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Abstract—Video scene graph generation (VidSGG) aims to
identify objects in visual scenes and infer their relationships
for a given video. It requires not only a comprehensive un-
derstanding of each object scattered on the whole scene but
also a deep dive into their temporal motions and interactions.
Inherently, object pairs and their relationships enjoy spatial
co-occurrence correlations within each image and temporal
consistency/transition correlations across different images, which
can serve as prior knowledge to facilitate VidSGG model learning
and inference. In this work, we propose a spatial-temporal
knowledge-embedded transformer (STKET) that incorporates
the prior spatial-temporal knowledge into the multi-head cross-
attention mechanism to learn more representative relationship
representations. Specifically, we first learn spatial co-occurrence
and temporal transition correlations in a statistical manner. Then,
we design spatial and temporal knowledge-embedded layers
that introduce the multi-head cross-attention mechanism to fully
explore the interaction between visual representation and the
knowledge to generate spatial- and temporal-embedded represen-
tations, respectively. Finally, we aggregate these representations
for each subject-object pair to predict the final semantic labels
and their relationships. Extensive experiments show that STKET
outperforms current competing algorithms by a large margin,
e.g., improving the mR@50 by 8.1%, 4.7 %, and 2.1% on different
settings over current algorithms.

Index Terms—Video Scene Graph Generation,
Temporal Knowledge Learning, Vision and Language

Spatial-

I. INTRODUCTION

Scene graph generation (SGG) [[1]-[3] aims to depict a
visual scene as a structured graph, where nodes correspond
to semantic objects and edges refer to the corresponding rela-
tionships. It is treated as a promising approach to bridge the
significant gap between vision and natural language domains,
due to its capacity to represent accurately the semantics of
visual contents in the holistic scene. Recently, lots of efforts
have been dedicated to demonstrating its efficacy in numerous
visual reasoning tasks, including video action recognition [4]—
[6]], video segmentation [7]-[9], video captioning [10]—[13],
and video question answering [14]-[17]. However, the intricate
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Fig. 1. Qualitative results of our proposed STKET. The green color indicates
visual relationships that emerge in the current image. The gray color indicates
visual relationships that disappeared in the current image.

spatial interactions among semantic objects pose a significant
challenge to learning visual relationships in static images [18]—
[20]]. An even more substantial challenge exists in the task of
generation scene graphs in videos (VidSGG) [21]-[23], as it
further requires exploring temporal motions and interactions,
hence making VidSGG a formidable yet unresolved task.

Current works [24], [25] primarily focus on aggregating
object-level visual information from spatial and temporal
perspectives to learn relationship representation for VidSGG.
In contrast, humans rely on not only visual cues but also
accumulated prior knowledge of spatial-temporal correlations
to discern ambiguous visual relationships. As illustrated in
Figure [T} prior knowledge consists of two aspects. 1) Spatial
co-occurrence correlations: the relationship between certain
object categories tends toward specific interactions. Given the
subject and object of person and sandwich, their relationship
tends to be eating or holding instead of wiping. 2) Temporal
consistency/transition correlations: the relationship of a given
pair tend to be consistent across continuous video clip or have
a high probability of transit to another specific relationship.
Given the subject and object of person and cup with the
relationship of holding in the current frame, it is likely to



IEEE TRANSACTIONS ON IMAGE PROCESSING

keep the holding relationship or transit to the relationship
of drinking. Consequently, integrating these correlations can
effectively regularize spatial prediction space within each
image and sequential variation space across temporal frames,
thereby reducing ambiguous predictions.

In this work, we find that initializing spatial-temporal
knowledge embeddings with statistical correlations can bet-
ter guide model learning spatial-temporal correlations, and
the multi-head cross-attention mechanisms can better inte-
grate spatial-temporal correlations with visual information. To
this end, we propose a novel spatial-temporal knowledge-
embedded transformer (STKET), which introduces multi-
head cross-attention layers to incorporate the prior spatial-
temporal knowledge for aggregating spatial-temporal contex-
tual information. Specifically, we first initialize the spatial
co-occurrence and temporal transition correlations via statis-
tical matrices from the training set and then embed these
correlations into learnable spatial-temporal knowledge repre-
sentations. Then, we design a spatial-knowledge embedded
layer to exploit the within-image co-occurrence correlation
to guide aggregating spatial contextual information and a
temporal-knowledge embedded layer to incorporate cross-
image transition correlations to help extract temporal contex-
tual information, which can generate spatial- and temporal-
embedded relationship representations, respectively. Finally,
we aggregate both spatial- and temporal-embedded relation-
ship representations of each object pair to predict the seman-
tic labels and relationships. Compared with current leading
competitors, STKET enjoys two appealing advantages: 1)
Integrating these correlations can help to better aggregate
spatial and temporal contextual information and thus learn
more representative relationship representation to facilitate
VidSGG. 2) Incorporating these correlations can effectively
regularize relationship prediction, which can evidently reduce
the dependencies on training samples and thus dramatically
improve the performance, especially for the relationships with
limited samples.

The contributions of this work can be summarized in
three folds. First, we propose a spatial-temporal knowledge-
embedded transformer (STKET) that incorporates spatial co-
occurrence and temporal transition correlations to guide ag-
gregating spatial and temporal contextual information, which,
on the one hand, facilitates learning more representative re-
lationship representation and, on the other hand, regularizes
predication space to reduce the dependencies on training
samples. To our knowledge, this is the first attempt to explicitly
integrate spatial and temporal knowledge to promote VidSGG.
Second, we introduce unified multi-head cross-attention mech-
anisms to integrate the spatial and temporal correlations via the
spatial and temporal knowledge-embedded layers, respectively.
Finally, we conduct experiments on the Action Genome dataset
[26] to demonstrate the superiority of STKET. It obtains an
obvious performance improvement over current state-of-the-
art algorithms, especially for the relationships with limited
samples, e.g., with the 9.98%-23.98% R50 improvement for
the top-10 least frequency relationships compared with the
previous best-performing algorithm. Codes are available at
https://github.com/HCPLab-SYSU/STKET!.

II. RELATED WORK
A. Image Scene Graph Generation

Over the past decade, scene graph generation (SGG) [27]-
[30] has attracted considerable interest across various commu-
nities due to its ability to precisely present the semantics of
visual contents of complex visual scenes. It aims to identify all
objects and their visual relationships within an image, neces-
sitating visual perception and natural language understanding.
Hence, much effort has been invested in aligning visual and
semantic spaces for relationship representation learning [31]—
[33]]. Further research has highlighted the importance of each
subject-object pair for inferring ambiguous relationships. Xu
et al. [[1]] propose to iteratively refine predictions by passing
contextual messages, and Zellers et al. [34] capture a global
context using a bidirectional LSTM. Their impressive per-
formance demonstrates that spatial context is crucial for rec-
ognizing visual relationships. Therefore, subsequent research
underlines the role of spatial context in generating scene
graphs. To this end, many works adopt graph convolutional
networks [35]] or similar architectures to pass messages among
different objects. Chen et al. [36] built a graph that associates
detected objects according to these statistical correlations and
employs it to learn the context among different objects to
regularize prediction. Tang et al. [37] design a dynamic tree
structure to encode the context among different object regions
efficiently. With the impressive progress of transformer [38],
more and more works propose utilizing this kind of model to
learn more representative features from spatial context. Cong
et al. [39] introduce an encoder-decoder architecture to reason
about the visual feature context and visual relationships, using
different types of attention mechanisms with coupled subject
and object queries. Kundu et al. [40] propose contextualized
relational reasoning using a two-stage transformer-based archi-
tecture for effective reasoning over cluttered, complex seman-
tic structures. Despite impressive progress on static images,
leading algorithms may suffer significant performance drops
when applied to recognize dynamic visual relationships in
videos because it requires an in-depth exploration of temporal
consistency/transition correlations across different images.

B. Video Scene Graph Generation

Building on successfully exploring the spatial context within
images, researchers have explored the spatial context and
temporal correlation simultaneously in video scene graph gen-
eration. With the advent of ImageNet-VidVRD [21]], a bench-
mark of video visual relation detection, numerous approaches
[22], [23]], [41]-[43]] have been proposed to employ object-
tracking mechanisms to dive into temporal correlations among
different image frames. Qian et al. [22]] propose to use a graph
convolution network to pass messages and conduct reasoning
in the fully-connected spatial-temporal graphs. Similarly, Tsai
et al. [41] design a gated spatiotemporal energy graph that
exploits the statistical dependency between relational entities
spatially and temporally. Recently, Teng et al. [43|] propose
a new detect-to-track paradigm by decoupling the context
modeling for relation prediction from the complicated low-
level entity tracking. Zheng et al. [23]] propose a unified one-
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stage model that exploits static queries and recurrent queries
to enable efficient object pair tracking with spatiotemporal
contexts. However, introducing object-tracking models results
in high computational cost and memory consumption and
quickly overwhelms the valuable information due to many
irrelevant frames, leading to sub-optimal performance.

An alternative line of research tries to address the task
of video scene graph generation based on detected object
proposals. Compared with tracking-based VidSGG algorithms,
this kind of method focuses on modeling the temporal context
in the narrow sliding window, avoiding the prediction shift
resulting from the inconsistency among tracking proposals.
Recently, Cong et al. [25]] propose a strong baseline that adopts
a spatial encoder and a temporal decoder to extract implicitly
spatial-temporal contexts. This work demonstrates that the
temporal correlation is crucial for inferring dynamic visual
relationships. Li et al. [24] propose a novel anticipatory pre-
training paradigm to model the temporal correlation implicitly.
Wang et al. [44] propose to explore temporal continuity
by extracting the entire co-occurrence patterns. Kumar et
al. [45] further propose to spatially and temporally localize
subjects and objects connected via an unseen predicate with
the help of only a few support set videos sharing the com-
mon predicate. These works underscore the critical role of
temporal correlation in inferring dynamic visual relationships
but overlook the essential prior knowledge of spatial-temporal
correlations. Differently, we propose to incorporate spatial-
temporal knowledge with multi-head cross-attention layers to
learn more representative and discriminative feature represen-
tation to facilitate VidSGG.

Notably, exploiting an object detector to facilitate video
understanding is common. Recently, Wang et al. [46] propose
a novel SAOA framework to introduce the spatial location
provided by the detector for egocentric action recognition,
which aims to reason the interaction between humans and
objects from an egocentric perspective. Although aligning
local object features and location proposals to capture the
spatial context, the SAOA framework ignores the crucial
temporal correlation across continuous frames, which is the
main distinction between it and our proposed STKET.

C. Knowledge Representation Learning

Recent advances in deep learning have allowed neural
networks to learn potent representations from raw training
data for various tasks [38]], [47]-[49]]. However, solely using
these vanilla networks may achieve poor performance, espe-
cially in weakly supervised learning [50]], [51] and domain
adaption [52]. To address this challenge, lots of efforts have
been made to integrate domain prior knowledge into deep
representation learning, resulting in remarkable progress in
numerous computer vision tasks, such as few-shot image
recognition, facial expression recognition, visual navigation,
scene graph generation [36], [53]-[57]]. Specifically, Peng et
al. [53] propose a novel knowledge transfer network that
jointly incorporates visual feature learning, knowledge infer-
ring, and classifier learning to fully explore prior knowledge
in the few-shot task. Similarly, Chen et al. [54] propose a

knowledge-guided graph routing framework, which unifies
prior knowledge of statistical label correlations with deep
neural networks for multi-label few-shot learning. Pu et al.
[55] introduce the prior knowledge between action unit and
facial expression to facilitate facial expression recognition.
Yang et al. [57] incorporate the prior semantic knowledge
into a deep reinforcement learning framework to address
the semantic navigation task. Chen et al. [36] incorporate
statistical correlations into deep neural networks to facilitate
scene graph generation, in which these statistical correlations
between object pairs and their relationships can effectively
regularize semantic space and make prediction less ambiguous.
However, most of these works merely consider prior spatial
knowledge of statistic images, and VidSGG involves spatial-
temporal contextual information. In this work, we propose to
learn spatial-temporal knowledge and incorporate it into the
multi-head cross-attention mechanism to learn more represen-
tative relationship representations to facilitate VidSGG.

III. METHOD

Overview. In this section, we first introduce the preliminary
of video scene graph generation and then describe the process
of extracting spatial co-occurrence and temporal transition
correlations from the dataset. Finally, the details of our
proposed framework, Spatial-Temporal Knowledge-Embedded
Transformer (STKET), are given.

A. Preliminary

Notation. Given a video V = {I3, I, ..., IT }, VidSGG aims to
detect all visual relationships between objects, presented as a
triplet <subject, predicate, object >, in each frame to generate
a scene graph sequence G = {G1,Ga,...,Gr}, where G; is
the corresponding scene graph of the frame I;. Specifically,
define Gy = {B;, O, R;}, where B, = {b},52,...6N ",
Oy = {0}, 02,...,00 DY and R, = {r}, 72, ....rE"} indicate
the bounding box set, the object set and the predicate set,
respectively. In the frame [;, N(t) is the number of objects,
and K (t) is the number of relationships between all objects.
Relationship Representation. For the frame I;, we employ
Faster R-CNN [58] to provides visual feature representation

{vtl,...,viv(t)}, bounding boxes {btl,...,biv(t)} and object
category distribution {d}, ..., div(t)} of object proposals. The
k

relationship representation x; of the relationship between the
i-th and j-th object proposals contains visual appearances,
spatial information, and semantic embeddings, which can be
formulated as

X =< f5(vi), fo(v]), fulp(u}? @ foron (b, b)), 8%, 8] >,

where <,> is concatenation operation, ¢ is flattening op-
eration and @ is element-wise addition. fs, f, are imple-
mented respectively by one fully-connected layer which maps
a 2048-dimension vector to a 512-dimension vector, and f,,
is implemented by one fully-connected layer which maps a
12544-dimension vector to a 512-dimension vector. u;’ €
R256X7X7 is the feature map of the corresponding union
box generated by RolAlign [59] while fy,, is the function
transforming the bounding boxes of subject and object to
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Fig. 2. An overall illustration of the proposed STKET framework (left) and its corresponding outputs (right). It first exploits spatial and temporal knowledge-
embedded layers to incorporate the spatial co-occurrence and temporal transition correlations into the multi-head cross-attention mechanism to learn spatial-

and temporal-embedded representations. Then, it employs a spatial-temporal
predict the final semantic labels and relationships.

an entire feature with the same shape as ui’j . The semantic

embedding vectors s¢,s] € R0 are determined by the object

category distribution of subject and object. For brevity, we

denote all relationship representations in the frame I; by
1 K(1)

X ={Xt, 0y x; L

B. Spatial-Temporal Knowledge Representation

When inferring visual relationships, humans leverage not
only visual cues but also accumulated prior knowledge [60].
This approach has been validated on various vision tasks [54],
[56], [61]. Inspired by this, we propose to distill the prior
spatial-temporal knowledge directly from the training set for
facilitating the VidSGG task. Specifically, we learn spatial co-
occurrence and temporal transition correlations in a statistical
manner, as shown in Figure E[

Spatial Prior Knowledge. Between different object category
pairs, a large difference exists in the spatial co-occurrence
correlation of its relationships. To account for this, we con-
struct a spatial co-occurrence matrix £/ € R for i-th object
category and j-th object category by measuring the frequency
of each predicate in the relation set of this pair. C' is the
total number of types of relationships. For example, let us
consider the object category pair of person and cup (assume
their indices are ¢ and j, respectively). At each frame, if both
objects are present, the total number of co-occurrences of this
pair NJ is incremented by 1. Next, if their predicates contain
holding (assume the index is ), then €%/ is incremented by
1. Finally, between person and cup, the spatial co-occurrence
probability of each predicate is calculated as:

ebd = el N,z e{l,..,C} (1)

To distill spatial co-occurrence correlations, the model
learns the spatial knowledge embedding based on the spatial
co-occurrence matrix. Specifically, the model generates the
corresponding spatial knowledge embedding s} for k-th rela-

aggregation module to aggregate these representations for each object pair to
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Fig. 3. Illustration of learning (a) spatial prior knowledge representation and
(b) temporal prior knowledge representation. For better readability, we take
the object category pair of person and cup as an example.

tionship representation in the frame I;, the generating process
can be formulated as

Sf _ fspa(Es(k’t)’o(k’t)), )

where s(k,t) and o(k, t) denote the category of subject and ob-
ject of k-th relationship representation in the frame I, fopa(-)
is implemented by four fully-connected layers which map a
C-dimension vector to a 1936-dimension vector. For brevity,
we denote the corresponding spatial knowledge embeddings
for all object pairs in the frame I; by S; = {s}, ..., sf((t)}.
Since the distribution of real-world relationships is seri-
ously unbalanced, directly utilizing these spatial knowledge
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(left), we first increase the spatial co-occurrence probability of the corresponding predicates (i.e.,

“hold” and “drink from”). Then, for any two consecutive

frames, we take the predicate in the previous and current frames as the row and column index separately and increase the temporal transition probability of

the corresponding transition pair (i.e., “hold — drink from”).

embeddings may degrade the model performance on the less
frequent relationships. Thus, we train these embeddings to
predict predicates by using the binary cross-entropy loss as
the objective function:

T K(t)
['spk = Z Z g(f(si?)vyf

t=1 k=1

)s 3)

where {(-,-) denote the binary cross-entropy loss function,
f(-) denote the predicate classifier, y} denote ground-truth
predicate labels of k-th relationships in the frame I;.
Temporal Prior Knowledge. In daily life, the interaction
between people and objects is characterized by temporal
transitions. To identify relationships at different stages, we
construct a temporal transition matrix Ei e RE*C for i-
th object category and j-th object category. C is the total
number of types of relationships. For instance, let us consider
the object category pair of person and cup as an example
(assume the indices are ¢ and j, respectively). If the contacting
predicate between person and cup in the previous frame is
holding (assume the index is x) and in the current frame is
drinking (assume the index is y), then E;Jy is incremented
by 1. Finally, between person and cup, the temporal transition
probability of predicates is calculated as:

’] = /e x,y €{1,....,C}. )

To explore temporal transition correlations, the model learns
the corresponding temporal knowledge embedding based on
the temporal transition matrix. Specifically, given the predicted
object labels and relation labels, the model generates the
corresponding temporal knowledge embedding tf for k-th
relationship representation in the frame I;, the generating
process can be formulated as

tf - ftem(

where s(k,t) and o(k, t) denote the category of subject and ob-
ject of k-th relationship representation in the frame Iy, r(k, t)
denotes the predicate of k-th relationship representation in
the frame Iy, fiem(+) is implemented by four fully-connected

38: :; ,o(k, t))’ (5)

layers which map a C-dimension vector to a 1936-dimension
vector. Specifically, we utilize the spatial contextualized rep-
resentation to coarsely predict the relation labels. For brevity,
we denote the corresponding temporal knowledge embeddings
for all object pairs in the frame I; by Ty = {t!, ...t}

Since complicated predicate transition exists for different
object category pairs, the temporal knowledge embedding
may contain inaccurate temporal correlation, resulting in sub-
optimal performance. Therefore, we train these embeddings
to predict predicates at the next frame by using the binary
cross-entropy loss as the objective function:

T—1K(t

Ltpk_ZZe

t=1 =1

£):¥ti)s (6)

where we assume k-th relationship representation in the frame
I; and frame I;;; belong the same subject-object pair for
easily understanding.

C. Knowledge-Embedded Attention Layer

Between object pairs and their relationships, there are appar-
ent spatial co-occurrence correlations within each image and
strong temporal transition correlations across different images.
Thus, we propose incorporating spatial-temporal knowledge
into the multi-head cross-attention mechanism to learn spatial-
and temporal-embedded representations.

Spatial knowledge often encapsulates information about
positions, distances, and relationships among entities. On
the other hand, temporal knowledge concerns the sequence,
duration, and intervals between actions. Given their unique
properties, treating them separately allows specialized model-
ing to capture the inherent patterns more accurately. Therefore,
we design spatial and temporal knowledge-embedded layers
that thoroughly explore the interaction between visual repre-
sentation and spatial-temporal knowledge.

Exploring Spatial Context. As shown in Figure 2} we first
employ the spatial knowledge-embedded layers (SKEL) to
explore spatial co-occurrence correlations within each image.
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Specifically, we take all relationship representations of the cur-
rent frame I; as the input, ie., F§, = X; = {x{, ...,xf((t)}.
Then, the SKEL incorporates corresponding spatial knowledge
embeddings in the keys and queries to fuse the information
from the relationship representation and its corresponding
spatial prior. Since we stack Ny identical spatial knowledge-
embedded layers, the input of the n-th layer is the output of
(n — 1)-th layer. Thus, the queries Q, keys K, values V and
output of the n-th SKEL is presented as:

Q=WqF{, ), +S:, (7
K= WKFk(gnfl),t + S, 8)
V=WyF{ ), ©)

Ff, = Atta.(Q. K, V), (10)

where the Wg, Wx and Wy denote the linear transforma-
tions, the Att,p, (-) denote cross-attention layer in the SKEL.
For simplicity, we remove the subscript n and denote the final
output of the SKEL as F7.
Parsing Temporal Correlation. As claimed in prior works
[24], [25]], the dynamic visual relation can be easily recognized
with the given temporal information in the previous frame.
Thus, we design the temporal knowledge-embedded layer
(TKEL) to explore the temporal correlation in the current
frame I; and the previous frame I;_;. At first, we adopt a
sliding window over the sequence of spatial contextualized
representation [Fls S ey F%], and the input of the frame I; in
TKEL is presented as:
Fi,=[F; ,F}], te{2,..,T} (11)

Then, TKEL incorporates corresponding spatial and tem-
poral knowledge embeddings in the keys and queries to fuse
the information from the relationship representation and its
corresponding spatial and temporal prior. Since we stack NV,
identical temporal knowledge-embedded layers, the input of
the n-th layer is the output of (n — 1)-th layer. Thus, the
queries Q, keys K, values V and output of the n-th TKEL is
presented as:

Q=WqoF(, ), +[Ti-1,S:] + Ey, (12)
K =WgF(, ), +[Te1,S] + Ey, (13)
V=WyF(, ), (14)

Ff’t = Attiem. (Q, K, V), (15)

where E is the learned frame encoding vector, the Attiem. (-)
denote cross-attention layer in TKEL and the W, Wx and
Wy denote the linear transformations. The intention of adding
[T;—1,S;] into the queries and keys is to incorporate the
temporal prior about the previous frame and the spatial prior
about the current frame. In this way, the TKEL can effectively
capture spatiotemporal context in the sliding window.

Considering that the relationships in a frame have various
representations in different batches, we choose the earliest
representation appearing in the sliding window. For simplicity,
we remove the subscript n and denote the final output of TKEL
as FT.

D. Spatial-Temporal Aggregation Module

As aforementioned, SKEL explores the spatial co-
occurrence correlations within each image, and TKEL explores
the temporal transition correlations across different images.
Though fully exploring the interaction between visual rep-
resentation and spatial-temporal knowledge, these two layers
generate spatial- and temporal-embedded representations, re-
spectively. To explore the long-term context information, we
further design the spatial-temporal aggregation (STA) module
to aggregate these representations for each object pair to
predict the final semantic labels and their relationships. It takes
the spatial- and temporal-embedded relationship representa-
tions of the identical subject-object pair in different frames as
the input. Specifically, we concatenate these representations of
the same object pair to generate context representation:

Cf = Cat(flcs,t7 flz:t)7 (16)

where f,i . and f, denote the spatial- and temporal-embedded
representation for the k-th relationship in the frame I;. And
then, to find the same subject-object pair in different frames,
we adopt the predicted object label and the IoU (i.e., inter-
section over union) to match the same subject-object pairs
detected in frames {l;—41,..., It} (more details in the sup-
plementary material). Thus, the input of k-th relationship in
the frame I; in the spatial-temporal aggregation module is
presented as

£, = [ef o y1s el (17)

where we assume k-th relationship representation in frame
{l;—741,...,I:} belong same subject-object pair for easily
understanding. And its corresponding output of the spatial-
temporal aggregation module is presented as:

Q = Wof{, + E}, (18)
K = Wifl, + E}, (19)

V =Wy, (20)
£, = Att(Q. K, V), 1)

where E/f is the learned frame encoding vector, the Att(:)
denote the self-attention layer in the spatial-temporal aggre-
gation module, and the Wq, W and Wy, denote the linear
transformations. Considering the relationships in a frame have
various representations in different batches, we choose the
earliest representation appearing in the sliding window.

E. Loss Function

In the real world, there exist different kinds of relationships
between two objects at the same time. Thus, we introduce
the binary cross-entropy loss as the objective function for
predicate classification as follows:

(r)y =" log(é(r,p)) + Y log(1—o(r,q)).

pEPT qeP—

(22)

For a subject-object pair , PT are the annotated predicates,
while P~ is the set of the predicates not in the annotation.
¢(r,p) indicates the computed confidence score of the p-th
predicate.
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TABLE I
COMPARISON WITH STATE-OF-THE-ART SCENE GRAPH GENERATION METHODS ON ACTION GENOME [26]].

Method Pred Cls SG Cls SG Gen Average Recall
R@I0 R@20 R@50 [ R@I0 R@20 R@50 [ R@I0 R@20 R@50
KERN [36] 73.7 923 98.8 50.5 62.4 66.3 233 352 47.0 61.1
VCTREE [37] | 75.5 92.9 99.3 524 62.0 65.1 239 353 46.8 61.5
ReIDN [27] 75.7 93.0 99.0 529 62.4 65.1 24.1 354 46.8 61.6
GPS-Net [28]] 76.2 93.6 99.5 53.6 63.3 66.0 244 35.7 473 62.2
STTran [25] 719 94.2 99.1 54.0 63.7 66.4 24.6 36.2 48.8 62.8
TPI [44] 78.2 94.6 99.1 54.4 64.3 67.1 252 36.9 49.3 63.2
APT [24] 78.5 95.1 99.2 55.1 65.1 68.7 25.7 37.9 50.1 63.9
Ours 82.6 96.3 99.9 57.1 65.3 67.1 27.9 38.8 50.6 65.1
TABLE I

COMPARISON WITH STATE-OF-THE-ART SCENE GRAPH GENERATION METHODS ON ACTION GENOME [26]].

Method Pred Cls SG Cls SG Gen Mean
mR@10 mR@20 mR@50 [ mR@1I0 mR@20 mR@50 [ mR@10 mR@20 mR@50

KERN [36] 12.3 14.7 18.4 8.1 9.3 10.3 44 5.3 8.2 10.1

STTran [25] 154 19.6 21.2 10.7 13.1 14.0 5.0 7.3 10.2 12.9

TPI [44] 16.3 20.8 22.4 11.1 13.5 14.2 53 6.5 9.7 13.3

APT [24] 17.2 22.5 25.6 11.5 13.8 14.6 5.8 6.9 10.1 14.2

Ours 20.1 27.3 33.7 154 17.2 19.3 7.4 9.7 12.2 18.0

During training, we adopt the binary cross-entropy loss as
the objective function for supervising SKEL, TKEL, and STA
and denote the corresponding loss by ¢%(r), ¢*(r) and ¢(r)
respectively. Therefore, the final classification loss is defined
as summing the three losses over all samples, formulated as

T K(t)

Laoe=Y_ > [5(r) +L4(r) +£°(r)].

t=1 r=1

(23)

Therefore, the total objective is formulated as:

L= ‘Ccls + ‘cspk + Ltpk‘- (24)

In all experiments, we set the loss weights of the three losses
to be equal, primarily to ensure that each loss component has
an equal contribution to the overall optimization objective.

IV. EXPERIMENTS
A. Experiment Setting

Dataset As the most widely used dataset for evaluating video
scene graph generation, the Action Genome [26] contains
476,229 bounding boxes of 35 object classes (without the
person) and 1,715,568 instances of 26 relationship classes
annotated for 234, 253 frames. These 26 relationships are
subdivided into three different types: (1) attention, (2) spatial,
and (3) contact whose number of categories are 3, 6, and 17,
respectively. In all experiments, we use the same training and
testing split in previous works [24]], [25].

Task Following prior arts [25[], [36], [43], we evaluate our
proposed method and other state-of-the-art methods under
three kinds of experiment setups: Predicate Classification
(Pred Cls): predict the predicates of object pairs with given
ground truth bounding boxes and category labels. Scene
Graph Classification (SG Cis): predict both the predicates
and the category labels of objects with given ground-truth
bounding boxes. Scene Graph Generation (SG Gen): simul-
taneously detects objects appearing in the image and predicts

the predicates of each object pair. In the SG Gen, an object
bounding box is considered to be correctly detected only
if the predicted object bounding box has at least 0.5 IoU
(Intersection over Union) overlap with the ground-truth object
bounding box. We use No Constraint strategy of generating a
scene graph to evaluate the models. This strategy allows each
subject-object pair to have multiple predicates simultaneously.
Evaluation Metric All tasks are evaluated with the Recall@K
(short as R@ K') metric (K =[10, 20, 50]), which measures the
ratio of correct instances among the top-K predicted instances
with the highest confidence. We also report the results by using
the mean Recall@K (short as mR@ K') metric that averages
R@K over all relationships.

Training Details Following previous works [24], [25], we
adopt the Faster RCNN [58]] with a ResNet-101 [47] backbone
as the object detector. We first train the detector on the training
set of Action Genome [26] and get 24.6 mAP at 0.5 IoU
with COCO metrics. The detector is applied to all baselines
for fair comparisons. The parameters of the object detector
(the object classifier excluded) are fixed when training scene
graph generation models. Per-class non-maximal suppression
at 0.4 IoU (Intersection over Union) is applied to reduce region
proposals provided by RPN.

We use an AdamW [|62]] optimizer with initial learning rate
2¢~5 and batch size 1 to train our model. Moreover, gradient
clipping is applied with a maximal norm of 5. All experiments
are implemented by PyTorch [63]. In the spatial-temporal
aggregation module, we set the size of the sliding window
7 to 4. In KEAL, we stack two identical spatial knowledge-
embedded layers to explore spatial co-occurrence correlations
and then stack two identical temporal knowledge-embedded
layers to temporal transition correlations. The cross-attention
and self-attention layers in our proposed framework have 8
heads with d = 1936 and dropout = 0.1. In SKEL and TKEL,
the 1936-dimension input is projected to 2048-dimension by
the feed-forward network, then projected to 1936-dimension
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Fig. 5. Qualitative results in SG Gen task with top-10 confident predictions. The blue and red colors indicate correct relationships and objects, respectively.
The gray colors indicate wrong relationships and objects. For fairness, the same object detector is used for all methods.

again after ReLU activation. In STA, the 3872-dimension input
is projected to 1936-dimension.

Frame Encoding Unlike the SKEL, the TKEL adopts a
sliding window over the sequence of spatial contextualized
representation as its input. Therefore, we need to introduce
the learned frame encoding E into the TKLE to help it fully
understand the temporal dependencies among different frames.
Specifically, we construct the frame encodings E; using
learned embedding parameters. Specifically, Ey = [e, e2],
where e; and es € R!936 are the learned vectors. Simi-
larly, we also introduce frame encodings E} in STA, where
E} = [e},...,e.], and each encoding is the learned vectors
with a length of 3872.

Pair Tracking As described in the manuscript, STA takes
the spatial- and temporal-embedded representation of the same
subject-object pair in different frames as input. We first use
the predicted object labels to distinguish different pairs to
match the subject-object pairs detected in different frames. If
multiple entities of the same category exist, we calculate the
intersection over union (IoU) between the two objects across
different images to match the subject-object pair. Specifically,
we compute the IoU between the bounding box of the target
object in the previous frame and that of each object with the
same category label in the current frame. If the IoU is higher
than 0.8, we consider them to be the same object. We choose
the one with the highest IoU if there are multiple candidates.

B. Comparison with State-Of-The-Art Methods

To evaluate the effectiveness of STKET, we compare it with
existing state-of-the-art VidSGG algorithms, including STTran

[25], TPI [44], and APT [24]. Previous works also adapt
image-based SGG algorithms to address the VidSGG task by

applying the inference process to each frame. We also follow
these works to include the image-based SGG algorithms for

more comprehensive evaluations and comparisons, including
VCTREE [37], KERN [36], ReIDN [27]], GPS-Net [28].

We first present the comparison on R@K in Table [ As
shown, recent video-based algorithms (e.g., STTran, TPI, and
APT) obtain quite a marginal improvement over the image-
based SGG algorithms as they further introduce temporal
contextual information. By introducing spatial-temporal prior
knowledge to guide aggregating spatial and temporal contex-
tual information, the proposed STKET framework consistently
outperforms in nearly all settings. For example, it improves the
R@10 from 78.5% to 82.6%, 55.1% to 57.1%, and 25.7% to
27.9% on the three tasks, with the improvement of 4.1%, 2.0%
and 2.2%, respectively. It also obtains similar improvement on
R@20 and R@50 metrics.

Considering the mR@K metric offers a better performance
measure under uneven distribution , we also present the
comparison results on this metric. As presented in Table
STKET obtains even more significant improvement, en-
hancing mR@50 by 8.1%, 4.7%, and 2.1% compared with
the current best-performing APT algorithm. To highlight the
necessity of introducing the mR@K metric, we present the
distribution across different relationships on the AG dataset
in Figure @ As depicted, the distribution of relationships is
exceedingly long-tailed, in which the top-10 most frequent
relationships occupy 90.9% samples while the top-10 least
frequency relationships merely occupy 2.1%. In Figure [6b] we
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Fig. 6. (a) The distribution of different relationships on Action Genome [26].
(b) The R@50 results in Pred Cls task of our method, STTran and APT on
Action Genome [26].

further provide the detailed performance of each relationship
to understand the performance variance across different rela-
tionships better. Evidently, current algorithms like STTran and
APT deliver competitive performance for relationships with
abundant training samples (e.g., “in front of”’, “not looking at™)
but falter significantly for relationships with limited training
samples (e.g., “wiping”, “twisting”). In contrast, for the top-
10 least frequent relationships, STKET improves the R@50
from 9.98% to 23.98% compared to the second-best APT and
from 12.10% to 30.65% compared to the baseline STTran.
These comparisons demonstrate STKET can effectively regu-
larize VidSGG training and thus reduce the dependencies on
training samples by explicitly incorporating spatial-temporal
prior knowledge.

In Figure 5| we visualize the qualitative results of our
method and current leading VidSGG methods (i.e., STTran
and APT). The results show that existing state-of-the-art
VidSGG algorithms tend to predict numerous false-positive
relationships, while our method successfully predicts nearly all
relationships with high accuracy. This highlights the strength
of integrating spatial-temporal knowledge in discerning dy-
namic relationships, especially within intricate interactions.
For instance, across all frames, our STKET accurately identi-
fies the attentional relationship among person, cup, and laptop,
where current leading VidSGG algorithms stumble. It is also
noteworthy that our method not only performs well on high-
frequency relationships but also on low-frequency relation-
ships. For instance, in the last frame, our method correctly
predicts the predicate of “drink from” whose samples merely
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Fig. 7. Top: Relationship transition matrix of “man-tv” (left) and “man-cup”
(right). For brevity, we print the relation index instead of the relation label
(see the corresponding labels below figure, i.e., 0 denotes “looking at” and
25 denotes “writing on”). Bottom: The entropy of spatial-temporal knowledge
across different predicates.

occupy 0.355% of the total samples, while other methods
miss it. This success is largely due to our method’s explicit
incorporation of spatial-temporal correlations, which helps to
lessen the dependency on training samples significantly.

C. Ablative Study

In this section, we conduct comprehensive experiments to
analyze the actual contribution of each crucial component.
Here, we mainly present the R@10, R@20, mR@10, and
mR@20 on Pred Cls and SG Cls as they can better describe
the performance.

1) Analysis of STKET: As aforementioned, STKET inte-
grates spatial-temporal knowledge into the multi-head cross-
attention mechanism to aggregate spatial and temporal con-
textual information. In this way, it effectively regularizes
spatial prediction space within each image and sequential
variation space across temporal frames, thereby reducing am-
biguous predictions. To verify the effectiveness of exploring
these spatial-temporal correlations, we implement the baseline
STTran method for comparison purposes, setting the layers of
its spatial encoder and temporal decoder to two for fair com-
parisons. As shown in Table [[Tl} the baseline STTran method
obtains the R@10 and R@20 values of 77.8% and 94.1% on
Pred Cls and the R@10 and R@20 values of 53.8% and 63.6%
on SG Cls. By incorporating spatial-temporal correlations to
regularize training and inference, the STKET boosts the R@ 10
and R@20 values to 82.6% and 96.3% on Pred Cls and the
R@10 and R@20 values to 57.1% and 65.3% on SG Cls.
Similarly, it consistently outperforms the baseline method on
other metrics(i.e., the mR@ 10 and mR @20 metrics), as shown
in Table [T
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TABLE III
COMPARISON OF THE BASELINE STTRAN METHOD (STTRAN), THE BASELINE STTRAN METHOD MERELY USING THE SPATIAL ENCODER (STTRAN SE),
THE BASELINE STTRAN METHOD MERELY USING THE TEMPORAL DECODER (STTRAN TD), OUR FRAMEWORK MERELY USING SKEL (OuR SKEL),
OUR FRAMEWORK MERELY USING SKEL WITHOUT THE LOSS L, (OURS SKEL W/0 L), OUR FRAMEWORK MERELY USING TKEL (OUR TKEL),
OUR FRAMEWORK MERELY USING TKEL WITHOUT THE LOSS L;pr (OURS TKEL W/0 L;yk), OUR FRAMEWORK REMOVING STA (OURS W/0 STA) AND
OUR FRAMEWORK (OURS).

Methods Pred Cls SG Cls
R@I0 R@20 mR@I0 mR@20 | R@I0 R@20 mR@I0 mR@20

STTran 77.8 94.1 15.4 19.6 53.8 63.6 10.7 13.1
STTran SE 75.3 91.1 13.8 18.9 51.6 62.1 9.5 12.2
STTran TD 76.7 93.2 14.5 19.2 53.1 63.0 10.0 12.6
Ours SKEL 78.0 94.3 15.5 19.8 54.2 64.1 11.3 13.5
Ours SKEL w/o L,k 77.3 93.9 14.9 19.3 53.6 63.7 10.5 12.8
Ours TKEL 81.2 95.5 18.7 25.1 56.0 64.4 14.3 16.2
Ours TKEL w/o Lypp 80.7 95.1 18.2 244 55.3 63.7 13.6 15.8
Ours w/o STA 81.9 95.8 19.4 26.5 56.5 64.9 14.8 16.7
Ours 82.6 96.3 20.1 27.3 57.1 65.3 154 17.2

Further, to emphasize the effectiveness of spatial-temporal
knowledge, we conduct qualitative experiments that visualize
two relationship transition matrices of different subject-object
pairs (i.e., “man-tv”’ and “man-cup”) in Figure where a
lighter color indicates a higher probability of relationship
transition. It’s worth noting that transition probabilities vary
widely depending on the predicates and object categories
involved, e.g., the transition likelihood for common predicates
like “looking at” is much higher than for rare predicates such
as “writing on”. This variance within the transition matrix
highlights the importance of incorporating spatial-temporal
knowledge for effective relationship prediction regularization.
Additionally, we evaluate the entropy of spatial-temporal
knowledge embeddings generated by our STKET model.
Lower entropy values in these embeddings, particularly those
for infrequent relationship categories like “eating”, “writing
on”, and “twisting”, indicate a significant amount of prior
information. This suggests that these embeddings offer sub-
stantial prediction regularization, potentially explaining why
our STKET model excels over existing leading algorithms in
predicting less common relationships.

Since the STKET framework consists of three complemen-
tary modules, i.e., the SKEL module, the TKEL module, and
the STA module, in the following, we further conduct more
ablation experiments to analyze the actual contribution of each
module for a more in-depth understanding.

2) Analysis of SKEL: To evaluate the actual contribution
of the SKEL module, we compare the performance of our
STKEL framework merely using this module (namely, “Ours
SKEL”) with the performance of the baseline STTran method
merely using its spatial encoder (namely, “STTran SE”). As
shown in Table the SKEL module improves the R@10
from 75.3% to 78.0% and the R@20 from 91.1% to 94.3% on
Pred Cls, with improvements of 2.7% and 3.2%, respectively.
Similarly, it improves the R@10 from 51.6% to 54.2% and the
R@20 from 62.1% to 64.1% on SG Cls, with improvements
of 2.6% and 2.0%, respectively. It is worth noting that the
SKEL module achieves not only performance improvement
on the R@10 and R@20 metrics but also on the mR@10 and
mR @20 metrics. Specifically, this module obtains an mR@10
improvement of 1.7% and 1.8% and an mR @20 improvement

of 0.9% and 1.3% on Pred Cls and SG Cls, respectively. These
results demonstrate that the spatial co-occurrence correlation
within each image can help to regularize spatial prediction
space within each image effectively.

In the SKEL module, the loss L, helps to learn accurate
spatial knowledge embedding, thereby effectively regularizing
spatial prediction space within each image. To evaluate the
contribution of this loss, we conduct experiments that only
utilize the SKEL module without the loss (namely, “Ours
SKEL w/o Lp;,”) for comparison purposes. As presented in
Table it decreases the performance by 0.7%/0.4% on Pred
Cls with R@10/20 and 0.6%/0.4% on SG Cls with R@10/20.
Similarly, it degrades performance by 0.6%/0.5% on Pred Cls
with mR@10/20 and 0.8%/0.7% on SG Cls with mR@10/20.

3) Analysis of TKEL: To evaluate the actual contribution
of the TKEL module, we conduct experiments that remove
the SKEL and STA module in STKET while only using
this module (namely, “Our TKEL”) and compare it with the
baseline STTran method merely using its temporal decoder
(namely, “STTran TD”) for comparison purposes. Different
from “STTran SE” which explores the spatial context within
the single frame, “STTran TD” introduces a sliding window
to capture the temporal dependencies between frames and
thus achieves obvious performance improvement, as presented
in Table Specifically, it improves the performance by
1.4%/2.1% on Pred Cls with R@10/20 and 1.5%/0.9% on
SG Cls with R@10/20, which demonstrates the importance
of temporal correlations in recognizing dynamic visual rela-
tionships. However, “Our TKEL” performs better than this
baseline “STTran TD”, with an R@10/20 improvement of
4.5% and 4.4% on Pred Cls and an R@10/20 improvement
of 29% and 1.4% on SG Cls. Furthermore, “Our TKEL”
consistently outperforms the baseline “STTran TD” in terms
of the mR@10 and mR@20 metrics, i.e., it provides an
R@10/20 improvement of 4.2% and 5.9% on Pred Clsand an
mR @10/20 improvement of 4.3% and 3.6% on SG Cls. These
results demonstrate that integrating temporal knowledge can be
helpful in regularizing model learning correct temporal corre-
lations, thereby effectively reducing ambiguous predictions.

In the TKEL module, the loss L¢,xhelps to learn accurate
temporal knowledge embedding, thereby effectively regulariz-
ing sequential variation space across temporal frames. To eval-
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Fig. 8. Ablation analysis of the frame number of sliding window in (a) TKEL
and (b) STA modules. Evaluated on Action Genome [26].

uate the contribution of this loss, we conduct experiments that
merely use TKEL without the loss (namely, “Ours TKEL w/o
Lypy.”) for comparison purposes. As presented, it decreases the
performance by 0.5%/0.4% on Pred Cls with R@10/20 and
0.7%/0.7% on SG Cls with R@10/20. Similarly, it degrades
performance by 0.5%/0.7% on Pred Cls with mR@10/20 and
0.7%/0.4% on SG Cls with mR@10/20.

4) Analysis of STA: Considering the sliding window may
result in many irrelevant representations, which may easily
overwhelm the valuable information, it is difficult for the
TKEL module to capture the long-term context of each
subject-object pair. Thus, we design the STA module that
aggregates spatial- and temporal-embedded representations of
the identical subject-object pair across different frames to ex-
plore the long-term context. To evaluate its actual contribution,
we conduct experiments that remove STA (namely, “Ours w/o
STA”). As shown in Table it decreases the performance
by 0.7%/0.5% on Pred Cls with R@10/20 and 0.6%/0.4%
on SG Cls with R@10/20. It also decreases performance by
0.7%/0.8% on Pred Cls with mR@10/20 and 0.6%/0.5% on
SG Cls with mR@10/20.

5) Analysis of Sliding Window: In the TKEL and STA
modules, we introduce the sliding window to explore the
temporal context contained in previous frames, in which the
frame number is a crucial threshold that controls the sequence
length. Setting it to a small value may miss temporal corre-
lations, while setting it to a large value may introduce much
irrelevant information and result in high computation costs. To
figure out the optimal settings, we conduct experiments with
different frame numbers. As shown in Figure [8] introducing
more previous frames can significantly improve performance
when there is only the current frame (i.e., the frame number

GT: person-lean on-sofa
Our: person-sit on-sofa

GT: person-carry-cloth
Our: person-hold-cloth

Fig. 9. Instances of failure cases resulted from relationship imbalance. For
rare subject-predicate-object triplets, the model may predict similar predicates
that have higher frequency instead of the ground truth predicate, which occurs
less frequently in the training set.

is one). Besides, it is worth noting that a large frame number
does not always mean better performance because long-term
frame sequences contain complicated temporal contexts, which
may mislead the model.

D. Limitation

As aforementioned, our STKET framework leverages
spatial-temporal prior knowledge to effectively regularize re-
lationship predictions, thereby lessening reliance on training
samples and mitigating the imbalance problem in the Action
Genome. The significant performance boost within tailed
relationship categories demonstrates it, as shown in Figure [6b}
Nevertheless, in extreme scenarios where subject-predicate-
object triplets are exceedingly rare, the STKET framework
struggles to provide accurate statistical regularization and thus
may predict false predicates. As illustrated in[9} the bias from
skewed long-tail distribution leads to a common but incorrect
predicate “sit on” instead of the rare but correct predicate
“lean on”, in the relationship of “person-lean on-sofa”. The
same type of misclassification also occur with “person-carry-
cloth”. For these challenges, we conjecture that integrating
spatial-temporal knowledge from various distributions (e.g.,
ImageNet-VidVRD [21]], Home Action Genome [64]) can
provide more accurate and robust regularization. Furthermore,
we argue that leveraging the abundant contextual information
in web text data could enhance the regularization of such rare
relationships.

V. CONCLUSION

In this work, we propose to explore spatial-temporal
prior knowledge to facilitate VidSGG via a spatial-temporal
knowledge-embedded transformer (STKET) framework. It
contains the spatial and temporal knowledge embedded layers
that integrate spatial co-occurrence correlations to guide aggre-
gating spatial contextual information and temporal transition
correlations to help extract temporal contextual information.
In this way, it can, on the one hand, aggregate spatial and
temporal information to learn more representative relationship
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representation and, on the other hand, effectively regularize
relationship prediction and thus reduce the dependencies on
training samples. Extensive experiments illustrate its superior-
ity over current state-of-the-art algorithms.
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