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A Few steps more towards NPT bound
entanglement

Łukasz Pankowski(1,2,4) Marco Piani(2,4)∗, Michał Horodecki(2,4), Paweł Horodecki(3,4)

Abstract—We consider the problem of existence of bound
entangled states with non-positive partial transpose (NPT). As
one knows, existence of such states would in particular imply
nonadditivity of distillable entanglement. Moreover it would rule
out a simple mathematical description of the set of distillable
states. Distillability is equivalent to so calledn-copy distillability
for some n. We consider a particular state, known to be 1-copy
nondistillable, which is supposed to be bound entangled. Westudy
the problem of its two-copy distillability, which boils down to
show that maximal overlap of some projectorQ with Schmidt
rank two states does not exceed1/2. Such property we call the
half-property. We first show that the maximum overlap can be
attained on vectors that are not of the simple product form with
respect to cut between two copies. We then attack the problem
in twofold way: a) prove the half-property for some classesof
Schmidt rank two states b) bound the required overlap from
above for all Schmidt rank two states. We have succeeded to
prove the half-property for wide classes of states, and to bound
the overlap from above by c < 3/4. Moreover, we translate
the problem into the following matrix analysis problem: bound
the sum of the squares of the two largest singular values of
matrix A ⊗ I + I ⊗ B with A,B traceless4 × 4 matrices, and
TrA†A+ TrB†B =

1
4
.

Index Terms—Quantum Physics, Quantum Information The-
ory, Bound entanglement, Entanglement distillation

I. I NTRODUCTION

The Phenomenon of bound entanglement lies at the heart of
entanglement theory [1]. A bound entangled state of a bipartite
system is one which is entangled, but cannot be used for
quantum communication. A possibility of transmitting qubits
via bipartite states is connected with theirdistillability [2], [3]
i.e. the possibility of obtaining asymptotically pure maximally
entangled states by local operations and classical communi-
cation from many copies of a given state. Such maximally
entangled states can be then used for transmitting qubits by
means of teleportation. It is known that all entangled two qubit
states are distillable [4]; however, already for3 ⊗ 3 or 2 ⊗ 4
systems there exist bound entangled states — entangled states
that cannot be distilled. Such states involve irreversibility:
to create them by LOCC one needs pure entanglement [5],
[6], but no pure entanglement can be obtained back from
them. They constitute a sort of a “black hole” of quantum
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information theory [7], and have been also compared to a
single heat bath in thermodynamics, since to create the latter
one has to spend work (as in Joule experiment), yet no work
can be obtained back from it by a cyclic process [8], [9].

Bound entangled states, although directly not useful for
quantum communication, are not entirely useless. They can be
helpful indirectly, via activation like process: in conjunction
with some distillable state, they allow for better performance
of some tasks [10], [11]. It was even recently shown that
any bound entangled state can perform nonclassical task via
kind of activation [12]. This is the first result showing that
entanglement always allows for nonclassical tasks. Finally, it
was also shown that some bound entangled states can be useful
for production of secure cryptographic key [13], [14], [15].
This has lead to the possibility of obtaining unconditionally
secure key via channels which cannot reliably convey quantum
information [16], [17].

Since bound entangled states present qualitatively different
type of entanglement from the distillable states behaving
in a strange way, it is more than desired to have some
characterization of the set. It has been shown [18] that any state
with positive partial transpose(PPT) [19] is non-distillable.
A long standing open problem is whether the converse is also
true. Since the discovery of bound entanglement the question
“Are all states which do not have positive partial transpose
distillable?” has remained open.

Provided it has a positive answer, we would have com-
putable criterion allowing to distinguish between bound and
free entanglement. However the importance of the problem
is not merely due to technical (in)convenience. As a matter
of fact, in [20] dramatic consequences of a negative answer
have been discovered. Namely, for some hypothetical bound
entangled state̺ with a non-positive partial transpose (NPT)
there exists another bound entangled stateσ such that the joint
state̺ ⊗ σ is no longer a bound entangled state. In [11] it
was shown that an arbitrary NPT bound entangled state would
exhibit such a phenomenon (it also follows from [21] via
Jamiołkowski isomorphism). Such a phenomenon of “superac-
tivation” has been indeed found in a multipartite case [22] and
translated into extreme nonadditivity of multipartite quantum
channel capacities [23]. (In a multipartite case, though still
very strange, this can be easier to understand than in a bipartite
case due to a rich state structure allowed by many possible
splits between the parties.) In quantum communication lan-
guage the phenomenon of “superactivation” would mean that
two channels (supported by two-way classical communication)
none of them separately can convey quantum information if
put together, can be used for reliable transmission of qubits.
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Analogous problem for channels that are not supported by
classical communication was recently solved by Smith and
Yard [24] (see also [25] in this context). Another implication
of the existence of NPT bound entangled states is that the
basic measure of entanglement — thedistillable entanglement
— would be non-convex.

The problem of existence of NPT bound entanglement has
been attacked many times since the beginning. In [26] it was
shown that it is enough to concentrate on one parameter family
of the Werner states [27]: if NPT bound entangled states
exist at all, some of the Werner states must be NPT bound
entangled too. There also exists the following characterization
of distillable states [18]: A state is distillable, if some number
of copies ̺⊗n can be locally projected to obtain a two-
qubit NPT state. The state is then calledn-copy distillable.
Therefore, a state is non-distillable if it is notn-copy distillable
for all n. The whole problem is to relate this rather non
operational characterization to the NPT property.

Subsequently, two attempts to solve the problem have been
then made independently [28], [29]. In particular the authors
have singled out a set of the Werner states which is expected
to contain only non-distillable states. Moreover for anyn they
have shown a subset of the Werner states containing solely
n-copy non-distillable states (see also [30] in this context).
However the subsets are decreasing whenn increases. One
might ask at this point, whethern-copy non-distillability
implies the same forn+1. Then to solve the problem it would
be enough to check whether a state is 1-copy non-distillable,
which for the Werner states is not hard to do. However it was
shown in [31] that this is not true. For anyn states have been
found, which aren-copy non-distillable, but are(n+1)-copy
distillable.

Another way to attack the problem would be the following:
let us take a larger but mathematically more tractable classof
operations than LOCC — the ones that preserve PPT states
[32], [21]. If one can show that there are some NPT states
that are not distillable by this larger class of operations,then
it would be also true for LOCC, and the problem would be
solved. However in [21] it have been shown that all NPT states
are distillable by PPT preserving operations. This shows that
such an approach cannot solve our problem.

There are some sufficient conditions for distillability. E.g. if
a state violates the reduction criterion, then it is distillable [26].
In [33], [34] Clarisse provided a systematic way of finding
such conditions. His conditions are related to a description of
the set of1-copy distillable states by means of some maps
and associated witnesses, in analogy to describing the set
of separable states by means of entanglement witnesses and
positive maps [35], [36]. There remains the main problem of
checking such conditions onn-copies, to be able to prove
alson-copy distillability. Another connection with separability
problem was found in [37] where it was shown that the
problem of existence of NPT bound states is equivalent to
showing that some operators labeled byn are entanglement
witnesses. This connection was exploited in [38] to provide
exact numerical evidence for2-copy undistillability of one-
copy undistillable qutrit Werner states.

For further attempts to solve the problem see [39] where one

can also find relevant literature. There have been several more
recent attempts. Unfortunately the proofs given in two of them
[40], [41] turned out to have some gaps. The last partial result
is due to [42] where a notion ofn-copy correlated distillability
was introduced, and used to characterize the convex hull of
the non-distillable states.

We have seen that a considerable effort has been put so far
without providing the final solution, but definitely enriching
“phenomenology” of the problem. In such situation we have
decided to consider a modest goal. Namely we analyze two-
copy distillability only, and we focus on a single state, drawn
from the “suspicious” family of the Werner states. We choose
a dimensionC4 ⊗C4, in which case, the problem reduces to
analysis of suitable properties of someprojector. Namely, we
ask whether

sup
φ2

〈φ2|Q|φ2〉 ≤
1

2
(1)

whereQ is our projector on bipartite systemC16 ⊗C16, and
supremum is taken over all states with at most two Schmidt
coefficients. If it is true it would mean that our state would
be two-copy non-distillable. The above condition is essentially
a special case of the condition obtained in [28], [29]. There
exists numerical evidence that it is indeed true, however the
analytical proof is still lacking.

To begin with, we have not been able to solve even this
modest problem. However we have obtained numerous partial
results. First of all we have shown that the maximum overlap
can be attained on vectors that are not of the simple product
form with respect to cut between two copies. Then we have
focused research on two main approaches. One is to provide
the largest class of Schmidt rank two statesφ2 which satisfy
the above inequality (a stateφ2 satisfying the inequality is
said to have thehalf-property). The other is to provide some
nontrivial bound on the quantity〈φ2|Q|φ2〉. Regarding the first
approach we have provided several classes of states satisfying
the half-property. In particular we have translated the problem
into a concise matrix analysis problem, and have solved it for
wide class of matrices — normal matrices. This translates into
a wide class of statesφ2 possessing the half-property. We have
also shown that the problem reduces to determining whether
some family of symmetric mixed states has Schmidt number
greater than two (i.e. cannot be written as mixture of states
with Schmidt rank two). This allows to attack the problem by
means of entanglement measures. We have performed suitable
analysis for the negativity, which however provided smaller
class of states with the half-property than the previous method.

As far as the second approach is concerned, we have first
analyzed the easier problem, of supremum overproductstates
(Schmidt rank one). We obtained that it gives3/8. By Schwarz
inequality one obtains that the supremum over Schmidt rank
two states can be at most twice as much, giving then3/4.
However, as we argue, such approach, if continued for larger
number of copies, can give only the trivial bound1 for n →
∞. We subsequently prove that our quantity is for surestrictly
lessthan3/4. By continuity we are able to push it to≈ 0.7497.
We also provide a couple of other results, that may be useful
for further investigation of the problem.
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The paper is organized as follows. In section II we specify
the main problem. In particular we introduce projectorQ
related to two-copy distillability (and its generalizations to
more copies) and define thehalf-property. Then we show
(Sec. III) that one cannot solve the problem by showing that
the Schmidt rank two statesφ2 achieving the maximum are
product with respect to cut between the copies. Subsequently
(Sec. IV) the problem of the half-property is translated into
matrix analysis problem, regarding maximization of the sum
of the squares of the two largest singular values of matrix
A⊗ I + I ⊗B under some constraints. We solve the problem
for normal matricesA,B and obtain a wide class of states
satisfying the half-property. Next we show (Sec. V) that any
two pair state for which at least one system from each pair
is effectively two-level one, satisfies the half-property.Then
we turn to an easier problem of optimizing the overlap of
Q with product states (Sec. VI). We compute maximum for
general case ofn-copies, obtaining3/8 for two copies. This
gives bound3/4 for the overlap of all Schmidt rank-two states
with Q. We then show the half-property for superpositions
of the product states attaining maximum. Then (Sec. VII) we
observe a trade-off between two parts of the overlap〈φ2|Q|φ2〉
— the “diagonal” and the “coherence” part, if the former is
large, then the latter must be small. Since coherence part
is bounded by diagonal one, this allows us to go slightly
below 3/4, namely we obtain≈ 0.7497. Finally we apply
entanglement measures, and two-positive maps to the problem
in Sec. VIII, providing some exemplary results, which for
a while are not stronger than the ones obtained in previous
sections. We also point that entanglement measure that would
distinguish between separable, bound entangled and distillable
states must be discontinuous.

II. SPECIFYING THE PROBLEM

It is known that if NPT bound entangled states exist then
such state must exist among the Werner states. The latter states
are of the form

̺W = p̺s + (1 − p)̺a (2)

where

̺s =
Ps
ds
, ̺a =

Pa
da

(3)

with Ps andPa being the projectors onto the symmetric and
the antisymmetric subspaces of the Hilbert spaceC

d ⊗ C
d

andds = d(d + 1)/2 andda = d(d − 1)/2 their dimensions.
Alternatively the Werner states may be written as

̺W =
I + αV

d2 + αd
(4)

whereα ∈ [−1, 1] (V = Ps − Pa is a swap operator). It
is known that they are separable and PPT forp ≥ 1

2 while
for p < p0 = d+1

4d−2 they are distillable and forp ∈ [p0,
1
2 )

they are NPT and it is not known whether they are distillable.
Actually it is conjectured that for the whole regionp ∈ [p0,

1
2 )

the states are NPT bound entangled [28], [29] (We will call
them thesuspiciousWerner states).

In [18] the characterization of the distillable states was
obtained in terms of so calledn-copy distillability. Namely
we say that a state isn-copy distillable, if̺⊗n can be locally
projected to a obtain two-qubit NPT state. Equivalently a state
̺ is n-copy distillable if it satisfies

inf
φ2

〈φ2|̺Γ⊗n|φ2〉 < 0 (5)

where the infimum is taken over all pure states with Schmidt
rank two, and the superscriptΓ denotes the partial transposi-
tion. Now a state is distillable iff it isn-copy distillable for
somen. Hence to prove that a state is non-distillable one has
to show that for alln

inf
φ2

〈φ2|̺Γ⊗n|φ2〉 ≥ 0. (6)

For the suspicious Werner states it is known that they are
one copy undistillable more over it was numerically checked
that they are also two and three copy undistillable [28], [29].
As a matter of fact for alln an n-copy undistillable subset
of the suspicious Werner states is known, but the subsets are
shrinking withn giving an empty set in the limit ofn→∞.

Anyway, it is likely that even the most entangled state from
the suspicious region is undistillable. In this paper we will
focus just on this boundary state (i.e. withp = p0) and
moreover we consider only theC4 ⊗ C4 case (this gives
p = 5

14 or α = − 1
2 ). The reason is that the problem ofn-copy

distillability for the boundary state in this dimension reduces to
analyzing the overlap of rank two states with someprojector.

Since we will be mostly concerned with two copy undistil-
lability let us begin withn = 2. The normalization of̺ Γ

W
⊗2

has no impact on the existence ofφ2 satisfying (6), thus for
d = 4 we can simplify the expression of̺ΓW

⊗2
to

̺ΓW
⊗2 ∼ (I − 1

2V )Γ
⊗2

=
(

I − d
2P+

)⊗2
(7)

= (P⊥
+ ⊗ P⊥

+ + P+ ⊗ P+)− (P⊥
+ ⊗ P+ + P+ ⊗ P⊥

+ )
(8)

where

P⊥
+ = I − P+, P+ = |ψ+〉〈ψ+|, |ψ+〉 =

1√
d

d−1
∑

i=0

|ii〉.

(9)
If we replace the minus sign with the plus sign in formula
(7) we get the identity. Thus it is evident that two-copy
undistillability, i.e. (6) withn = 2, is equivalent to

〈φ2|Q|φ2〉 ≤
1

2
(10)

for all Schmidt rank two statesφ2 in the cutAA′ : BB′, or,
using a shorthand notation, for allφ2 ∈ SR2(AA

′ : BB′),
with

Q = P⊥
+ ⊗ P+ + P+ ⊗ P⊥

+ . (11)

We will call equation (10) thehalf-property. Thus our Werner
state is two copy undistillable iff all rank two statesφ2 satisfy
the half-property. In particular, equality in the half-property
(10) for someφ2 is equivalent to equality in (6) withn = 2.
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Thus to prove two copy undistillability we would have to
show that all two pair rank two statesφ2 satisfy the half-
property. We will show that this is the case for a wide range
of φ2 states.

We will use the notion ofφk to denote the state of Schmidt
rank k in Alice versus Bob cut. If not explicitly specified it
should be clear from the context whether we mean a state
on a single pair, i.e.φk ∈ SRk(A : B) or on both pairs, i.e
φk ∈ SRk(AA

′ : BB′).
In some cases we will consider the projectorQ for any

dimensiond, though only ford = 4 it is connected with two
copy distillability of the boundary state.

Analogously to the two copy case one can relaten-copy
distillability of the boundary Werner state with the overlap of
rank two states with some projectorsQn. Namely ford = 4
we have

̺Γ⊗nW ∼ (I − d
2P+)

⊗n = P+ − P− = I⊗n − 2P− (12)

whereP+ andP− are projectors satisfyingP+ +P− = I⊗n.
We defineQn as

Qn ≡ P− =
1

2

(

I⊗n −
(

I − d
2P+

)⊗n)
(13)

so that〈φ2|Qn|φ2〉 ≤ 1
2 iff 〈φ2|̺⊗nW |φ2〉 ≥ 0.

Lemma 1. For d = 4 projectorsQn satisfy the following
recursive formula

Q1 = P+, (14)

Qn+1 = Qn ⊗Q⊥
1 +Q⊥

n ⊗Q1. (15)

Proof: For n = 1 it is evident, forn > 1 by substituting
Qn transformed to

(

I − d
2P+

)⊗n
= I⊗n − 2Qn (16)

into Qn+1 we obtain the recursive formula.
We haveQ2 = Q andQ3 has the form

Q3 = P+ ⊗ P⊥
+ ⊗ P⊥

+ + P⊥
+ ⊗ P+ ⊗ P⊥

+

+ P⊥
+ ⊗ P⊥

+ ⊗ P+ + P+ ⊗ P+ ⊗ P+. (17)

III. E XISTENCE OF NONTRIVIAL MAXIMA OF 〈φ2|Q|φ2〉
In [43] a class of states of the formφ1 ⊗ φ2 was shown to

provide local minimum for (6) withd = 3, α = − 1
2 , n = 2.

This suggests the following question: is it that all local minima
are of the formφ1⊗φ2? In our specific case it translates into
the same question about the maximum. It is easy to see that
states of the formφ2 ⊗ φ1 may attain equality in the half-
property and nothing more. We will now examine a question
whether there are other rank two states which attain equality
in the half-property and are not of this form. The answer is
unfortunately positive.

A. Example of equality in superpositions

We show that there are nontrivial superpositions ofφ2⊗φ1
andφ′1 ⊗ φ′2 which are rank two states and attain equality in
the half-property.

For any state of the formφ2 ⊗ φ1 its projection onQ is
given by

〈φ2 ⊗ φ1|Q |φ2 ⊗ φ1〉 = p+ q − 2pq ≤ 1

2
(18)

where

p = 〈φ2|P+|φ2〉 ≤
2

d
, q = 〈φ1|P+|φ1〉 ≤

1

d
(19)

and the maximal value is attainable forp = 2
d and, ford = 4,

any q.
If we take superpositions of two states of that form with

one of them swapped

|ψ〉 =
√
r|φ2〉 ⊗ |φ1〉+

√
1− r|φ′1〉 ⊗ |φ′2〉 (20)

satisfying

〈φ2|P+|φ2〉 = 〈φ′2|P+|φ′2〉 =
2

d
, (21)

〈φ1|P+|φ1〉 = 〈φ′1|P+|φ′1〉 = 0 (22)

then

〈ψ|Q|ψ〉 = 1

2
. (23)

States of the formψ have in general Schmidt rank higher than
two but there are also rank two states among them such as the
following class of states

|φ〉 =
√
r |01〉 ⊗ |ψ2

+〉+
√
1− r |ψ2

+〉 ⊗ |01〉 (24)

where
|ψ2

+〉 =
1√
2
(|00〉+ |11〉). (25)

The classφ can be rewritten in Alice versus Bob cut as

|φAA′:BB′〉 = 1√
2
|00〉 ⊗

(√
r|01〉+

√
1− r|10〉

)

+
1√
2

(√
r|10〉+

√
1− r|01〉

)

⊗ |11〉 (26)

which shows thatφ are rank two states in this cut.

B. Form ofφ2 states maximizing overlap withI ⊗ P+

In contrast to the previous section we shall show here that
two pair φ2

AA′:BB′

which maximizes overlap withI ⊗ P+

must be of the formφ1
A:B ⊗ φ2A

′:B′

. (This result is inspired
by [40]) Of course, the maximum attainable value of the
projection onP+ for one pair Schmidt rank two state is2/d.
Let φ2 be a two pair state which attains this value. Then we
have

|〈φ2|φ〉|2 = 2/d, (27)

whereφ is some normalized state from subspaceI ⊗ P+, i.e.
it is of the form

|φ〉 =
∑

j

aj |ejfj〉AB ⊗
1√
d

∑

i

|ii〉A′B′ . (28)

Moreover also

sup
φ2∈SR2

|〈φ2|φ〉|2 =
2

d
. (29)
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On the other hand we know that for anyψ

sup
φ2∈SR2

|〈φ2|ψ〉|2 = µ2
1 + µ2

2, (30)

whereµ1, µ2 are the two largest Schmidt coefficients ofψ in
the same cut thatφ2 has rank two, i.e.AA′ : BB′. Thus, as
the Schmidt coefficients ofφ has the formaj/

√
d and each

of them occursd times in the composition, we have

|〈φ2|φ〉|2 =
2a2max

d
, (31)

whereamax = maxj aj . Thereforeamax = 1, i.e.

|φ〉 = |x〉A|y〉B |ψ+〉A′B′ , (32)

where |x〉, |y〉 are some states. Writing|φ2〉 = c1|r1〉|s1〉 +
c2|r2〉|s2〉 we get

|〈φ2|φ〉|2 =
1

d
|c1α1 + c2α2|2 ≤

1

d
(c1|α1|+ c2|α2|)2 (33)

where

α1 =
∑

i

(AA′〈r1|x〉A|i〉A′)(BB′〈s1|y〉B|i〉B′) (34)

α2 =
∑

i

(AA′〈r2|x〉A|i〉A′)(BB′〈s2|y〉B|i〉B′) (35)

Since |α1|, |α2| ≤ 1, to get |〈φ2|φ〉| = 2
d we must have

|α1| = |α2| = 1 and c1 = c2 = 1√
2
. It follows that |r1〉

and|r2〉 belong to the subspace|x〉〈x|⊗ I. Which means that
|r1(2)〉 = |x〉A|r̃1(2)〉A′ , where|r̃1(2)〉A′ are some orthogonal
states. Similar relations hold for|s1〉 and |s2〉. Thus

φ2 = |x〉A|y〉B
(

|r̃1〉A′ |s̃1〉B′ + |r̃2〉A′ |s̃2〉B′

)

/
√
2, (36)

i.e. we obtain the desired form.

IV. STATES HAVING “ NORMAL” PROJECTION ONQ

Here we show that if a two pair Schmidt rank two state
φ2 has the projection onQ which is isomorphic to a normal
operator through a state–operator isomorphism then it satisfies
the half-property. To this end we will reformulate our opti-
mization task in terms of the two largest Schmidt coefficients
of states of the subspace defined by the projectorQ. Then we
will use the state–operator isomorphism to obtain optimization
problem involving matrices and finally will solve the problem
for normal matrices.

We have the following lemma, which is a generalization of
a similar one for product states [44]

Lemma 2. For any projectorP acting on a bipartite system

sup
φ2∈SR2

〈φ2|P |φ2〉 = sup
ψ∈HP

(µ2
1 + µ2

2) (37)

whereµ1 and µ2 are the two largest Schmidt coefficients of
ψ andHP is the subspace defined by the projectorP .

Note that this lemma immediately generalizes to rankk
states for arbitrary fixedk ≥ 1.

Proof: Let us observe that for allψ ∈ HP
〈φ2|P |φ2〉 ≥ 〈φ2|ψ〉〈ψ|φ2〉. (38)

Moreover there existsψ ∈ HP which reaches the equality

〈φ2|P |φ2〉 = 〈φ2|ψ〉〈ψ|φ2〉, (39)

namely |ψ〉 = P |φ2〉
‖P |φ2〉‖ if ‖P |φ2〉‖ 6= 0 or any ψ ∈ HP

otherwise. From these two observations we get

〈φ2|P |φ2〉 = sup
ψ∈HP

|〈φ2|ψ〉|2. (40)

From (40) and the fact stated in equation (30) we conclude

sup
φ2∈SR2

〈φ2|P |φ2〉 = sup
ψ∈HP

sup
φ2∈SR2

|〈φ2|ψ〉|2 (41)

= sup
ψ∈HP

(µ2
1 + µ2

2) (42)

whereµ1 andµ2 are the two largest Schmidt coefficients of
ψ.

Let us now reformulate the problem in terms of matrices.
Consider the following state–operator isomorphism

|ψ〉 =
∑

aij |i〉|j〉 ←→ X =
∑

aij |i〉〈j|. (43)

In this isomorphism〈ψ|ψ〉 = TrX†X and the Schmidt
coefficients of a stateψ are equal to the singular values of
the corresponding operatorX . Therefore by lemma 2 and the
equality between the Schmidt coefficients ofψ and the singular
values ofX we have

sup
φ2

〈φ2|P |φ2〉 = sup
X

(σ2
1 + σ2

2) (44)

where σ1 and σ2 are the two largest singular values of
operatorX and the supremum is taken over all operatorsX
which correspond to states fromHP through the state–operator
isomorphism (43).

A. Half-property in terms of matrices

Let us now apply the above consideration to our particular
projectorQ. All statesψQ ∈ HQ whereQ = P⊥

+ ⊗ P+ +
P+ ⊗ P⊥

+ have the form

|ψQ〉 =
√
p |ψ(1)〉|ψ+〉+

√

1− p |ψ+〉|ψ(2)〉 (45)

wherep ∈ [0, 1] and

|ψ(1)〉 ⊥ |ψ+〉, |ψ(2)〉 ⊥ |ψ+〉. (46)

The image ofψQ states in the above state–operator isomor-
phism have the form

X =

√

p

d
Ã⊗ I +

√

1− p
d

I ⊗ B̃ (47)

where

TrÃ = TrB̃ = 0 (orthogonality, i.e. (46)) (48)

TrÃ†Ã = TrB̃†B̃ = 1. (normalization) (49)

By absorbing coefficients into operators the formulation ofthe
image ofψQ states can be simplified to

X = A⊗ I + I ⊗B (50)

where

TrA = TrB = 0, TrA†A+TrB†B =
1

d
. (51)
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Thus we have reduced the problem of the half-property to
the following optimization task: show that for all operatorsX
of the form (50) satisfying constraints (51) we have

σ2
1 + σ2

2 ≤
1

2
(52)

whereσ1 andσ2 are the two largest singular values of operator
X .

In the next section we show that this holds for normal
matricesX which gives a wide class of statesφ2 satisfying
the half-property.

B. Half-property for states having “normal” projection onQ

Let us first note that the operatorX given in equation
(50) is normal (i.e.X†X = XX†) iff operatorsA and B
are normal. As normal matrices are diagonalizable and their
singular values are equal to moduli of eigenvalues we arrive
at an optimization problem over numbers rather than matrices
which we will now solve. Namely we have

Theorem 1. LetXd be a subset of normal operatorsX of the
form (50) satisfying constraints(51). Then ford = 4 we have

sup
X∈Xd

(σ2
1 + σ2

2) ≤
1

2
(53)

where σ1 and σ2 are the two largest singular values of
operatorX .

Proof: SinceX is diagonalizable then we can replace
singular values with moduli of eigenvalues. The latter are of
the form

λij = ai + bj (54)

whereai andbj are eigenvalues ofA andB respectively. We
then have

sup
X∈Xd

(σ2
1 + σ2

2) = sup
X∈Xd

(|λ1|2 + |λ2|2) (55)

= sup
X∈Xd

max
i,j,k,l∈{1,...,d},

(i,j) 6=(k,l)

(

|ai + bj|2 + |ak + bl|2
)

(56)

= sup
X∈Xd

max
{

|a1 + b1|2 + |a2 + b2|2,

|a1 + b1|2 + |a1 + b2|2
}

(57)

whereλ1 andλ2 are two eigenvalues ofX with largest moduli.
The constraints (51) onX imply the following constraints on
ai andbi

d
∑

i=1

ai = TrA = 0,

d
∑

i=1

bi = TrB = 0, (58)

d
∑

i=1

|ai|2 +
d

∑

i=1

|bi|2 = TrA†A+TrB†B =
1

d
. (59)

Equality (57) comes from the fact that there are two unique
settings

1) i 6= k ∧ j 6= l and
2) i = k ∧ j 6= l ∨ i 6= k ∧ j = l.

In the second setting we consider only one term of the
alternative (as under the constraints we can exchangeA and
B) and in both settings we take arbitrary indices (as under the
constraints we can independently permuteai andbi).

Thus to prove the theorem we have to show that the
following inequalities hold

|a1 + b1|2 + |a2 + b2|2 ≤
1

2
(60)

|a1 + b1|2 + |a1 + b2|2 ≤
1

2
(61)

under the constraints (58) and (59) withd = 4. The first
inequality comes directly from the parallelogram identity

|x+ y|2 = 2(|x|2 + |y|2)− |x− y|2 ≤ 2(|x|2 + |y|2) (62)

which implies

|a1 + b1|2 + |a2 + b2|2 ≤ 2(|a1|2 + |b1|2 + |a2|2 + |b2|2)

≤ 2
1

d
=

1

2
. (63)

The second inequality is much more involved and we have
moved it to the appendix (proposition 6) where we prove that

|a1 + b1|2 + |a1 + b2|2 ≤
3d− 4

d2
(64)

which for d = 4 gives (61).
We are now prepared to state the main result of this section

Theorem 2. For d = 4 any rank two stateφ2 ∈ SR2(AA
′ :

BB′) with the projection onQ (Q|φ2〉) isomorphic through
the state–operator isomorphism to a normal operator satisfies
the half-property.

Proof: Let us assume〈φ2|Q|φ2〉 6= 0 (otherwise the
conclusion is obvious). By hypothesisφ2 reaches its projection
onQ on a state|ψQ〉 = Q|φ2〉

‖Q|φ2〉‖ ∈ HQ andψQ is isomorphic
through the state–operator isomorphism given by (43) to a
normal operatorX . Then using the fact stated in equation (30),
equality of the Schmidt coefficients ofψQ and the singular
values of operatorX in the state–operator isomorphism, and
theorem 1 we obtain

〈φ2|Q|φ2〉 = |〈φ2|ψQ〉|2 ≤ sup
φ2∈SR2(AA′:BB′)

|〈φ2|ψQ〉|2

(65)

= µ2
1 + µ2

2 = σ2
1 + σ2

2 ≤ sup
X∈Xd

(σ2
1 + σ2

2) ≤
1

2
(66)

whereµ1 andµ2 are the two largest Schmidt coefficients of
ψQ in the same cut in whichφ2 has rank two (i.eAA′ : BB′)
while σ1 andσ2 are the two largest singular values of operator
X , andXd is a subset of normal operatorsX of the form (50)
satisfying constraints (51).

C. Characterization of states with normal projection ontoQ

A more operational characterization of the states for which
the above theorem proves the half-property is the following.
Suppose we projectφ2 state ontoψ+ on subsystemAB. Then
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the subsystemA′B′ should collapse to a∗-symmetric state,
i.e. a state of the form

∑

ai|ei〉A′ |e∗i 〉B′ . (67)

The same should hold for the projection onA′B′.
To see it let us use the state–operator isomorphism (43). In

our particular case it will read as follows

|φ2〉 = (CAA′ ⊗ IBB′)|ψ̂+〉AB ⊗ |ψ̂+〉A′B′ (68)

with ψ̂+ =
∑

i |ii〉, or simply

|φ2〉 =
∑

i,i′,j,j′

Cii′ jj′ |ii′〉AA′ |jj′〉BB′ . (69)

We will further write φ2 ∝ C. If for an example the matrix
C is normal the corresponding state is of the form

|φ2〉 = a|e〉AA′ |e∗〉BB′ + b|f〉AA′ |f∗〉BB′ (70)

where e ⊥ f . Here a and b are eigenvalues ofC, hence
HermitianC means that they are real, while positiveC matrix
means thata andb are nonnegative. (We have only two terms
becauseφ2 is of Schmidt rank two).

Let us now examine the projection ofφ2 ontoHQ. We have

Q|φ2〉 = |ψ+〉AB ⊗
(

|φ̃(2)〉A′B′ − 1

d
TrC |ψ+〉A′B′

)

+

(

|φ̃(1)〉AB −
1

d
TrC |ψ+〉AB

)

⊗ |ψ+〉A′B′ (71)

where

|φ̃(2)〉A′B′ = AB〈ψ+|φ2〉 ∝
1

d
CA′ (72)

|φ̃(1)〉AB = A′B′〈ψ+|φ2〉 ∝
1

d
CA (73)

are unnormalized states that are obtained on one pair after
projecting second pair onto maximally entangled stateP+;
hereCA = TrA′CAA′ , CA′ = TrACAA′ . Let us now relate
CA andCA′ with the matricesA andB from (50). Thus partial
traces of matrixCAA′ correspond to unnormalized states that
emerge after projecting one pair ontoP+.

The projection ofφ2 ontoHQ can be also written as follows

Q|φ2〉 = |ψ+〉AB ⊗ |φ(2)〉A′B′ + |φ(1)〉AB ⊗ |ψ+〉A′B′ (74)

where

|φ(1)〉AB = (YA ⊗ I)|ψ̂+〉AB (75)

|φ(2)〉A′B′ = (Y ′
A′ ⊗ I)|ψ̂+〉A′B′ (76)

with

Y =
1

d
CA −

TrC

d2
IA; Y ′ =

1

d
CA′ − TrC

d2
IA′ . (77)

(Note thatY and Y ′ are traceless, which means that corre-
sponding vectors are orthogonal toψ+). We see that—up to a
factor—A is equal toY andB is equal toY ′. Now since we
assume thatA andB are normal thenCA andCA′ must also
be normal. This means that e.g.CA is of the form

CA =
∑

i

ci|ei〉〈ei| (78)

where ci are complex numbers andei form an orthonormal
basis. Thus the state (73) coming from projecting subsystem
A′B′ ontoP+ will have the desired form

∑

i

ai|ei〉A|e∗i 〉B, (79)

and similarly for projectingAB part ontoP+.

V. HALF-PROPERTY FOR LOWSCHMIDT RANK STATES

In this section we show that any state which on each pair
has at least one subsystem with one-qubit support satisfies
the half-property. To this end we will use the notion of so
calledcommon degrees of freedomintroduced in the following
subsection.

A. Half-property via “common degrees of freedom”

We begin with the following definition

Definition 1. For a given stateφ we define a set called
common degrees of freedomof subsystemsA andB as

cdf(φ,A,B) = {i ∈ I : 〈φ|Pi|φ〉 6= 0} (80)

whereI = {0, . . . , d− 1} and

Pi = |ii〉〈ii|AB ⊗ IA′B′ . (81)

We say that subsystemA has at mostk common degrees of
freedom with subsystemB if | cdf(φ,A,B)| ≤ k.

Proposition 1. If for a given stateφ subsystemsA with B
andA′ with B′ have at mostd2 common degrees of freedom
thenφ satisfies the half-property.

Proof: We will show that if for a given stateφ subsystems
A with B andA′ with B′ have at mostd2 common degrees
of freedom then

〈φ|Q|φ〉 = 1

2
〈φ|Q̃|φ〉 ≤ 1

2
(82)

whereQ̃ is some other projector.
Let us define

Pd =
1

d

∑

i,j∈I
|ii〉〈jj|, (83)

PAB =
2

d

∑

i,j∈IAB

|ii〉〈jj| with |IAB | =
d

2
(84)

and cdf(φ,A,B) ⊂ IAB ⊂ I

PA′B′ =
2

d

∑

i,j∈IA′B′

|ii〉〈jj| with |IA′B′ | = d

2
(85)

and cdf(φ,A′, B′) ⊂ IAB ⊂ I
wherePd is a maximally entangled state ind ⊗ d. PAB and
PA′B′ are maximally entangled states ond2 ⊗ d

2 subspaces
chosen in such a way to contain common degrees of freedom
of A with B andA′ with B′ respectively.IAB andIA′B′ are
extensions of the sets of common degrees of freedom (with
whatever elements) to get sets of exactlyd2 elements.

One can observe that in the expression

〈φ|PABd ⊗ IA′B′ |φ〉 (86)
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φ projects only onto those|ii〉〈jj| of Pd for which i, j ∈
cdf(φ,A,B) by the very definition of common degrees of
freedom, thus we can remove any of|ii〉〈jj| having i /∈
cdf(φ,A,B) or j /∈ cdf(φ,A,B) in particular we can remove
all those for whichi /∈ IAB or j /∈ IAB which gives us

〈φ|PABd ⊗ IA′B′ |φ〉 = 〈φ|1
2
PAB ⊗ IA

′B′ |φ〉 (87)

similar consideration for other elements ofQ gives us

〈φ|Q|φ〉 = 〈φ|I ⊗ PA′B′

d + PABd ⊗ I − 2PABd ⊗ PA′B′

d |φ〉
(88)

= 〈φ|I ⊗ 1

2
PA′B′ +

1

2
PAB ⊗ I − 2

1

2
PAB ⊗

1

2
PA′B′ |φ〉

(89)

=
1

2
〈φ|I ⊗ PA′B′ + PAB ⊗ I − PAB ⊗ PA′B′ |φ〉

(90)

=
1

2
〈φ|Q̃|φ〉 ≤ 1

2
(91)

whereQ̃ is also a projector thus the inequality holds.

B. Example: states with positive matrixC

We begin by rephrasing number of cdfs in terms of the
matrix C of a state (see sec. IV-C) written in block form:

CAA′ =
∑

ij

|i〉A〈j| ⊗ CijA′ . (92)

The number of cdfs is the number of blocksC(ii), i.e.diagonal
blocks which do not vanish (i.e. which have at least one
nonzero element). The proposition 1 says that for any given
state (not necessarily of Schmidt rank two) the number of cdfs
is less than or equal to2, then the state has the half-property.

Now suppose thatC is positive. Then the diagonal blocks
are positive matrices, and they do not vanish iff their traceis
nonzero. Thus the full information about the number of cdfs
is contained in the partial trace of the matrixC:

CA = TrA′CAA′ =
∑

ij

Tr(CijA′)|i〉A〈j| (93)

Thus number of cdfs is equal to the number of nonzero
elements on the diagonal ofCA.

Now, sinceQ is invariant over pairwiseU ⊗ U∗ transfor-
mations, we can rotate a state to diminish the number of cdfs
as much as possible. If we can get2 or less, then we obtain
the half-property. Consider e.g. such transformation for the
pairAB. The matrixCA then transforms asUCAU †. We are
interested in the minimal number of nonzero diagonal elements
under such transformations, which equals to the rank of the
matrixCA. We have then obtained, that any state with positive
matrixC such that its partial trace has rank≤ 2, has the half-
property.

Let us note however that our result of section IV-C implies
that all Schmidt rank two states with positive matrixC satisfy
the half-property.

C. Application of cdf to low Schmidt rank

Here by use of proposition 1 we show that any state which
on each pair has at least one subsystem with one-qubit support
satisfies the half-property.

Theorem 3. Any stateφ that satisfies
(

Sch(A : A′BB′) ≤ d

2
∨ Sch(B : AA′B′) ≤ d

2

)

∧
(

Sch(A′ : ABB′) ≤ d

2
∨ Sch(B′ : AA′B) ≤ d

2

)

(94)

also satisfies the half-property. HereSch(X : Y ) denotes the
Schmidt rank of the stateφ in theX versusY cut.

Observation 1. The operatorQ is UA ⊗ VA′ ⊗ U∗
B ⊗ V ∗

B′

invariant. (WhereU andV are unitaries).

Proof of theorem 3: The hypothesis may be expanded
into a four-term alternative. We prove the conclusion for one of
the terms (for the others the proof is analogous). Now suppose

Sch(A : A′BB′) ≤ d

2
∧ Sch(A′ : ABB′) ≤ d

2
(95)

which means that there are Schmidt decompositions ofφ of
the form

|φ〉 =
d/2−1
∑

i=0

ai|ψAi 〉|ψA
′BB′

i 〉 =
d/2−1
∑

i=0

a′i|ψA
′

i 〉|ψABB
′

i 〉 (96)

We can choose suchU andV which transformφ to

|φ′〉 = UA ⊗ VA′ ⊗ U∗
B ⊗ V ∗

B′ |φ〉 (97)

=

d/2−1
∑

i=0

ai|iA〉|ψ̃A
′BB′

i 〉 =
d/2−1
∑

i=0

a′i|iA
′〉|ψ̃ABB′

i 〉 (98)

Now we can observe thatA with B and A′ with B′ have
at most d2 degrees of freedom in common inφ′ (as there are
clearly at mostd2 degrees of freedom onA andA′ subsystems)
thus by applying proposition 1 we have

〈φ′|Q|φ′〉 ≤ 1

2
(99)

and by applying observation 1 we finally get

〈φ|Q|φ〉 = 〈φ′|Q|φ′〉 ≤ 1

2
. (100)

VI. OPTIMIZING OVER PRODUCT STATES AND

IMPLICATIONS

In this section we will first consider a simpler question from
the original one. Namely we will optimize the overlap ofQ
with product states rather than with Schmidt rank two ones.
This is equivalent to optimization of the overlap ofQΓ with
product states, whereQΓ is the partial transpose ofQ. We
find the maximal overlap with product states for the general
case ofn copies i.e. we will work withQn given by (13).
Knowing the maximum over product states, we can bound the
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maximum over Schmidt rank two states. Forn = 2 we will
obtain in this way

〈φ2|Q|φ2〉 ≤
3

4
. (101)

However the analysis ofn copy case shows that in the limit
of n → ∞ one obtains a trivial result that the overlap does
not exceed one. Nevertheless this approach will be used in
subsequent section to go beyond3

4 . Analysis ofQΓ also allows
for direct proof of the half-property for states with positive
matrix C.

A. Maximum overlap of product states withQn

To find the maximum overlap of product states withQn
given by (13) we will first analyze spectral decomposition of
QΓ
n. We have

QΓ
n =

1

2

(

I⊗n −
(

I − 1
2V

)⊗n)
(102)

=
1

2

(

I⊗n −
(

1
2Ps +

3
2Pa

)⊗n)
(103)

=

n
∑

i=0

λiAi (104)

wherePs andPa are the projectors onto the symmetric and
the antisymmetric subspaces and

λi =
1

2

(

1− 3i

2n

)

(105)

Ai =
∑

lj∈{0,1}, ∑ lj=i

al1 ⊗ · · · ⊗ aln (106)

with a0 = Ps and a1 = Pa. (Note that
∑n

i=0Ai = I⊗n).
Thus eigenvalues ofQΓ

n are in decreasing order and the largest
eigenvalueλ0 is associated with the eigenspaceA0 = P⊗n

s .
In particular forn = 2 we have

λ0 =
3

8
, λ1 =

1

8
, λ2 = −5

8
, (107)

so that

QΓ
2 =

3

8
Ps ⊗ Ps −

5

8
Pa ⊗ Pa +

1

8
(Pa ⊗ Ps + Ps ⊗ Pa).

(108)

Let us now compute the maximum overlap of product states
with Qn. Since (TrQn|φ1〉〈φ1|)Γ = TrQΓ

n|φ̃1〉〈φ̃1|, where
φ̃1 is also a product state (with a one-to-one correspondence
betweenφ1 and φ̃1), we can replace the optimization onQn
with an optimization onQΓ

n. The overlap of product states with
QΓ
n is bounded by its largest eigenvalueλ0 and this bound is

attainable as in the eigenspaceP⊗n
s corresponding toλ0 there

are product states. We thus have

sup
φ1

〈φ1|Qn|φ1〉 = sup
φ1

〈φ1|QΓ
n|φ1〉 = λ0 =

1

2

(

1− 1

2n

)

.

(109)

In particular for two copies this gives38 .

B. Bound for〈φ2|Q|φ2〉 in terms of〈φ1|Q|φ1〉
As Schmidt rank two state may be decomposed to

|φ2〉 =
√
p|φ1〉+

√

1− p|φ⊥1 〉, (110)

we observe that

sup
φ2

〈φ2|Q|φ2〉

= sup
φ1,φ⊥

1
,p

(
√
p〈φ1|+

√

1− p〈φ⊥1 |)Q(
√
p|φ1〉+

√

1− p|φ⊥1 〉)

(111)

= sup
φ1,φ⊥

1
,p

p〈φ1|Q|φ1〉+ (1 − p)〈φ⊥1 |Q|φ⊥1 〉

+ 2
√

p(1− p)Re〈φ1|Q|φ⊥1 〉 (112)

≤ sup
φ1,φ⊥

1

(〈φ1|Q|φ1〉+ |〈φ1|Q|φ⊥1 〉|) (113)

and thus from Schwarz inequality

sup
φ2

〈φ2|Q|φ2〉 ≤ 2 sup
φ1

〈φ1|Q|φ1〉. (114)

In this way we have obtained the bound for the overlap of the
Schmidt rank two states withQ in terms of optimal overlap
with product states. This is also true for any other projector,
in particular, forQn.

Thus for two copies we obtain the following bound

sup
φ2

〈φ2|Q|φ2〉 ≤
3

4
. (115)

Unfortunately this method does not lead to any bound that
would hold for alln apart from the trivial bound〈φ2|Qn|φ2〉 ≤
1.

C. The form of the rank-one states attaining maximum onQn

It is interesting that the product states attaining the max-
imum on Qn must be of a very specific form. Forn = 2
the partial transpose of such state (which is again a legitimate
state) must belong to a subspacePABs ⊗PA′B′

s . One can then
find that the states that are product with respect toAA′ : BB′

cut and the same time belong to the above subspace must be
of the form

|xx〉AB ⊗ |yy〉A′B′ . (116)

It then follows that a product state maximizing overlap with
Qn must be of the form

|xx∗〉AB ⊗ |yy∗〉A′B′ . (117)

This observation in general case ofn copies is contained in
the following.

Proposition 2. For any n all rank-one statesφ1 reaching
maximum onQn has the form

|φ1〉 =
n

⊗

i=1

|ψi〉Ai
|ψ∗
i 〉Bi

. (118)
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Proof: The thesis of the proposition is equivalent to the
following statement: for anyn all rank-one statesφ1 reaching
maximum onQΓ

n have the form

|φ1〉 =
n

⊗

i=1

|ψi〉Ai
|ψi〉Bi

. (119)

We prove it by induction.

1) Forn = 1 only rank one states of the form|ψψ〉 reach
maximum onQΓ

1 = 1
4V .

2) Suppose for somen maximal projection of rank one
state onQΓ

n requires the from (119). From previous
section a rank one stateφ1 defined onn+1 pairs to attain
maximum onQΓ

n+1 must be an eigenstate ofP⊗n+1
s

which is a subspace of the symmetric space onn + 1
pairs. Thus the Schmidt decomposition ofφ1 in n pairs
versus single pair cut (AB : ab) has the form

|φ1〉 = |ψ〉Aa|ψ〉Bb =
∑

aiaj |ψiψj〉AB|φiφj〉ab
(120)

and we have

〈φ1|P⊗n+1
s |φ1〉

=
∑

aiajakal〈ψiψj |P⊗n
s |ψkψl〉〈φiφj |Ps|φkφl〉

(121)

=
∑

aiajakal〈ψiψj |P⊗n
s |ψkψl〉

1

2
(δikδjl + δilδjk)

(122)

to obtain one above all the projections must be equal to 1. For
projection onPs given in delta-form requiresi = j = k = l
and it is always one only ifφ1 is product inAB : ab cut.
To obtain one onP⊗n

s theψi ⊗ ψi state must be of the form
(119) and thusφ1 is of the form (119).

D. Superpositions of rank-one states with maximum onQn

One could expect that superpositions of rank-one states with
maximum onQn has the the half-property as such rank-one
states are product between the copies. Indeed this is the case,
their overlap withQn is analyzed in the following

Proposition 3. Let d = 4 and φ1, φ⊥1 be n-copy orthogonal
product states with maximum overlap withQn, i.e. of the form

|φ1〉 =
n

⊗

i=1

|ψi〉Ai
|ψ∗
i 〉Bi

, |φ⊥1 〉 =
n

⊗

i=1

|ψ̃i〉Ai
|ψ̃∗
i 〉Bi

(123)

then their superposition

|φ2〉 =
√
p|φ1〉+

√

1− p|φ⊥1 〉 (124)

has the following overlap withQn

〈φ2|Qn|φ2〉 =
1

2

(

1− 1

2n

)

−
√

p(1− p)
n
∏

i=1

(

|〈ψi|ψ̃i〉|2 −
1

2

)

.

(125)

In particular it is equal to 1
2 only if p = 1

2 and φ1, φ⊥1 are
orthogonal on an odd number of copies and equal on the rest.
Otherwise it is less than12 .

Proof: The form ofφ1 andφ⊥1 comes from proposition
2 and their overlap withQn from (109) thus we have

〈φ2|Qn|φ2〉 =
1

2

(

1− 1

2n

)

+ 2
√

p(1− p)Re〈φ1|Qn|φ⊥1 〉
(126)

Thus to finish the proof we will show by induction that

〈φ1|Qn|φ⊥1 〉 = −
1

2

n
∏

i=1

(

|〈ψi|ψ̃i〉|2 −
1

2

)

(127)

It is true forn = 1

〈φ1|Q1|φ⊥1 〉 =
1

d
〈ψ1ψ

⊥
1 |V |ψ⊥

1 ψ1〉 =
1

d
= −1

2
(0− 1

2
).

(128)

Suppose it is true for somen, let us show it also holds for
n+ 1. Without loss of generality we can assumeφ1 andφ⊥1
are orthogonal on one of the firstn copies thus we can write

|φ1〉 = |φ〉|ψψ∗〉, |φ⊥1 〉 = |φ⊥〉|ψ̃ψ̃∗〉. (129)

Then by using recursive formula (15) we have

〈φ1|Qn+1|φ⊥1 〉
= 〈φ|Qn|φ⊥〉

(

〈ψψ∗|ψ̃ψ̃∗〉 − 2〈ψψ∗|Q1|ψ̃ψ̃∗〉
)

(130)

= −1

2

n
∏

i=1

(

|〈ψi|ψ̃i〉|2 −
1

2

)(

|〈ψ|ψ̃〉|2 − 2

d
〈ψψ̃|V |ψ̃ψ〉

)

(131)

= −1

2

n+1
∏

i=1

(

|〈ψi|ψ̃i〉|2 −
1

2

)

. (132)

It is evident that to maximize (125), i.e. obtain12 , one
needsp = 1

2 and (127) equal to2−(n+1). This requires
∣

∣

∣
|〈ψi|ψ̃i〉|2 − 1

2

∣

∣

∣
= 1

2 for all i, that is ψi and ψ̃i must be
equal or orthogonal and further for (127) to be positive they
must be orthogonal on odd number of copies and equal on the
rest.

E. Digression: half-property for a class of statesφ2 via QΓ

We consider the following class of states

|φ2〉 = a|e1〉|e∗1〉+ b|e2〉|e∗2〉 (133)

with a, b ≥ 0, |e1〉 ⊥ |e2〉. In the state–operator isomorphism
they correspond to positive matricesCAA′ (see sect IV). Then
CA andCA′ are also positive, hence normal, so that it is a
subclass of states for which we have proved the half-property
in section IV. Here we present another proof for this class of
states (133). (In section VIII we present a third proof, which
uses principle of noincreasing entanglement by LOCC).

We can write

〈φ2|Q|φ2〉 = Tr(QΓPΓ
φ2
) (134)

with Pφ2
= |φ2〉〈φ2|. We have

PΓ
φ2

= a2P|e1〉|e1〉 + b2P|e2〉|e2〉 + ab(Pψ+
− Pψ−

) (135)
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with

|ψ±〉 =
1√
2
(|e1〉|e2〉 ± |e2〉|e1〉). (136)

Now recall that

QΓ =
3

8
Ps ⊗ Ps −

5

8
Pa ⊗ Pa +

1

8
(Pa ⊗ Ps + Ps ⊗ Pa).

(137)

Note that vectors|e1〉|e1〉, |e2〉|e2〉 as well asψ+ lie in the
symmetric subspace i.e.Ps ⊗Ps +Pa ⊗Pa, while ψ− lies in
the antisymmetric subspacePs⊗Pa+Pa⊗Ps. Therefore, one
can estimate the expression (134) from above, by assuming,
that triplet states lie solely withinPs ⊗ Ps, obtaining

〈φ2|Q|φ2〉 = Tr(QΓPΓ
φ2
) ≤ 3

8
(a2 + b2 + ab)− 1

8
ab ≤ 1

2
.

(138)

VII. B OUNDS FOR MAXIMAL OVERLAP WITH Q FOR ALL

STATESφ2 .

In this section we show that we can improve the bound
obtained by means of product states in the previous section.

A. Strictly less than 3/4

In the previous section we have provided the following
bound

sup
φ2

〈φ2|Q|φ2〉 ≤
3

4
. (139)

Let us now show that the bound cannot be tight. To this end
assume that we have equality. Let us recall the bound of (113)
on the overlap of rank two states withQ

sup
φ2

〈φ2|Q|φ2〉 ≤ sup
φ1,φ⊥

1

(〈φ1|Q|φ1〉+ |〈φ1|Q|φ⊥1 〉|). (140)

Our assumption thus implies that RHS≥ 3
4 . As 〈φ1|Q|φ1〉 ≤

3
8 this requires

|Re〈φ1|Q|φ⊥1 〉| ≥
3

8
(141)

and by Schwarz inequality bothφ1 andφ⊥1 must have maximal
projection onQ which through proposition 2 implies they
must be of the form|xx∗〉AB|yy∗〉A′B′ . However for two such
orthogonal states by direct calculations we obtain

|Re〈φ1|Q|φ⊥1 〉| ≤
1

8
(142)

which is in contradiction with (141) and hence with our
assumption of equality in (139). Thus we obtain

sup
φ2

〈φ2|Q|φ2〉 <
3

4
. (143)

Numerical optimization suggests the bound (140) is actually
equal to17

32 . If we want to optimize independently both terms
of the bound (140) we get

sup
φ2

〈φ2|Q|φ2〉 ≤
3

8
+ sup
φ1,φ⊥

1

|〈φ1|Q|φ⊥1 〉| (144)

which numerically gives58 . At the moment we do not have
analytical proofs of these estimates.

B. Beyond 3/4

We have seen that product states attaining maximum overlap
with Q have to be of the form|φ〉 = |x〉A|x∗〉B |y〉A′ |y∗〉B′ ,
i.e. the partial transpose ofφ belongs to the product of
symmetric subspaces. From continuity, if the overlap ofφ with
Q is close to maximal, the stateφ should have big overlap
with states of the above form. Here we provide quantitative
estimate. First we will show that in such caseφ has big overlap
with Ps ⊗ Ps:
Lemma 3. For statesφ product with respect toAA′ : BB′

cut we have

〈φ|PABs ⊗ PA′B′

s |φ〉 ≥ 4〈φΓ|Q|φΓ〉 − 1

2
, (145)

where actionΓ is well defined becauseφ is product.

Proof: It follows from the formula (137) and a bit of
algebra.

We then have that large overlap of a product stateφ with
Ps⊗Ps implies large overlap with vectors of the form|xxyy〉.

Lemma 4. For all statesφ product with respect toAA′ : BB′

cut we have

sup
x,y
|〈φ|xx〉AB |yy〉A′B′ |2 ≥ 4〈φ|P sAB ⊗ P sA′B′ |φ〉 − 3.

(146)

Proof: Write |φ〉 = |e〉AA′ |f〉BB′ . We then find

〈φ|PABs ⊗ PA′B′

s |φ〉

=
1

4
(1 + Tr̺eA̺

f
B +Tr̺eA′̺

f
B′ + |〈e|f〉|2) (147)

where ̺eA is reduced density matrix of|e〉 etc. Schwarz
inequality then implies

〈φ|PABs ⊗ PA′B′

s |φ〉

≤ 1

4
(1 + 2max(Tr̺2e,Tr̺

2
f ) + |〈e|f〉|2) (148)

where̺e is either of reduced density matrices of|e〉, similarly
for ̺f .

On the other hand one finds

|〈φ|xxyy〉| = |〈e|xy〉〈f |xy〉| (149)

≥ |〈e|xy〉〈f |e〉〈e|xy〉| = |〈e|xy〉|2|〈e|f〉| (150)

which implies

sup
x,y
|〈φ|xxyy〉|2 ≥ max(pe, pf )|〈e|f〉| (151)

wherepe, pf are the largest eigenvalues of̺e, ̺f respectively.
Combining the two equations, and noticing that without loss
of generality one can assume thatTr̺2e = p2e + (1− pe)2 and
the same forTr̺2f , one obtains

sup
x,y
|〈φ|xxyy〉|2 ≥ 1

4
(1 + α2)β (152)

and

〈φ|Ps ⊗ Ps|φ〉 ≤
1

4
(2 + α2 + β) (153)
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where

α =
√

2max(Tr̺2e,Tr̺
2
f − 1); β = |〈e|f〉|2; 0 ≤ α, β ≤ 1.

(154)

Treatingα andβ as independent variables, after some elemen-
tary, but lengthy algebra, one gets the desired result.

The above lemmas lead to the following

Proposition 4. For any product stateφ we have

sup
χ
|〈φ|χ〉|2 ≥ 16〈φ|Q|φ〉 − 5 (155)

where supremum is taken over vectorsχ =
|x〉A|x∗〉B|y〉A′ |y∗〉B′ .

Subsequently, writing

φ = aχ+ bψ; φ⊥ = ãχ̃+ b̃ψ̃ (156)

whereφ⊥ is a product state orthogonal toφ, andχ ⊥ ψ, χ̃ ⊥
ψ̃, with χ, χ̃ being of the form|xx∗yy∗〉 andψ, ψ̃ normalized,
we obtain

|〈φ|Q|φ⊥〉| ≤ |aã| |〈χ|Q|χ̃〉|+
√

3

8
(|ab̃|+ |bã|) + |bb̃|

(157)

where we have used the fact that maximal overlap ofQ with
a product state does not exceed3/8. By direct computation
we also obtain

〈χ|Q|χ̃〉 = −1

8
+

1

4
(〈χ1|χ̃1〉+ 〈χ2|χ̃2〉) (158)

where |χ1〉 = |xx∗〉AB, |χ2〉 = |yy∗〉A′B′ and |χ̃1〉 =
|x̃x̃∗〉AA′ , |χ̃2〉 = |ỹỹ∗〉BB′ . Using the fact that〈φ|φ⊥〉 = 0
we get

|〈χ1|χ̃1〉| |〈χ2|χ̃2〉| ≤ |bã|+ |ab̃|. (159)

Since for any numbersa, b satisfying0 ≤ a, b ≤ 1 we have
a+ b ≤ ab+ 1 and combining (157), (158) and (159) we get

Proposition 5. For any product orthogonal statesφ and φ⊥

we have

|〈φ|Q|φ⊥〉| ≤ a1a2(−
1

8
+

1

4
(1 + a1b2 + a2b1))

+

√

3

8
(a1b2 + a2b1) + b1b2 ≡ g(a1, a2) (160)

wherea1 = |a| = |〈φ|χ〉|, a2 = |ã| = |〈φ|χ〉|, b1 =
√

1− a21,
b2 =

√

1− a22, andχ, χ̃ are of the form|xx∗yy∗〉.

Let us observe that

sup
φ2

〈φ2|Q|φ2〉 (161)

= sup
φ1,φ⊥

1
,p

(
√
p〈φ1|+

√

1− p〈φ⊥1 |)Q(
√
p|φ1〉+

√

1− p|φ⊥1 〉)

(162)

= sup
φ1,φ⊥

1

sup
p

[ √
p√

1− p

]T [

〈φ1|Q|φ1〉 Re〈φ1|Q|φ⊥1 〉
Re〈φ⊥1 |Q|φ1〉 〈φ⊥1 |Q|φ⊥1 〉

] [ √
p√

1− p

]

(163)

= sup
φ1,φ⊥

1

1

2

(

〈φ1|Q|φ1〉+ 〈φ⊥1 |Q|φ⊥1 〉 (164)

+
√

(〈φ1|Q|φ1〉 − 〈φ⊥1 |Q|φ⊥1 〉)2 + 4(Re〈φ1|Q|φ⊥1 〉)2
)

(165)

the last expression is simply larger eigenvalue of the matrix
in (163).

Now denotingγ1 = 〈φ|Q|φ〉, γ2 = 〈φ⊥|Q|φ⊥〉, we get

〈φ2|Q|φ2〉 ≤ γ1 + γ2 (166)

from Schwarz inequality. On the other hand using (144) and
proposition 4 we get

〈φ2|Q|φ2〉 ≤
3

8
+ sup
a1,a2

g(a1, a2) (167)

where supremum is taken overa1, a2 satisfying

16γi − 5 ≤ a2i ≤ 1, i = 1, 2. (168)

Finally we obtain the following estimate

〈φ2|Q|φ2〉 ≤
3

8
+ min(γ, f(γ)) (169)

whereγ = min(γ1, γ2) and

f(γ) = sup
a1,a2

g(a1, a2) (170)

where supremum is taken over16γ − 5 ≤ a2i ≤ 1. Looking
on the plot ofg(a1, a2) one can find that the maximum is
obtained fora1 = a2. This leads to the bound

〈φ2|Q|φ2〉 ≤ 0.74971 < 3/4. (171)

VIII. A PPLICATION OFENTANGLEMENT MEASURES

Then we will show how entanglement measures can be
applied to the problem of the half-property.

The formula〈φ2|Q|φ2〉 can be written as follows:

〈φ2|Q|φ2〉 = Tr(T (|φ2〉〈φ2|)Q) (172)

where T is pairwise UU∗ twirling, followed by random
permutation of pairs. SinceT is LOCC operation, the state
σ = T (|φ2〉〈φ2|) cannot have greater entanglement than the
stateφ2. Then, one can hope, that if entanglement ofσ is not
too large, then alsoTrσQ will be bounded. Write

σ =
p

2
(P̃⊥

+ ⊗ P+ + P+ ⊗ P̃⊥
+ ) + sP+ ⊗ P+

+ (1− p− s)P̃⊥
+ ⊗ P̃⊥

+ (173)
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with P̃⊥
+ = (I−P+)/(d

2−1) and probabilitiesp, s satisfying
p+ s ≤ 1. Then we have

TrσQ = p. (174)

A. Negativity

We will use the negativity [45], or more precisely a closely
related quantity‖̺Γ‖, which is monotonous under LOCC [46].
In our case, one finds that

‖σΓ‖ = 1

4
(2|1− 16s|+ |1 + 8s− 4p|+ 1 + 24s+ 4p).

(175)

Now monotonicity requires that

‖σΓ‖ ≤ ‖φ2Γ‖ = |a+ b|2 (176)

where a, b are Schmidt coefficients ofφ2. This inequality
together with (175) implies in particular that

p ≤ 1

4
− 6〈φ2|P+ ⊗ P+|φ2〉+ 2|a+ b|2. (177)

Note that for fixed Schmidt coefficientsa, b maximal overlap
with P+ ⊗ P+ cannot exceed|a + b|2/16. We then obtain,
that for those states which achieve this maximal overlap there
holds the half-property. However such states are simply states
of the form

φ2 = a|e1〉AA′ |e∗1〉BB′ + b|e2〉AA′ |e∗2〉BB′ (178)

with a, b,≥ 0. Since such states have positive matrixC we
end up with yet another proof of the half-property for this
class of states.

For states that are orthogonal toP+ ⊗ P+ negativity gives
bound3/4. We have also tried the relative entropy of entangle-
ment and the realignment but worse results have been obtained.

B. Half-property and Schmidt rank of some symmetric states

The possibility of application of entanglement measures to
the problem of the half-property can be also seen from the
following different perspective. Namely, one can classifystates
with respect to Schmidt rank. We say that a mixed state has
Schmidt rankk, if it can be written as a mixture of pure
states of Schmidt rankk, but cannot be written as a mixture
of pure states of Schmidt rankk − 1 (cf [47]). We then have
the following

Fact 1. The projectorQ has the half-property if and only if
for all statesσ of the form (173) which have Schmidt rank
≤ 2 we havep ≤ 1/2.

One direction is trivial, the other follows from twirling. Thus
if we are able to prove that all statesσ of the form (173) with
p > 1/2 have Schmidt rank> 2, we would solve the problem
of the half-property. To this end we should find a mapΛ such
thatI⊗Λ is nonnegative on Schmidt rank two pure states (such
maps are called two positive), and at the same time negative
on all statesσ with p ≥ 1/2. Indeed, this would mean that all
statesσ with p ≥ 1/2 have Schmidt rank> 2.

Using this approach one can also get bounds for our quantity
〈φ2|Q|φ2〉. For example we have checked that the following

two-positive mapΛ(A) = I TrA − 1/2A is negative forp >
3/4 which reproduces the bound obtained by means of product
states.

In this context we see why entanglement measures can be
applied to our problem. Namely, if an entanglement measure
of a given state is greater than maximum of this measure over
Schmidt rank two pure states, then the state must have Schmidt
rank two greater than 2.

C. Continuity of entanglement and bound entanglement

One could ask the question whether there exist a continuous
entanglement measure which would detect between three kinds
of states: 1) separable, 2) bound entangled, and 3) distillable
ones. There are measures such as the entanglement of forma-
tion which distinguish between 1 (for which it is zero) versus
2 and 3 (for which it is nonzero), and there is a measures,
the distillable entanglement, which distinguishes between 1
and 2 (for which it is zero) versus 3 (for which it is non
zero). But any measure that would distinguish between the
three classes of states by its value in a way that entanglement
of all bound entangled states is non zero but smaller than
entanglement of any distillable state must be non continuous.
Indeed for such a measure there must be a range of values
reserved for bound entangled states, creating a gap between
separable states and distillable ones. On the other hand we
can take a sequence of distillable states with a limit being a
separable state (and so with zero value of entanglement), but
the limit of the entanglement for this sequence must be at most
supremum of its value on bound entangled states. Note that
provided that NPT bound entangled states exist such a measure
would also increase under tensoring because then there would
exist bound entangled states whose tensor product is distillable
[20], as a matter of fact the same would then hold for the
distillable entanglement.
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APPENDIX

Lemma 5. The minimum value of
∑d
i=1 |ãi|2 subject to

∑d
i=1 ãi = z whereãi, z ∈ C is obtained by settings̃ai = z

d .

Proof: From the parallelogram identity we have

1

2
|ãi + ãj |2 = |ãi|2 + |ãj|2 −

1

2
|ãi − ãj | ≤ |ãi|2 + |ãj |2

(179)

with equality iff ãi = ãj . Thus whenever for somẽai, ãj we
haveãi 6= ãj we can replace them with two instances ofãi+ãj

2

decreasing the value of
∑d

i=1 |ãi|2 and leaving the constrain
satisfied. This implies that the optimal solution is to take all
ãi equal, i.e.̃ai = z

d .

Proposition 6. For all d ≥ 3 dimensional vectors~a and~b with
complex elements̃ai and b̃i and satisfying the constraints

d
∑

i=1

ãi =

d
∑

i=1

b̃i = 0,

d
∑

i=1

|ãi|2 +
d

∑

i=1

|b̃i|2 =
1

d
(180)
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the following equality holds

max
~a,~b

(

|ã1 + b̃1|2 + |ã1 + b̃2|2
)

=
3d− 4

d2
. (181)

Corollary 1. For d = 4 under this constraints we have

max
~a,~b

(

|ã1 + b̃1|2 + |ã1 + b̃2|2
)

=
1

2
. (182)

Proof of proposition 6: We denote function (181) asf ,
the vector of all̃ai as~a, the vector of all̃bi as~b, and we use
their polar decompositions

ãi = aie
iαi , b̃i = bie

iβi , ai, bi ∈ R. (183)

In optimizing functionf under the constraints (180) we
shrink the set of possible~a and~b in such a way to simplify
the form off and the constraints but keeping at least one of
the global maxima within the shrinking set.

1) Without loss of generality we can takẽa1 = a1 ≥ 0.
Thus we optimize

f(~a,~b) = |a1 + b̃1|2 + |a1 + b̃2|2 (184)

= 2a21 + b21 + b22 + 2a1(b1 cosβ1 + b2 cosβ2).
(185)

2) We can consider only~b for which

b1 cosβ1 + b2 cosβ2 ≥ 0. (186)

(If it is negative we can change its sign by multiplying
~b by eiπ and thus increasef ).

3) In maximizingf under the constraints it is always best
to set

ãi = −
a1
d− 1

(i > 1) (187)

b̃i = −
1

d− 2
(b̃1 + b̃2) (i > 2) (188)

Indeed whenever this setting is not used we can by
lemma 5 obtain some freedom in the second constraint
which we can use to increasea1 and one ofb1 or b2
without decreasingf . Thus it is enough to consider~a
and~b satisfying this setting, i.e. we optimize function
f(a1, b̃1, b̃2) subject to the following constraints

d

d− 1
a21 + b21 + b22 +

1

d− 2

∣

∣

∣
b̃1 + b̃2

∣

∣

∣

2

=
1

d
,

a1 ≥ 0, b1 cosβ1 + b2 cosβ2 ≥ 0. (189)

4) Further we show that it is enough to considerb̃1, b̃2 ∈ R

as replacing̃b1 with b̃′1 = b1 cosβ1 and b̃2 with b̃′2 =
b2 cosβ2 and changinga1 to a′1 to fit the constraint does
not decreasef , i.e.f(a′1, b̃

′
1, b̃

′
2) ≥ f(a1, b̃1, b̃2). Namely

we have

f(a′1, b̃
′
1, b̃

′
2) = 2a′21 + b21 cos

2 β1 + b22 cos
2 β2

+ 2a′1(b1 cosβ1 + b2 cosβ2) (190)

and the main constraint is

d

d− 1
a′21 + b21 cos

2 β1 + b22 cos
2 β2

+
1

d− 2
|b1 cosβ1 + b2 cosβ2|2 =

1

d
. (191)

First we show thata′1 ≥ a1 which is evident from the
difference of main constraints
d

d− 1
(a′21 − a21)

= b21 sin
2 β1 + b22 sin

2 β2

+
1

d− 2

(

∣

∣b1e
iβ1 + b2e

iβ2

∣

∣

2 − |b1 cosβ1 + b2 cosβ2|2
)

≥ 0. (192)

Next we use this difference to show thatf does not
decrease after the replacement

f(a′1, b̃
′
1, b̃

′
2)− f(a1, b̃1, b̃2)

= 2(a′21 − a21)− b21 sin2 β1 − b22 sin2 β2
+ 2(a′1 − a1)(b1 cosβ1 + b2 cosβ2)

≥ d− 2

d
(b21 sin

2 β1 + b22 sin
2 β2) ≥ 0. (193)

So we can focus on a problem with̃b1, b̃2 ∈ R

f(a1, b1, b2) = 2a21 + b21 + b22 + 2a1(b1 + b2) (194)
d

d− 1
a21 + b21 + b22 +

1

d− 2
(b1 + b2)

2 =
1

d
,

a1 ≥ 0, b1 + b2 ≥ 0. (195)

5) In analogous way we show that it is enough to consider
b1 = b2 ≥ 0 as takingb′1 = b′2 = |b1+b2|

2 and changing
a1 to a′1 to fit the constraint does not decreasef . Then
the optimization simplifies to

f(a1, b1) = 2(a1 + b1)
2 (196)

d

d− 1
a21 +

2d

d− 2
b21 =

1

d
, a1, b1 ≥ 0. (197)

6) We computeb1 from the constraint and substitute tof
which gives

f(a1) = 2

(

a1 +
√

x− ya21
)2

(198)

a1 ∈
[

0,
√

x/y
]

(199)

where

x =
d− 2

2d2
, y =

d− 2

2(d− 1)
. (200)

Functionf has its maximum when the expression in the
parenthesis has the maximum (as it is nonnegative). We
consider its derivative

∂

∂a1

(

a1 +
√

x− ya21
)

= 1− ya1
√

x− ya21
(201)

which is zero for

a⋆1 =

√

x

y2 + y
(202)

and the second derivative is negative ina⋆1 so the
maximum is equal to

f(a⋆1) = 2

(
√

x

y2 + y
+

√

xy

y + 1

)2

(203)

= 2x(y−1 + 1) =
3d− 4

d2
(204)
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The global maximum could also be on one of the
boundaries but ford ≥ 3 f(a⋆1) is always greater than
the values on the boundaries.
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