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Improving Filtered Backprojection Reconstruction
by Data-Dependent Filtering

Daniél M. Pelt and Kees Joost Batenburg

Abstract—Filtered backprojection, one of the most widely
used reconstruction methods in tomography, requires a large
number of low-noise projections to yield accurate reconstruc-
tions. In many applications of tomography, complete projection
data of high quality cannot be obtained, because of practical
considerations. Algebraic methods tend to handle such problems
better, but are computationally more expensive. In this paper, we
introduce a new method that improves the filtered backprojection
method by using a custom data-dependent filter that minimizes
the projection error of the resulting reconstruction. We show that
the computational cost of the new method is significantly lower
than that of algebraic methods. Experiments on both simulation
and experimental data show that the method is able to produce
more accurate reconstructions than filtered backprojection based
on popular static filters when presented with data with a limited
number of projections or statistical noise present. Furthermore,
the results show that the method produces reconstructions with
similar accuracy to algebraic methods, but is faster at producing
them. Finally, we show that the method can be extended to exploit
certain forms of prior knowledge, improving reconstruction
accuracy in specific cases.

Index Terms— Tomography, image reconstruction, algebraic
methods.

I. INTRODUCTION

OMOGRAPHIC reconstruction problems are found in

many applications, such as X-ray scanners in medical
imaging, or electron microscopy in materials science [1]. In the
standard tomographic problem, we aim to reconstruct an object
from its projections, acquired for a range of angles. This
problem has been studied extensively because of its practical
relevance, leading to a wide range of reconstruction methods.
For an overview of previous work, see [2]-[4]. Most of the
current reconstruction methods can be separated into two
groups: analytical methods and algebraic methods.

Manuscript received December 17, 2013; revised April 17, 2014 and
July 9, 2014; accepted July 9, 2014. Date of publication July 22, 2014;
date of current version September 25, 2014. This work was supported by the
Netherlands Organization for Scientific Research under Project 639.072.005.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Jean-Baptiste Thibault.

D. M. Pelt is with the Centrum Wiskunde en Informatica, Amsterdam 1090
GB, The Netherlands (e-mail: d.m.pelt@cwi.nl).

K. J. Batenburg is with the Centrum Wiskunde en Informatica, Amsterdam
1090 GB, The Netherlands, with the Mathematical Institute, Leiden
University, Leiden 2311 EZ, The Netherlands, and with the iMinds-Vision
Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
(e-mail: joost.batenburg@cwi.nl).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
Python source code of an implementation of the MR-FBP method. The latest
version of this code can be found at: http://dmpelt.github.io/pymrfbp/. The
total size of the file is 0.4 MB. Contact d.m.pelt@cwi.nl for further questions
about this work.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T1P.2014.2341971

The basis of analytical reconstruction methods is a
continuous representation of the tomographic problem. This
continuous model is inverted, and the result is discretized.
The resulting reconstruction methods, of which the filtered
backprojection (FBP) method is the most widely used, are
usually computationally efficient. Furthermore, if projection
data of sufficiently high quality is available, reconstructions
computed by these methods are often accurate. These two
properties are among the reasons that the FBP method is very
popular in practice [5], along with its ease of implementation.
An important drawback of analytical methods is that they are
based on an approximation of a model where perfect data is
available for all projection angles. If the available data is not
perfect, either because few projections are available or because
the data is noisy, the quality of analytical reconstructions will
suffer from interpolation effects.

Practical considerations can lead to limited or noisy pro-
jection data in many applications of tomography. In electron
tomography, for example, the electron beam damages the
sample, leading to a hard limit on the number of projections
that can be measured [6]. In many other applications, there
is a limit on the duration of a single scan. To decrease the
scan duration, one can either acquire fewer projections or
use a reduced dose per projection. In industrial tomogra-
phy, process speed considerations limit the duration of each
scan [7].

Algebraic methods are based on a discrete representation
of the tomographic problem, leading to a linear system of
equations. This system is solved to obtain a reconstructed
image. Since algebraic methods use a model of the actual data
that is available, they usually yield more accurate reconstruc-
tions from limited data than analytical methods. Furthermore,
by using specific ways of solving the linear system, it is
possible to reduce the effect of noise on the reconstruction.
An important drawback of algebraic methods is that they are
computationally more expensive than analytical methods. The
linear system that has to be solved is usually very large, and
the iterative methods that are used often need a large number
of iterations to converge to an acceptable solution.

In many applications of computed tomography, the compu-
tational efficiency of a reconstruction method is an important
consideration. For example, in fast X-ray micro-tomographic
experiments at synchrotrons, the speed of the post-processing
pipeline has to match the high speed of data acquisition [8].
In fact, the computation efficiency of the FBP method is an
important reason for why it is still commonly used instead of
more advanced reconstruction methods [5].

Methods that reduce the computation time of algebraic
methods have been proposed by other authors. One approach
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is to implement algebraic methods more efficiently by using
graphic processing units (GPUs) [9], [10]. Other approaches
focused on improving the convergence of algebraic methods,
for example by improving the properties of the linear
system [11]. Although these improvements reduce the
computation time of algebraic methods significantly, even
faster methods can be obtained by changing the algebraic
methods themselves.

One such approach is taken in [12], where an angle-
dependent FBP filter is calculated, such that the resulting
FBP method approximates an algebraic method. Although
the resulting method is able to approximate the algebraic
method well, calculating the filter requires a large number
of runs of the algebraic method, which is computationally
expensive. The resulting filter can be reused for problems
with identical projection geometry, but a change in geometry
requires calculation of a new filter.

A filter that approximates an algebraic method is also
derived in [13], in which a reformulation of the SIRT algebraic
method is translated to a fixed filter for the FBP method.
An extension of the method for noisy projection data is
given in [14]. The derived filter does not depend on the
scanning geometry of the problem, and during derivation it is
assumed that enough projections are available such that certain
approximations are accurate. As such, the resulting method has
more in common with analytical reconstruction methods than
with algebraic methods.

A different approach, specific to tomosynthesis, is proposed
in [15]. Instead of calculating a reconstruction image directly,
Nielsen et al. calculate a filter matrix, which is multiplied with
the projection data. The result is backprojected to produce the
final reconstruction. Nielsen et al. show that their filter matrix
can be formed efficiently in the case of tomosynthesis, but a
complex method is needed to obtain this efficiency. Similar
to [12], a change in geometry requires calculation of a new
filter. Other methods for tomosynthesis use algebraic recon-
structions of certain test objects to create filters [16], [17].

In this paper, we introduce a new reconstruction method, the
minimum residual filtered backprojection method (MR-FBP),
that combines ideas from both the analytical and algebraic
approach, resulting in a method with a data-dependent filter.
The method is based on an algebraic model of the tomographic
problem, resulting in a method that can reconstruct problems
with limited data more accurately than analytical methods. The
linear system that has to be minimized, however, is based on
filtered backprojection. Therefore, the system is much smaller
than the ones used in algebraic methods or other approaches,
making the method computationally efficient. Furthermore,
we are able to use filtered backprojection to form our linear
system, leading to a simple and efficient implementation.

This paper is structured as follows. We formally define
the tomographic reconstruction problem and analytical and
algebraic reconstruction methods in Section II. In Section III,
we introduce and explain the key contribution of this
paper: the minimum residual filtered backprojection method.
Considerations concerning its implementation are discussed
in Section IV. An extension of the method is given in
Section V, where additional constraints are added to its linear
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Fig. 1. The 2D tomography model used in this paper. Parallel lines, rotated by
angle 0, pass through the object f. A line Iy ; has the characteristic equation
t = xcosf +ysinf, and a projection Py(t) of f is given by the line integral
of f over the line Iy ;.

system to improve reconstruction quality. The experiments we
performed to test the new method are explained in Section VI.
Results, where we compare MR-FBP with popular reconstruc-
tion methods, are given in Section VII, along with a discussion
on the interpretation of the results. Finally, we conclude the
paper in Section VIII, where we give a summary and some
final remarks.

II. NOTATION AND CONCEPTS

In this section, we will explain the mathematical notation
used throughout the paper, and introduce all relevant concepts.
We begin by formally defining the tomographic reconstruction
problem. Filtered backprojection and algebraic methods are
explained, and their mathematical definitions are given.

A. Problem Definition

We consider the problem of reconstructing a 2D object from
its parallel-beam projections, with a single rotation axis. The
approach we introduce here can be adapted to other geometries
as well, such as fan-beam or cone-beam projections. The
unknown object is modeled as a finite and integrable 2D
function f : R — R with bounded support.

Define a line /g, by its characteristic equation ¢ = x cosd +
ysin@. The line integral Py(t) of f over a single line lp; is
given by:

Po(t)y = [ flx,y)ds ey

l(),t

= //f(x, y)o(xcosf + ysinf —t)dxdy (2)
R2

The tomographic reconstruction problem is concerned with
the reconstruction of the unknown object f from its measured
projections Py(t) for different combinations of # and ¢. This
projection geometry is shown graphically in Fig. 1.

In practice, only a finite set of projections Py are measured,
one for each combination of projection angle § € ® =
{0o, 01, ...,0N,—1} and detector d € {0, 1, ..., Ny —1}, where
Ny is the number of projection angles, and Ny the number of
detectors. Relative to the central detector, the position of a
detector d is given by 74:

rd:s(d—Nd2_1), 3)
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where s is the width of a detector. The entire set of measured
detector positions is given by T = {r, 71, ..., Ty,—1}. Using
the measured projection data, the unknown object is recon-
structed on a N x N grid of square pixels. We assume, without
loss of generality, that the width of each pixel is equal to 1.
Often, the number of pixels in each row of the reconstruction
grid is taken equal to the number of detectors.

B. Filtered Backprojection

One approach to solving the tomographic reconstruction
problem is to take Eq. (2), and try to find an expression for
f(x, y) from this equation. The filtered backprojection method
(FBP) is a result of this approach, and starts with convolving
the projections with a filter 2 : R — R:

o
) = [ h@Pae - 0o @)
—00
This convolution can be also be performed in Fourier space,
where P and h denote the Fourier transforms of P and h
respectively:

o
) = [ hwhwe )
—00
One can show [2] that we obtain an expression for f(x, y) if
we take h(u) = |ul:

fx,y) :/7r qo(x cos@ + y sin9)do 6)
0

In practice, it is not possible to use Eq. (6) to reconstruct
the object, since it requires Py(¢) to be known for all angles
6 € [0,7) and t € R. Instead, we only know Py(¢) for the
measured angles ® and detector positions 7. To be able to
use these discrete measurements, Eq. (6) has to be discretized,
after which the filtered backprojection method is obtained:

fG.y) X FBPy(x,y) = D > h(tp) Pyt — 1) (7)

04€0 1,€T

where t = x cos0; + y sin 6. Since ¢ — 7, is usually not equal
to one of the measured detector positions, some interpolation is
needed to find the value of Py, (¢t — ;). Linear interpolation is
often used, since projection data is usually reasonably smooth.

The filter /4 is only needed for discrete positions 7, € T, and
is therefore usually specified as a vector h. Several discrete
approximations of the optimal filter ﬁ(u) = |u| are used
in practice, such as the Ram-Lak (ramp), Shepp-Logan, and
Hann filters [18], [19]. One of the most popular filters is the
Ram-Lak filter, where we take the optimal ﬁ(u) = |u|, and set
fz(u) = 0 when u > u. for some u.. This filter is shown, in
real space, in Fig. 2.

The filtered backprojection method can be interpreted as
a two-step process. First, the projection data is filtered by
convolving it with filter k. Afterwards, the result is backpro-
jected to obtain the reconstructed image. One of the advantages
of FBP is that it is fast compared to other methods: the
filtering step can be performed efficiently in Fourier space in
O(Ng Nglog Ny) time, and only one backprojection is needed,
which can be performed in O(NyN?) time.
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Fig. 2. The Ram-Lak (ramp) filter for the FBP method, in real space. This
filter is a discrete approximation of the optimal filter.
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Fig. 3. Three reconstructions of the Shepp-Logan head phantom (a), showing
artifacts that occur with imperfect data. In (b) and (c), FBP was used to
reconstruct the images. In (b), data from only 16 projections were used,
and severe streak artifacts are present in the result. In (c), data from 1024
projections were used, but a large amount of Poisson noise was present,
resulting in severe noise in the resulting image. In (d), SIRT, an algebraic
method, was used to reconstruct the image using the same noisy projection
data as in (c). The algebraic reconstruction image (d) has less noise compared
to the FBP reconstruction (c).

The quality of an FBP reconstruction depends on how well
the discretized equation Eq. (7) approximates the continuous
equation Eq. (6). If data for many projections angles (say,
several hundred) are known, an FBP reconstruction is often
highly accurate. However, when the number of projections is
small compared to the size of the image, the approximation
is not very accurate, and severe artifacts can appear in the
reconstructed image. Furthermore, noise in the projection data
can cause artifacts in the reconstruction as well. FBP with
the Ram-Lak filter is especially sensitive to noise, since high-
frequency components of the projection data are amplified
by the filter. The artifacts can make subsequent analysis of
the reconstruction very difficult. Examples of artifacts in FBP
reconstructions of imperfect data are shown in Fig. 3.

C. Algebraic Methods

A different approach to solving the tomographic problem
is to use a discrete representation of the problem. Here,
we represent the discrete projection data as a single vector
p € RYNa and represent the unknown image as a vector
x € RV, The projection matrix W has NgN; rows and N>
columns, with element w;; specifying the contribution of pixel
J to detector i. We refer to the product of W with an image
x as the forward projection of x. Similarly, the product of
W7 with projection data p is referred to as the backprojec-
tion of p. If we look at the definition of the discrete FBP
method (Eq. (7)), we see that the backprojection in the FBP
method is identical to multiplication of the filtered sinogram
with W7,

Algebraic methods are usually designed to minimize the
difference between the measured projection data p and the
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forward projection of the reconstruction image, Wx, with
respect to a certain vector norm. In the case of the {,-norm,
the algebraic solution image x1g is defined as:

Xqlg = argmin [p — Wx]2 (8)
X

The algebraic solution x,;; can be found by solving the linear
system Wx = p in a least squares sense.

The algebraic linear system is typically too large to be
solved directly. Therefore, an iterative optimization method
is normally used, which can often exploit the sparse struc-
ture of the projection matrix to improve computational and
memory requirements. Different iterative methods can be
used, leading to various algebraic reconstruction methods. One
example is SIRT [2], belonging to the class of Landweber
iteration methods [20], which uses a specific Krylov subspace
method to minimize the projection error. A different method
is CGLS [21], which uses a conjugate gradient method.

The advantage of using an algebraic method compared to
analytical methods is that the projection matrix W can be
adapted to the actual geometry that was used during scanning.
Therefore, these methods use a model of the actual data that
is available, instead of assuming perfect data, as in analytical
methods. Another advantage of algebraic methods is that
additional constraints can be imposed on the reconstructed
image x, which can be used to improve reconstructions by
exploiting prior knowledge. For example, total variation mini-
mization based methods use algebraic methods to minimize
the projection error, with an additional constraint that the
{1-norm of the gradient of x should be minimal as well [22].

The main disadvantage of algebraic methods compared
to analytical methods is their computation time. Because of
the large system size, and the number of iterations that are
needed to solve them, the time to reconstruct an image using
an algebraic method is often several orders of magnitude
larger than filtered backprojection, even when optimized for
graphic processor units (GPUs) [9]. In the next section, we
introduce a new reconstruction method that uses ideas from
algebraic methods to improve filtered backprojection, leading
to a method that is both fast and accurate.

III. MINIMUM RESIDUAL FILTERED BACKPROJECTION

We will now present the key contribution of this paper: the
minimum residual filtered backprojection method (MR-FBP).
We start by noting that the FBP method is a linear operation on
the projection data. In other words, the operation of the FBP
algorithm can be modeled as a linear operator M : RNeNo
RN applied to the projection data p, which can be written as
a N2 x NyNy matrix My:

FBP; (p) = My p ©)

As explained in Section II-B, FBP consists of a convolution

of p with filter h, followed by a backprojection of the result:
Myp=Ww'Cyp (10)

where Cpp is the convolution of p by h, specified by the
NgNy x NjNg matrix Cy,.
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Algorithm 1 MR-FBP Reconstruction Method

1) Calculate A, = WWTC,,.
2) Find least squares solution h* of A h = p.
3) Return FBPp-(p) as MR-FBP reconstruction.

One of the properties of a convolution of two vectors is that
it is commutative. Therefore, we can exchange the positions
of h and p in Eq. (10):

Myp =W'C,h (11)

Up to this point, we have only rewritten the equation of the
FBP method. Now, we will improve the method by changing
the filter & from one of the standard filters to one specific
to the problem we are solving. To calculate the specific data-
dependent filter £*, we minimize the squared difference of the
projections of the reconstruction with the measured projection
data, similar to algebraic methods:

h* = argmin|[p — W FBP,(p)]’ (12)
h
Using Eq. (11), we can write this as:
2
h* = argmin [p— WWTCph] (13)
h

As with the algebraic methods, we can find £* by solving the
following linear system for £ in the least squares sense:

Aph=p (14)

where A, = WWTC,.

After computing the least squares solution h* to the linear
system of Eq. (14), the MR-FBP reconstruction is obtained
by computing the FBP reconstruction with A* as filter. The
complete MR-FBP algorithm is summarized in Algorithm 1.

The linear system we need to solve in step 2) looks similar
to the system Wx = p, which is solved in the least squares
sense by algebraic methods (Eq. (8)). The difference is that the
system of Eq. (14) has fewer unknowns: A, has Ny columns,
while W has N? columns. As we will show in Section IV-B,
we are able to reduce the number of columns of A, to
O(log Ng) by exponential binning, without reducing the recon-
struction quality significantly.

Because of the large size of the linear system that needs
to be solved in Eq. (8), algebraic methods usually use an
iterative method to find least squares solutions. These iterative
methods can sometimes converge slowly, and they introduce
a new parameter to the method: the number of iterations to
perform. Since the system of MR-FBP is smaller, we can use
a direct method to find the least squares solution, making it
both efficient and parameter-free.

IV. IMPLEMENTATION

Although the number of unknowns of the MR-FBP method
is smaller than that of algebraic methods, the actual implemen-
tation of the method is important to actually obtain a method
that is computationally more efficient. In this section, we give
details on how we implemented the MR-FBP method in this
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paper to obtain the experimental results of VII. We will begin
by discussing how the matrix A, of Eq. (14) can be calculated
efficiently. Furthermore, we will show that the size of the linear
system can be reduced by exponential binning. Finally, we
discuss the computational complexity of the MR-FBP method
compared to existing methods.

A. Calculation of Ap

The first step of the MR-FBP method is to calculate the
matrix A, = WWTCp. Usually, the projection matrix W
is not used directly by algebraic methods, since it can be
very large. Instead, multiplication of W with an image x is
calculated implicitly by calculating the line integrals of x
on-the-fly [23]. Similarly, multiplication of W7 with a sino-
gram p is calculated by backprojecting p on-the-fly. Here, we
use a similar approach to calculate A p, column by column.

Denoting a column j of A, by A,(:, j), we have:

Ap(:, j) = Ape;

where e; is a unit vector with all elements zero except for
element j, which is equal to one. Using the definition of A,
we see that:

Ap(, ) =WW'Cpre; = WW'Co;p = W FBP,,(p) (16)

5)

In other words, we can calculate a column j of A, by creating
a filtered backprojection reconstruction with filter e;, and
forward projecting the result. By doing this for every column,
we can calculate matrix Ap.

B. Exponential Binning

At this point, the MR-FBP linear system of Eq. (14) has
N4Np equations and N; unknowns, one for each detector
element. Although the system is smaller than the one used in
algebraic reconstruction methods, which have N; Ny equations
and N2 unknowns, we can further reduce the number of
unknowns by exponential binning. Exponential binning was
also used successfully to reduce system sizes in [24] and [25].

In exponential binning, we assume that the filter & is a
piecewise constant function of N, pieces. Each constant region
of the function is called a bin, and the boundary points of a bin
pi are defined by positions s; and s;4+1: fi = (si, Si+1). The
width of a bin is equal to the difference between its boundary
points d; = s;y1 — s;. Since the filter value of a single bin
is constant, we can represent a binned filter by a vector with
one element for each bin. The idea of exponential binning
in the MR-FBP method is that we can reduce the number of
unknowns of the linear system from Ny to Nj, by using fewer
bins than detectors (N, < Ng). The question remains how to
choose the boundary points of the bins.

Looking at Fig. 2, we see that the Ram-Lak filter has most
details around n = 0, and drops to zero relatively quickly
for |n| — oo. This suggests that we should use small bins
around n = 0, and can use larger bins further away from the
center. In this paper, we use bins with widths that increase
exponentially away from n = 0. Specifically, we take d; = 1
for i| < Ny and d; = 217N for |i| > N;, with Sy being
the central bin. The number of bins with width 1 is specified
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Fig. 4. A filter with exponential binning, where we impose that the filter
is symmetrical, and consists of several bins with a constant filter value. The
size of the bins increases exponentially away from the center of the filter.

by N;, where larger values lead to more detail around the
center of the filter, but more unknowns as well. For the rest
of this paper, we used N; = 2, unless specified otherwise.
We can reduce the number of bins even more by making it
symmetric, defining new bins By = fp and B; = (f; U f_;)
for i # 0. A filter with exponential binning and N; = 2 is
shown in Fig. 4.

Since the bin width increases exponentially, we end up with
O(log Ng) bins. Therefore, by using exponential binning, we
have reduced the number of unknowns of the MR-FBP method
from Ny to O(log Ng). The restrictions we impose on the
filter by assuming it is piecewise constant and symmetrical can
reduce the quality of the MR-FBP reconstructions. We will
show in Section VII-D, however, that the quality does not
decrease significantly by using exponential binning, while the
time it takes to calculate the reconstructions greatly decreases.

The matrix A, with an exponentially binned filter can again
be calculated column by column. In order to do this, we change
the filter e; of Eq. (16) to a vector ¢p;, in which each filter
element included in bin B; is set to one, and all other elements
are set to zero.

C. Computational Complexity

For many tomographic reconstruction methods, the most
costly subroutines computationally are forward projecting and
backprojecting, for which straightforward implementations
take O(NgNyN) and O(NyN?) time, respectively, although
faster implementations exist which use hierarchical decom-
position [26]. We can compare the computational costs of
different reconstruction methods by comparing the number of
projection operations each method has to perform. Filtered
backprojection consists of a single projection operation: the
final backprojection of the filtered sinogram. Algebraic meth-
ods usually perform a few projection operations per iteration.
The SIRT method, for example, performs two projection
operations per iteration, and typically has to perform O(Ny)
iterations to converge to an acceptable solution.

The MR-FBP method has to perform one forward
projection and one backprojection for every column of
A, during its calculation. Because there are O(log Ng)
unknowns, MR-FBP has to perform O(log Ng) projections.
The total computation time of calculating A, becomes
O ((NgNdN + NyN?)log Nd). If we assume that N; ~ N,
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which is often the case, the total computation time becomes
O (NyN?log Ng). To summarize, FBP, SIRT, and MR-FBP
have to perform O(1), O(Ny), and O(log Ng) projections,
respectively, which shows that MR-FBP has to perform sig-
nificantly fewer operations than SIRT.

Of course, the MR-FBP method also has to find the least
squares solution to its linear system of Eq. (14). Because of its
smaller size however, we can use direct methods to find this
solution, instead of the iterative methods used in algebraic
methods. The direct method we used in this paper to generate
the results of Section VII, the gels* lapack routine, uses
singular value decomposition, and can solve an m xn system in
O(mn?) time. Since the MR-FBP system has N; Ny equations
and log Ny unknowns, the least squares filter 2* can be found
in O(Ng Ny[log Ng1?) time. Summing both the calculation of
A, and of h*, the total computation time of the MR-FBP
method becomes O (NyN?log Ny + Ny Ny[log Ny1%).

V. ADDITIONAL CONSTRAINTS

The reconstruction quality of algebraic reconstruction meth-
ods can be improved by exploiting prior knowledge about
the object that was scanned. One approach of exploiting this
knowledge is to add an additional constraint to the system that
is minimized. Formally, such a reconstruction x* can be found
by solving the following equation:

x* :argmin[”p— lel%—i-/lf(x)] (17)
X

where f(x) is a function depending on the type of prior
knowledge that is exploited. For example, if one knows
that the object that is reconstructed has a sparse gradient,
total-variation minimization can be used by setting f(x) =
[Vx|1 [22]. The parameter A controls the relative strength
of the additional constraint compared to the data fidelity term
lp — lel%. The optimal value of 4 is often difficult to find,
as it depends on the scanned object and acquired projection
data.

A similar approach can be applied to the MR-FBP method,
by imposing an additional constraint on the optimal filter h*:

h* :arg}:nin[”p— WWTCthz—i-/lf(h)} (18)

Different functions f can be used to exploit various kinds
of prior knowledge. In this paper, we will use one example,
where the change in intensity of the reconstructed image in
the horizontal direction and vertical direction is minimized.
This can be achieved by letting f(h) = ||V, WTCPh||2 +
||VyWTCph||2, where V, f denotes the horizontal gradient
of image f, and V, f the vertical gradient. The horizontal
and vertical gradient can be approximated by the linear Sobel
operators D, and D,, which convolve the image with 2D
kernels G and Gy, respectively:

+1 0 -1 +1 42 +1
G.=|4+2 0 2|, G,=| 0 0 o0 (19
+1 0 -1 -1 =2 -1

If we approximate the gradients by D, and D,, we can
add the additional constraints to the linear MR-FBP system,
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as additional equations:
wwic, p
ADWIC, | h=|0 (20)
AD,WTC), 0

The least-squares solution kg, of this system can be found
using standard methods, by solving:

2
h&y = argmin I:Hp — WWTCth2
h

+ (HDXWTC,,th + HDyWTC,,th)] @1

The resulting method, which we call MR-FBPgy, finds a
filter that minimizes a weighted sum of the residual and the
horizontal and vertical gradient of the resulting reconstruction.
The method can improve reconstructions of objects that have
a small gradient. In the case of noise in the projection data,
MR-FBPgM can improve reconstructions as well, since the
gradient of the object is usually much smaller than that
of image noise. Therefore, by reducing the gradient of the
reconstructed image, we reduce the amount of image noise as
well.

Similar to the MR-FBP method, we can calculate the matrix
Ap of the MR-FBPgy method column by column. For a
column j, we can calculate the FBP reconstruction with
filter e;. We can then forward project this reconstruction
to obtain the top part of column j of the linear system
shown in Eq. (20). The remaining part of column j can
be calculated by applying the Sobel operators D, and D,
to the FBP reconstruction. Since the gradient image calcu-
lations can be performed efficiently in Fourier space, the
asymptotic computational complexity of the A, calculation
step of MR-FBPgy is identical to MR-FBP. The resulting
linear system consists of NyNy + 2N? equations and log Ny
unknowns. Therefore, the linear system can be solved in
O((NgNg + N?)[log Ny1%) time, which is a slightly higher
complexity than MR-FBP without gradient minimization. The
total computational complexity of MR-FBPgy is equal to
O (NgN*log Ng + (NaNg + N*)[log N41?).

VI. EXPERIMENTS

To compare the performance of the MR-FBP and
MR-FBPgM methods with other methods, we implemented
them using Python 2.7.3 [27], PyCUDA 2012.1, and Numpy
1.6.3 [28] built with ATLAS 3.10.0 [29]. The GPU imple-
mentations of the forward and backprojection operations are
based on the ASTRA-Toolbox [23], in which backprojection is
not the exact transpose of forward projection for performance
reasons. We applied MR-FBP on three phantom images and
two experimental u-CT datasets, comparing the results of
MR-FBP with SIRT, an algebraic method, and FBP with
three different standard filters: the Ram-Lak filter, the Hann
filter, and the Shepp-Logan filter. We compare MR-FBPgm
reconstructions with MR-FBP, FBP, and SIRT reconstructions
of one of the three phantoms, with noise in the projection data.

The three phantom images are shown in Fig. 5. Each phan-
tom image is represented on a 4096 x4096 pixel grid, on which
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Fig. 5. The three phantom images used in this paper. PHANTOMI is
the Shepp-Logan head phantom, PHANTOM?2 represents a cross section
of an engine block, and PHANTOM3 is a difficult to reconstruct object
with both discrete and continuous areas. (a) PHANTOMI. (b) PHANTOM?2.
(c) PHANTOM3.

(a) (b)

Fig. 6. Reconstructions of the uCT datasets used in this paper. The
reconstructions were calculated using SIRT and all available projections.
(a) Diamond. (b) FEMUR.

projections are calculated. Afterwards, the projection data is
rebinned to 1024 detector elements, and all reconstructions
are calculated on a 1024 x 1024 pixel grid. We calculate
reconstructions for varying numbers of projection angles, and
compare them to the original phantom image, scaled to a
1024 x 1024 pixel grid by averaging 4 x 4 squares.

For the experimental data, we used two different objects
scanned by uCT scanners, with the acquired cone-beam
projection data rebinned to a parallel beam geometry. The first
object is a diamond, which was scanned by a Scanco 40 uCT
scanner using 1024 detector elements and 500 equidistant
projection angles. The second object is a mouse femur,
scanned by a Skyscanner 1172 uCT scanner using
1200 detector elements and 360 equidistant projection angles.
Reconstructions of the experimental data are shown in Fig. 6,
calculated using SIRT and all projection angles. To test the
reconstruction quality of MR-FBP compared to other methods,
we apply them on projection data from small subsets of all
projection angles, with a fixed separation between the angles.

For each experiment, we report the mean absolute error and
structural similarity (SSIM) index [30] of reconstructions of
the various methods. The mean absolute error is defined as:

-1
Np 2iep 1xi — il
max o — min o

ep(x,0) = (22)
where x € RN2 is the reconstructed image, o € IRNZ the
correct image, and the average is taken over all Np pixels
within the central disc D of radius N /2. For the experimental
data, the mean absolute errors and SSIM indices are calculated
with respect to SIRT reconstructions from projection data
of all available projections, shown in Fig. 6. The SSIM
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index measures the similarity between two images, and was
designed to represent human visual perception more accurately
than other metrics. A higher SSIM index corresponds with
larger perceptual similarity between the compared images. For
the phantom experiments, we also report the mean absolute
residual, defined as:

NyNyg—1

er(x, p) = (NaNo)™" D |(Wx); — pil
i=0

(23)

2 . .
where x € RY" is the reconstructed image, and p € RNoNa
the measured projection data.

VII. RESULTS AND DISCUSSION
A. Results for Simulation Phantoms

The mean absolute error, SSIM index, and mean absolute
residual for PHANTOM1 are shown in Fig. 7 as a function
of the number of projection angles Ny. The results show that
the mean absolute error and mean absolute residual of the
MR-FBP reconstructions are significantly lower than those
of all tested FBP methods. Even though FBP with the
Shepp-Logan filter or Hann filter produces more accurate
reconstructions than FBP with the Ram-Lak filter, MR-FBP
is more accurate than all three. A similar result is found
for the SSIM, with significantly higher indices for SIRT and
MR-FBP, compared to all tested FBP methods. Compared to
SIRT, MR-FBP produces reconstructions with slightly higher
errors, lower SSIM indices, and higher residuals. Later results
in Fig. 9 will show, however, that MR-FBP is significantly
faster than SIRT at producing these reconstructions. Results
for the other two phantom images are similar to those of
PHANTOMI.

For all three phantoms, reconstructions of FBP with the
Ram-Lak filter, SIRT, and MR-FBP are shown in Fig. 8 for
32 projection angles. Note that in all comparison images in
this paper, the pixel value that a certain greylevel represents is
identical for all compared methods. A zoomed inset is included
in most images, giving a better indication than the entire image
of how the reconstruction will look at full resolution. Fig. 8
shows that both MR-FBP and SIRT are able to reduce the
number of streak artifacts compared to standard FBP. Visually,
the sharpness of the MR-FBP and SIRT reconstructions is
slightly lower than that of the FBP reconstructions. In some
applications, the higher sharpness of the FBP reconstructions
might be preferable despite its artifacts, especially when the
user is familiar with the scanned objects and FBP artifacts.
In other applications, and in common post-processing steps
such as segmentation, the artifacts present in FBP reconstruc-
tions can be problematic, and MR-FBP might be preferable.

The time it takes to calculate the reconstructions of PHAN-
TOM1 using the different methods is shown in Fig. 9.
In Fig. 9a, the reconstruction time is shown as a function of
the number of projections, for a fixed number of detectors
Ny = 1024. The results show that MR-FBP is significantly
faster than SIRT, but slower than FBP with a standard filter.
Specifically, MR-FBP is around 20 times faster than SIRT
with 200 iterations in these cases, which is expected since
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The mean absolute error, SSIM, and mean absolute residual of reconstructions calculated with different methods, for PHANTOM1. The methods

shown are FBP with the Ram-Lak filter (FBP-RL), FBP with the Shepp-Logan filter (FBP-SL), FBP with the Hann filter (FBP-HN), SIRT with 200 iterations
(SIRT-200), SIRT with 1000 iterations (SIRT-1000), and the MR-FBP method (MR-FBP).

Fig. 8. Reconstructions of the phantom images, from data with 32 projections,
for different reconstruction methods. (a) FBP-RL. (b) SIRT-200. (c) MR-FBP.
(d) FBP-RL. (e) SIRT-200. (f) MR-FBP. (g) FBP-RL. (h) SIRT-200.
(i) MR-FBP.

MR-FBP has to perform around 2log N; = 20 forward pro-
jections and backprojections, while SIRT with 200 iterations
has to perform 400. Similar results are shown in Fig. 9b, where
the reconstruction time is shown as a function of the number
of detectors, for a fixed number of projections Ny = 64.

In Fig. 10, the mean absolute error of reconstructions
of PHANTOM1 with different methods is shown, for data
of 64 projections with various amounts of Poisson noise
applied. The parameter Ip indicates the amount of applied
Poisson noise, with lower values corresponding to higher
amounts of noise. Specifically, noise was applied by first
transforming the projection data to virtual photon counts,
where Iy corresponds to the largest photon count of all detector
elements. For each detector element, a new photon count is
sampled from a Poisson distribution with the original photon
count as expected value. The resulting noisy photon counts
are transformed back to obtain noisy projection data.

Since the Ram-Lak filter amplifies high-frequency signals,
the reconstructions of FBP with the Ram-Lak filter are of low
quality when noise is present in the projection data. Other
filters, like the Hann filter, suppress high-frequency signals,
and therefore yield reconstructions of higher quality. Algebraic
techniques, like SIRT, often include a form of regularization
on the reconstruction image, yielding reconstructions of even
higher quality when noise is present. The results of Fig. 10
show that, as expected, SIRT reconstructions have the lowest
error and highest SSIM, while the FBP method with the Hann
filter yields reconstructions with higher errors and lower SSIM,
and FBP with the Ram-Lak filter produces reconstructions
with the highest error and lowest SSIM. The MR-FBP method
yields reconstructions with similar errors and SSIM indices
to the SIRT method, for every noise level, but requires less
computation time. Examples of reconstructions of data with
two different noise levels are shown in Fig. 11, for FBP with
the Ram-Lak filter, SIRT, and the MR-FBP method.

B. Results for Experimental Data

The mean absolute error and SSIM indices of the recon-
structions of the experimental data, obtained by the different
methods, is shown in Fig. 12. For the DIAMOND dataset,
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The reconstruction time of the PHANTOM1 image. In (a), N = Ny = 1024, and the reconstruction time is shown as a function of the number of

projections Np. In (b), the number of projections is 64, and the reconstruction time is shown as a function of the number of detectors N = Ny.
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Fig. 10. Mean absolute error and SSIM of reconstructions of PHANTOM1

from data of 64 projections with various amounts of Poisson noise applied.

the mean absolute error of the MR-FBP method is slightly
higher than SIRT when reconstructing from very few projec-
tions, but both are significantly lower than FBP with fixed
filters. For the FEMUR dataset, the mean absolute error of the
MR-FBP method is similar to that of SIRT, with the error
of FBP is again significantly higher. Similar results can be
observed for the SSIM indices of the different methods for
both experimental sets. Reconstructions of both experimental
datasets, with data from 25 projections for the DIAMOND set,
and 24 projections for the FEMUR set, are shown in Fig. 13.
Similar to previous results, the reconstructions of SIRT and
MR-FBP are visually similar, both having less artifacts than
the FBP reconstructions, but a lower sharpness as well.

C. Additional Constraints

To test the reconstruction quality of the MR-FBPgym
method, we used the PHANTOM?2 phantom image, which has

(d) (e) (H)

Fig. 11.  Reconstruction images of PHANTOMI, for FBP, SIRT-200, and
MR-FBP, with various amounts of Poisson noise applied to data from
64 projections. (a) FBP-RL, Iy = 2°. (b) SIRT-200, Iy = 2°. (c) MR-FBP,
Iy = %g (d) FBP-RL, Iy = 210 (e) SIRT-200, Iy = 2!0. (f) MR-FBP,
Ip=2".

a sparse gradient, and calculated the mean absolute error of
reconstructions obtained by different methods from data of
64 projections and various amounts of applied Poisson noise.
The weight A in Eq. (20) of the MR-FBPgM method was
set to 27 + 1600/ Iy, which was experimentally verified to be
a reasonable choice for this phantom. Results are shown in
Fig. 14, where it is clear that by using MR-FBPgy, which
exploits prior knowledge about the gradient of the image, we
are able to obtain significantly lower mean absolute errors and
significantly higher SSIM compared to other methods. The
computation times of a single reconstruction using the FBP,
SIRT-200, MR-FBP, and MR-FBPgMm methods were 3.02 ms,
970 ms, 68.5 ms, and 577 ms, respectively. Reconstructions
of the PHANTOM?2 image from data with a large amount of
applied Poisson noise (Iy = 2°) are shown in Fig. 15.
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Fig. 13.  Reconstructed images of both experimental datasets, for data
of 25 projections (DIAMOND) and 24 projections (FEMUR). (a) FBP-RL.
(b) SIRT-200. (c¢) MR-FBP. (d) FBP-RL. (e) SIRT-200. (f) MR-FBP.

D. Exponential Binning

To investigate the influence of exponential binning on
the reconstruction quality and computation time of the
MR-FBP method, we calculated the mean absolute error
and reconstruction time both with and without exponential
binning, for 64 projections of PHANTOM1. With exponential
binning, the mean absolute error was equal to 0.0287, and
it took 0.0684 seconds to reconstruct the image. Without
exponential binning, the mean absolute error increased
slightly to 0.0289, while the computation time increased
significantly to 6.1698 seconds. This result shows that by
using exponential binning, the reconstruction quality of MR-
FBP does not decrease significantly, while the reconstruction
time is greatly improved. In fact, it seems that exponential
binning has a slight regularizing effect on the reconstruction,
since the mean absolute error is actually slightly smaller with
exponential binning than without.
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The mean absolute error and SSIM of reconstructions of the experimental data, for different numbers of projections. (a) DIAMOND. (b) FEMUR.
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from data of 64 projections with various amounts of Poisson noise applied.
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Fig. 15. Reconstructed images from 64 projections of PHANTOM2 with a
large amount of applied Poisson noise (I = 26). (a) FBP-RL. (b) SIRT-200.
(¢) MR-FBPGM-

E. Computed Filters

In Fig. 16, filters that are computed by the MR-FBP
method (Eq. (13)) are shown in Fourier space for different
reconstruction problems, with the standard Ram-Lak filter
shown as well. A first observation is that the computed



4760

——  PHANTOMI1, N, = 64

PHANTOM1, Ny = 64, noise
PHANTOM1, Ny = 128

— - PHANTOM2, Ny = 64

— Ram-Lak filter

Frequency

Fig. 16. Filters computed by the MR-FBP method for different reconstruction
problems (Ngy = N = 1024) and the standard Ram-Lak filter, shown in
Fourier space.

filters are significantly different from the standard Ram-Lak
filter, except for low frequencies. A second observation is
that the computed filters also differ significantly for different
reconstruction problems. The computed filter for Ny = 128 is
closer to the Ram-Lak filter than the one for Ny = 64, which
is expected, since the Ram-Lak filter is ideal when an infinite
number of projections is available. Furthermore, when noise is
present in the projection data, the computed filter has a lower
response for high frequencies, filtering out some of the high-
frequency noise. Finally, when reconstructing PHANTOM?2
instead of PHANTOM 1, the computed filter is different as well.
These results show that the approach of calculating a filter
specific to the reconstruction problem is valid, and that there
is no single filter that is ideal for every problem.

F. Limited Angular Range

In some applications of computed tomography, it is
impossible to acquire projections over the full [0, 7] angular
range. Since analytical methods assume that data of the full
angular range is available, a limited angular range can lead to
severe artifacts in the reconstructed image. Algebraic methods
include the limited angular range in their model, and can
usually produce more accurate reconstructions than analytical
methods. When presented with data with a limited angular
range, reconstructions of the MR-FBP method contain similar
artifacts to those reconstructed by standard FBP, as is visible
in Fig. 17a and Fig. 17c. A possible cause for these artifacts is
that the MR-FBP method uses an angle-independent filter: the
projections of each angle are filtered by the same filter. Indeed,
if we extend MR-FBP to use an angle-dependent filter,
MR-FBP reconstructions are similar to those of algebraic
methods, as shown in Fig. 17b and Fig. 17d. To use angle-
dependent filters in MR-FBP, we increase the size of the
unknown filter & in Eq. (14) such that it includes a different
filter for each projection angle. Of course, the size of the
resulting linear system is increased as well, and the method
will be significantly slower than angle-independent MR-FBP.
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Fig. 17. Reconstructions from 64 projections of PHANTOM2 with a limited
angular range of %n. Reconstructions are shown for standard FBP, SIRT with
200 iterations, standard MR-FBP, and MR-FBP with an angle-dependent filter
(MR-FBP-0). (a) FBP-RL. (b) SIRT-200. (c) MR-FBP. (d) MR-FBP-6.

(a) ©

(b)

Fig. 18. Reconstruction images of PHANTOM2, for FBP and MR-FBP, from
projection data of 64 projections truncated to 256 detector elements with
applied Poisson noise. (a) FBP-RL. (b) MR-FBP.

G. Truncated Projection Data

When the scanned object is larger than the field of view
of the experimental setup, the acquired projection data is
truncated at the edges of the detector. The MR-FBP method
can be adapted to these cases by combining the standard
approach of handling truncated data in the FBP method
with the standard approach in algebraic methods. First, the
projection data has to be padded with a smoothly decreasing
function in order to avoid the sharp drop to zero at the edge
of the detector, similar to the standard approach for FBP.
Secondly, during calculation of the MR-FBP matrix, we
backproject the padded projection data onto a reconstruction
grid as wide as the padded detector, but forward project
onto the unpadded detector, similar to the standard approach
for iterative methods. By using this combined approach, the
MR-FBP method is able to reconstruct truncated projection
data. An example of a reconstruction from truncated projection
data is shown in Fig. 18, where we artificially truncated
projection data of PHANTOM2. The results show that the
reconstruction quality of the MR-FBP method when recon-
structing truncated data is similar to the quality achieved when
reconstructing untruncated data.

H. Comparison to Gaussian Filtered FBP

A popular improvement to the standard FBP method is
to apply a gaussian filter to the image after reconstruction.
Since different filter widths can be used, there is a certain
trade-off between the amount of artifacts and the sharpness
in the resulting image. By using a wider filter, the artifacts
of the FBP reconstructions are suppressed more, but the
resulting image will be more blurred as well. In Fig. 19, a
comparison between the MR-FBP method and the FBP method
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Fig. 19. Partial line profiles of reconstructions of PHANTOM1 projection
data of 64 projections, produced by MR-FBP and standard FBP with gaussian
filtering with different window widths (¢ values). The partial line profile of
the ground truth, the PHANTOM1 image, is shown by a dotted line.

with gaussian filtering is made by examining a partial line
profile of reconstructions of PHANTOM1. The results show
that the MR-FBP reconstruction matches the ground truth
better, even with a similar level of artifact reduction. The
mean absolute error of the different methods for the entire
reconstruction is 0.023, 0.036, 0.029, and 0.027 for MR-FBP
and FBP with ¢ = 1, ¢ = 2, and ¢ = 4, respectively.
Fig. 19 also shows that the reconstruction quality of the
gaussian filtered FBP reconstructions depends highly on the
chosen window width. For a given dataset, it can be hard to
determine the correct width to use, since it depends on the
number of projections and the amount of noise present in the
projection data. Furthermore, the parameters are often deter-
mined by visual inspection, which is subjective by nature. The
MR-FBP method, on the other hand, determines the filter by
minimizing a well-defined metric, making it both objective
and reproducible, and automatically adjusts the filter to the
projection data and geometry, as shown in Fig. 16.

VIII. CONCLUSION

In this paper, we introduced a novel reconstruction method
for 2D parallel-beam tomographic reconstruction prob-
lems, the minimum residual filtered backprojection method
(MR-FBP). A reconstruction calculated by MR-FBP is a
standard FBP reconstruction with a custom filter. For each
reconstruction, a new filter is calculated by minimizing the
squared difference of the projections of reconstructed image
with the measured projections. Since FBP is a linear operation
on the projection data, the optimal filter can be found by
solving a linear system in a least squares sense, similar to
algebraic reconstruction techniques. In this paper, we showed
that the linear system can be constructed efficiently column
by column. The result is an efficient method that automati-
cally determines a data-dependent filter based on an objective
quality criterion, eliminating the need for subjective manual
filter selection. Furthermore, the method can be extended to
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exploit certain forms of prior knowledge to improve recon-
struction quality.

Results for both phantom data and experimental data show
that MR-FBP is able to produce more accurate reconstructions
than FBP with standard filters when presented with data
from few projections. The reconstructed images obtained from
MR-FBP are visually similar to SIRT, an algebraic method,
but can be calculated significantly faster. Similar results are
found when reconstructing from projection data with various
amounts of Poisson noise applied. Additional experiments
show that exponential binning does not decrease reconstruction
quality, while reducing computation time significantly.

We showed that MR-FBP can be extended to incorporate
certain forms of regularization based on features of the image
to improve reconstruction quality. One example, where a term
minimizing the gradient of the reconstructed image is added
to MR-FBP, was examined in detail. Results for the resulting
method, called MR-FBPgym, show that by exploiting prior
knowledge we indeed obtain more accurate reconstructions
from noisy projection data compared to methods that do not
exploit prior knowledge. Furthermore, because MR-FBPgy is
an extension of the MR-FBP method, it is able to calculate
reconstructions in less time than SIRT.

The results from this paper show that by exponential
binning we are able to reduce the computation time of the
MR-FBP method without reducing its reconstruction quality.
Other bases for reducing the number of unknowns in the linear
system can be used however, which might enable us to reduce
computation time even further, or improve reconstruction
quality. For example, it might be possible to include some
prior knowledge about the scanned object in the choice of
basis. Whether better bases can be found, and whether they
are useful in practice, is subject to further research.

The current study focussed on 2D parallel beam tomog-
raphy. An approach similar to the one used in this paper
can, however, also be applied to other tomographic settings
for which linear filter-based reconstruction methods exist.
For example, in 3D cone-beam settings, a minimum residual
Feldkamp-David-Kress (FDK) method could be formulated,
based on the standard FDK reconstruction method [31]. The
reconstruction quality of such methods is subject to further
research.

In this paper, we showed that the linear system of MR-FBP
can be calculated column-by-column by creating several FBP
reconstructions with specific filters. Therefore, MR-FBP can
be implemented relatively easy using existing FBP implemen-
tations. Furthermore, if an optimized implementation of FBP
is available, MR-FBP can use this implementation, resulting
in an optimized version of MR-FBP as well. Therefore,
MR-FBP can be used relatively easily to improve reconstruc-
tion quality in practical applications.
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