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Abstract— In this paper, we prove that the optimal power-
efficient transmission policy, which ensures a desired throughput
in a wireless network, is necessarily of threshold nature. Although
detailed properties of this policy might be quite complicated, we
show that it can be approximated by a suboptimal one, which is
both simple and practical. This suboptimal policy may lead to sub-
stantial improvement in power-efficiency (compared to the widely
used constant SNR policy), but at the expense of location-fairness.
To alleviate this deficiency, we introduce an adaptive threshold pol-
icy and show that it is both relatively power-efficient and location-
fair.

I. INTRODUCTION

Threshold policies in wireless networks, according to which
transmissions are attempted only if channel conditions are suffi-
ciently good, have been shown to be extremely power-efficient
[1-4]. However, their deficiency, i.e., the lack of location-
fairness, whereby a user in some location is more likely to trans-
mit than in others, has not been exposed and compensated for.
Along with proving optimality of threshold policies, this pa-
per shows that these policies indeed lack location-fairness and
designs an adaptive threshold policy where the threshold is ad-
justed so that location-fairness is guaranteed.

The outline of this paper is as follows: In Section II, the
model of the network under consideration is described. Per-
formance measures addressed are introduced in Section III. In
Section IV, the optimal transmission policy is proved to be of
threshold nature and shown to have limited practicality. Thus,
in Section V we present a simple, practical threshold policy
and show that it may result in up to 11 dB power-efficiency im-
provement without sacrificing throughput, or 90% throughput
improvement without additional power consumption. In ad-
dition, Section V exposes the lack of location-fairness of this
threshold policy, which may preclude its utilization in delay-
sensitive applications. Therefore, in Section VI, an adaptive
threshold policy is designed and its properties are investigated.
We show that up to 3.6 dB power-efficiency or 30% throughput
improvement can still be achieved, while maintaining location-
fairness. Finally, the conclusions are formulated in Section VII.
The proofs can be found in [5].

II. MODELING

The wireless network considered in this paper consists of a
mobile user, a channel, and a base station, described below:

User: Ateach time slot k& € Z, the user sends an information
packet to the base station with transmit power p(k) > 0. If
p(k) = 0, no transmission takes place.
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Channel: The channel affects the transmissions so that the
received SNR at time slot k, r(k), is given by

r(k) =e"®Pp(k), ke, (1)

where e*(%) is the channel gain, which combines path loss,
shadowing, thermal noise power, and other radio-wave prop-
agation effects, and z(k) € R is the log-channel gain.

The sequence of log-channel gains, {z(k),k € Z}, is as-
sumed to be a random process. Several additional assumptions
will also be imposed. The first one is the most general and will
be used in the derivation of the optimal transmission policy:

Assumption Al. Process {x(k), k € Z} is such that each (k)
is a continuous random variable with probability density func-
tion fyx satisfying fox)(v) > 0 Vv € R. |

The second assumption will be used to analyze the perfor-
mance of transmission policies investigated in this work:

Assumption A2. Process {z(k),k € Z} is a WSS Gaussian
random process with mean E{z(k)} = p, and autocovariance
function E{(z(k + £) — po)(w(k) — pz)} = o2p.(€), £ € Z,
where pi; € R, 05 > 0, p2(0) = 1, pa(€) = pa(—L), |p2(0)] <
1Y€ # 0, and limy_, o po () = 0, i.e., E{(z(k) — pz)?} = o2
is the variance of (k) and p,(¢) is the correlation coefficient
of x(k + ¢) and z(k). |

For performance comparison, we assume below a particular
expression for p,:

Assumption A3. Process {z(k),k € Z} is as in Assump-
tion A2, with p.(¢) = Gl + (1 = )¢5, ¢ € Z, where
0 <¢o,¢1,¢2 <1 u

Base Station: If a packet is sent at time slot k, i.e., if p(k) >
0, the base station attempts to decode the packet. Otherwise,
i.e., if p(k) = 0, no attempt is made. The (normalized) through-
put at time slot &, ¢(k), is assumed to be a function of the SNR
r(k),

t(k) = @(r(k)), kez, )
where @ : [0, 00) — [0, 1) depends on the modulation, demod-
ulation, and coding schemes employed, as well as the channel.

Several assumptions on ¢ will be introduced. The first one
will be used to derive the optimal transmission policy:

Assumption B1. Function ® : [0,00) — [0,1) is strictly in-
creasing, satisfies ®(0) = 0, and has a continuous, bounded
derivative ®'. [ ]

The second one, used in performance analysis, does not re-
quire ® to be differentiable:

Assumption B2. Function ® : [0,00) — [0, 1) is strictly in-
creasing and satisfies ®(0) = 0. ]

The third one, used in performance comparison, assumes
that @ corresponds to a network operating in a Rayleigh fading
channel using BFSK modulation, noncoherent demodulation,
and Reed-Solomon codes (see [5, 6] for more details):

U.S. Government work not protected by U.S. copyright

45



Assumption B3. Function @ : [0,00) — [0, 1) is defined by

MaXge(a,4,...32) 35°(¢, ), ifr >0,
®(r) = q€{2,4,...,32} 32
) {0, if r =0,
where
125
39 51 j 5(32—7)
pler) =, (5)0-(0-55)") (1-55) . n
=0

III. PERFORMANCE MEASURES

Typically, performance measures considered in wireless net-
works are the average throughput and, perhaps, the average
transmit power, defined on the infinite time interval. Unfor-
tunately, these averages may be deficient in delay-sensitive ap-
plications. The reason is that, even if, for example, the average
throughput is high, it does not imply that a reliable communi-
cation has taken place at every relatively short time interval. To
account for this deficiency, in this work we consider averages
defined on finite time intervals: the finite-time average transmit
power,

k2
Pk, ko) = m Z p(k), ki ko €Z, k1 <ky, (3)
k=k:
and the finite-time average throughput,

k2
Bk, ko) = ompg O HE), ki k2 €Z, ky < ky. (4)
k=k;
The finite-time averages (3) and (4) are random variables. In
this work, a number of their statistical properties are examined
and treated as performance measures:

Performance Measure P1. Mean of p(k1, ko), E{p(k1, k2)}.
Performance Measure P2. Mean of ¢(k1, k2), E{t(k1, k2)}.

Under the assumption of ergodicity, P1 and P2 coincide with
the infinite-time averages. Measure P2 reflects only the “aver-
age” behavior of £(k1, ko). It does not tell how #(k1, k2) would
depend on the user’s location relative to the base station. This
shortcoming is alleviated by the following measure:

Performance Measure P3. Conditional mean of #(k1, k2)
given z(k1) = z, € R, i.e., E{t(k1, ko)|z(k1) = 20 }.

Since a large (small) z(k;) typically corresponds to the user
being in a good (bad) location at time slot k;, P3 expresses
the dependency of ¢(k1, k2) on location and, thus, characterizes
location-fairness of the network.

Another measure of interest is the number of consecutive
time slots without a transmission, referred to as the downtime.
To formalize, let Z denote the set of positive integers and let

d(k)= min{¢ € Zy :p(k+¢) >0}, ifp(k—1)>0, p(k)=0,
o0, otherwise.

Then, whenever d(k) > 0, a period without a transmission be-
gins at time slot & and lasts for d(k) time slots, i.e., the down-
time is d(k). Here, we are interested in:

Performance Measure P4. Mean downtime, E{d(k)d(k)>0}.

IV. THRESHOLD NATURE OF OPTIMAL
TRANSMISSION POLICY

In this Section, we prove that, to communicate information
in the most power-efficient manner, the user must remain silent

whenever the channel condition is worse than some threshold,
and must transmit otherwise.

Definition 1. A transmission policy g is a function g : R —
[0, 00) that, at each time slot k& € Z, maps the log-channel gain
z(k) to the transmit power p(k), i.e., p(k) = g(z(k)). |

Thus, a transmission policy at each time slot & decides
whether the user would send a packet, i.e., p(k) > 0, or re-
main silent, i.e., p(k) = 0, and, in the former case, with what
power to transmit.

Definition 2. A transmission policy g is a threshold policy if
there exists 7 € R such that g(x(k)) > 0 if (k) > 7 and
g(x(k)) =0if x(k) <.

Hence, a threshold policy at each time slot % instructs the
user to send a packet if z(k) > T, i.e., the channel condition is
better than some threshold 7, and remain silent otherwise.

Problem 1. Consider a network described by (1) and (2), with
x(k) specified by Assumption Al and ® by Assumption B1.
Given k1, ke € Z, k1 < ko, and 0 < ¢ < lim, o, ®(r), find
a transmission policy g that minimizes the mean of the average
transmit power from time slot k; to ks, i.e., E{p(k1, k2)}, sub-
ject to the mean of the average throughput over the same time
slots, i.e., E{t(k1, k2)}, being equal to c. [ ]

A network operating under the optimal transmission policy,
i.e., the solution to Problem 1, may be regarded as having
the most power-efficient operation since E{p(k1, k2)} is min-
imized while E{#(k1, k2)} = c is achieved.

Theorem 1. If g* is a solution to Problem 1, then g* is a thresh-
old policy.

Theorem 1 guarantees neither the existence of a solution to
Problem 1 nor its uniqueness. Its value comes from its contra-
positive and generality: If a transmission policy is not a thresh-
old policy, it is not the most power-efficient, irrespective of the
type of modulation, demodulation, coding, and channel, as long
as they satisfy mild assumptions (Assumptions Al and B1).

A result stronger than Theorem 1—the analytical solution to
Problem 1—but valid only for a class of & is stated next:

Theorem 2. If, in addition to Assumption Bl, ® is strictly con-
cave, then Problem 1 has a unique solution, g*, given by

—2(0)(@) = (@ (0)e~ER=T)) | ifa(k) > T

N e e , ifz T,

where (®')~! is the inverse of ® and T € R is the unique
solution to

o k2

[ (@) @) (i Y e () do = e

T k=k;

Under the optimal transmission policy g*, the throughput is
tk) = {‘1’(@’>1(@’<0>e“<k“ ), ifalk) >

0, otherwise.

otherwise,

Moreover, t(k) is strictly increasing with respect to x(k) for
x(k) > 7%, and limy (i) 00 t(k) = lim, o0 (7).

In Theorem 2, the threshold 7* can be evaluated numerically
via the bisection method (see [5] for more details).

Utilization of the g* of Theorem 2 requires the knowledge
of ® and fy), b = k1,..., ko, as well as the strict concav-
ity of ®. These requirements are seldom met in practice, for
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Fig. 1. Optimal throughput vs. log-channel gain characteristics (solid curve)
and its approximation (dashed curve)

a variety of reasons. First, the channel, and hence ®, is often
uncertain. Second, even if the channel is known, analytical ex-
pression for ® may still be unavailable for certain codes, such
as convolutional or turbo codes, for which performance usually
cannot be evaluated analytically. Consequently, &' may only be
computed numerically with limited accuracy. Third, the fy(x)’s
depend on the user’s behavior and, thus, are prone to model-
ing errors. Finally, ® may not be concave, as was the case in
Assumption B3. Due to these reasons, the g* of Theorem 2 is
of limited applicability. Nevertheless, this theorem leads to a
suboptimal but practical transmission policy derived next.

V. SIMPLIFIED AND SUBOPTIMAL THRESHOLD
POLICIES

A. Policy Formulation

According to Theorem 2, t(k) under ¢g* is related to
z(k) qualitatively as shown in Figure 1 by the solid
curve. The exact nature of this curve depends on the term
O(()~1(®'(0)e~=(R)=77))), which is fairly complicated and
may be sensitive to modeling errors, as mentioned above. To
avoid these problems, we consider a simple approximation of
this curve by a step function, as shown in Figure 1 by the dashed

tdv

curve, i.e.,
Hk) = { ' s)

where 0 < tg < lim,_,o, ®(r) is the desired throughput and
7 € R s the threshold. If ¢(k) is defined by (5), it follows from
(1) and (2) that

ifz(k) >,

. keZ
otherwise, ’

z(k)

rae * ) ifx(k) > T,

otherwise,

where r4 > 0 is the desired SNR defined by rq = ®71(t,).

Policy (6), which instructs the user to regulate r(k) at rq if
x(k) > 7 and remain silent otherwise, is referred to as the sim-
plified threshold policy. It is rather practical since it does not
depend on @ and the f,()’s and contains only two free pa-
rameters, rq and 7. When r; and 7 are chosen to minimize
E{p(k1, k2)} subject to some desired E{t(k1, k2)}, we refer to
(6) as the suboptimal threshold policy.

Policy (6) is not new; it has been studied in recent literature
[1-4]. The novelty here is in the analysis of its performance
(Section V-B), which reveals not only its strength (Section V-
C), but also its weaknesses (Sections V-D and V-E) that moti-
vate the design of an adaptive threshold policy (Section VI).

k ez, (6)

B. Performance Analysis

Theorem 3. Consider a network described by (1) and (2), with
x(k) specified by Assumption A2 and ® by Assumption B2. Sup-
pose it operates under the simplified threshold policy (6). Then,

for any ki,ky € Z, k1 < ko, and any k € Z, Performance
Measures P1-P4 are given by
o2
E{f)(kla kQ)} = TdeTiqul(Tz + Um) £ E{ﬁ}>
E{t(ki. k2)} = @(ra)Q1(r2) = E{t},

t| r) 1l +sgn(Ze=te _ 7o
E{t(ky, k)la(ky) = 2o} = ‘P(Kd)[ + sen( Z )
= T (O ey
"y Ql(w)} = E{ilro},
E{d(k)|d(k)>0}= 1—Qi(72) SB{dld> 0},

Ql(Tz)_QQ(Tz;pz(l))
where 7, = T2 K=ky — k1 + 1, Q1(z) = \/%f;oei% dv,

w2 4w?—2pvw
2(1-p2)

and Q2 (z; p) = I /—11in L) e dw dv.

In Theorem 3, 7, is the normalized threshold since the user
would transmit if and only if 1(12—_”’” > 7., and z(kg—_”’”
is a standard Gaussian random variable. Parameter K is
the number of time slots between k; and ks. We write
E{p(k1,k2)} and E{t(k1,k2)} as E{p} and E{¢} to stress
their independence with respect to ky and ko. We also write
E{t(k1, ko)|z(k1) = x,} as E{t x|z, } to stress its dependence
on K, and E{d(k)|d(k) > 0} as E{d|d > 0} to stress its in-
dependence with respect to k. Note that (); is the standard
@-function and Q)5 is its two-dimensional counterpart.

The performance of the simplified threshold policy (6) will
be compared to that of the widely adopted constant SNR policy
[7,8], defined as

p(k) =rae™* ™, ke, (7)
where rq > 0 is the desired SNR. This policy, as its name sug-
gests, instructs the user to always transmit and maintain a con-
stant SNR, 7(k) = r4, despite the channel conditions.

Theorem 4. Consider a network described by (1) and (2), with
x(k) specified by Assumption A2 and ® by Assumption B2. Sup-
pose it operates under the constant SNR policy (7). Then, for
any ki,ky € Z, k1 < ko, Performance Measures P1-P3 are
given by

E{p(k1, k2)} = rae 4= 2 B{p},
B{i(ks, k2)} = B(ra) 2 B{i},
E{i(ky, ko)|z(k1) = a0} = ®(ra).

Similar to Theorem 3, E{p(k1,k2)} and E{t(k1, k2)} in
Theorem 4 are written as E{p} and E{t} to emphasize their
independence with respect to k1 and k5. Yet, unlike Theo-
rem 3, E{¢(k1, k2)|z(k1) = =, } here is independent of k; and
ks. Furthermore, E{d(k)|d(k) > 0} is not computed since the
constant SNR policy (7) has zero downtime.

Theorems 3 and 4 are used next to compare the performance
of policies (6) and (7). For comparison purpose, we adopt As-
sumptions A3 and B3 and let p, = 2, 0, = 2, {, = 0.6,
¢ = 0.99999, and ¢» = 0.98.

C. Power-Efficiency and Throughput Comparisons

Figure 2 illustrates the performance of policies (6) and (7) in
terms of E{p} and E{¢}, i.e., Performance Measures P1 and P2.
Each point in the gray region is feasible in the sense that it cor-
responds to a specific r4 and 7, of the simplified threshold pol-
icy, referred to as a realization of the policy for that point. For
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Fig. 2. Throughput vs. power characteristics of the threshold and constant
SNR policies
[ @B ] 7 [ [ra(@B] 7 |
Ay 16.75 —0.076 By 20.09 | —1.006
Aq 13.92 —0.593 By 16.63 —1.629
As 13.05 —0.959 B3 15.36 —1.941
Ay 12.60 —1.329 By 14.39 —2.240
As 12.31 —1.770 Bs 13.60 | —2.565
Ag 12.18 | —2.380 Bg 12.86 | —3.023

TABLE I
REALIZATIONS OF THE SIMPLIFIED THRESHOLD POLICY

example, points A1—Ag and B1—Bg correspond to realizations
listed in Table I. Each point on the dashdot curve corresponds
to a realization of the suboptimal threshold policy, where r4
and 7, are selected so that E{p} is minimized subject to some
desired E{#}; e.g., A1 and Bj. Each point on the solid curve
corresponds to a realization of the constant SNR policy; e.g.,
C1 corresponds to gy = 12.14dB. (The meaning of the thin
solid curves in Figure 2 will be explained in Section VI-C.)

Analyzing Figure 2 we observe that:

(a) To get E{t} = %, the suboptimal threshold policy needs
E{p} = 1.09dB (point A,), whereas the constant SNR
policy needs E{p} = 12.14dB (point C}). Thus, the
former is 11.05 dB more power-efficient than the latter.

(b) With E{p} = 12.14dB, the suboptimal threshold policy
gives E{t} = 0.64 (point By), whereas the constant SNR
policy gives E{t} = % (point C4). Hence, the former
yields 92% throughput improvement over the latter.

(c) Depending on the choice of r4 and 7., the simplified
threshold policy may slightly (e.g., points Ag and Bg) or
significantly (e.g., A and Bs) outperform the constant
SNR policy (e.g., C1). It may also underperform, if 4
and 7, are not chosen properly (e.g., any point below and
to the right of C1).

(d) Observations (a)—(c) are independent of (g, (1, (2, and i,
because (o, (1, and {2 do not affect E{p} and E{t}, and
a change in y, shifts the dashdot and solid curves and the
gray region in Figure 2 horizontally at the same rate.

From these observations, we conclude that the simplified

and suboptimal threshold policies provide remarkable improve-
ments in power-efficiency and throughput over the constant
SNR policy. These improvements take place because the user

E{ti00l2,}

Fig. 3. Location-fairness of realizations for points A1—Ag and C1

- B

== B3

- - Bs

Bs
e G

E{ti00|20}

Fig. 4. Location-fairness of realizations for points B1—Bg and C

is not forced to transmit when the channel conditions are bad,
thereby saving a substantial amount of transmit power that can
be allocated for more aggressive transmissions when the chan-
nel conditions are good. The simplified and suboptimal thresh-
old policies, however, are inferior to the constant SNR policy in
terms of location-fairness and downtime, as shown below.

D. Lack of Location-Fairness

Recall that location-fairness is characterized by
E{t(k1,ko)|z(k1) = =z,} or E{tk|z,}, i.c., Performance
Measure P3, and that a large (small) x,, corresponds to a good
(bad) location. Clearly, if E{¢x|z,} is roughly the same for
all z, € R, location-fairness is ensured. Figures 3 and 4
represent E{100|2,} as a function of “<—£= for realizations of
the simplified threshold policy for pointg A1-Ag and B1-Bg
(suboptimal threshold policy for points A; and B;) and
realization of the constant SNR policy for point C;j. From
these figures we observe that:

(a) The suboptimal threshold policy has the worst location-
fairness, while the constant SNR policy has the best. The
simplified threshold policy lies somewhere in between,
depending on the realizations.

(b) Realizations for points Aj, Ao, ..., Ag yield ever im-
proving location-fairness (see Figure 3), ever increasing
E{p} (see Figure 2), and the same E{t} = 1. Hence,
for a fixed E{t}, the more “uniform” E{tx|z,} is, the
larger E{p} would be, i.e., there is a trade-off between
location-fairness and power-efficiency improvement.

(c) Realizations for points Bi, Bs, ..., Bg yield ever im-
proving location-fairness (see Figure 4), ever decreasing



[ [ F{dd>0}] [ [ E{dd>0}]
Ay 23.38 By 12.94
As 16.37 By 9.68
As 13.27 B3 8.55
Ay 11.04 By 7.68
As 9.14 Bs 6.90
Ag 7.32 Bg 6.03
TABLE II

MEAN DOWNTIME OF THE SIMPLIFIED THRESHOLD POLICY

E{%} (see Figure 2), and the same E{p} = 12.14dB.
Thus, for a fixed E{p}, the more “uniform” E{tx|z,}
is, the smaller E{#} would be, i.e., there is a trade-off
between location-fairness and throughput improvement.

E. Long Downtime

Recall that mean downtime is represented by E{d(k)|d(k) >
0} or E{d|d > 0}, i.e., Performance Measure P4. Clearly,
small E{d|d > 0} is desirable, particularly in delay-sensitive
applications. Table II lists E{d|d > 0} for realizations of the
simplified threshold policy for points A;—Ag and B1—Bg (sub-
optimal threshold policy for points A; and By). From Table II
we observe that:

(a) The suboptimal threshold policy has the longest down-

time, while the constant SNR policy has zero downtime.
The simplified threshold policy again lies somewhere in
between, depending on the realizations.
Realizations for points Ay, As, ..., Ag result in ever de-
creasing mean downtime. Along with Figure 2, they
imply that, for a fixed E{#}, decreasing E{p} increases
E{d|d > 0}, ie., trade-off exists between power-
efficiency improvement and downtime.

(c) Realizations for points By, Ba, ..., Bg exhibit the same
trends as Aq, As,..., Ag. Along with Figure 2, they
imply that, for a fixed E{p}, increasing E{t} increases
E{d|d > 0}, i.e., trade-off exists between throughput im-
provement and downtime.

As it follows from the above observations, a network op-
erating under the suboptimal threshold policy is very power-
efficient but suffers from lack of location-fairness and long
downtime, relative to the constant SNR policy. The same can be
said, although to a lesser extent, about the simplified threshold
policy. Therefore, the simplified and suboptimal threshold poli-
cies may be suitable only for delay-insensitive applications and
are inadequate otherwise. This necessitates the development of
an adaptive threshold policy discussed next.

(b)

VI. ADAPTIVE THRESHOLD POLICY
A. Policy Formulation

The lack of location-fairness of the simplified threshold pol-
icy (6) is due to the fact that the threshold 7 is independent of
the user’s location relative to the base station. Obviously, while
the user is in a good location, the log-channel gain z(k) is on
the average large and the condition z(k) > 7 is more likely
to be satisfied than when the user is in a bad location. Thus,
to compensate for this “built-in” unfairness, the threshold level
should be adjusted to location, for instance, according to

z(k)>71+z(k—Lk—1), (8)

where Z(k — L, k — 1) is the moving average of the log-channel
gain over the past L € Z_ time slots, i.e.,

1 L
Z;x(/{f@.

When L — oo, the averaging in (9) eliminates the location-
dependence of Z(k — L,k — 1); when L = 1, there is no aver-
aging. Therefore, there must be an L* such that fading dips are
averaged out but the location-dependence of Z(k — L,k — 1)
is preserved. With this L*, as it follows from (8) and (9), the
new threshold, 7 + Z(k — L*, k — 1), is large when the user
is in a good location and small otherwise. This implies that the
user has approximately equal probability to transmit, regardless
of its location vis-a-vis the base station, and (8) would prevent
transmission mostly under conditions of occasional fading dips.
Introducing the quantity

Z(k)=x(k) —x(k— L,k —1), (10)
(8) can be written as Z(k) > 7. Using this expression, we define
the adaptive threshold policy as

rae ") if # (k) > 7T,
p(k) = {Od (£) (1

otherwise,
where r4 > 0 is the desired SNR and 7 € R is the threshold.

Z(k—Lk—1)= 9)

keZ,

B. Performance Analysis

Theorem 5. Consider a network described by (1) and (2), with
x(k) specified by Assumption A2 and ® by Assumption B2. Sup-
pose it operates under the adaptive threshold policy (9)—(11).
Then, for any ki,ky € Z, k1 < ko, and any k € Z, Perfor-
mance Measures P1—P4 are given by

E{p(kr, ks)} = rde”é%@lm + 02p22(0))
E{t(k1,k2)} = ®(rq)Q1(7z) E{ﬂ

£ E{p},

— Paz () 2 “”)

E{f(k1, k) |z (k1) m

:wo}—

£ E{EK|.’EO},
o 1—Q1(7z) N
BB > 0k = G ) = Qa s pa1)) 1> 0F
where T; = U—;,K:l@—kl—&—l
U% |:1+Z_L2 ;ZIPJL €1i|
pa(l) = (L4 D)pal0) = & i [alpa £+ 61)
‘ 1*%*%2:2:151/%@1) ’
1L
) = 20 EZE 1t 0)

Viti - &Y helt)

In Theorem 5, 7; is the normalized threshold since the user
would transmit if and only if Z(k) > 7z, and (5 ) is a standard
Gaussian random variable. As in Theorem 3, K is the number
of time slots between k; and ks, and the notations E{p}, E{¢},
E{tk|z,}, and E{d|d > 0} are utilized to emphasize their in-
dependence with respect to ki, k2, k, and dependence on K.

Theorem 5 is used next to compare the performance of the
adaptive threshold policy (9)—(11) with the simplified threshold
policy (6) and the constant SNR policy (7).



| _[ra@B)] = [ L |

Ay | 1330 [ —0.821 [ 1860

A || 12.42 | —1.550 | 820

B; [| 1386 | —L.711 [ 900

Bs || 12.01 | —2.264 | 920
TABLE III

REALIZATIONS OF THE ADAPTIVE THRESHOLD POLICY
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Fig. 5. Location-fairness of the adaptive threshold policy

C. Power-Efficiency and Throughput Comparisons

Recall from Section V-C that each point in the gray region of
Figure 2 corresponds to a realization of the simplified threshold
policy. It turns out that each of these points also corresponds to
a realization of the adaptive threshold policy, for some r4, 7,
and L. Hence, the simplified and adaptive threshold policies
have identical performance, in terms of E{p} and E{t}. This
implies that the adaptive threshold policy also provides remark-
able improvements in power-efficiency and throughput over the
constant SNR policy, if 74, 7z, and L are chosen appropriately.

The thin solid curves in Figure 2 are used to illustrate the
effect of L on performance. The curve labeled “L = 2 is
such that, if a realization of the adaptive threshold policy has
L = 2, the resulting E{p} and E{t} must lie on or to the right of
this curve, irrespective of r4 and 73. The curves labeled “L =
20”7, “L = 2007, and “L = 200000” are obtained similarly.
Hence, a relatively large L is necessary for power-efficiency
and throughput improvements to be substantial.

D. Improvements in Location-Fairness and Downtime

Recall from Sections V-D and V-E that the simplified thresh-
old policy is location-unfair and has long downtime, relative to
the constant SNR policy. Here, we show that these drawbacks
can be alleviated to a certain extent using the adaptive thresh-
old policy. Specifically, for points As, Ag, Bs, and Bg of Fig-
ure 2, we construct realizations of the adaptive threshold policy,
which ensure excellent location-fairness and shorter downtime.

[ [ E@ds0y] [ [ Edd>0)]
Asg 9.13 Bs 5.96
Ag 6.36 Bg 4.86
TABLE IV

MEAN DOWNTIME OF THE ADAPTIVE THRESHOLD POLICY

Table III lists realizations of the adaptive threshold policy for
points As, Ag, Bs, and Bg of Figure 2. Figure 5 represents
the resulting location-fairness, and Table IV lists the resulting
mean downtime.

Comparing Figures 3 and 4 with Figure 5, we observe that,
for points As, Ag, Bs, and Bg, realizations of the adaptive
threshold policy ensure excellent location-fairness not achiev-
able by realizations of the simplified threshold policy. Compar-
ing Table II with Table IV, we observe that, for points As, Ag,
Bs, and Bg, realizations of the adaptive threshold policy, on the
average, reduce mean downtime by 12%.

Although realizations of the adaptive threshold policy for
points A;—A4 and B1—B, can also be constructed, the resulting
improvements in location-fairness and downtime are insignifi-
cant. Therefore, we conclude that the adaptive threshold policy
is superior to the simplified threshold policy when the power-
efficiency and throughput improvements over the constant SNR
policy are moderate, i.e., up to 3.6 dB and 30%, respectively.

VII. CONCLUSIONS

In this paper, power-efficient operation of wireless networks
is analyzed. Under general assumptions, it is proved that the op-
timal transmission policy, which ensures a desired throughput,
is necessarily of threshold nature. Unfortunately, detailed prop-
erties of this policy are fairly complicated and sensitive to chan-
nel and communication system models. Therefore, we formu-
lated and analyzed a simplified threshold policy defined by two
parameters—the desired SNR, r4, and threshold, 7. We showed
that this policy, optimized with respect to r4 and 7, offers up to
11 dB power-efficiency or 90% throughput improvement, com-
pared to the constant SNR policy. Further analysis revealed that
this policy lacks location-fairness and leads to long downtime.
Although this behavior might be acceptable in data communica-
tions, voice and other delay-sensitive applications might not tol-
erate these deficiencies. Therefore, we proposed and analyzed
an adaptive threshold policy, according to which 7 is adapted
using a moving average of the log-channel gain. We showed
that this policy recovers location-fairness and reduces down-
time. In this case, 3.6 dB power-efficiency or 30% throughput
improvement can be achieved. Based on the above, this pol-
icy may be recommended as an alternative to the constant SNR
policy for delay-sensitive applications.
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