d—4
XeXxy 2 lay + bl|2 + a1 + b2|2 < 7 (64)
where o; and oo are the two largest singular values of .
which for d = 4 gives [61). [ |

operator X . . . .
We are now prepared to state the main result of this section

Proof: Since X is diagonalizable then we can replace ,
singular values with moduli of eigenvalues. The latter are § "€orem 2. For d = 4 any rank two state, € SRa(AA”:

the form BB’) with the projection onQ (Q|¢2)) isomorphic through
the state—operator isomorphism to a normal operator sassfi
Aij = ai +b; (54)  the half-property.
wherea; andb; are eigenvalues oft and B respectively. We Proof: Let us assume¢gz|Q|p2) # 0 (otherwise the
then have conclusion is obvious). By‘ h){potheaﬁg reaches its projection
Qo2 ic i ;
- 2, 2y _ 12 4 o |2 55y ONQ onastatdyg) = a7 € Ho a.nde.ls isomorphic
§§£d(”1 +0o2) ;2}@}' 17+ 12l) (55) through the state—operato? Esomorphlsm given by (43) to a
= sup  max (las + b;|> + |ax + be|?) normal operatoX . Then using the fact stated in equatibn/(30),
Xexdz,.ﬁ(k_,l;{él(”)d}v equality of the Schmidt coefficients afy and the singular
%, s

values of operatoX in the state—operator isomorphism, and
(56) .
theoren{]l we obtain

sup max {|a; + by[* + [az + bo|?,

Xet , , (621Qlo2) = [(@2ltQ)l* < sup  [(galyq)l?
lar + b1 % + a1 + bo|*} $2€SR2(AA":BBY) )
| | o0 =l R < sup (o +od) < L
where); and)\, are two eigenvalues of with largest moduli. ~ Xex, -2
The constraintd (31) oX imply the following constraints on (66)
a; and b;

where i and o are the two largest Schmidt coefficients of

d d ¢ in the same cut in whick, has rank two (i.edA’ : BB')
Z a; =TrA =0, Z by =TrB =0, (58)  while o1 ando, are the two largest singular values of operator
=1 =1 X, and X, is a subset of normal operataks of the form [50)

d d . . .
1 .
Z las|? + Z b2 = TrAt A + TeB'B = . (59) satisfying constraintg (51) [ |
i=1 i=1

Equality [5T) comes from the fact that there are two unigufe- Characterization of states with normal projection oo

settings A more operational characterization of the states for which
1) i#kANj#1and the above theorem proves the half-property is the following
2)i=kANjEIViIiEEN]=I. Suppose we projeet; state onta), on subsysterd B. Then



the subsystend’ B’ should collapse to a-symmetric state, wherec; are complex numbers ang form an orthonormal

i.e. a state of the form basis. Thus the state_{73) coming from projecting subsystem
. A’B’ onto P, will have the desired form
> ailei)arle]) s (67)
> ailes) alel) s, (79)

The same should hold for the projection dhB’.

To see it let us use the state—operator isomorpHisin (43). In, . . o
our particular case it will read as follows and similarly for projectingd 3 part ontoP;.

7

|§2) = (Can @ Ipp)|b ) ap ® W) as (68) V. HALF-PROPERTY FOR LOWSCHMIDT RANK STATES

with 15+ — 3 Jii), or simply In this section we show that any state w_hlch on each pair
¢ has at least one subsystem with one-qubit support satisfies
o) = > Civjyrlidyanlii’) s (69) the half-property. To this end we will use the notion of so
i g calledcommon degrees of freedantroduced in the following

We will further write ¢, o C. If for an example the matrix SUPS€ction

C is normal the corresponding state is of the form
|p2) = ale)aarle”)pp + | f)aalf*) BB (70)

wheree L f. Herea andb are eigenvalues o/, hence pefinition 1. For a given state¢ we define a set called

HermitianC' means that they are real, while positi¥ematrix common degrees of freedoad subsystemsl and B as
means that andb are nonnegative. (We have only two terms

becausep, is of Schmidt rank two). cdf(¢, A, B) = {i € Z: (¢|Pi|¢) # 0} (80)
Let us now examine the projection ¢ onto?{g. We have whereZ = {0,...,d — 1} and

Qléz) =10t an @ (|&<2>>Af3f - STiC |w+>A/B,) Pi = [ii){iilan © Ly s (81)

(1) 1 N N We say that subsyster has at mostt common degrees of
+ (|¢ )ap — S TC Y )AB) ® [T )ap (71)  freedom with subsysted if | cdf(¢, A, B)| < k.

A. Half-property via “common degrees of freedom”
We begin with the following definition

where Proposition 1. If for a given state¢ subsystemsi with B
_ 1 and A’ with B’ have at most% common degrees of freedom
16 a5 = ap(thy|d2) x S0 (72) then¢ satisfies the half-property.
7 1 . ; . .
|¢,(1)>AB = g (s |de) EOA (73) Proof: We will show that if for a given state subsystems

A with B and A’ with B’ have at mostg common degrees
are unnormalized states that are obtained on one pair aftéfreedom then

projecting second pair onto maximally entangled st&te 1, ~ 1
hereCy = TraCaar, Car = TraCaar. Let us now relate (¢lQle) = §<¢|Q|¢> < 2 (82)
C4andCy Wlt.h the matricesd and B from (E)): Thus partial whered is some other projector.
traces of matrixC'4 4- correspond to unnormalized states that )
oo . Let us define
emerge after projecting one pair onk.. 1
The projection ofp; ontoH, can be also written as follows  p, — v Z |id) (5], (83)
Qlé2) = [%) a5 ® 6@ i +160) a5 ® [ arsr (74) ) d
where Pap =7 > liiyGil with |Zap| = 3 (84)
. ,JELAB
l6MYap = (Ya® )Y ) ap (75) and cdf(¢, A, B) C Zap C T
Y ppr = (Y @ D) arpe 76 2 o d
|¢ >A B ( A ® )W >A B ( ) Payp = a |Z’L><j_]| with |IA’B’| _ 5 (85)
with 1,JEL 41 1
1 TrC 1 TrC and cdf(¢, A',B') C Zap CZ
Y = EOA - 71147 Y/ = dCA/ — ?IA/ (77)

where P; is a maximally entangled state ih® d. P4 and
(Note thatY” and Y’ are traceless, which means that correp,, 5, are maximally entangled states @1@) % subspaces
sponding vectors are orthogonali#q ). We see that—up to a chosen in such a way to contain common degrees of freedom
factor—A is equal toY” and B is equal toY”’. Now since we of A4 with B and A’ with B’ respectivelyZ,z andZ 5 are
assume thatl and B are normal therC'’4 andC4- must also extensions of the sets of common degrees of freedom (with
be normal. This means that e@. is of the form whatever elements) to get sets of exacd}lglements.

Oy = Z ciles) (el (78) One can observe that in the expression

i (0|PfF 0 1Y |g) (86)



¢ projects only onto thosgii)(;jj| of P; for which i, € C. Application of cdf to low Schmidt rank

cdf(¢, 4, B) by the very definition of common degrees of Here by use of propositidd 1 we show that any state which

freedom, thus we can remove any pf){jj| having i ¢ ,n each pair has at least one subsystem with one-qubit suppor
cdf(¢, A, B) or j ¢ cdf(¢, A, B) in particular we can remove satisfies the half-property

all those for whichi ¢ Z4p or j ¢ Zap which gives us
Theorem 3. Any state¢ that satisfies

GIP © 1% 6) = (95 Pas © 177 |6)  (87) ’

(Sch(A : A'BB') < =V Sch(B: AA'B') < g)

similar consideration for other elements @fgives us

N N

A <Sch(A’:ABB’)§ \/Sch(B’:AA’B)gg> (94)

(9lQlo) = (@l © Pi'™™ + PP @1 - 2P @ P |9)
(88) also satisfies the half-property. Hefeh(X : Y') denotes the
1 1 1 1 i i
(Gl ® 5Pap +5Pap ®1—25Pap ® L P |gySChmidt rank of the statg in the X versusy” cut.

(89) Observation 1. The operatorQ is Uy ® V4 @ U ® V3,
invariant. (WherelU and V' are unitaries).

1
—<¢|I®PA/B/+PAB®I_PAB®PA/B/|¢> .
? Proof of theoreni13: The hypothesis may be expanded

1 1 (0) into a four-term alternative. We prove the conclusion foe of
= 5<¢>|Q|¢,> < 5 (91) the terms (for the others the proof is analogous). Now suppos
- d d
where@ is also a projector thus the inequality holds. m Sch(A: A'BB’) < 7 A Sch(A": ABB') < 5 99
which means that there are Schmidt decompositiong of
B. Example: states with positive matiix the form

We begin by rephrasing number of cdfs in terms of the d/2—1 B d/2—1 A aBE

matrix C of a state (see seE.IVFC) written in block form:  [0) = Y aiu) | PP = > ajlei)[¢?) (96)
=0 =0
_ N ij
Can = Z i) alil @ C4. (92) " We can choose sudhi and V' which transformé to
()

¢') = Ua ® Var @ Up ® Vi |9) (97)

The number of cdfs is the number of bloak§, i.e.diagonal

blocks which do not vanish (i.e. which have at least one g (A\| TA'BB’ S,

nonzero element). The propositibh 1 says that for any given = — Z ail i) )= Z a

state (not necessarily of Schmidt rank two) the number of cdf

is less than or equal 1, then the state has the half-propertyNow we can observe that with B and A’ with B’ have
Now suppose thaf' is positive. Then the diagonal blocksat mostg degrees of freedom in common it (as there are

are positive matrices, and they do not vanish iff their trisce clearly at mosl% degrees of freedom oA and A’ subsystems)

nonzero. Thus the full information about the number of cd#us by applying proposition] 1 we have

is contained in the partial trace of the matfix

i) [APEY) - (98)

%
i=0 =0

1
o (¢1QI¢") < 3 (99)
Ca=TraCan = Tr(C)i)aljl (93)
ij and by applying observatidd 1 we finally get

Thus number of cdfs is equal to the number of nonzero / / 1

= < -
elements on the diagonal 6f,. (olelo) = (¥lQlé) < 2 (100)
Now, since( is invariant over pairwisé/ @ U* transfor- m

mations, we can rotate a state to diminish the number of cdfs
as much as possible. If we can dgebr less, then we obtain
the half-property. Consider e.g. such transformation far t
pair AB. The matrixC'4 then transforms a&C,U*. We are
interested in the minimal number of nonzero diagonal elémen In this section we will first consider a simpler question from
under such transformations, which equals to the rank of ttiee original one. Namely we will optimize the overlap ©f
matrix C'4. We have then obtained, that any state with positivgith product states rather than with Schmidt rank two ones.
matrix C' such that its partial trace has rank2, has the half- This is equivalent to optimization of the overlap @f with
property. product states, wher@" is the partial transpose ap). We

Let us note however that our result of section IV-C impliefnd the maximal overlap with product states for the general
that all Schmidt rank two states with positive matfixsatisfy case ofn copies i.e. we will work with@,, given by [13).
the half-property. Knowing the maximum over product states, we can bound the

VI. OPTIMIZING OVER PRODUCT STATES AND
IMPLICATIONS



maximum over Schmidt rank two states. For= 2 we will B. Bound for(¢2|Q|¢2) in terms of(¢1|Q|¢p1)

obtain in this way As Schmidt rank two state may be decomposed to

(621Q16) < 3. (101) 62) = VBlé1) + /T plot), (110)

However the analysis of copy case shows that in the limitwe observe that

of n — oo one obtains a trivial result that the overlap does

not exceed one. Nevertheless this approach will be used spp(02|Q|¢2)

subsequent section to go beyoi1d6\nalysis ofQ" also allows ~ ** n n
for direct proof of the half-property for states with pogiti = SuP (vVP(¢1]+ V1= p{d1 NQVPIo1) + V1 = plér)

matrix C. br.61.2

(111)
= sup p(¢1|Ql¢1) + (1 —p) (o1 |Qlo7)
A. Maximum overlap of product states with, é1,01.p
To find the maximum overlap of product states wigh, +2v/p(1 — p) Re(é1|Qle1) (112)
given by [I3) we will first analyze spectral decomposition o< sup ({(¢1|Q|¢1) + [(01]|Q|o1)|) (113)
QL. We have ¢1,0%
and thus from Schwarz inequalit
1/ o 1 Y en sup(¢2|Q|¢2) < 2sup(¢1|Q|¢1). (114)
=5 (17" = 3P+ 3P)"") (103) @ o1

In this way we have obtained the bound for the overlap of the
(104)  schmidt rank two states witlp in terms of optimal overlap
with product states. This is also true for any other projecto

where P, and P, are the projectors onto the symmetric and Particular, for@,,.

[
I
o
>
&=

the antisymmetric subspaces and Thus for two copies we obtain the following bound
; 3
_1 3 sup(d2|Q|oa) < =. (115)
A= Z ap, ®@---Qay, (106) Unfortunately this method does not lead to any bound that
1;€{0,1}, S 1;=i would hold for alln apart from the trivial boundps| Q.. |p2) <

with ap = P, anda; = P,. (Note thatd"!" jA; = I®™).
Thus eigenvalues ap! are in decreasing order and the largest
eigenvalue), is associated with the eigenspadg = P®". C. The form of the rank-one states attaining maximung)an

In particular forn = 2 we have It is interesting that the product states attaining the max-

3 1 5 imum on @,, must be of a very specific form. For = 2
Ao = g’ A1 g’ Ag = Ty (107)  the partial transpose of such state (which is again a legitm
state) must belong to a subspa@é? @ P45, One can then

so that find that the states that are product with respecttf : BB’

3 5 1 cut and the same time belong to the above subspace must be
r_= _ Z -
Q2_8PS®PS 8Pa®Pa+8(Pa®Ps+Ps®Pa)- Oftheform
(108)
|2x) aB @ yy) arp- (116)

Let us now compute the maximum overlap of product states

with Q,,. Since (TrQ,|¢1)(d1])" = TrQL|é1)(¢1], where It then follows that a product state maximizing overlap with
¢1 is also a product state (with a one-to-one corresponden@g must be of the form

betweeng; and¢;), we can replace the optimization @p,

with an optimization orQ™. The overlap of product states with |z2*)aB ® |yy™) arp. (117)
Q" is bounded by its largest eigenvalyg and this bound is

attainable as in the eigenspabg” corresponding td, there This observation in general casertopies is contained in

are product states. We thus have the following.
1 1 Proposition 2. For any n all rank-one statesp; reaching
sup(é1|Qn|d1) = sup(é1|QL]o1) = N = 3 ( — 2—n) maximum or@,, has the form
1 1
(109)

|61) = ) i) a, 197 .. (118)
=1

In particular for two copies this give§.
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Proof: The thesis of the proposition is equivalent to the  Proof: The form of ¢; and ¢ comes from proposition
following statement: for any. all rank-one state®; reaching [2 and their overlap with,, from (Z09) thus we have

maximum onQY, have the form
. (@alulon) = 3 (1= 55 ) + 2VHT = el Qo)
61) = ) [1i) a, 1) B, (119) (126)
i=1
We prove it by induction. Thus to finish the proof we will show by induction that
1) Forn =1 only rank one states of the forfgy)) reach 1= 1
maximum onQ! = %V_ (11Qnld7) =73 H ( 1/11|¢1 ) (127)
2) Suppose for some maximal projection of rank one =1
state onQ" requires the from[(119). From previoust is true forn =1

section a rank one statg defined om+-1 pairs to attain N 1 N N 1 1 1
maximum onQL,, must be an eigenstate @?®"+! (01|1Q1]¢7) = E(lﬂlzpl |V |hiaby) = 5= _5(0 — 5).
which is a subspace of the symmetric spaceno# 1 (128)

pairs. Thus the Schmidt decomposition®fin n pairs

versus single pair CUtAB : ab) has the form Suppose it is true for some, let us show it also holds for

n + 1. Without loss of generality we can assumg and ¢1-
|61) = |[¥) aaltb) By = Zal%wl%)ABm%)ab are orthogonal on one of the firgtcopies thus we can write

(120) 61) = o)), |of) = [6D)Pd").  (129)

Then by using recursive formula{15) we have
(@1 |PE" )

(61| Qn+1lo1)
= azajapa ()| PE" iPj| Ps 77 I

(5w + 8 =——H( wildn - 3 ) (1610 - Sewiivio
(122) (@3

to obtain one above all the projections must be equal to 1. For n+t1 B
1l (it - 3) (132)

projection onP; given in delta-form requires = j = k = [
and it is always one only ify; is product inAB : ab cut.

It is evident that to maX|m|ze[:(125) i.e. obtaif, one
1

To obtain one onP®" the v; ® 1; state must be of the form
(I1I9) and thusp, is of the form [IIP). n

needs~p = 35 and @7) equal t@~("t1), ThJs requires
| (i i) |2 — %‘ = § for all 4, that isv; and ; must be

equal or orthogonal and further fdr (127) to be positive they

One could expect that superpositions of rank-one statés Wiust be orthogonal on odd number of copies and equal on the
maximum on@),, has the the half-property as such rank-ongst. n

states are product between the copies. Indeed this is tlee cas
their overlap with@,, is analyzed in the following

and we have

N~

=Y wiajara (it | PE" i)

[\D|P—‘

D. Superpositions of rank-one states with maximunmggn

E. Digression: half-property for a class of states via Q"
Proposition 3. Letd = 4 and ¢;, ¢1- be n-copy orthogonal

product states with maximum overlap wih,, i.e. of the form We consider the following class of states

n |¢2) = aler)|eT) + blez)les) (133)
= ; i) B> i 123) . .
[01) g WaliDs, o) ® Yidaili)e, (1239) with a,b > 0, |e1) L |ez). In the state—operator isomorphism
. . they correspond to positive matric€s, 4. (see sedt1V). Then
then their superposition C,4 and C4 are also positive, hence normal, so that it is a
|p2) = /Dlo1) + /1 — plet) (124) subclass of states for which we have proved the half-prgpert
) _ in section1V. Here we present another proof for this class of
has the following overlap witid),, states[(133). (In sectidn V]Il we present a third proof, vihic

uses principle of noincreasing entanglement by LOCC).

(92|Qnlo2) = % < > V(1 - H ( (Wildha)* — 1) . We can write
(125) (¢2|Qld2) = Tr(Q" Py,) (134)
1

In particular it is equal to1 only if p =  and ¢1, ¢ are with Py, = |$2)(¢2|. We have
orthogonal on an odd number of copies and equal on the rest. . 9 )
Otherwise it is less thag. Py, = a"Pleyyjer) + 0" Pley)jes) +ab(Py, — Py_)  (135)
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with B. Beyond 3/4

1 We have seen that product states attaining maximum overlap
= + . 136
W) = 5 (lenlea) £lealer)) (136) Lith © have to be of the formd) — |z |z} s1y) arly™) .
Now recall that i.e. the partial transpose op belongs to the product of

3 5 1 symmetric subspaces. From continuity, if the overlap @fith

Q' = gPs ® Ps — §Pa ® Py + g(Pa ® P, + Ps ® P,). Q is close to maximal, the staig should have big overlap
137) Wwith states of the above form. Here we provide quantitative
(137) p q

. estimate. First we will show that in such caséas big overlap
Note that vectordei)|e1), |e2)le2) as well asyy lie in the | o p @ P.:

symmetric subspace i.&; ® P; + P, ® P,, while ¢)_ lies in _
the antisymmetric subspad® ® P, + P, ® P,. Therefore, one Lemma 3. For states¢ product with respect tod A’ : BB’
can estimate the expressidn (134) from above, by assumifg} we have

that triplet states lie solely withi®®, ® P,, obtainin Y 1
P o R GIPAP @ P |) 2 46T IQI6T) - 5, (149)
_ T pl’ 2 2
(P2|Qld2) = Tr(Q" Fy,) < §(a +7 +ab) — 3 =35 Wwhere actionl" is well defined because is product.

138
(138) Proof: It follows from the formula[(I3]7) and a bit of

VII. BOUNDS FOR MAXIMAL OVERLAP WITH Q FOR ALL  algebra. .
STATES ¢s. We then have that large overlap of a product stateith
® Py implies large overlap with vectors of the formzyy).

In this section we show that we can improve the boun@s -

obtained by means of product states in the previous section.
Lemma 4. For all states¢ product with respect telA’ : BB’

A. Strictly less than 3/4 cut we have
In the previous section we have provided the following sup |($|zz)ap|yy)ap|* > 4(¢|Pig @ P 5/|o) — 3.
bound Y (146)
3
5;121)@2'@'@) = 4 (139) Proof: Write |¢) = |e) aa/|f) 5. We then find
Let us now show that the bound cannot be tight. To this end<¢|PAB ® PA/B’|¢>
assume that we have equality. Let us recall the bound ol (113)"" ° ; ,
on the overlap of rank two states with = 1(1 + Tro% 0f + Tro% o + [{e| )?)  (147)

sup(¢2|Q|d2) < sup ({¢1|Ql¢1) + [{@1]1Qlé1)])-  (140) where ¢ is reduced density matrix ofe) etc. Schwarz
o2 1.1 inequality then implies
Our assumption thus implies that RHS2. As (¢1|Q|¢1) < .
2 this requires (|P1P @ PP |g)

1
(141) < 1(1 + 2max(TroZ, Tro7) + [{e| f)|*) (148)

ool w

| Re(¢n| QI )| >
_ ) _ whereyp, is either of reduced density matrices|ef, similarly
and by Schwarz inequality both and¢i- must have maximal or o

projection on@ which through propositiof]2 implies they on
must be of the formzx*) Ap|yy*) a- 5-. However for two such
orthogonal states by direct calculations we obtain [(dlzzyy)| = [(e|lzy)(flzy)] (149)

.the other hand one finds

1 > |(elzy)(fle)elzy)| = [(elzy) P [{elf)] (150)
| Re(d11QI¢1)] < 3 2
which implies
which is in contradiction with [(141) and hence with our )
assumption of equality i (I89). Thus we obtain Sup [(plzzyy)|® > max(pe, py)|(el f)] (151)
sup(¢2|Q|d2) < 3 (143) wherep,,p; are the largest eigenvalues @f, o; respectively.
b2 4 Combining the two equations, and noticing that without loss

Numerical optimization suggests the bound {140) is agtualdf generality one can assume thtp? = p2 + (1 — p.)? and
equal to%. If we want to optimize independently both termghe same fofI‘rg?, one obtains
of the bound[(14I0) we get

1
3 ) sup|(glzzyy)|” > 7(1+a*)B (152)
sup(¢2(Qlé2) < ¢ + sup [(@1|Qlor)|  (144) oy
@2 b1,01 and
which numerically gives‘g. At the moment we do not have P.oP < 1 9 2 153
analytical proofs of these estimates. (01P: @ Fsl@) < 4( ta’+h) (153)



where

a= \/2 max(Tre2, Tro} —1); B = (el )%
(154)

0<a,p<1.
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Let us observe that

Treatinga and 3 as independent variables, after some elemen-

tary, but lengthy algebra, one gets the desired result. =
The above lemmas lead to the following

Proposition 4. For any product states) we have

sup [(¢]x)[* > 16(¢|Q|¢) — 5 (155)
X
where supremum is taken over vectorg =
) alz*)Bly)arly™) B
Subsequently, writing
d=ax+bp; ¢t =ax+bp (156)

vyhere¢L is a product state orthogonal ¢ andy L v, x L
¥, with x, ¥ being of the formzx*yy*) and, 1) normalized,
we obtain

[(0]Ql¢H)| < laal [(x|QIX)| + \/g(laél + [bal) + |bd|
(157)

where we have used the fact that maximal overlag)ofith

a product state does not exceg(B. By direct computation

we also obtain

. 1 1 - -
xlQIx) = 37" Z(<X1|Xl> + (x2[X2)) (158)
where |x1) = |z2")ap;[x2) = lyy")ap and [xi) =
|ZZ*)aar, |X2) = |95%) . Using the fact thaté|ot) = 0
we get
[(xa X0 | [ (xalX2)| < [bal + |abl. (159)

Since for any numbers, b satisfying0 < a,b < 1 we have

S(;l <¢2|Q|¢2> (161)
= s (VB VI=POtQ(AIe) + VT plot)
v (162)
= sup sup
1,01 P
{ VP ]T[ (61]Qlé) Re<¢1|c2|¢%>H NG ]
VI=p| |[Re(¢t|Qlo1)  (671Qlot) | |VI—p
(163)
— sup 1<<¢1|Q|¢1>+<¢%|Q|¢%> (164)
¢1,¢f‘2
v/ (Gor1lon) — (o 1Qlof )2 + A(Relonlot) 2
(165)

the last expression is simply larger eigenvalue of the matri
in (I63).
Now denotingy: = (¢|Q[¢), 72 = (¢™Q|¢™), we get
(62|Q[¢2) <71 + 72 (166)

from Schwarz inequality. On the other hand usihg {144) and
proposition# we get

(@alQlon) < 5 + 5w glar,ar) (167
where supremum is taken over, a, satisfying
167, —5<a?<1, i=12. (168)
Finally we obtain the following estimate
(621Q162) < 3 +miny, (7)) (169)
where~y = min(;,v2) and
f(v) = sup g(ai,az) (170)

ay,az

where supremum is taken ové6éy — 5 < a? < 1. Looking
on the plot ofg(a1,a2) one can find that the maximum is
obtained fora; = a». This leads to the bound

($21Q|d2) < 0.74971 < 3/4. (171)

VIII. A PPLICATION OFENTANGLEMENT MEASURES
Then we will show how entanglement measures can be

a+b < ab+ 1 and combining[[I87)[{158) and(159) we ge@pplied to the problem of the half-property.

Proposition 5. For any product orthogonal states and ¢+
we have

(GIQISM)] < araa(— + 1 (1 + mbs + asb)

3
+ \/g(albz + agbl) + blbg = g(al, ag) (160)

wherea; = |a| = [(¢|X)], a2 = [a] = [{¢x)], b1 = /1 — af,
by = /1 — a3, andx, x are of the formzz*yy*).

The formula(¢2|Q|¢=2) can be written as follows:

(92|Qlp2) = Tr(T (|2)(¢2])Q) (172)

where T is pairwise UU* twirling, followed by random
permutation of pairs. Sincg is LOCC operation, the state
o = T(|¢2){¢=|) cannot have greater entanglement than the
state¢2. Then, one can hope, that if entanglementaé not

too large, then als@ro@ will be bounded. Write

azg(ﬁi®P++P+®13¢)+sP+®P+

+(1—p—s)Pf @ Pt (173)
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with Pﬁ = (I-Py)/(d*>—1) and probabilitiep, s satisfying two-positive mapA(A4) = I TrA — 1/2A is negative forp >
p+ s < 1. Then we have 3/4 which reproduces the bound obtained by means of product
states.

TroQ =p. (174) 11 this context we see why entanglement measures can be
applied to our problem. Namely, if an entanglement measure
A. Negativity of a given state is greater than maximum of this measure over

We will use the negativity [45], or more precisely a closelypchmidt rank two pure states, then the state must have Sthmid
related quantity] o' ||, which is monotonous under LOCC[46].rank two greater than 2.
In our case, one finds that
1 C. Continuity of entanglement and bound entanglement
r
o™ |l = 1(2|1 — 165+ |1 +8s —4p| + 1 + 24s + 4p). One could ask the question whether there exist a continuous
(175) entanglement measure which would detect between three kind
of states: 1) separable, 2) bound entangled, and 3) didélla
ones. There are measures such as the entanglement of forma-
"] < I || = |a + b (176) tion which distinguish between 1 (for which it is zero) vessu
2 and 3 (for which it is nonzero), and there is a measures,
the distillable entanglement, which distinguishes betwée
and 2 (for which it is zero) versus 3 (for which it is non
1 2 zero). But any measure that would distinguish between the
ps 4 6(02| Py ® P @2) +2]a+ b (377) three classes of states by its value in a way that entanglemen
Note that for fixed Schmidt coefficients b maximal overlap Of all bound entangled states is non zero but smaller than
with P, ® P, cannot exceeda + b|?/16. We then obtain, entanglement of any distillable state must be non contiauou
that for those states which achieve this maximal overlapethdndeed for such a measure there must be a range of values
holds the half-property. However such states are simplgstareserved for bound entangled states, creating a gap between

Now monotonicity requires that

where a,b are Schmidt coefficients of;. This inequality
together with [(176) implies in particular that

of the form separable states and distillable ones. On the other hand we
. . can take a sequence of distillable states with a limit being a
¢2 = aler)aarlel) pp + blea)an|e3) pp (178) separable state (and so with zero value of entanglemerit), bu

with a,b,> 0. Since such states have positive matfixwe the limit of the entanglement for this sequence must be at mos

end up with yet another proof of the half-property for thi§upremum of its value on bound entangled states. Note that
class of states. provided that NPT bound entangled states exist such a measur

For states that are orthogonal By ® P, negativity gives Would also increase under tensoring because then therelwoul

bound3 /4. We have also tried the relative entropy of entangl&Xist bound entangled states whose tensor product islatil

ment and the realignment but worse results have been otitaif@0l: as a matter of fact the same would then hold for the
distillable entanglement.

B. Half-property and Schmidt rank of some symmetric states ACKNOWLEDGEMENTS

The possibility of application of entanglement measures to This work is supported by EU grant SCALA FP6-2004-IST
the problem of the half-property can be also seen from thg.015714.
following different perspective. Namely, one can classifgtes
with respect to Schmidt rank. We say that a mixed state has APPENDIX
Schmidt rankk, if it can be written as a mixture of pureLemma 5. The minimum value 0‘2?:1 |a;|? subject to
states of Schmidt rank, but cannot be written as a mixturey~¢ , @; = =z whered,, z € C is obtained by settings; = 2

of pure states of Schmidt rarikk— 1 (cf [47]). We then have _ ) @
the following Proof: From the parallelogram identity we have

1 1
Fact 1. The projectorQ has the half-property if and only if §|di +a;* = |ai® + |a;|? — §|di —a;| <la;* + |a;|?
for all stateso of the form [I7B) which have Schmidt rank (179)

< < . . L
<2 we havep < 1/2 with equality iff a; = a;. Thus whenever for some;, a; we

One direction is trivial, the other follows from twirling Alis  havead, # a; we can replace them with two instances’ét%:
if we are able to prove that all statesof the form [I78) with decreasing the value @?:1 |a;|? and leaving the constrain

p > 1/2 have Schmidt rank- 2, we would solve the problem satisfied. This implies that the optimal solution is to take a
of the half-property. To this end we should find a maguch g equal, i.e.d; = 2 m

that/® A is nonnegative on Schmidt rank two pure states (such ¢ .
maps are called two positive), and at the same time negatf9pPosition 6. For all d > 3 dimensional vectorg andb with
on all statesr with p > 1/2. Indeed, this would mean that allcomplex elements; and b; and satisfying the constraints
stateso with p > 1/2 have Schmidt rank> 2. d d__ d d_ 1

Using this approach one can also get bounds for our quantityz a; = Z b; =0, Z |ai|? + Z b2 = p (180)
(p2]Q|p2). For example we have checked that the following i=1 i=1 i=1 i=1



the following equality holds

- 3 3d—4
Hla_‘X (|a1 + b1|2 + |a1 + b2|2) = d2 . (181)
@,b
Corollary 1. For d = 4 under this constraints we have
- - 1
max (|5L1 b2+ |a + b2|2) = (182)

Proof of propositior{ b: We denote function(181) ag,
the vector of alla; asd, the vector of allb; asb and we use
their polar decompositions

b = b, a;, b € R. (183)

In optimizing function f under the constraint§ (180) we
shrink the set of possiblé andb in such a way to simplify
the form of f and the constraints but keeping at least one of
the global maxima within the shrinking set.

1) Without loss of generality we can take = a; > 0.

Thus we optimize

CNLi = aiew‘i,

f((i’, I;) = |a1 + i)l|2 + |a1 + 62|2 (184)
= 2a? + b} + b3 4 2a;(by cos B1 + by cos ).
(185)
2) We can consider onlff for which
by cos B + by cos B > 0. (186) )

(If it is negative we can change its sign by multiplying
b by ¢ and thus increasg).
3) In maximizing f under the constraints it is always best
to set
ay
d—1
- 1 - -
b; = —m(bl + b9)
Indeed whenever this setting is not used we can by
lemmalb obtain some freedom in the second constraint
which we can use to increasga and one ofb; or by
without decreasing’. Thus it is enough to considet
and b satisfying this setting, i.e. we optimize function
f(a1,by,by) subject to the following constraints

(i>1) (187)

a; = —

(i >2)

1
Sl =
by cos 31 + by cos B > 0.

d
T 1a1—|—b2—|—b2—|—

ay 2> 0, (189)

4) Further we show that it is enough to consifigrb, € R
as replacing; with o = by cos 51 and by with by, =
by cos B2 and changing; to a} to fit the constraint does
not decreasg, i.e. f(a}, b, by) > f(a1,b1,bs). Namely
we have

f(a), by, bh) = 2a’? + b2 cos? By + b2 cos? Ba

+ 2a’y(by cos B1 + by cos B2)  (190)
and the main constraint is
d
y 1a’12 + b2 cos? By + b3 cos? B
1 , 1
+ T3 |b1 cos By + ba cos Ba|” = 7 (191)

(188) 6
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First we show that; > a; which is evident from the
difference of main constraints

d
m(aﬁz —af)
= b2 sin? By + b3 sin? By

+ g (1 e -

- brcos B + by cos o)

(192)
Next we use this difference to show th#itdoes not
decrease after the replacement
f(a/la ~/116/2) - f(alaglaBQ)
=2(a? — a?) — b2 sin? B — b3sin? By
+2(a’} — a1)(by cos B1 + ba cos B2)
d

> 0.

> T(b2 sin? 1 + b2sin? B) > 0. (193)
So we can focus on a problem with, b, € R
f(a1,bi,b2) = 2a7 + b7 + b3 + 2a1 (b1 + ba)  (194)
d 1
m(l% +b§ + b% + m(bl +b2)2 = E,
a1 >0, by+by>0. (195)

In analogous way we show that it is enough to consider
by = b2 > 0 as takingb) = “’1“’2' and changing

a; to a} to fit the constramt does not decregeThen

the optimization simplifies to

flar,br) = 2(a1 + b1)? (196)
d 2d 1
it b=, anbi >0 (197)

We computeh; from the constraint and substitute fo
which gives

2
flar) =2 <a1 +4/x — ya%) (198)
a € [0, \/gc/y} (199)
where
d—2 d—2
=S5z Y= d=1) (200)

Functionf has its maximum when the expression in the
parenthesis has the maximum (as it is nonnegative). We
consider its derivative

0 f 2\ yay
a—al <CL1 + xr — ya’l) =1- Tya% (201)
which is zero for
X
al =,/ —5— 202
1 yg + y ( )

and the second derivative is negative i so the
maximum is equal to

flap) =2 (\/yz’iy * \/.Jfl)2

_ 3d—4
=2x(y 1"'1): 2

(203)

(204)
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