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Abstract—The presence of outliers can significantly degrade
the performance of ellipse fitting methods. We develop an ellipse
fitting method that is robust to outliers based on the maximum
correntropy criterion with variable center (MCC-VC), where a
Laplacian kernel is used. For single ellipse fitting, we formu-
late a non-convex optimization problem to estimate the kernel
bandwidth and center and divide it into two subproblems, each
estimating one parameter. We design sufficiently accurate convex
approximation to each subproblem such that computationally
efficient closed-form solutions are obtained. The two subproblems
are solved in an alternate manner until convergence is reached.
We also investigate coupled ellipses fitting. While there exist
multiple ellipses fitting methods that can be used for coupled
ellipses fitting, we develop a couple ellipses fitting method by
exploiting the special structure. Having unknown association
between data points and ellipses, we introduce an association
vector for each data point and formulate a non-convex mixed-
integer optimization problem to estimate the data associations,
which is approximately solved by relaxing it into a second-
order cone program. Using the estimated data associations, we
extend the proposed method to achieve the final coupled ellipses
fitting. The proposed method is shown to have significantly better
performance over the existing methods in both simulated data
and real images.

Index Terms—Ellipse fitting, outliers, maximum correntropy
criterion with variable center (MCC-VC), data association.

I. INTRODUCTION

As a basic function of computer vision, ellipse fitting

has been extensively studied. The task of ellipse fitting is

to fit a series of data points to an ellipse, which finds

wide applications in the fields of aerospace industry, medical

imaging, biometrics, pupil recognition, and others [1]–[4]. For

example, ellipse fitting can detect effectively the rocky and

other dangerous areas to ensure a stable and smooth landing

of the lunar lander [1]. Techniques based on ellipse fitting can

accurately detect whether a patient has glaucoma symptoms in

medical related fields [2]. Pupil recognition technology, which

has been popular in recent years, also relies on ellipse fitting

[3]. Moreover, pupil tracking through ellipse fitting has been

extensively used in human-computer interactive eye tracker,

and has achieved success in consumer electronics industry [4].

In the past several decades, ellipse fitting has attracted a lot

of attention and many solutions have been proposed. A tradi-
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tional method for ellipse fitting is based on the Hough trans-

form (HT) [5]. It can achieve high-precision fitting through

a voting mechanism in a five dimensional parameter space,

but takes a huge computational load. Owing to this drawback,

more computationally efficient methods based on the least

squares (LS) approach were proposed [6]–[14]. These methods

typically work well for clean or simple instances. However,

the performance of the LS based methods can degrade a lot

in the presence of outliers, which deviate significantly from

the underlying ellipse, and appear very often in the extracted

data points. As a result, robust ellipse fitting methods that are

resilient against the outliers were proposed [15]–[18]. Early

years, some researchers proposed to use a portion of the

sample points instead of the whole to resist the interference

of outliers in the fitting performance. For instance, Fischler

et al. proposed a method using random sample consensus

(RANSAC) [15], which achieves fitting by estimating a math-

ematical model from the collection of a random subset of the

entire amount of data.

Alternatively, the ellipse fitting problem can be formu-

lated to an optimization problem that can provide robustness.

The papers [16] and [17] solved the ellipse fitting problem

by using the maximum correntropy criterion (MCC), where

the Gaussian and Laplacian kernels were used, respectively.

The MCC method in [16] iteratively solves a number of

semidefinite programs (SDPs), and it involves relaxation to

the original problem. The relaxation may lead to divergence

of the iterations and causing performance loss. By contrast, the

MCC method in [17] iteratively solves a set of more compu-

tationally efficient second-order cone programs (SOCPs) [19],

in which no relaxation was introduced. This, in turn, ensures

convergence of the iterations. Generally, the MCC ellipse

fitting methods have great robustness to the outliers, and thus

have good performance in the presence of outliers. Recently,

Zhao et al. [18] proposed the hierarchical Gaussian mixture

model (HGMM) for ellipse fitting in noisy, outliers-contained,

and occluded scenarios through the Gaussian mixture model

(GMM). This method has high robustness against the outliers

and noise when the parameters are chosen properly. However,

the results can be unsatisfactory when using one particular set

of parameters for fitting different ellipses.

At present, most works in this research address the fit-

ting of single ellipse. However, multiple ellipses with some

commonality can be fitted together by exploiting the special

structure. An example in practice is the coupled ellipses.

Coupled ellipses refer to ellipses that are concentric and have

the same rotation angle; their half-short and half-long axes

are different but related by a proportional factor. A typical

http://arxiv.org/abs/2210.12915v1
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example of coupled ellipses is the inner and outer boundaries

of a transmission pipe and the inner and outer edges of an iris

image. More applications related to coupled ellipses can be

found in [20] and the references therein.

Compared with single ellipse fitting, coupled ellipses fitting

is more challenging because it has one additional parameter

for estimation. To our best knowledge, the available methods

for coupled ellipses fitting are very limited in the literature.

Ma and Ho [20] proposed a weighted least squares (WLS)

method for the fitting problem. The method can reach the

Kanatani-Cramer-Rao (KCR) lower bound accuracy without

outliers. However, it is sensitive to outliers and the perfor-

mance degrades significantly when they occur. To improve

the robustness against outliers, the work [17] applied the

MCC based method using the Laplacian kernel and found the

solution by alternately solving two subproblems. The results

show that it is robust to the outliers even when a large number

of them are present.

It has been shown that the MCC is very powerful to

solve some signal processing problems, where the data are

contaminated by heavy-tailed impulsive noise [21]. It has also

been successfully applied to the ellipse fitting problem [16],

[17]. However, the existing methods use zero-mean kernel

functions, which may not match well with non-zero-mean error

distributions, leading to some performance loss. Moreover, the

kernel bandwidths in [16] and [17] are computed according to

the Silverman’s rule [22]. The computed kernel bandwidths

may not be accurate, which is particularly happening for the

case of small number of samples. Moreover, the Silverman’s

rule is designed for the Gaussian kernel and provides the

optimal parameter values only when the samples are Gaussian

distributed [23]. As such, Chen et al. [24] proposed the MCC

with variable center (MCC-VC) to improve the performance

of MCC, in which both the kernel bandwidth and center can

vary to best model the data. MCC-VC is more general than

MCC and can be used to handle a broader class of problems.

In this paper, we propose an MCC-VC based ellipse fit-

ting method that is robust against the outliers, in which

the Laplacian kernel is used. Similar to [17], we focus on

accurate fitting of the ellipse with the knowledge of the

association between the data points and ellipses; hence, strictly

speaking, the “outliers” here refer to “pseudo outliers”. In the

proposed MCC-VC method, the kernel bandwidth and center

are estimated using the available error samples. In the original

work proposing MCC-VC [24], the estimation of these two

parameters is not well explained. We first develop a new

explanation and formulate an optimization problem for the

estimation of the kernel bandwidth and center in MCC-VC

based on the kernel density estimation (KDE). The proposed

optimization problem can be reduced to the same as that in

[24]. We then propose to solve the optimization problem by di-

viding it into two subproblems, each estimating one parameter.

Rather than using iterative method that requires good initial-

ization, we design sufficiently accurate convex approximation

to each subproblem that results in computationally efficient

closed-form solution. Specifically, we propose a fourth-order

polynomial approximation by applying the Taylor expansion to

the objective function when estimating the kernel bandwidth.

More importantly, the approximate convex subproblem has

a closed-form solution, thereby solving it involves very low

computational complexity. The approximation is updated with

the kernel bandwidth estimate until convergence. Moreover,

for the subproblem of estimating the kernel center, we design

a linear programming (LP) problem. The solution of the LP

problem turns out to be the median of the available error

samples, and thus it is also in closed-form. Using the LP

solution as a reference point, we further propose a bisection

method for updating the kernel center estimate.

Armed with the estimated kernel bandwidth and center, the

estimation of the ellipse parameters reduces to an optimization

problem based on the MCC with Laplacian kernel, which can

be solved by using the iterative method in [17]. It is worth

noting that we formulate a second-order cone (SOC) constraint

different from that in [17] to ensure that the fitting curve

is elliptical, which enables us to solve the SOCP problem

only once in each iteration, instead of twice in the original

MCC method [17]. Hence, the new SOC constraint further

reduces the computational complexity of solving the MCC

problem. The estimated ellipse parameters are used to form

new error samples for updating the estimates of the kernel

bandwidth and center. The estimation of the kernel bandwidth

and center and the estimation of the ellipse parameters are

repeated alternatively until convergence.

Since coupled ellipses can be viewed as multiple ellipses

with a special structure, the multiple ellipses fitting methods,

e.g., those in [5], [15], [18], [25]–[27] are applicable to cou-

pled ellipses fitting. However, the special structure of coupled

ellipses is not exploited in these methods, which may introduce

performance loss. Hence, specially developed methods for

coupled ellipses fitting are necessary. Existing methods for

coupled ellipses fitting [17], [20] require the prior knowledge

of the associations between data points and ellipses, which is

not direct or impossible to obtain in practice. To alleviate this

issue, we introduce a length 2 association vector, one for each

data point composed of 0 and 1, for indicating the association

between every data point to either ellipse, and formulate a

mixed integer optimization problem to jointly estimate the

ellipse parameters and the association vector. It is commonly

known that the mixed integer problem is very difficult to solve.

To make the problem tractable, we relax the association vector

to a probability vector, yielding a convex SOCP. An estimate

of the association vector can be deduced from the SOCP

solution. Using the estimated association vectors, the proposed

MCC-VC fitting method is extended to coupled ellipses fitting.

It is worth noting that the incorrectly associated data points

are treated as outliers during the fitting, implying the fitting

method needs to be robust to the outliers. The contributions

are summarized as follows, including:

1) We propose a robust ellipse fitting method based on

MCC-VC, in which the kernel bandwidth and center

are estimated by a well explained optimization problem.

Moreover, this problem is efficiently solved by accurate

convex approximations.

2) We formulate a new SOC constraint to guarantee the

fitted curve is an ellipse, which greatly improves the

computational efficiency of the proposed method.
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3) We propose a data association method for the coupled

ellipses fitting problem when the associations between

data points and ellipses are not known. With the estimated

data associations, we extend the proposed MCC-VC

fitting method to achieve the final coupled ellipses fitting.

The organization of the paper is as follows. Section II

gives the measurement models for the single ellipse, and

coupled ellipses with unknown data association. In Section

III, we present the optimization problems for single ellipse

fitting based on MCC-VC, and derive the iterative method to

solve the optimization problems. Section IV develops the data

association method and presents the MCC-VC method for cou-

pled ellipses fitting. Section V demonstrates the performance

of the proposed fitting method by several experiments using

both simulated data and real images. Section VI concludes

the paper. We shall use the following notations throughout

the paper. Vectors and matrices are represented by boldface

lowercase and boldface uppercase letters, respectively. (∗)o is

the true value of (∗). E[∗] is the mathematical expectation of

vector (∗). (∗)(k) is the kth element in vector (∗). |∗| and ‖∗‖
are the ℓ1-norm and ℓ2-norm, respectively. Other mathematical

symbols are defined when they first appear.

II. SYSTEM MODELS

A. Single Ellipse

In the 2-D Euclidean space, an ellipse can be uniquely
determined by five parameters: the center (g, h), half-long axis
a, half-short axis b and counter-clockwise rotation angle θ. The
ellipse constructed by these five parameters is [17]

[(xo − g) cos θ + (yo − h) sin θ]2

a2
+

[−(xo − g) sin θ + (yo − h) cos θ]2

b2
= 1, (1)

where (xo, yo) denotes a regular point on an ellipse.
The available data points, possibly having outliers, can be

modeled by

xi = x
o
i + v

x
i + n

x
i , yi = y

o
i + v

y
i + n

y
i , (2)

where nx
i and ny

i are the measurement noise, and vxi and vyi
are zero if the pair is a normal noise only contaminated point

and have larger values if it is an outlier.

Substituting (2) into (1) and after simple manipulations,

we can rewrite (1) as the following implicit second-order

polynomial equation [8], [16], [17]:

Ax
2
i +Bxiyi + Cy

2
i +Dxi + Eyi + F = δi, i = 1, . . . , N, (3)

where δi is the measurement error induced by noise and
outliers. For the sake of simplicity, we introduce the following
vectors:

v = [A,B,C,D,E, F ]T , q = [g, h, a, b, θ]T ,

ui = [x2
i , xiyi, y

2
i , xi, yi, 1]

T
. (4)

The model (3) can be expressed in the vector form

v
T
ui = δi, i = 1, . . . , N. (5)

To guarantee the model (3) represents an ellipse but not a

hyperbola, the condition B2−4AC < 0, i.e., v2(2)−4v(1)v(3) <

0, must be satisfied. The objective is to solve the ellipse fitting

problem to obtain an optimal estimate of v with the condition

v2(2) − 4v(1)v(3) < 0 being satisfied. From the estimate of v,

we can obtain the estimate of the parameters of the ellipse q

by the common conversion formulas [17].

B. Coupled Ellipses

The equations for the outer and inner coupled ellipses can
be expressed as [20]

[(xo − g) cos θ + (yo − h) sin θ]2

a2
j

+

[−(xo − g) sin θ + (yo − h) cos θ]2

b2j
= 1, (6)

where aj and bj for j = 1, 2 are the half-long and half-

short axes, respectively. Their lengths satisfy a2 = µa1 and

b2 = µb1 with µ ∈ (0, 1) being the proportional factor.
To seek the relationship between the parameters of inner

ellipse and those of the outer, we first multiply an arbitrary
positive factor β to both sides of (6):

β

(

[(xo − g) cos θ + (yo − h) sin θ]2

a2
j

+

[−(xo − g) sin θ + (yo − h) cos θ]2

b2j

)

= β, j = 1, 2. (7)

Assume that we have collected N noisy data points (xi, yi),
i = 1, 2, · · · , N , where the associations between the data
points and the ellipses are not known. After substituting
(xi, yi) to both equations of the outer and inner ellipses in
(7), the model equations become [17]

Axi
2 +Bxiyi + Cyi

2 +Dxi + Eyi + F = δi,1, (8a)

Axi
2 +Bxiyi + Cyi

2 +Dxi + Eyi + F + η = δi,2, (8b)

where η = β(1 − µ2) and δi,j for j = 1, 2 are the equation

errors of the ith data point (xi, yi) corresponding to the outer

and inner ellipses. Typically, |δi,1| < |δi,2| if the ith point

belongs to the outer ellipse, and |δi,1| > |δi,2| otherwise.
The equations in (8a) and (8b) can be further represented

by the following vector form:

[vT
ui v

T
ui]

T + τ = δi, i = 1, . . . , N, (9)

where

v = [A,B,C,D, E, F ]T , τ = [0 η]T

ui = [x2
i , xiyi, y

2
i , xi, yi, 1]

T
, δi = [δi,1 δi,2]

T
. (10)

To explicitly express the model equation for coupled ellipses
fitting that includes data association, we introduce an asso-
ciation vector φi to represent the association between the
ellipse and the ith noisy data point. It will take the value
of φi = [1, 0]T if the ith data point is associated with the
outer ellipse and φi = [0, 1]T if it is associated with the inner
ellipse. φi are not known and to be estimated. The model for
coupled ellipses fitting after data association is obtained by
multiplying the association vector φi to both sides of (9):

φ
T
i δi = v

T
ui + φ

T
i τ , i = 1, . . . , N, (11)

where the left term is the model error of the ith data point.
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III. SINGLE ELLIPSE FITTING BASED ON MCC-VC

In this section, we propose a robust formulation for single

ellipse fitting by MCC-VC, to provide better robustness against

the outliers. Moreover, we propose a more efficient procedure

than the one in [17], to guarantee the condition for forming

an ellipse, i.e., v2(2) − 4v(1)v(3) < 0, is fulfilled.

A. MCC-VC With Laplacian Kernel

MCC can be utilized for robust estimation of unknowns.
According to [17], the unknown vector α, which is related to
the error vector δ, can be estimated using the MCC by

max
α

E[κσ(δ(α))], (12)

where κσ(•) is the kernel function and σ denotes the kernel

bandwidth. The value of the kernel bandwidth σ is usually

determined according to the Silverman’s rule [22] when the

kernel is Gaussian, which may not be accurate especially when

the number of samples used for evaluating the expectation is

small or the kernel function is not Gaussian. For this reason,

we propose an MCC with adaptive kernel bandwidth σ, which

involves KDE.
In statistics, KDE can be considered as using a non-

parametric approach to estimate the probability density func-
tion of a random variable. Given a finite number of data
samples, KDE is a fundamental data smoothing problem.
Specifically, let {δi}

N
i=1 be the independent and identically

distributed samples drawn from some univariate distribution
of an unknown density p. The kernel density estimator p̂σ(δ)
for any given point δ can be expressed as

p̂σ(δ) =
1

N

N
∑

i=1

κσ(δ − δi). (13)

In KDE, the kernel bandwidth estimation is key to the

performance. The commonly used criterion for selecting σ is

to minimize the mean integrated squared error (MISE) [30]:

MISE(σ) = E[

∫

(p̂σ(δ)− p(δ))2dδ], (14)

where p(δ) is the probability density function (PDF) of the true

error distribution. However, minimizing the MISE is generally

not feasible since the true PDF of the error is not available.

To make the problem tractable, we make approximations in

the following.

Since we only have one set of samples, we first remove the

expectation operation, i.e., we minimize the integrated squared

error (ISE) instead of the MISE. It is not difficult to observe

from (13) and (14) that minimizing ISE is still an intractable

problem owing the square of the summation. Thus, we further

approximate p̂σ(δ) by using one sample, i.e., p̂σ(δ) ≈ κσ(δ−
c), where c is the an unknown representative sample. c is also

known as the center of the kernel function [24].
Finally, we seek optimal c and σ by minimizing the ISE.

The term
∫

(p(δ))2dδ is independent of c and σ, we have

(c∗, σ∗) = argmin
c,σ

∫

[κσ(δ − c)− p(δ)]2 dδ

= argmin
c,σ

{
∫

[κσ(δ − c)]2 dδ − 2E [κσ(δ − c)]

}

.

(15)

The mathematical expectation in problem (15) is approx-
imated by sample averaging over the N samples {δi}

N
i=1. In

this paper, the kernel function is Laplacian for its robust-
ness to outliers. Substituting the Laplacian kernel function

κσ(δ − c) = 1
2σ e

− |δ−c|
σ into problem (15) gives

(c∗, σ∗) = argmin
c,σ

{

1

4σ
−

1

Nσ

N
∑

i=1

e
−

|δi−c|
σ

}

. (16)

It is worth noting that problem (16) is obtained differently

from [24] although the final form is exactly the same as that

in [24] when the Laplacian kernel function is used.
With the estimated c∗ and σ∗ by problem (16), MCC follows

to estimate the unknown parameters in the model by solving
the problem

argmin
α

−
1

N

N
∑

i=1

κσ∗(δi(α)− c
∗)

= argmin
α

−
1

σ∗

N
∑

i=1

e
−

|δi(α)−c
∗|

σ∗ . (17)

where 2N is discarded as a constant irrelevant to the opti-

mization variable. To summarize, problems (16) and (17) are

solved in the MCC-VC method.

B. Single Ellipse Fitting Based on MCC-VC

In the ellipse fitting problem, v is the unknown vector to

be estimated. We shall deduce an optimization problem to

estimate v based on MCC-VC.
It is seen from (5) that δi is related to the unknown vector

v. Thus, we express δi as δi(v) = vTui for i = 1, . . . , N .
Using an estimate of v, denoted by v̂, we can construct the
samples δi(v̂). Problem (16) becomes

(ĉ, σ̂) = argmin
c,σ

{

1

4σ
−

1

Nσ

N
∑

i=1

e
−

|v̂T
ui−c|
σ

}

. (18)

With the estimated c and σ, denoted by ĉ and σ̂, the ellipse
parameter vector can be estimated by solving

v̂ = argmin
v

−
1

σ̂

N
∑

i=1

e
−

|vT
ui−ĉ|
σ̂

s.t. v
2
(2) − 4v(1)v(3) < 0, (19)

where the condition v2(2) − 4v(1)v(3) < 0 is included as a

constraint to ensure the solution is an ellipse.

In the following, we develop specific methods to solve

problems (18) and (19) iteratively for estimating the unknown

parameters c, σ, and v in an alternate manner.

1) Estimation of the Kernel Bandwidth and Center: Joint

estimation of the kernel bandwidth and center in problem (18)

may lead to local convergence owing the non-convex nature

of the problem. To avoid the local convergence issue, we

propose to estimate the two parameters by dividing problem

(18) into two subproblems, with one parameter estimated by

one subproblem. The subproblems are not solved using the

routine gradient based methods, such as the gradient decent

method and Newton’s method. Instead, we design a sufficiently

accurate convex problem for each subproblem, and the solution

of the convex problem is used as a starting point to obtain the

optimal solution of the corresponding subproblem by local

search. Since the designed convex problems are sufficiently
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accurate to provide good starting points, we expect to obtain

the optimal solutions of the original non-convex subproblems,

although global convergence is not guaranteed.

i) Estimation of the kernel bandwidth
We first present a procedure to estimate the kernel band-

width σ when fixing v and c to their estimates v̂ and ĉ from

the previous iteration. For notational simplicity, let δ̂i = v̂Tui

for i = 1, . . . , N . Using δ̂i and ĉ, we can estimate σ by solving
the following problem

min
σ

{

1

4σ
−

1

Nσ

N
∑

i=1

e
−

|δ̂i−ĉ|
σ

}

. (20)

By letting r = 1
σ

, problem (20) can be written into an
optimization problem with r as variable:

min
r

{

h(r) :=
r

4
−

r

N

N
∑

i=1

e
−|δ̂i−ĉ|r

}

. (21)

Obviously, once the optimal solution of problem (21) is

obtained, the optimal solution of problem (20) is also readily

available.
By computing the second-order derivative of h(r) [31], it

can be proven that problem (21) is non-convex, which may
lead to possible local convergence if an iterative algorithm is
used to solve it. We shall approximate (21) as a sufficiently
accurate convex problem through truncating the Taylor expan-

sion. For brevity, we denote âi = |δ̂i− ĉ| for i = 1, . . . , N . By
introducing a known positive constant r0, Appendix A shows
that h(r) can be approximated by the following fourth order
polynomial function, i.e.,

h(r) ≈ f(r) =
b4

6
(r − r0)

4 −
b3

2
(r − r0)

3 + b2(r − r0)
2

+ (b2r0 − b1 +
1

4
)(r − r0) + (

1

4
r0 − b1r0), (22)

where b1, b2, b3, and b4 are defined in Appendix A. The

approximation is typically accurate around r0.

It is straightforward to see that the optimal solution of

problem (20) can be obtained by sequentially minimizing f(r).
In particular, starting from r0 = 0, we can minimize f(r) to

obtain an updated r0, then we minimize f(r) again using the

updated r0 and repeat the process until convergence.

A close observation to the problem of minimizing f(r)
reveals that it has a closed-form solution. According to the

Karush-Kuhn-Tucker (KKT) condition, the solution of mini-

mizing f(r) can be obtained by solving the univariate cubic

equation f ′(r) = 0, whose real root has a closed-form expres-

sion. Appendix B shows the existence, uniqueness, and the

expression of the closed-form solution. Note that the closed-

form solution implies a lower computational complexity than

the gradient based methods to solve problem (20). Finally,

the optimal estimation of σ can be obtained by taking the

reciprocal of r.

ii) Estimation of the kernel center
We will present another estimation procedure to estimate

the kernel center c when fixing bandwidth σ to its estimates
σ̂ from the previous iteration. Problem (16) becomes

min
c

−

N
∑

i=1

e
−

|δ̂i−c|
σ̂ , (23)

which can be used to obtain the kernel center c.

However, problem (23) is non-convex owing to the non-

convex objective function. To simplify the problem, we shall

approximate the objective function of problem (23) by a

convex function. Specifically, we keep only the first-order

Taylor expansion of e−
|δ̂i−c|

σ̂ , i.e., e−
|δ̂i−c|

σ̂ ≈ 1− |δ̂i−c|
σ̂

.
We can approximate problem (23) as an LP problem

min
c

−

N
∑

i=1

(

1−
|δ̂i − c|

σ̂

)

= min
c

N
∑

i=1

|δ̂i − c|. (24)

In fact, problem (24) is the maximum likelihood estimation

of the center of the Laplacian distribution from the samples

that follow Laplacian distribution [32], and its solution is the

median of the samples. Hence, the solution would be a reason-

ably approximation even when the samples are not Laplacian

distributed, although it is not optimal to the original problem

(23). On the other hand, the optimal solution of problem (23)

can be obtained through a simple procedure using the LP

solution as the starting point. Noting that the objective of

problem (23) is non-differentiable, the gradient based method

is not applicable. We propose a simple bisection method

to solve problem (23). To this end, we first determine an

appropriate interval of c for the bisection method, containing

the LP solution and the sample around the LP solution having

smallest objective value, and then we perform the bisection

method. Suppose that the LP solution is accurate enough, the

optimal solution of problem (23) can be obtained.
2) Estimation of the Ellipse Parameters: When keeping c

and σ to the values ĉ and σ̂, the MCC-VC problem reduces
to the following MCC problem:

min
v

−
N
∑

i=1

e
−

|vT
ui−ĉ|
σ̂ , s.t. v2(2) − 4v(1)v(3) < 0, (25)

where the constant scaling parameter 1/σ̂ has been dropped.

The previous work [17] presented an method in solving

problem (25). Specifically, the solution to (25) is obtained by

solving the following two subproblems iteratively:
Subproblem 1: Assuming that an estimate of the weight

vector w is available, denoted by w̄, the first subproblem is:

min
v,ζi

N
∑

i=1

(−w̄iζi)

s.t. |vT
ui − ĉ| ≤ ζi, i = 1, . . . , N, (26a)

v
2
(2) − 4v(1)v(3) < 0. (26b)

Subproblem 2: If an estimate of v, denoted by v̄, is avail-

able, we can obtain the optimal estimate of the weight vector

w = [w1, . . . , wN ]T by the property of convex conjugate

functions: wi = −e−
|v̄T

ui−ĉ|

σ̂ .

The solution method typically takes the “<” as “≤” when

solving Subproblem 1. A procedure was proposed to guarantee

the sign “<” in [17], where an SOCP problem was solved

twice in one iteration. Different from [17], we here propose a

more efficient procedure for the condition v2(2)−4v(1)v(3) < 0
to be fulfilled. Specifically, we replace the constraint in (26b)

by v2(2) + ε2 ≤ 4v(1)v(3), where ε is an arbitrary constant.

It is straightforward to write the constraint (26b) as the
following second-order cone constraint:

∥

∥

∥

[

v(2), ε, v(1) − v(3)
]T
∥

∥

∥ ≤ v(1) + v(3). (27)
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Replacing the constraint in (26b) by that in (27), Subproblem
1 becomes the following SOCP:

min
v,ζi

N
∑

i=1

(−w̄iζi)

s.t. |vT
ui − ĉ| ≤ ζi, i = 1, . . . , N, (27). (28)

Different from [17], in which an SOCP problem were solved

twice in one iteration, the procedure proposed in this work

needs the SOCP problem (28) solved only once.

After obtaining the estimate of v by solving problem (25),

the kernel center and bandwidth estimates can be updated

using the procedure in Section III-B1. The process repeats

until the stopping criterion is reached. From the estimate of v,

one can recover the estimate of q according to the relationship

between v and q [17].

The entire MCC-VC method for single ellipse fitting is

given in Algorithm 1. It is worth noting that the MCC

fitting method in [17] cannot fit the ellipse correctly in some

cases owing to the predefined kernel center and bandwidth.

Therefore, a clustering technique is used in [17] to detection

the failed fitting. Once the failed fitting is detected, the

iterations will be restarted by setting a different initialization,

which obviously will increase the computational overload. By

contrast, the proposed MCC-VC method has very rare failed

fittings, and the clustering is generally not needed. Hence, the

proposed method is easier to use.

Algorithm 1: The MCC-VC Method for Single Ellipse Fitting

Input:

c0 = 0: initial kernel center; w̄
0 = −1/N : initial weights;

{ui}: collected data points; L: maximum number of iterations;

ε: constant to guarantee v2
(2)

− 4v(1)v(3) < 0;

Steps:

0: Solve problem (28) to obtain an initial estimate v̂
0.

Let δ̂0i = (v̂0)Tui and solve problem (20) to obtain an initial

estimate of σ̂0, where δ̂i = δ̂0i and ĉ = c0;
for ℓ = 1 : L

1: Solve problem (25) to obtain v̂
ℓ and compute δ̂ℓi = (v̂ℓ)Tui;

2: (i) Solve problem (23) to obtain the estimate of c, ĉℓ;

(ii) Solve problem (20) to obtain the estimate of σ, σ̂ℓ;

3: If ||g(v̂ℓ, ĉℓ, σ̂ℓ) − g(v̂ℓ−1, ĉℓ−1, σ̂ℓ−1)|| < 10−5, where

g(v, c, σ)
△

= − 1
σ

∑N
i=1 e

−
|vT

ui−c|
σ or ℓ = L, break.

end for

4: Obtain the the vector q̂ = [ĝ, ĥ, â, b̂, θ̂]T using v̂
ℓ ,

according to the relationship between v and q.

Output: The ellipse parameters [ĝ, ĥ, â, b̂, θ̂]T .

IV. COUPLED ELLIPSES FITTING WITH UNKNOWN DATA

ASSOCIATION

In this section, we investigate the coupled ellipses fitting

problem, where the associations between the ellipses and the

observed noisy data points are not available, i.e., we do not

know which data point belongs to which ellipse. To overcome

this difficulty, we propose a practical approach consisting of

two steps: Step 1: Associations of the data points to the

ellipses; Step 2: Fitting of the associated data points to the

coupled ellipses. To be more specific, the task of Step 1 is to

estimate the association vectors φi for i = 1, . . . , N , and Step

2 extends the proposed MCC-VC method to coupled ellipses

fitting by using the estimated association vectors in Step 1.

In Step 2, the incorrectly associated data points in Step 1 are

treated as outliers.

A. Data Association

According to (11) and imposing the condition v2(2) + ε2 −
4v(1)v(3) < 0 to ensure the result is an ellipse, we formulate
the following optimization problem to estimate the association
vectors, where the coupled ellipses parameters are estimated
in conjunction as well:

min
{φi∈

∏
2×1}, v,τ

N
∑

i=1

|vT
ui + φ

T
i τ |

s.t. τ(1) = 0, (27), (29)

where
∏2×1

is the set of all possible 2×1 association vectors.

Problem (29) is very difficult to solve owing to integer

variables and the inner product of the unknown vector φi and

τ . It should be emphasized that the main purpose of problem

(29) is to estimate the association vectors but not for coupled

ellipses fitting, because the final coupled ellipses will be

obtained in the second step. Keeping this in mind, we may still

be able to correctly estimate the association vectors by making

some approximations, even though the ellipse parameters may

not be accurate owing to these approximations. The idea is

to make the fitted inner and outer ellipses be located between

the true inner and outer ellipses, which will generate correct

associations for most noisy data points. To this end, we set η
that is defined below (8) to unity such that τ shown in (10)

is a constant vector. By doing so, the inner product of two

unknown vectors becomes the product with only one unknown

vector φi and problem (29) is partially simplified.

The value of ε in (29) cannot be arbitrarily chosen any

more since η is fixed to 1. Imagine that the association vectors

can be accurately estimated when the estimated ellipses by

(29) are located between the true inner and outer ellipses, i.e.,

the corresponding µ should be greater than its true value. It

follows from η = β(1 − µ2) = 1 that β should be large.

To make this happen, we can intentionally choose a larger

ε2. Our simulation shows that ε can be chosen from a very

large range, without affecting the estimation accuracy of the

association vectors.

Even after setting η = 1, problem (29) is still a mixed

integer problem and very difficult to solve. It will become more

tractable if we relax the association vector φi into a probability

vector characterized by 0 ≤ φi,j ≤ 1,
∑2

j=1 φi,j = 1, where

φi,j is the j-th element of φi.
By doing so, problem (29) can be relaxed into the following

form:

min
{φi}, v, {βi}

N
∑

i=1

βi

s.t. 0 ≤ φi,j ≤ 1,

2
∑

j=1

φi,j = 1, i = 1, . . . , N,

(27), |vT
ui + φi

T
τ | ≤ βi, (30)

Problem (30) is a convex SOCP problem, which can be

solved using some off-the-shelf softwares. Let us represent the

solution of problem (30) as φ̃i. An estimate of the association
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vector, denoted by φ̂i, can be obtained by setting the larger

element of the vector φ̃i to 1 and the smaller element to 0.

After obtaining φ̂i, the robust ellipse fitting methods can be

used to obtain the ellipse parameters. In the next subsection,

we shall present a new coupled ellipse fitting method by

extending the proposed MCC-VC method.

B. Coupled Ellipses Fitting Based on MCC-VC

Replacing φi with φ̂i in (11), the model equation becomes:

φ̂
T
i δi = v

T
ui + φ̂

T
i τ , i = 1, . . . , N. (31)

Note that the model in (31) may not be ideal owing to the

fact φ̂ may not be equal to the true value φ.
By introducing ṽ = [vT η]T and

ũi =

{

[

uT
i 0
]T

if φ̂i = [1, 0]T ;
[

uT
i 1
]T

if φ̂i = [0, 1]T ,
(32)

the model (31) becomes a concise form: φ̂T
i δi = ṽT ũi, i =

1, . . . , N .

By letting δ̃i = ṽT ũi be the error vector and ṽ be

the unknown variable vector, respectively, we can similarly

formulate the optimization problems based on the MCC-VC,

and the resulting problems can be solved in a similar manner

to the single ellipse fitting case. The parameter estimates of

the two ellipses can be recovered from the solution of the

MCC-VC problem as in [17].

V. NUMERICAL RESULTS

This section verifies the robustness of the proposed MCC-

VC method for single and coupled ellipses fittings using

both simulated data and real images. The experiments are

divided into two parts. The first part includes four sub-

sections and mainly tests the fitting performance, in which

both simulated data and real images are used to examine

the performance of single ellipse fitting, data association for

coupled ellipses, and coupled ellipses fitting. The second

part mainly tests the ellipse detection performance, where

the detection is accomplished by judging successful or failed

fitting of an ellipse. In order to test the single ellipse fitting

performance, we compare the proposed MCC-VC method

using the Laplacian kernel (denoted by “MCC-VC-Laplacian”)

with the RANSAC method having LS as the fitting algorithm

(denoted by “RANSAC+LS”) [15], the RANSAC method

having MCC-VC-Laplacian as the fitting algorithm (denoted

by “RANSAC+(MCC-VC)”), the SAREfit method (denoted

by “SAREfit”) [33], the MCC method using the Gaussian

kernel (denoted by “MCC-Gaussian”) [16], the MCC method

using the Laplacian kernel (denoted by “MCC-Laplacian”)

[17], the HGMM method (denoted by “HGMM”) [18], and

the Szpak method (denoted by “Szpak”) [34]. For coupled

ellipses fitting, we first test the data association performance

using the percentage rate of successful data associations, and

then further compare the fitting performance of the proposed

MCC-VC-Laplacian and the MCC-Laplacian [17] methods.

The associated SOCP problems in MCC-Laplacian and MCC-

VC-Laplacian are solved using the toolbox “ECOS” [35] and

SDP problem in MCC-Gaussian is solved using the Matlab

toolbox “CVX” [36], where the solver is SeDuMi [37].

A. Single Ellipse Fitting: Simulated Data

In the following, we generate the randomly simulated el-

lipses for fitting as in [17]. The true five ellipse parameters

are set according to the following distributions: g ∼ U [0, 20],
h ∼ U [0, 20], b ∼ U [10, 50], a ∼ U [b + 5, 55], and

θ ∼ U [−90◦, 90◦]. Suppose that the noise follows the zero-

mean Gaussian distribution with variance (0.005b)2. The nor-

malized root mean square error (NRMSE) is used to evaluate

the fitting performance, which is defined by NRMSE =
√

1
KM

∑K

k=1

∑M

m=1 ‖q̂mk − qk‖2, where K and M are the

numbers of the generated ellipses and the Monte Carlo (MC)

runs for each ellipse, and q̂mk and qk represent the estimated

and true parameters of the kth ellipse in the mth MC run. In

the following, we set K = 100 and M = 500 to compute the

NRMSE. Due to the existence of outliers, the fitting possibly

fails in a few runs. To obtain a meaningful NRMSE, it is

computed by discarding the results of these runs. Several

conditions are used to identify the failed runs. Here, we adopt

the same rule with that in [17] to identify a failed fitting.

1) Scenario 1: Uniformly Distributed Outliers: In this

scenario, the total number of data points is N = 100, and the

proportion of outliers varies from 10% to 50%. The values

vxi and vyi for the outliers are uniformly generated according

to U(−b, b) or U(−b, a) for the simulated scenarios where

the outlier distribution is either zero-mean or non-zero-mean.

Fig. 1(a) shows the NRMSE performance as the proportion

of outliers increases. Generally speaking, the proposed MCC-

VC-Laplacian method performs better than the other methods,

including the MCC-Laplacian method, especially when the

proportion of outliers increases from 30% to 50%. Note that

the outliers in this scenario have zero mean, implying that

MCC-VC-Laplacian is still able to work well even for zero-

mean outliers. Correspondingly, Table I shows the percentage

rates of successful fittings for different methods. In this

simulation scenario, the proposed MCC-VC-Laplacian almost

always successfully fits the ellipses even when the proportion

of outliers is 50%. By contrast, the other methods may fail,

especially when the proportion of outliers is large. As an illus-

tration, Fig. 2(a) shows the ellipses fitted by the eight methods

in a typical MC run. It can be seen that the ellipse generated by

MCC-VC-Laplacian fits the true ellipse very well, and better

than the other methods. Interestingly, after replacing the fitting

algorithm in the RANSAC method with MCC-VC-Laplacian

(RANSAC+(MCC-VC) in Fig. 1(a) and Fig. 2(a) and Table I),

its performance is significantly improved compared with the

original RANSAC method (RANSAC+LS). This further indi-

cated that the good performance of the proposed method when

dealing with the fitting on a small data set. Same observations

can be found in the following experiments. The results of Fig.

1(b) confirm that the MCC-VC-Laplacian method does have

great advantages in the case with non-zero-mean distribution

of outliers, in terms of both the fitting accuracy and successful

fitting rate.

2) Scenario 2: Cluster-Like Outliers: In this scenario,

we simulate a typical outlier distribution, where cluster-like

outliers are randomly distributed around the true ellipse.

Specifically, we generate five clusters for each ellipse. The
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Fig. 1. NRMSEs of all compared methods in different distributed outliers scenarios. (a) uniformly distributed U(−b, b); (b) NRMSE and rate of successful
fittings for MCC-VC and MCC methods in uniformly distributed U(−b, a); (c) cluster-like distributed; (d) One-sidedly distributed.
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Fig. 2. Illustration of an incorrect fitting case of the compared methods for single ellipse fitting having 40% outliers in different distributed outliers scenarios.
(a) uniformly distributed outliers; (b) cluster-like outliers: both outside and inside of the ellipse; (c) cluster-like outliers: outside of the ellipse; (d) cluster-like
outliers: inside of the ellipse.

TABLE I
RATE (%) OF SUCCESSFUL FITTINGS FOR SINGLE ELLIPSE (50000 MC

RUNS IN TOTAL): UNIFORMLY DISTRIBUTED OUTLIERS

Method
Prop.(%)

10 20 30 40 50

MCC-VC-Laplacian 100 100 100 100 99.96

MCC-Laplacian 100 100 98.82 87.41 54.79

MCC-Gaussian 89.23 74.86 51.56 27.63 15.11

SAREfit 96.53 91.00 81.91 69.52 59.67

HGMM 24.15 16.10 9.43 5.16 2.91

Szpak 85.41 64.29 40.29 20.62 9.07

RANSAC+LS 14.67 10.82 5.08 1.48 0.38

RANSAC+(MCC-VC) 86.93 94.10 94.74 91.28 86.95

cluster center for each cluster is first generated similarly

to the outliers in Scenario 1, and the other points of this

cluster are then randomly generated in the 15 × 15 square

area located at the cluster center. Each cluster has the same

number of outliers. The same as in Scenario 1, we vary the

proportion of outliers from 10% to 50%. The fitting NRMSEs

are shown in Fig. 1(c) and the rates of successful fittings

are given in Table II. Although HGMM has better fitting

performance than MCC-VC-Laplacian in NRMSE when the

proportion of outliers is 50%, its successful fitting rate is

far from satisfactory. In general, the proposed MCC-VC-

Laplacian still significantly outperforms the other methods.

Comparison between the results for the uniformly distributed

outliers and the cluster-like outliers reveals that the cluster-

like outliers will result in larger fitting errors and higher rate

of failed fittings, indicating that the ellipse is more difficult

to fit in this scenario. Fig. 2(b) illustrates the fitting results

in a typical MC run, which also shows the distribution of

the outliers. It clearly indicates the better fitting performance

of the proposed method. As a special case of the cluster-like

TABLE II
RATE (%) OF SUCCESSFUL FITTINGS FOR SINGLE ELLIPSE (50000 MC

RUNS IN TOTAL): CLUSTER-LIKE OUTLIERS

Method
Prop.(%)

10 20 30 40 50

MCC-VC-Laplacian 100 100 98.96 77.42 53.18

MCC-Laplacian 100 95.21 63.55 40.09 27.57

MCC-Gaussian 90.40 63.31 30.55 20.32 9.26

SAREfit 95.62 72.32 38.22 30.82 31.57

HGMM 26.54 17.12 11.16 4.17 1.73

Szpak 85.11 70.05 50.05 38.94 20.48

RANSAC+LS 14.68 11.47 3.71 7.10 3.15

RANSAC+(MCC-VC) 87.22 93.21 92.50 86.34 70.39

distribution, the one-sided distribution of outliers have non-

zero mean of error samples. This case is very common in real

images as shown later. To test the superior performance of the

proposed MCC-VC-Laplacian method in dealing with such

a case, we design the following experiment. All outliers are

similarly divided into several clusters, but they are located on

one side of the ellipse. To confine the outliers inside the ellipse,

we set the distance between the cluster centers and the ellipse

center to a small range 0.25b− 0.5b. The outliers outside the

ellipse are generated by setting the distance between the cluster

centers and the ellipse center to a large range 1.5b− 2b. Fig.

1(d) shows the NRMSE curves and Table III gives the rates

of successful fittings as the proportion of outliers varies from

10% to 50%. As shown in Fig. 1(d), the fitting errors increase
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significantly as compared to those in Scenario 1, indicating

that the ellipse with one-sided outliers is more difficult to

fit well. However, the proposed MCC-VC-Laplacian method

performs much better than the other methods, in terms of both

NRMSE and successful fitting rate. Similarly, Fig. 2(c) and

Fig. 2(d) respectively confirm the fitting results of MCC-VC-

Laplacian are better than the other methods when the outliers

are located inside and outside the ellipse in two typical MC

runs.

TABLE III
RATE (%) OF SUCCESSFUL FITTINGS FOR SINGLE ELLIPSE (50000 MC

RUNS IN TOTAL): ONE-SIDEDLY DISTRIBUTED OUTLIERS

Method
Prop.(%)

10 20 30 40 50

MCC-VC-Laplacian 99.99 97.97 83.20 68.08 46.13

MCC-Laplacian 97.83 84.37 76.15 46.29 24.49

MCC-Gaussian 81.19 61.18 43.88 37.01 32.40

SAREfit 81.60 70.59 50.92 46.13 42.54

HGMM 23.75 18.48 15.16 9.43 6.12

Szpak 49.38 29.29 21.52 12.96 7.18

RANSAC+LS 9.62 8.72 7.26 6.79 6.57

RANSAC+(MCC-VC) 91.36 84.21 72.15 63.34 51.34

B. Coupled Ellipses Fitting: Simulated Data

In the coupled ellipses fitting, the ellipse parameters

{g, h, a, b, θ} are generated in the same way as the single

ellipse fitting case. The proportional parameter µ is generated

randomly according to the uniform distributions µ ∼ U(0, 1).
100 data points are collected for each ellipse (and hence,

the number of total data points is N = 200), possibly with

outliers included. The normal data points are generated by

uniformly sampling over the ellipses, and the outliers are

simulated according to the uniform distribution U(−b, b). The

associations between the data points and the coupled ellipses

are unknown before the fitting.

Due to the possible incorrect association of data points in

Step 1 and the existence of outliers, we take the same measures

as mentioned before to discard the failed fitting results to

obtain meaningful NRMSE.

1) Effect of ε on Association: As aforementioned, ε cannot

be arbitrarily chosen owing by fixing η to 1 during the

data association step. In this experiment, we study the effect

of choosing different values of ε on data association. The

percentage of incorrect associations of both normal and outlier

data points is examined, as the proportion of outliers increases

from 0 to 40%, when ε takes the values of 1, 10, 100, 1000 or

10000. The results are shown in Fig. 3, which indicates that

the choice of ε has nearly no effect on the association vector

estimation, although the ellipse parameter vector may not be

accurately estimated. In the following, ε is set to 1.

2) Performance of Coupled Ellipses Fitting by Varying the

proportion of Outliers: In this experiment, we consider the

scenario that outliers exist inherent in the data points. The

noise STD is fixed at 0.005b, and the proportion of outliers

varies from 0 to 40%. The results are given in Table IV. The

results remain encouraging. Let us take the last column as

an example. With the incorrectly associated points included,
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Fig. 3. Sensitivity of the value of ε on the association accuracy.

the proportion of the outliers is greater than 40% under this

setting. Even in this challenged case, the rate of successful

fitting is still greater than 97.7%, implying that the proposed

data association method is quite effective for use in practice

in a harsh environment.

TABLE IV
PERFORMANCE OF COUPLED ELLIPSES FITTING BY VARYING THE

PROPORTION OF OUTLIERS

Performance
Prop.(%)

10 20 30 40

Incorrect association rate (%) 8.8 11.6 14.4 16.6

Successful fitting rate-MCC (%) 98.5 92.8 82.2 71.3

Successful fitting rate-MCC-VC (%) 100 99.8 99.7 97.7

NRMSE-MCC 0.71 1.26 1.55 1.74

NRMSE-MCC-VC 0.09 0.16 0.57 1.07

C. Single Ellipse Fitting: Real Data

In this subsection, we apply five methods to fit the ellipses

in real images, including the Voyager aircraft [38], Mars,

and globe images. Before the fitting, the data points of

these images are extracted through a series of preprocessing

steps including the image segmentation, the morphological

operations, and the edge detection techniques. It is not difficult

to imagine there are a large number of outliers in the extracted

data points, and the outliers do not necessarily follow a zero-

mean distribution.

1) Voyager Aircraft Image: The Voyager aircraft image

fitting process and results are shown in row (a) of Fig. 4,

in which the proportion of the outliers1 is about 21.47%. The

proportion is larger than that in [17], which is generated by

setting the Sobel operator parameter to a smaller value of 0.17

as compared to 0.2 in [17]. The fitting results of the MCC-VC-

Laplacian method and other methods are shown in the third

column and fourth column of row (a), respectively. Obviously,

MCC-Laplacian [17] fails to fit the ellipse but MCC-VC-

Laplacian is still successful when the number of the outliers

is larger, indicating that the proposed method is more robust

to larger amount of outliers.

2) Mars Image: The Mars image is selected from the

Caltech 256 Dataset [39], labeled as 137 0008. The fitting

process and results are shown in row (b) of Fig. 4. Similarly,

1The outliers are recognized in the following way. First, the true ellipse
parameters are obtained through a manual measurement tool. The points with
errors greater than 0.1 in all data points are regarded as outliers.
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(a)

(b)

(c)

Fig. 4. Left to right columns: input images, data points, fitting results attained
by our method, and fitting results attained by all compared methods: row (a):
Voyager aircraft image; row (b): mars image; row (c): globe image.

the parameter of the Sobel operator is set to 0.042 for this

image to include more outliers as compared to [17]. The

proportion of the outliers is about 54.51% in this image. The

fitting results of MCC-VC-Laplacian and the other methods

are shown in the third column and fourth column, of row(b),

respectively, we see that the proposed method successfully fits

the ellipse but the others fail.

3) Globe Image: The globe image is also selected from

[39], labeled as 053 0080. The fitting process and results

are shown in row (c) of Fig. 4. Different from the previous

two images, the Canny detector is used for edge extraction

of this image, where the correlation coefficient is set to 0.5.

The outliers in the extracted data points form a one-sided

distribution, due to the base holding the globe. The proportion

of the outliers is about 33.27%. For this image, the proposed

MCC-VC-Laplacian method has the best fitting performance

compared to the other methods, as shown in the third column

and fourth column of row (c), confirming the robustness of

the proposed method to one-sided outliers.

D. Coupled Ellipses Fitting: Real Data

In this subsection, the proposed method is applied to fit

the coupled ellipses in an iris image. To demonstrate the

robustness of the proposed method, two scenarios without and

with outliers in the data points are investigated. The data points

extracted from iris image in both scenarios are shown in Fig.

5 (a)(d). In the case of having outliers, the outliers account

for 24.98% of the total data points. The results of the data

association and the fitting are illustrated in Fig. 5 (b)(e) and

Fig. 5 (c)(f), respectively. In Fig. 5 (b)(e) the blue dots and

and the red stars represent the data points associated with

the inner and outer ellipses, respectively. Clearly, there exist

some incorrectly associated points, and they are regarded as

outliers, and hence, the percentage of the outliers2 is greater

than 24.98% when doing the fitting. However, the fitting is still

2The outliers are recognized by comparing the data points of Fig. 5 (b)(e).

successful, indicating the incorrectly associated data points are

handled without difficulty by the fitting method in Step 2.

Data Points without Outliers

(a)
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Fig. 5. Coupled ellipses fitting for iris image, scenario without outliers (first
row), scenario with outliers (second row). Left to right columns: data points,
association results attained by our method, and fitting results attained by our
method.

E. Multiple Ellipses Fitting

In this subsection, we show that the proposed method has

the ability of accurately fitting multiple ellipses, with the

help of ellipse detection. It is well known that the popular

ellipse detection methods [25]–[28] involve ellipse fitting

using sampled data points. Specifically, the principle of many

detection methods is to detect arcs by the position relationship

among pixel points. After grouping or deleting the arcs through

basic fitting methods such as the direct least squares method

[8], the candidate ellipses are formed, and then the qualified

ellipses are selected from the candidates through screening.

The detection methods focus on the detection performance,

and their fitting performance may not be satisfactory. Our

aim is to first apply the ellipse detection method to find the

ellipses in a given image, and then further improve the fitting

performance based on the coarse position and size information

of the detected ellipses. More specifically, the idea is to divide

the data points into groups, each corresponding to one detected

ellipse. To this end, we first form the equations of the detected

ellipses using the parameters of the detected ellipses obtained

from the detection methods. We then apply the coordinates

of each data point to the equations and compute the errors

of each data point relative to all ellipse equations. For each

ellipse, we can extract the data points with relatively small

errors by setting a threshold. By doing so, the extracted points

belong to the ellipse with a high probability. This process

can be regarded as association, i.e., associate the data points

to particular ellipses. Apparently, outliers may be introduced

in the association process, and the value of the threshold

determines the number of outliers. The smaller the threshold,

the less the number of outliers, which, however, may filter out

useful points.

To validate the fitting performance improvement by the

proposed method, we select several images, each containing

multiple ellipses. Fig. 6 shows the process of solving a multi-

ellipse fitting problem with detection first and fitting. We



11

first use Lu’s detection method proposed recently in [26]

to detect the ellipses and then apply proposed MCC-VC-

Laplacian methods to further fit the ellipses. We conducted

corresponding comparative experiments, using the data points

extracted after detection as input, using different methods,

including the MCC-Laplacian [17], HGMM [18], SAREfit

[33], for fitting. The results are shown in Fig. 7, where the

threshold is set to 1.5. For comparison, the original detection

results are also given in the second column. Although most

ellipses are successfully detected by Lu’s method, the fitting

accuracy does not seem satisfactory, as seen from the second

column. The proposed MCC-VC method has notable fitting

performance improvement over Lu’s method and it has the

best fitting performance owing to its robustness.

Data points group 1

Data points group 2

Input Datapoints Lu’s detection Extracted points Fitting  by  MCC-VC

Fig. 6. Example for multiple ellipses fitting after detection.

Input

Lu’s 

detection

HGMM

MCC-

Laplacian

SAREfit

MCC-VC-

Laplacian

(a) (b) (c) (d) (e)

Fig. 7. Fitting performance comparison for multiple ellipses fitting after
ellipse detection. (1) The first row of images are the original images from
the Caltech 256 Dataset [39]; (2) The second row shows the results of Lu’s
detection method; (3) The third, fourth, and fifth rows show the fitting results
obtained by the existing methods; (4) The last row shows the fitting results
of the proposed MCC-VC-Laplacian method.

As a special case of multiple ellipses fitting, the coupled

ellipses fitting can also be done through the procedure de-

scribed above, where the association is accomplished based on

ellipse detection. Nonetheless, it is straightforward to see that

the fitting significantly depends on the detection performance

since it follows after the detection. For ellipses lacking of arc

segments, the detection method may fail, implying that the

detection method cannot be used for grouping the data points.

In such a case, the proposed coupled ellipses fitting method

offers better results when the image is known to contain

coupled ellipses. Fig. 8 and Fig. 9 illustrate the advantage

of the proposed coupled ellipses fitting through two synthetic

images and a real image, respectively. It is seen from the

second column of Fig. 8 that Lu’s method cannot detect the

ellipses owing to some losing portions. In comparison, the

proposed coupled ellipses fitting method successfully fits the

coupled ellipses. Fig. 9(a) shows an owl’s iris image containing

coupled ellipses. For this image, Lu’s detection method is

only able to detect the inner ellipse; see the Fig. 9(c). The

data points associated to the inner ellipse can be determined

using the detected inner ellipse, and the rest data points are

associated to the outer ellipse. The association results based on

detection and using the proposed SOCP method are given in

the Fig. 9(e)(f), respectively. The proposed MCC-VC coupled

ellipses fitting method follows after the association, and the

fitting results are shown in the Fig. 9(g)(h), respectively.

Clearly, the proposed method has better fitting performance.

(a)Input (b)Lu’s detection (c)MCC-VC-Laplacian-Coupled

Fig. 8. Illustration of the advantage of the proposed coupled ellipses fitting.
(1) The first column of images are synthetic images; (2) The second column
shows the detection results of Lu’s method; (3) The last column shows the
fitting results of the proposed coupled ellipses fitting method.

(a) Input (b) Original data (c) Lu’s detection (d) Extracted data points

(e) Association using detection (f) Association using SOCP (g) Fitting result after 

association using detection

(h) Fitting result after 

association using SOCP

Fig. 9. Illustration of the better performance of the proposed coupled ellipses
fitting than Lu’s method through the owl’s iris image.

VI. CONCLUSION

In this paper, we have presented a new ellipse fitting method

based on the MCC-VC method, which offers strong robustness

against outliers. By the iterative optimization of the kernel

center, kernel bandwidth and ellipse parameter vector, the

proposed MCC-VC method is more flexible and is applicable

to more challenging scenarios. Furthermore, we have proposed

a data association method for coupled ellipses fitting without

knowing the data association between the ellipses and the data

points, and extended the proposed MCC-VC method to cou-

pled ellipses fitting. Both simulated data and real images have
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confirmed the superior fitting performance of the proposed

method over several recently proposed fitting methods.

APPENDIX A

THE APPROXIMATE CONVEX FUNCTION OF h(r)

By introducing a known positive constant r0, we can rewrite
h(r) as

h(r) = −
r − r0

N

N
∑

i=1

e
−âir +

r

4
−

r0

N

N
∑

i=1

e
−âir

= h1(r) + h2(r), (33)

where

h1(r) = −
r − r0

N

N
∑

i=1

e
−âir, h2(r) =

r

4
−

r0

N

N
∑

i=1

e
−âir. (34)

To approximate h(r) by a convex function, we approximate
the two non-convex functions h1(r) and h2(r) to convex
functions through appropriate Taylor expansions, respectively.
For the function h1(r), we perform the Taylor expansion to
e−âir up to the third order at r0, giving

e
−âir ≈e

−âir0 − âie
−âir0(r − r0) +

â2
i

2
e
−âir0(r − r0)

2

−
â3
i

6
e
−âir0(r − r0)

3
. (35)

The value of âi may be large in the presence of outliers, and

keeping up to the third-order in the expansion is to guarantee

a sufficiently accurate approximation.
Substituting (35) into h1(r) yields an approximate function

f1(r):

f1(r) =−
r − r0

N

N
∑

i=1

[e−âir0 − âie
−âir0(r − r0)

+
â2
i

2
e
−âir0(r − r0)

2 −
â3
i

6
e
−âir0(r − r0)

3]. (36)

For notational simplicity, we further define

b1 =
1

N

N
∑

i=1

e
−âir0 , b2 =

1

N

N
∑

i=1

âie
−âir0 ,

b3 =
1

N

N
∑

i=1

â
2
i e

−âir0 , b4 =
1

N

N
∑

i=1

â
3
i e

−âir0 , (37)

which are known constants. Using these notations, f1(r) can
be rewritten as

f1(r) =
b4

6
(r − r0)

4 −
b3

2
(r − r0)

3 + b2(r − r0)
2 − b1(r − r0).

(38)

Regarding the convexity of f1(r), we have the following

proposition.

Proposition 1: f1(r) is a strictly convex function in the

domain (0,+∞).
Proof: By letting t = r − r0, we form a function f1(t). To

prove the convexity of f1(r), we first prove that f1(t) is strictly
convex. f1(t) is a strictly convex function if and only if the
second derivative is strictly greater than zero, i.e., f ′′

1 (t) > 0
[31]. It follows from the expression of f1(t) that

f
′′
1 (t) = 2b4t

2 − 3b3t+ 2b2, (39)

which is a quadratic function. Since b4 > 0, f ′′
1 (t) is convex

and has a minimum. The minimum value of f ′′
1 (t) is

min
t>−r0

f
′′
1 (t) =

b2b4 −
9
16
b23

1
2
b4

, (40)

which is reached at t = 3b3
4b4

.

Since b4
2 > 0, we only need to show the numerator term

b2b4 −
9
16b

2
3 > 0. Using the expressions of b2, b3, b4 in (37),

b2b4 −
9

16
b
2
3 =

1

N2

N
∑

i=1

(âie
−âir0) ·

N
∑

i=1

(â3
i e

−âir0)−
9

16N2

(

N
∑

i=1

â
2
i e

−âir0

)2

.

(41)

According to the Cauchy-Schwarz inequality, we have

N
∑

i=1

(â
1
2
i e

− 1
2
âir0)2 ·

N
∑

i=1

(â
3
2
i e

− 1
2
âir0)2

≥

(

N
∑

i=1

(â
1
2
i e

− 1
2
âir0) · (â

3
2
i e

− 1
2
âir0)

)2

=

(

N
∑

i=1

â
2
i e

−âir0

)2

>
9

16

(

N
∑

i=1

â
2
i e

−âir0

)2

. (42)

The last inequality holds when
(

∑N

i=1 â
2
i e

−âir0

)2

6= 0,

which obviously is the case since âi = |δ̂i − ĉ|, and δ̂i
(i = 1,. . . , N) are random samples and cannot have the same

value of ĉ. We conclude from (42) that f ′′
1 (t) > 0 holds,

indicating that f1(t) is a strictly convex function. Since f1(r)
is the composition of the convex function f1(t) and the affine

function t = r − r0, it is also strictly convex. �

Next, we will focus on the approximation of function h2(r).
For e−âir in h2(r), we only perform the first-order Taylor
expansion at r0, since it is difficult to prove the convexity of
the higher order approximations. By doing so, we obtain the
approximate function f2(r) of h2(r):

f2(r) =
r

4
−

r0

N

N
∑

i=1

[e−âir0 − âie
−âir0(r − r0)]

=
r

4
− r0b1 + r0b2(r − r0), (43)

which is an affine function of r and thus convex.
Finally, the approximate convex function of h(r) is

f(r) =f1(r) + f2(r)

=
b4

6
(r − r0)

4 −
b3

2
(r − r0)

3 + b2(r − r0)
2

+ (b2r0 − b1 +
1

4
)(r − r0) + (

1

4
r0 − b1r0). (44)

APPENDIX B

CLOSED-FORM SOLUTION OF f ′(r) = 0

In this appendix, we show the existence and uniqueness of

the real root of f ′(r) = 0, and give the expression of the

closed-form solution.
Similar to Appendix A, we first obtain the function f(t) by

letting t = r − r0. f ′(t) can be expressed as

f
′(t) =

2b4
3

t
3 −

3b3
2

t
2 + 2b2t+ (b2r0 − b1 +

1

4
). (45)
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By defining the following notations,

d1 =
2b4
3

, d2 = −
3b3
2

, d3 = 2b2, d4 = (b2r0 − b1 +
1

4
),

p =
3d1d3 − d22

3d21
, q =

27d21d4 − 9d1d2d3 + 2d32
27d31

, (46)

and according to the Cardano formula, f ′(t) can be equiva-
lently expressed as f ′(t) = t3 + pt + q. By the discriminant
of the root ∆ = ( q2 )

2 + (p3 )
3, we can verify the existence

and uniqueness of the solution. Similar to proving the non-
negativity of (41), we can validate the non-negativity of p,
which means ∆ > 0, and the equation f ′(t) = 0 has only one
real root. The root can be expressed as

t =
−d2 − (k

1
3
1 + k

1
3
2 )

3d1
, (47)

where

k1 = e1d2 + 3d1

[

−e2 + (e22 − 4e1e3)
1
2

2

]

,

k2 = e1d2 + 3d1

[

−e2 − (e22 − 4e1e3)
1
2

2

]

, (48)

with e1 = d22 − 3d1d3, e2 = d2d3 − 9d1d4, and e3 = d23 −
3d2d4.Finally, the solution of the equation f ′(r) = 0 can be
obtained from (47) as follows:

r =
−d2 − (k

1
3
1 + k

1
3
2 )

3d1
+ r0. (49)
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