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ABSTRACT

ONE WAY ACTIVE DELAY MEASUREMENT WITH ERROR BOUNDS

Eylen, Tayfun

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı

September 2015, 52 pages

This thesis deals with the problem of measuring the delay of a packet in a network
with an associated error bound but without having a need for clock synchronization
and for any form of bidirectional messaging between the sender and receiver. A
novel lightweight technique is proposed that aims keeping the actual error made in
the delay estimation very low while providing simultaneously a good error bound for
each individual estimated packet delay. One way delay measurement without clock
synchronization and messaging cannot guarantee an error bound on delay estimations
in general, however we show that this is possible by using periodic probe packets
and appropriate assumptions that are compliant with the physical conditions of the
environments within which the sender and receiver operates. Although we calculate
an error bound for all our delay estimates, the main purpose is to have a much smaller
actual error in these delay estimates in comparison to the computed error bound and
to other methods existing in the literature. The proposed method is evaluated against
a recently reported technique of the same category and is shown to be much superior
overall.

Keywords: One Way Delay Measurement, Delay Estimation, Error Bound
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ÖZ

HATA SINIRLI AKTİF TEK YÖNLÜ GECİKME ÖLÇÜMÜ

Eylen, Tayfun

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Cüneyt Fehmi Bazlamaçcı

Eylül 2015 , 52 sayfa

Bu tez alıcı ve gönderici arasında çift taraflı mesajlaşma ve saat eşzamanlaması ya-
pılmaksızın belirli bir hata sınırı içerisinde paketlerin gecikmelerinin ölçümü prob-
lemiyle uğraşmaktadır. Çevrim sırasında sürekli olarak maksimum hata miktarını ve
düşük bir hata oranını verebilen düşük karmaşıklıkta bir teknik ortaya konmuştur.
Herhangi bir varsayım olmaksızın tek yönlü gecikme sistemlerinde alıcı ve gönderici
arasında saat eşzamanlaması yapılmadan belirli bir hata sınırı ortaya konamamakta-
dır. Ancak, belirli varsayımlar ve periyodik paketler yardımı ile ortaya konulan yön-
temde hata sınırı verilebilmektedir. Oluşturulan sistemde belirli bir maksimum hata
ortaya konarken bir yandan da litaratürde bulunan diğer yapılarla kıyaslanabilecek
ve daha iyi olabilecek seviyede düşük hata hedeflenmektedir. Önerilen yapı litera-
türde bulunan ve aynı kategoride olan güncel bir yapıyla kıyaslanmış ve çok daha iyi
sonuçlar verebildiği görülmüştür.

Anahtar Kelimeler: Tek Yönlü Aktif Gecikme Ölçümü, Gecikme Tahmini, Hata Sı-
nırı
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CHAPTER 1

INTRODUCTION

One way delay measurement (OWDM) is the task of measuring the delay of a packet

in a network between two end points. In the literature, there exist many methods for

OWDM, which employ various tools and techniques to obtain accurate measurements

to a certain extent. Some of the existing methods try synchronizing the sender and

receiver clocks. By employing a time attribute for each packet, the measurement of

delay becomes an easy task when clocks are synchronized. The challenge in this

approach is in the synchronization of the sender and receiver clocks. Use of global

position system (GPS) or messaging between the sender and receiver are two of the

methods that are used to synchronize the communicating parties. Other than using

direct synchronization, there are also techniques that try to measure the delay of a

packet by using other properties such as periodicity in packet arrivals.

Many classifications for OWDM are possible as in [1]. To show where we stand, we

first divide all existing methods into two main categories: 1) with or 2) without clock

synchronization. In fact, all methods for OWDM can be regarded as an explicit or an

implicit synchronization scheme. The techniques in without-clock-synchronization

category aim to measure the delay of a packet without altering the frequency or offset

of a node’s clock. Many classifications view OWDM as a clock synchronization

technique. Hence, techniques with and without clock synchronization can also be

named as hard (explicit) and soft (implicit) clock synchronization methods. GPS [2],

NTP (network timing protocol) [3] and the IEEE 1588 [4] standard are among the

methods that are with clock synchronization. Sync & Sense [5] and Vakili & Grégoire

[6] methods are two examples without clock synchronization. Another classification
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can be made as: 1) with or 2) without messaging between the sender and receiver.

NTP and the IEEE 1588 standard are examples with messaging and Sync & Sense

is an example without messaging. The present thesis proposes a novel technique

for OWDM that falls into the category of without clock synchronization and without

messaging between the sender and receiver. Since Sync & Sense and our proposal are

in the same category, both are compared and evaluated against each other in detail in

the present work.

1.1 Aim of The Thesis

In any network that employs OWDM, the difference between the measured delay and

the actual delay, i.e., the error in measurement, is among the major concerns. In this

work, we aim to minimize the error in delay measurement while providing simul-

taneously an error bound for each individual estimated packet delay. We propose a

novel technique that uses periodic probe packets to estimate the queuing delay of each

individual packet in a network. OWDM without clock synchronization and without

messaging can normally not guarantee any error bound; however, we show that using

appropriate assumptions about clock characteristics and congestion, one can provide

a guaranteed error bound for the queuing delay estimate of each packet and that such

a bound is also comparable with the actual error. The assumptions about clocks are

chosen in compliance with the physical conditions in the sender and receiver envi-

ronments and the assumption about congestion is also easily applicable in return for

a decrease in utilization. While providing an upper bound for possible errors in our

delay estimates, we aim to have a much smaller actual error compared with the cal-

culated bound.

1.2 Content of The Thesis

The rest of the thesis is organized as follows.

In section 2, a brief review of existing OWDM techniques is given.

In section 3, the proposed one-way active delay measurement with error bounds

2



(OWADME) approach is presented in detail.

Section 4 includes a complexity analysis of the given algorithm.

In section 5, the results of our extensive simulation work, which is carried out to eval-

uate the performance of OWADME and to compare it with the most recent proposal

of the same category, is presented.

In section 6, active measurement method is discussed and traffic cost with respect to

measurement precision is analyzed.

Section 7 summarizes the work and concludes the thesis by including new directions

for possible future works.
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CHAPTER 2

BACKGROUND INFORMATION AND LITERATURE

OVERVIEW

We start by stating the following key definitions used in delay measurement literature

[7, 6, 8, 9, 10]:

Clock offset is the difference between two clock values (the unit is seconds represent-

ing time).

Clock skew is the time derivative of offset (the unit is parts per million), which is also

regarded as the frequency difference between two clocks.

Clock drift is the time derivative of skew (the unit is parts per million per second).

2.1 General Classification and Delay Components

The one way delay of a packet is the difference between the time the first bit of

the packet is sent and the time the last bit of the same packet is received. In some

applications, a packet can be time stamped at the sender when the first bit is sent and

this time stamp information can be sent along each packet. The packet can also be

time stamped at the receiver when the last bit is received. Delay measurement in such

a case is as easy as subtracting the arrival time stamp value from the departure one if

both the sender and receiver clocks are kept synchronous. Reference [10] categorizes

clock synchronization techniques for OWDM in a different way. It first makes a

distinction between external-server-based synchronization techniques and end-to-end

synchronization techniques. External-server-based techniques require a centralized
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time source and use of GPS [2], IEEE 1588 [4] and NTP [3] are examples. End-

to-end techniques realize synchronization with the help of network measurements.

There are two categories for end-to-end synchronization: online and offline. Offline

techniques cannot be applicable in real-time and they mostly deal with line fitting

problems for obtained measurements. Online techniques try to predict current clock

skew using past measurements. Our method OWADME falls into end-to-end and

online category according to this classification.

When a packet is transmitted from a sender to a receiver, the packet is delayed due to

various reasons in the communications channel. The delay of a packet is composed

of processing delay, queuing delay, transmission delay and propagation delay.

Processing delay is the time interval in which the packet header is processed. It

depends on processing power of the sender and receiver sides and the algorithms

used in corresponding applications. Most of the time, it is very small compared to

other delay components.

Transmission delay is the required time for putting the whole packet onto the wire. It

depends on the data transmission rate of the link. There may be small fluctuations on

the data rate but most of the time it can be accepted to be a constant.

Propagation delay is the time a bit spends on the wire (or main transmission medium)

during its travel from the sender to receiver side. It can be computed using the distance

and the speed of the wave in the corresponding medium. For one hop links, for which

the ambient operating conditions do not change abruptly, it can be accepted as a

constant and small value.

Queuing delay is the most variable delay segment compared to others. For congested

cases, it can be the highest.

Without synchronization attempt or without having a two-way messaging scheme, the

delay components that are constant cannot be observed. Hence the main concern in

this thesis is to measure the variable queuing delay. Other delays such as transmission

delay are assumed to be constant therefore, any fluctuations on these will result in

additional errors. In the present thesis, such error cases are not considered; hence, the

proposed method is regarded as one-way queuing delay estimation.
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2.2 Well Known OWDM Methods

GPS is a space-based satellite navigation system that provides location and time in-

formation. In order to have the time information, a node needs to connect to at least

four satellites. If a node fulfills all GPS requirements, its clock can be synchronized

with a maximum error of 1 µs and this synchronization can be repeated every second.

Using a GPS receiver at every node in a network, all nodes may be kept synchronized

to each other within a certain error margin and by also reserving a time stamp field

at each packet, one can perform OWDM easily. However, there is a downside to use

GPS for OWDM. One is the cost of employing a GPS receiver at each node. For

mobile or indoor use cases, connection with at least four satellites may be a problem.

In certain military applications, GPS independence may be a strict requirement.

NTP [3] is a network protocol, which also aims to synchronize the clocks within a

network but without a need for any additional equipment such as GPS. It creates a

virtual tree to distribute the most reliable clock in the network. Accuracy of NTP

depends on the size of the network. For local area networks it can synchronize clocks

with a maximum error of 1 ms. For wide area networks, however, 10 − 100 ms

measurement errors are possible.

IEEE 1588 standard [4] is another networking protocol that aims node synchroniza-

tion. Messaging between network nodes makes it possible to synchronize each node.

There is a self-constructed master-slave relation between each node. Synchronization

information is distributed with a 2 s period. There exists some additional equipment

for the IEEE 1588 standard that can be used to increase the accuracy of synchroniza-

tion. Without additional help 10 − 100 µs errors can be achieved. With the use of

extra equipment maximum error bound can be decreased to and below 1 µs.

2.3 OWDM Methods Without Hard Synchronization

There are other techniques that do not need external-server-based synchronization. In

such techniques, some other parameters are used for estimating the delay. For exam-

ple, round-trip-time (RTT) is used for OWDM for a symmetric network topology, but
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most of the time assuming a symmetric topology is not possible. In other methods,

error in delay can be decreased by interchanging and using RTTs of multiple nodes

[11, 9]. These methods eliminate the need for a symmetric network topology. One

way delay can be found by applying a least squares error like method to multiple

RTTs [6]. Multiple RTTs method has a much higher error rate in comparison to GPS

based technique and the IEEE 1588 standard.

In [12], a OWDM scheme is constructed to increase the performance of network

control systems. For more accurate results, the system combines an end-to-end es-

timation method and an online monitoring mechanism. Using a beacon packet in a

loop, RTT values are obtained consecutively. These RTT values are derived in such a

way that by only knowing the first packet’s forward delay, network status and hence

current OWD can be estimated. The first packet’s forward delay is predicted by online

monitoring.

Another approach that eliminates the need for hard clock synchronization or external-

server-based synchronization is to use periodic packets. If the sender side emits

packets with a constant period and the receiver knows this period, OWDM can be

performed using a simple assumption, which states that there exist some packets

without any delay in a certain time window. Using this assumption and the packet

period, arrival time of each packet can be calculated following the reception of the

first zero-delay packet. However, the existence of skew and drift complicates such

measurement techniques. With some additional assumptions, delay estimation can be

made with a low actual error level comparable to methods that perform hard clock

synchronization. Sync & Sense [5] is the most recent and main example of this cat-

egory of methods. In the present thesis, a similar approach is adopted, but a much

better technique, both in terms of performance and attributes, is developed, analyzed

and evaluated thoroughly against Sync & Sense.

As categorized in [10], online and offline skew estimation methods exist for end-to-

end synchronization. Online skew estimation methods are similar to offline methods.

However, online methods need to predict the current skew value in real time. To

achieve this, the number of samples is reduced by using a skew estimation technique

[13] and named estimation of skew with reduced samples. For any pair of successive

8



packets, if the interarrival time between packets is larger than an expected value, the

latter packet is excluded from the measurement set. This methodology is similar to the

filtering mechanism we propose in the present thesis. In [13], a constant ratio of 1.5%

specifies the boundary of the interarrival time. On the other hand, our proposal uses

maximum and minimum skew values and calculates the boundary of the interarrival

times. Moreover, application of an additional boundary using drift is also helpful in

reducing the number of samples. We believe that considering skew as a constant is a

weak point in [13] and fix this in our approach.

The approach in [8] is also similar to the technique we propose in the present thesis.

In order to estimate next packet’s one way delay, a skew value is predicted. For this

purpose, the least delayed packet within a specified period is searched. The search

mechanism uses the interarrival times of packets. Following the selection process,

line fitting is performed and a constant skew value is obtained. One downside of [8]

is its acceptance of skew as a constant. Another one is that it has no assumption to

ensure that the least delayed packet within the specified period to have zero delay. As

a result, it is possible for the line fitting scheme to produce an incorrect prediction.

There are other methods that employ line fitting schemes for skew estimation (for

example [16]).

2.4 OWDM Method Using Physical Conditions

A relatively recent study on OWDM relates temperature to clock skew [14] and shows

that both are highly correlated. Observing this correlation, the authors present an

environment-aware clock synchronization (EACS) scheme. Using EACS, they aim

to reduce the number of two-way messages between the sender and the receiver, and

for this purpose, they follow the change in temperature. For small changes, they

compute corresponding skew value using linear equations and an information-aided

multimodel Kalman filter (AMKF). For relatively bigger changes, they apply a resyn-

chronization process involving two-way messaging. Reduction in the number of such

resynchronization processes is shown to reduce the energy consumption for wireless

sensor networks. Another method, which reduces the number of synchronizations by

following the temperature changes similarly, is presented in [15].
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Reference[14] uses two temperature models, one constant and one variable, for those

situations where temperature changes very slowly. In constant one, there exists a pre-

set skew value corresponding to each range of temperatures, whereas in the variable

one, a linear approximation is used to reduce complexity while providing a sufficient

level of accuracy. Reference [14] assumes that clock skew is mainly affected by tem-

perature. Other environmental effects such as humidity and shock are considered to

be measurement noise. The experimental results in [14] vindicate the above models

and assumptions, but for non-stable environmental conditions, the effect of humidity

and shock can be substantial and may hinder the use of findings in [14].
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CHAPTER 3

ONE WAY ACTIVE DELAY MEASUREMENT WITH ERROR

BOUNDS (OWADME)

The proposed method is named OWADME to highlight that it uses active probe pack-

ets for measuring packet delay, and it also provides additional information about the

maximum error possible associated with each delay estimate made. Our method de-

veloped according to the requirements given in Table 2.1 does not involve any hard

synchronization or two-way messaging between the sender and receiver. The only

requirement at the receiver side is to keep track of arrival times of incoming pack-

ets. Hence, it is unique in its specification and attributes and is applicable in many

situations, such as sensor networks, due to its possibility of very lightweight imple-

mentation.

Packet period is assumed to be known as an apriori parameter. The key assumption

in this approach is the existence and hence the arrival of some nondelayed packets

from time to time. If a nondelayed packet is received and the packet period is known,

delay of those packets that follow the nondelayed one can be found easily by using

the difference between the expected and the observed arrival times (Fig. 3.1). But in

this type of measurement, an error may accumulate and might grow without bound

due to possible clock skew and drift. The difference between the frequencies of two

clocks is named clock skew and the change in clock skew over time is named clock

drift as was stated earlier. For example, if skew is 100 ppm, there occurs a 1 s error

after 10,000 s and the past nondelayed packet becomes useless. Therefore, a new

nondelayed packet is needed within a large period of time. To be able to sustain

such a measurement system, the system must use, for example, a packet dropping
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mechanism to create some nondelayed packets in the network. Following the arrival

of nondelayed packets, the receiver identifies them and computes the delay of all other

packets in the network using the approach described in this section.

Figure 3.1: Communication between the sender and receiver

Our methodology can be viewed as four subsequent tasks that are repeatedly per-

formed each time a packet arrives at the receiver:

1. detection of nondelayed packets within a past window of received packets (fil-

tering)

2. estimation of clock skew using nondelayed packets (skew estimation)

3. estimation of individual packet delay (delay measurement)

4. calculation of an error bound associated with the delay estimate made (error

analysis)

Using the filtering scheme, a set composed of candidate nondelayed packets that are

received within a past window of time is constructed. This set is named candidate

set in the rest of the thesis. Some of the packets in the candidate set may of course

have some nonzero but small delays. Then clock skew is estimated using the packets

in the candidate set. With a current estimate of clock skew, delay of each incoming

packet can be calculated easily. Afterwards, an error analysis is possible providing an

associated error bound for each estimated packet delay.
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3.1 Filtering

This subsection presents the task of constructing the candidate set, which is composed

of candidate nondelayed packets that are received within a past time window.

The only information the receiver has about a packet is its arrival time. If all periodic

packets arrive without any delay, arrival times form a function (nondelayed packet

time function - fNDP ) that shows the behavior of sender side clock with respect to the

receiver side clock (dotted red line in Fig. 3.2.b). To be able to determine the exact

delay for new packets, this behavior should be taken into account. In our filtering

mechanism, the receiver side aims to identify such nondelayed packets by eliminating

the delayed ones in order to observe the behavior of clocks. Two main assumptions

are used in filtering out the delayed packets:

• existence of a bound on clock skew

• existence of a bound on clock drift

Our filtering effort incorporates the comparison of each packet arrival time to others

using these two assumptions. If an arrival time cannot be on the zero-delay packet

arrival time function, it is excluded from the candidate set. In our approach, filtering

with respect to skew bound and drift bound are employed consecutively.

3.1.1 Filtering with respect to skew bound

Our first assumption for filtering is that there exists a bound on clock skew. This as-

sumption is derived from the physical conditions of the environment in which the two

clocks operate. If two identical clocks having identical physical properties are used

in two different operating environments having different temperatures, the skew that

occurs between the two clocks can be computed. The function for calculating skew is

also assumed to be differentiable. Therefore, bounded temperature difference results

in bounded skew. If the maximum of all probable differences between the frequencies

of the two clocks is denoted by dmax, a positive and non-zero skew denoted as c can

be computed by using only dmax. c represents an upper bound for all probable skew
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Figure 3.2: (a) Typical pattern of the one-way network delay (b) Corresponding plot
of arriving packets with respect to packet sequence number [5]

values. If the period of packets is p with respect to the receiver side, the sender side

might in fact send packets with an actual period pa where p− c < pa < p+ c.

For two packets having sequence numbers i and j, let ti and tj denote their arrival

times, respectively. If

tj − ti > (j − i)× (p+ c) (3.1)

one can safely conclude that the latter packet j has a nonzero delay. Similarly, if

tj − ti < (j − i)× (p− c) (3.2)

then the preceding packet i has a nonzero delay. Therefore, any packet proven to

have a nonzero delay may be discarded from the candidate set that holds nondelayed

packets only.
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Following eliminations of the above type, the candidate set of nondelayed packets has

all of the certainly nondelayed packets plus some other ones that are subjected to a

relatively small delay.

3.1.2 Filtering with respect to drift bound

For filtering with respect to drift bound, a similar assumption to filtering with re-

spect to the skew case is used. The assumption is that there exists a bound on clock

drift. Similar to skew, physical conditions affect drift. A bound on the rate of change

in physical conditions determines the bound on skew values. Similarly, a bound on

the rate of change in physical conditions determine the bound on drift values. How-

ever, rather than using linear inequalities as we did in skew filtering, we prefer using

second-order piecewise inequalities in our filtering mechanism while utilizing our

assumption about the existence of a bound on drift.

For a more detailed exposition, we start by considering the relation between any pair

of packets. After applying filtering with respect to skew bound, the remaining packets

satisfy the relation Eq. 3, which impose a time bound for a packet to be considered

as nondelayed and hence to be in the candidate set. As a result of having a bound on

skew, a packet in the nondelayed packet set imposes a time bound for the latter packets

for them to be considered as nondelayed. Hence, for any two sequence numbers i and

j, if the corresponding packets pi and pj are in candidate set that is already filtered

with respect to skew then

ti + (j − i)× (p+ c) ≥ tj ≥ ti + (j − i)× (p− c) (3.3)

holds true for j > i.

The above inequality states the linear relationship between any pair of packets in the

candidate set obtained after using skew filtering. Drift filtering adds second order pa-

rameters in addition and complicates the inequality slightly. Let the function f denote

the nondelayed packet arrival times. Then f should satisfy the following conditions:

skewmin < d(f)/dt < skewmax (3.4)

driftmin < d2(f)/dt2 < driftmax (3.5)
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In other words, first and second order derivatives of f with respect to time should be

bounded. Moreover, if a packet pi is a nondelayed packet having sequence number i

and arrival time ti, there exist an fi such that

fi(i) = ti, fi(j) ≤ tj, ∀pj (3.6)

The equality above states that pi is a nondelayed packet and hence, it is on fi as

illustrated in Fig. 3.3. It is also possible to find an approximation of the nondelayed

packet function fi by considering a set of packets received within a time window only.

For a particular pi, if a function that satisfies the above constraints can be found, we

can treat pi as a nondelayed packet among the current window of received packets.

With the arrival of a new packet, this may change, and hence, the validity of pi to be

in the candidate set should be checked each time a new packet passes skew filtering.

Figure 3.3: A function of possible nondelayed packet arrival times corresponding to
pi

The existence of function fi satisfying the above constraints can be checked by us-

ing entry and exit angle concepts. We define the entry angle of packet pi to be the

minimum angle with respect to x-axis (sequence number) of the function on fi at i,

which satisfies the above constraints for all packets in the window but received earlier

than i. Similarly, we define the exit angle of packet pi to be the maximum angle with

respect to x-axis of the function on fi at i, which satisfies the above constraints for all

packets in the window but received after i (see Fig. 3.4).

If a packet pi is to remain in the candidate set, its exit angle should be larger than

or equal to its entry angle. When a new packet arrives and passes skew filtering, all
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packets in the candidate set should be checked using this inequality. However, since

there exists no preceding neighbor for the very first packet in the window, it cannot

be checked as described. Similarly, filtering with respect to drift cannot be applied

to the last packet in the time window. Therefore, the error bound to be calculated for

the last packet’s delay estimate may be higher in comparison to error bounds of other

estimates.

Figure 3.4: Entry and exit angles of packet pi

3.2 Skew Estimation

The main purpose of skew estimation is to form fNDP (nondelayed packet time func-

tion). With the help of our filtering mechanism, the size of the candidate set is re-

duced. This minimized set includes all the nondelayed packets and some delayed

ones. A packet in the candidate set cannot be labeled as nondelayed or delayed with

full confidence. As a result, we treat all packets in the set as nondelayed and use them

in the construction of fNDP .

It is worth noting that fNDP is not a first order line if drift is nonzero. The rate of

change in skew, i.e. drift, is a small value in general. As a result, most methods

in the literature make oversimplifications and accept fNDP as a line to have lower

computational cost in exchange for higher error. Our technique treats fNDP as a

varying function and we try to estimate the most up-to-date skew value. To increase

comprehensibility, we exaggerate the rate of change in skew in figures 3.3 and 3.4.

Other then these, fNDP is shown as a nearly straight line throughout the rest of the

text.

Even after employing our candidate set size reduction technique, there still exists an
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infinite number of possible fNDP ’s but within some bounds, thanks to our assump-

tions. To be able to measure the delay of a packet, one of these possible fNDP ’s

should be selected. We name this process as skew estimation. The skew estimation

should not be a random choice within the existing bounds but should be a decision

based on closeness and being up to date.

Any pair of packets in the candidate set implies a possible skew value and we prefer to

use a weighted averaging scheme using all packets in the candidate set. We determine

the weight of a possible skew line (value) passing through a given pair of packets

using some simple rules that are described in the following paragraphs.

There may be more than one consecutive nondelayed packet even in a very small time

duration within our time window of processing (see Fig. 3.5). We therefore reduce

the size of the candidate set further by merging some of the packets before applying

our skew estimation rules.

Figure 3.5: Packet merging for skew estimation

If a number of consecutive packets having very small delays exist in the candidate

set and weighted pairs of such packets are to be used in skew estimation, a negative

bias will be observed. For such pairs if the time difference (difference in sequence

numbers) is small compared to other pairs, the error in the estimation will be larger.

To eliminate such a bias, we merge those packets that have small delay and are suffi-

ciently close to each other into a single packet to which we also associate its average

delay and the number of packets used in its formation. Such a merging is a heuris-

tic process, which can alternatively be phrased as follows: if the time difference, the

difference in sequence numbers between a pair of received packets, is smaller than
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the radius or merging, r, then the two packets are eligible to be merged. In this man-

ner, the choice and tuning of r defines what sufficiently close to each other means.

Following this merging process, the candidate set will now be composed of relatively

distant pairs.

For a correct skew estimation, pairs used in computing the final average skew line

(value) should be up to date to a certain extent. Therefore, we measure the time

difference between a pair and the most recently acquired packet. In other words, for

each packet pair (i, j), time difference tkij = tk − (tj + ti)/2 is computed where k is

the most recent sequence number, hence kth iteration.

We then use tkij attributes in an inversely proportional way in forming the weights

of possible skew lines (values). As a result, the most valuable pair becomes the last

packet and the one before it. Since our proposed filtering with respect to drift mech-

anism does not work for the last packet also, we prefer to ignore the most recently

received packet in our skew estimation process.

In finding the weights, we also employ the number of packets merged in forming a

new packet in the candidate set. Due to our filtering mechanism, closer packet arrival

times tend to have less error in comparison to distant ones. The weight of any pair

associated with a merged packet is scaled using the number of times it is merged in its

formation. For any pair with sequence numbers i and j, weight of the corresponding

skew value is found as

wk
ij = (1/tkij)× ni × nj (3.7)

where tkij is the time difference corresponding to (i, j) pair and the newest packet k

and nl is the number of times merging is applied in the formation of packet l.

Using the above weights, an overall average skew value is then calculated at the kth

iteration as follows:

sk = (
∑
i

∑
j

(skij × wk
ij))/(

∑
i

∑
j

wk
ij) (3.8)
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3.3 Delay Measurement

Following the skew estimation process, we search for the closest packet to the com-

puted skew value. For this, we draw an auxiliary line with an arbitrary starting point

and with a slope as the calculated skew. Delays of all packets with respect to this

auxiliary line are then calculated and the least delayed one is selected. The delay of

the least delayed packet with respect to the auxiliary line can be negative. For such

cases, the delay having the largest magnitude should be selected. Assuming that the

sequence number of this selected packet (packet closest to auxiliary line) is x, the

delay of a newly arrived packet k can then be found as follows:

dk = tk − (tx + (k − x)× (p+ s)) (3.9)

where

dk: delay of new packet k,

k: sequence number of new packet,

x: sequence number of selected packet,

tk: arrival time of new packet k,

tx: arrival time of selected packet x,

p: packet transmission period,

s: calculated skew value.

3.4 Error Analysis

The delay calculated using the above OWDM technique contains an uncertainty be-

cause the receiver does not know a packet’s exact departure time from the sender.

Even though some packets are assumed to have zero delay, we still cannot determine

a packet to be certainly a nondelayed one at the receiver side without any additional

messaging. However, if it is known that at least one nondelayed packet exists within

a predetermined period of time then the necessary conditions to assign a maximum
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error bound for the predicted delay can be obtained. The above assumption, which

simply states that there is a period in which at least one nondelayed packet exists,

is necessary for our error analysis proposal presented in the following. To satisfy

this assumption, one can use a mechanism to control the traffic on the sender side to

be able to empty the sender’s queue and intermediate routers’ queues (in multihop

transmission) within the specified period.

It is worth noting that our scheme itself does not attempt to control congestion but it

rather assumes that there exists a mechanism such that within a predetermined period

of time at least one packet is guaranteed to be delivered with zero delay. This is not a

must for our proposed delay measurement technique, but for a necessary condition to

be able to give an error bound for the queuing delay we measure. There exists many

congestion control algorithms proposed in the literature, which aims to achieve a

certain tradeoff between high resource utilization and low-delay requirements. There

are methods designed for one-hop or multihop connections. These methods may or

may not need two-way messages.

The technique proposed in this thesis is directly applicable to a one-hop link because

the assumption that we have stated above can easily be satisfied, for example, by

accessing the sender’s outgoing queue and dropping all waiting packets at the end

of each such period. This of course brings utilization overhead, a penalty to pay in

return for a guaranteed error bound on the delay measurements to be made. In cases

where accessing sender’s queue is not possible, an alternative to satisfy the above

assumption may be to use a periodic input rate adjustment scheme to be able to empty

the sender’s outgoing queue. Such an approach also reduces utilization in return for

an error bound on delay measurements. How one satisfies the required assumption in

the best possible way is out of the scope of the present work.

If a suitable multi-hop mechanism that satisfies the above stated assumption is de-

signed in an end-to-end fashion, maybe in return for a loss in overall utilization, our

idea can also be extended to multihop cases. Otherwise, our proposal can be applied

to all one-hop links in a multihop path separately to find the total delay and the error

in an additive manner. This approach may deteriorate the tightness of the error-bound

and may reduce utilization further in order to allocate a delay field in each packet
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transmitted.

In our algorithm, a skew value is estimated and a packet that fits the estimated skew

value best is selected to measure the delay. In fact, there is a range of possible skew

values. In our error analysis, we consider all possible skew values and all suitable

packets that fit these skew values and observe a range of delay values for an arriving

packet. With the above assumption, if the difference between the arrival time of the

oldest packet in the set and the current time is larger than the specified period, it is

guaranteed that the range of delays includes the actual delay. The specified period is

named N and the size of the set is calibrated to have at least one packet that have a

time difference larger than N .

For a newly arrived packet, the range of possible delay values may be found by using

packets that are in the candidate set, but which arrived within a past time window

of N . Among all possible packets in the specified range, it is sufficient to select the

oldest and the newest ones to obtain an error bound for the estimated delay. Fig. 3.6

illustrates the concept.

Figure 3.6: Range of possible skew lines (error bound)

Dashed lines in Fig. 3.6 represent skewmax, no skew and skewmin lines. i represents

the oldest packet within the past period of N and j represent the newest packet in the

candidate set. Let k be the sequence number of the new packet, then the actual skew
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value skewk at time k can be characterized as:

ti + (k − i)(skewmin + p) < skewk < tj + (k − j)(skewmax + p) (3.10)

Since k = j + 1

ti + (j − i+ 1)(skewmin + p) < skewk < tj + (skewmax + p) (3.11)

From the above range of possible nondelayed packet locations at k, a corresponding

delay range for the new packet k can be deduced easily as illustrated in Fig. 3.6.

Algorithms 3.1-3.7 presents the whole idea described in the present section in a com-

pact manner.

If the probe packet period were unknown, it would be impossible to obtain an error

bound for the delay of each packet received. Knowledge of the packet period and

existence of bounds on clock skew and drift enable us to implement the filtering

mechanisms we propose. If a fixed packet period does not exist, the problem reduces

to prediction under uncertainty, which we do not aim for in the present work at all.

Clock skew and jitter are similar concepts. In fact, jitter can be regarded as the general

form of clock skew. Jitter can be caused by electromagnetic interference (EMI) and

crosstalk of other signals and the frequencies of a pair of clocks can change abruptly.

We keep such abrupt frequency differences out of the scope of the present work and

limit our problem by using two main assumptions on skew and drift. If EMI and

crosstalk can be defined as continuous functions similar to temperature and humidity,

jitter can be included in our technique. Otherwise, the existence of jitter adds an error

to our delay measurement and error bound but to also other similar techniques that

exist in the literature.
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Algorithm 3.1: Overall Algorithm (OWADME)

1 Wait for a new packet

2 Apply skew filtering

3 Apply drift filtering

4 Apply skew estimation

5 Find the closest packet to estimated skew line (value)

6 Compute the delay for the new packet

7 Compute the error bound for the new delay estimate

8 goto step 1.

Algorithm 3.2: Skew Filtering Algorithm

1 arrival of a new packet k

2 j ← the most recent packet in the candidate set

3 if tk − tj > (k − j)× (p+ c) then

4 delete pk and exit

5 end

6 while tk − tj < (k − j)× (p− c) do

7 delete pj

8 j ← the most recent packet in the candidate set

9 end

Algorithm 3.3: Drift Filtering Algorithm

1 arrival of a packet k that passed skew filtering

2 j ← the most recent packet in the candidate set

3 calculate entry angle αk

4 calculate exit angle βj

5 while αk > βj do

6 delete pj

7 j ← the most recent packet in the candidate set

8 calculate exit angle βj

9 end
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Algorithm 3.4: Skew Estimation Algorithm

1 arrival of a packet k that passed drift filtering

2 pfirst ← k

3 m← 2

4 psecond ← mth most recent packet in candidate set

5 l← a ∗ period where a ≤ 10

6 while (tpfirst − tpsecond < l) ∧ (m < size of candidate set) do

7 merge pfirst and psecond by creating pm

8 pfirst ← pm

9 m← m+ 1

10 psecond ← mth most recent packet in candidate set

11 end

12 if (tpfirst − tpsecond ≥ l) ∧ (m+ 1 < size of candidate set) then

13 pfirst ← psecond

14 m← m+ 1

15 psecond ← mth most recent packet in candidate set

16 goto step 5

17 end

18 calculate skew and weight value for all pairs

19 calculate the weighted average s
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Algorithm 3.5: Closest Packet Search Algorithm

1 s← weighted averaged skew value

2 p← oldest packet in candidate set

3 d← 0

4 m← 2

5 pm ← mth most elderly packet in candidate set

6 while m < size of candidate set do

7 sp ← sequence number of packet p

8 sm ← sequence number of packet pm

9 if d ≥ tpm − tp − (sm − sp) ∗ (period+ s) then

10 p← pm

11 end

12 end

13 return p

Algorithm 3.6: Delay Computation Algorithm

1 arrival of a packet k

2 s← weighted averaged skew value

3 p← closest packet

4 sk ← sequence number of packet k

5 sp ← sequence number of packet p

6 return tk − tp − (sk − sp) ∗ (period+ s)

Algorithm 3.7: Error Bound Computation Algorithm

1 arrival of a packet k

2 pn ← oldest packet within past period of N

3 sk ← sequence number of packet k

4 sn ← sequence number of packet pn

5 max error← tk − tpn − (sk − sn) ∗ (period+maxskew)

6 min error← tk − tpn − (sk − sn) ∗ (period+minskew)

7 return maxerror and minerror
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CHAPTER 4

COMPLEXITY ANALYSIS

OWADME is required to be fast. It should be completed in at most one period p. The

present section discusses its complexity in detail.

4.1 Complexity of Filtering with respect to Skew

Filtering with respect to skew is the process of checking whether a received packet is a

candidate to be a zero-delay packet or not. This check is made using the newly arrived

packet and the previously received one (the most recent packet in the candidate set).

Let i and k denote the sequence numbers of the last packet in the candidate set and

the new arrival, respectively. Then the following inequalities are checked in turn:

1. tk > ti + (k − i)× (p+ skewmax)

2. tk < ti + (k − i)× (p+ skewmax) and tk > ti + (k − i)× (p+ skewmin)

3. tk < ti + (k − i)× (p+ skewmin)

If the first inequality holds then the new packet k certainly has a delay and it should

be kept out of the candidate set. If the second inequality holds then the new packet k

is potentially a zero-delay packet and hence it should be kept in the candidate set. If

the third inequality holds then the oldest packet i in the candidate set certainly has a

delay but the new packet k may or may not have delay. Hence packet i is dismissed

from the candidate set and the new packet k is inserted instead. All these three tasks

are O(1) but if packet i in the candidate set is dismissed then this check should be
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repeated for the preceding packet in the candidate set. Such a check may continue

until all packets in the candidate set except the new packet k are dismissed. Hence

for a new arrival step 3 may be repeated for m times, where m is the cardinality of

the candidate set during the corresponding iteration.

But for m consecutive packets, the complexity of the process becomes O(m) because

every dismissing step reduces the size of the candidate set.

4.2 Complexity of Filtering with respect to Drift

After filtering with respect to skew step, filtering with respect to drift process fol-

lows. In this type of filtering, entry and exit angles are to be found. For an entry

angle measurement there is no need to use all packets of the candidate set if it is not

necessary. For a new packet that passes through skew filtering, the measurement of an

entry angle starts with the preceding packet. If this angle is larger than the preceding

packet’s entry angle, measurement is stopped and the function is assumed to have the

entry angle of the new packet. If it is not, it means that the exit angle of the preceding

packet cannot be larger than the entry angle of its own. So, the preceding packet is

dismissed and the process continues using the packet before the preceding one until

all packets in the candidate set are handled.

The algorithm explained above has a complexity similar to filtering with respect to

skew mechanism. For a new packet, it has a worst case complexity of m. However,

every dismissal process reduces the size of the set and trigger another check therefore

for m subsequent packets the complexity becomes O(m).

4.3 Skew, Delay and Error Bound Estimation Complexity

In skew estimation step, every possible pair in the candidate set are considered in

O(m2) time. Then weighted average of these skew values is computed as in Eq. 8

and the closest packet to the estimated skew line (value) is selected. The latter two

tasks run in O(m) time. Finally, the oldest and the newest packets from the period N

are selected for error analysis with a time complexity of O(1).
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4.4 Total Complexity of OWADME

The worst case time complexity of the proposed algorithm OWADME, which is per-

formed each time a new packet arrives, is O(m2). m is dependent on the characteris-

tics of the packet traffic but is expected to be small in practice. For the case where the

sender’s queue is empty, all of the received packets go into the candidate set. How-

ever in order to sustain the proposed algorithm, packets within the prespecified period

of N is sufficient, meaning that m is bounded by N . On the other hand, it might be

difficult to determine N for different types of packet streams. Let us consider some

parameters that may be helpful in making remarks about m.

Mmin = (N/N ′)× Sn (4.1)

where

Mmin: Minimum size of the candidate set,

N ′: Minimum time difference between two nondelayed packet intervals,

Sn: Maximum number of consecutive nondelayed packets within a nondelayed packet

interval.

The above formulation states that the candidate set must have all possible nondelayed

packets within the period N . In our simulations m is kept low. However, with differ-

ent traffic assumptions additional methods may be needed to ensure that m is suffi-

ciently small. If m tends to be a large number, which is not suitable for OWADME to

work online, we propose to employ one of the following two approaches in practice:

1. Reduction of Sn: If the sender’s queue is empty, multiple and consecutive non-

delayed packets are received by the receiver. These consecutive packets in-

crease the size of the candidate set. For those cases where m is not sufficiently

small for OWADME to work online, a merging process can be utilized similar

to that we propose for our skew estimation process.

2. Variable N : N value used in OWADME helps us to specify an upper bound

for delay measurement error. The assumption made in error analysis states that

there is at least one nondelayed packet within period N , which means that it is
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the largest possible interval between any successive nondelayed packets. Be-

cause of not having two-way messaging between the sender and receiver, it

should be a predefined constant. However, observed intervals between succes-

sive nondelayed packets are mostly expected to be much smaller compared to

N . The candidate set needs to have all recent nondelayed packets that are re-

ceived within the last period N . Hence, small nondelayed packet intervals with

respect to N increases the size of the candidate set. To reduce the size, a vari-

ableN can be used by detecting the current interval and predicting the next one,

which requires another assumption on the variation of the nondelayed packet

interval. Otherwise error bound reliability will be compromised. We consider

use of variable N as future work.
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CHAPTER 5

COMPUTATIONAL RESULTS

The present thesis and the proposed method OWADME are based on three main as-

sumptions:

1. existence of a bound on clock skew

2. existence of a bound on clock drift

3. existence of at least one sync (zero-delay) packet in a prespecified period

The first and second assumptions are used for the filtering mechanism and state that

skew and drift can change only within some boundary. These bounds derive from

the physical conditions of the environment that OWDM method operates. The third

assumption allows us to compute maximum error bounds for each packet.

In the present section we evaluate OWADME in detail. For this purpose a simulation

study is conducted, which uses a synthetically generated packet stream transmitted

between a sender and receiver under certain background traffic. In the following sub-

sections, first our test case and traffic generation method is presented, then the effects

of filtering with respect to both skew and drift are analyzed and finally OWADME is

evaluated against Sync & Sense [5].

5.1 Case and Traffic Generation

For the generation of a skew pattern to be used as a reference in our tests, a random

drift value is chosen within a specified boundary. This value is assumed to be valid
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between two successive actions in the simulations. A delta skew is then computed by

integrating the drift value and total skew is computed additively after every action in

the simulation.

To realize our third assumption, we need a kind of congestion avoidance algorithm.

Selection of a good congestion avoidance algorithm is out of the scope of the present

thesis hence we implemented a very simple one that shapes the traffic directly.

In our simulations, we added background traffic to be able to simulate random delays

for our periodic probe packets. The background traffic is generated using Poisson

distribution with an adjustable rate. We employed three different rates to create and

then resolve congestion. The first rate corresponds to a high load case where the link

is overloaded, i.e. more background packets are injected than the link capacity. As a

result, congestion builds up and the sender queue size starts to increase. The second

rate corresponds to low load case. To empty the sender queue, we use a background

traffic generation rate, which is slightly less than the link capacity. In this case, we use

a non-zero rate to be realistic to a certain extent because a fast reduction in delay is

much easier to detect and make nondelayed packets more observable. The third rate

used to generate a background traffic pattern is the silence rate. After applying the

low load rate we may still not observe zero delays for the periodic packets. In order

to guarantee the existence of nondelayed periodic packets, the traffic rate is finally

reduced to less than half the capacity.

We apply all three traffic rates in a round robin fashion during a simulation run. At

the first stage high load is applied and the sender queue size increases. When the

queue size reaches to a certain threshold low load is applied as a second stage and

queue size starts decreasing. When queue size approaches zero, the silence rate is

applied as the third stage to definitely obtain some nondelayed periodic packets. The

silence rate is applied for a very brief period of time. As a consequence, a multitude

of nondelayed packets may be observed in addition to packets with very small delay.

Some of these packets will pass through our filtering mechanism, which makes the

filtering task more challenging. The three stage traffic generation described above is

repeated until the end of the simulation.

As was stated earlier, our third assumption states that there exists a prespecified pe-
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riod in which at least one nondelayed packet is observed. However, due to our use of

Poisson distribution in the tests, we cannot guarantee such a specific value in the sim-

ulations. After a couple of trial and error steps, we set an experimentally determined

value depending on our rate choices and the associated sender queue sizes. Namely,

before running our tests for OWADME, we observed the described traffic structure

and fixed this prespecified periodN . As future work, a variable congestion avoidance

period may be considered at the receiver side.

The choice of r in Algorithm 4 depends on the actual traffic pattern and has an ef-

fect on performance. We heuristically optimized r using the traffic pattern described

above. We observed that the actual error made in delay measurements increases as

a result of over merging when r > 20. When r ≤ 5, potential packets that can be

merged stay unmerged and the error increases similarly as a result of under merging.

In the following simulations, r is chosen to be 10.

5.2 Effect of Filtering

OWADME steps are composed of filtering, skew estimation, delay measurement and

error analysis. Delay measurement and error analysis steps use the same set of filtered

packets (candidate set) and these steps are independent of each other. To perform bet-

ter in both, filtering mechanism is required to filter out all of the delayed packets and

leave only the nondelayed ones in the candidate set. To evaluate the proposed filtering

approach, we observe the ratio of the number of nondelayed packets to candidate set

size and name it as success ratio. This ratio is provided twice, first after filtering with

respect to skew and then after filtering with respect to drift. Each run is repeated for a

sufficient number of times and the results are averaged such that the results are com-

pliant with 95% confidence interval and a sufficient gap so that compared entities do

not overlap. The number of zero-delay packets (sync packets) generated throughout a

simulation depends on the duration of the silence period. Fig. 5.1.a shows the number

of sync packets generated throughout a simulation with respect to silence duration and

Fig. 5.1.b gives the success ratio with respect to silence duration for filtering using

skew bound only and for filtering using both skew and drift bounds together.
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Figure 5.1: (a) Number of sync packets generated throughout simulation with re-
spect to silence period duration (ms) (b) Success ratio as a function of silence period
duration (ms)

It is observed that increasing the duration of the silence period increases the number of

detected sync packets linearly. In our filtering mechanism, every nondelayed packet

narrows the area of subsequent packets through which they can pass. This makes it

harder for non-sync (delayed) packets to pass through the filter. In other words, with a

larger number of nondelayed actual packets, elimination of the delayed ones becomes

much easier and hence the ratio of the number of sync packets to candidate set size

increases.

Fig. 5.1.b illustrates the effect of using filtering with respect to drift after filtering

with respect to skew. It is observed that skew and skew+drift filtered success ratios

are close to and within 2 to 5% proximity of each other. As a result, we believe that

applying a third filter that uses a bound on the derivative of drift may not prove to be
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useful in reducing the size of the candidate set further.

5.3 Overall Evaluation and Comparison with the Literature

Sync & Sense [5] is the most prominent candidate in the literature that can be com-

pared with OWADME. So we have implemented and tested Sync & Sense using our

simulation setup under the same traffic structure to be able to compare the two fairly.

Similar to our third assumption, Sync & Sense also needs nondelayed packets to

estimate fNDP . However, in Sync & Sense, synchronization can be made only for

negative skew in reference to sender side. If synchronization can be achieved at some

point during the simulation for positive skew cases, the reset mechanism embedded

in Sync & Sense cannot be applied meaning that a cumulative error may occur.

In Sync & Sense, VOIP packets having a period of 40 ms are used within a multi-

node multi-hop network structure [5]. However, the traffic between the nodes (except

the last one) of this test network is very light and never creates congestion in their

multi-hop structure. To be able to create a sufficient amount of congestion, only

the last node’s traffic rate was kept very close to ongoing traffic rate in the original

paper. As a result, Sync & Sense traffic conditions can be repeated using only one

hop communication. Therefore in the experiments, we used a single hop network and

a period of 20 ms for periodic packets.

Sync & Sense can provide delay measurements whenever it is synchronized. But

whenever a threshold error margin is exceeded, a reset process is applied and hence

no output can be observed between such a reset and the following synchronization

event. We therefore use two metrics to compare Sync & Sense and OWADME, which

are the output provisioning ratio (opr) and the error made in delay estimation (err).

The output provisioning ratio (opr) is the ratio of the amount of time that Sync &

Sense is capable of providing a delay calculation to the overall simulation time. This

ratio depends on the value of the error margin parameter used in the Sync & Sense

algorithm. In order to make our comparisons reliable, we simulated the Sync &

Sense with various error margin values starting from 0.5 to 2 ms with 0.25 ms step

sizes. Three example cases are presented in the following subsections to explain the
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similarities and differences between Sync & Sense and the proposed scheme. For

these cases, the error margin parameter is selected in such a way that Sync & Sense

produces high output provisioning ratio and low error.

5.3.1 Initial positive skew case

Fig. 5.2 presents results of Sync & Sense and OWADME simulations and provides a

performance comparison when initial skew is assumed to be positive. The following

parameters are used in the simulation scenario:

• Initial skew value: 200 ppm.

• Min and max skew values: -600ppm and 600ppm with respect to the receiver

side.

• Max drift bound: 5ppm/sec.

• Simulation duration: 90 s (starting at 10 s and finishing at 100 s)

Figure 5.2: Sync & Sense and OWADME performance comparison and error bounds
(positive initial skew case (ms))

x-axis corresponds to simulation time and y-axis shows error and error bound in ms

precision. The blue (square dot) and black (long dash) lines are errors made by Sync
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& Sense and OWADME, respectively. The orange and yellow lines indicate the max-

imum error boundary calculated by OWADME. As stated earlier, Sync & Sense is

observed not having ability to use its reset process for positive skew cases. As a

consequence, if the synchronization is achieved once, there is no reset opportunity

anymore and the error accumulates. Period is constant in Sync & Sense hence with

200ppm initial skew value the error accumulates up to 20ms within about 100 s.

5.3.2 Initial zero skew case

Fig. 5.3 presents similar results for the same set of parameters, except initial skew,

which is assumed to be zero.

Figure 5.3: Sync & Sense and OWADME performance comparison (zero initial skew
case (ms)

It is observed in Fig. 5.3 that OWADME provides better results in general. In Sync &

Sense, the receiver side treats the period of packets as a constant term and hence skew

value is very close to zero in this case. The error does not increase and the results are

more comparable in this initial zero skew case. Due to the synchronization failures,

Sync & Sense could not provide any output during some intervals (two largest inter-

vals being (44.9, 50.0) and (76.9, 83.0)) for a total of approximately 12 s out of 90 s

making an opr of 0.87.
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The error bound computed by OWADME is presented separately in Fig. 5.4. With

zero initial skew value, the error bounds calculated by OWADME are not comparable

with Sync & Sense. It is observed that any error is mostly less than 0.2 ms and error

bounds range between 2 and 10 ms for OWADME.

Figure 5.4: Maximum error bound of OWADME (zero initial skew case (ms))

5.3.3 Negative initial skew case

Fig. 5.5 presents similar results for the same set of parameters, except initial skew,

which is assumed to be -200 ppm.

It is observed in Fig. 5.5 that OWADME provides much better results than Sync

& Sense. Due to the synchronization failures, Sync & Sense could not provide any

output during certain intervals (two largest intervals being (52.3, 60.0) and (89.1,

96.4)) for a total of approximately 16 s out of 90 s making an opr of 0.82.

Measurement error made by Sync & Sense and error bounds calculated by OWADME

are given on the same graph in Fig. 5.6.

Orange and yellow lines correspond to an error bound of OWADME. Blue lines rep-

resent the measurement error made by Sync & Sense. For initial skew values as low

as -200 ppm, even the error bounds computed by OWADME are comparable with
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Figure 5.5: Sync & Sense and OWADME performance comparison (negative initial
skew case (ms)

Sync & Sense results. The error of OWADME on the other hand is incomparably

better (Fig. 5.5).

5.4 Overall comparison with Sync & Sense

Fig. 5.7 finally provides an overall comparison of Sync & Sense and OWADME. In

Fig. 5.7, x-axis shows the initial skew values. Five cases are considered in our exper-

iments, i.e. -300, -200, -100, 0 and 100 ppm. Due to very low output provisioning

ratio, initial skew values higher than 100 cases are not reported. For all skew values

many simulations are performed such that the results are compliant with 95% confi-

dence interval and a sufficient gap so that compared entities do not overlap. Minimum

and maximum errors made in each set of experiments are marked with the same color.

y-axis in the upper graph is the average error at its corresponding initial skew value

in ms. y-axis in the lower graph is the output provisioning ratio. Purple, red, green,

light green, orange, gray and black lines represent Sync & Sense error margin values

of 0.5ms, 0.75ms, 1ms, 1.25ms, 1.5ms, 1.75ms and 2ms, respectively. The blue line

represents the error made by our proposal OWADME.

It is observed in Fig. 5.7 that the average error in Sync & Sense decreases when
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Figure 5.6: Sync & Sense measurement error and OWADME maximum error bound
(negative initial skew case (ms))

initial skew value gets closer to zero. This is because of using a constant period at the

receiver side. On the other hand, OWADME performance is very stable for all initial

skew values. The reason for this is that OWADME measures the skew and adjusts its

period value using these measurements in its delay estimations.

Another major result one can deduce in Fig. 5.7 is that use of lower error margins in

Sync & Sense causes higher error rates and lower output provisioning ratios in high

initial skew values.

To better explain this phenomenon we should restate the purpose of using an error

margin parameter in Sync & Sense. In Sync & Sense every packet is compared with

its predecessors. If the time difference between two consecutive packets has a lower

period than the assumed constant period minus the error margin, synchronization state

is cancelled and the system starts waiting a new zero-delay packet. If a smaller error

margin value and a high initial skew value is used, every nondelayed packet causes

loss of synchronization. As a result, output provisioning ratio decreases and sync

intervals start to have relatively short life spans.

Use of a small error margin in Sync & Sense produces large error and low output

provisioning ratio. Increasing error margin decreases the error and increases output

provisioning ratio. But error margin cannot be increased endlessly and error perfor-
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Figure 5.7: Measurement errors made by Sync & Sense and OWADME for different
error margin parameters and initial skew values (ms)

mance saturates as output provisioning ratio approaches to 1. If higher error margins

are tested after reaching maximum output provisioning ratio, we may expect to ob-

serve higher error rates because when the output provisioning ratio is already maxi-

mum, one cannot get longer sync intervals and hence increasing error margin further

causes higher error rates only.

On the other hand OWADME’s error rate is nearly the same for all initial skew val-

ues. Hence independent of initial skew, it is equal to approximately 70 µs in average.

OWADME outperforms Sync & Sense error performance also with an output provi-

sioning ratio of one in all possible cases.
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CHAPTER 6

PROBE PACKETS

In this thesis, we characterize delay measurement to be active, which means that we

inject some additional packets to the network for our purpose. These packets are

called as probe packets throughout the thesis except for this chapter. In this chapter

however, we assume that there are other aperiodic data packets, which are different

than the periodic probe packets and which we want to measure their delay.

Previous chapters explain how our one way delay measurement mechanism works on

periodic probe packets, in other words how we measure the delay of probe packets.

In this chapter, we explain how to measure the delay of an arbitrary and aperiodic

packet by using the delay of probe packets. Two key concepts used for this purpose

are as follows:

Distance is an h bit field allocated in every aperiodic packet and is used to indicate

the index of the time slot (interval) the packet is sent. Distance is coded in binary

hence h=log m where m is the number of time slots in a period.

Resolution is the duration of each time slot in seconds within a period.

Let us assume that at time tprobe a probe packet has arrived and its delay is measured to

be tprobedelay by our previously described scheme. For a packet which comes after the

probe packet, having a distance of xmeans that the packet is sent from the sender side

at (x/(2h)) × p seconds later than the probe packet is sent. As a result, if the packet

and the probe packet have the same delay, the packet arrives at tprobe + (x/(2h))× p.

However, delays of the packet and the probe packet may be different. Therefore, the

difference between the arrival times can be compared with the distance number to find
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the correct interval of packet delay. As a result, delay of an arbitrary and aperiodic

packet can be stated as;

tprobedelay−(x/(2h)×p)+(tp−tprobe) > delay > tprobedelay−((x+1)/(2h)×p)+(tp−tprobe)
(6.1)

where;

tprobedelay: delay of the probe packet,

tp: arrival time of packet,

p: probe packet period,

tprobe: arrival time of the probe packet.

Distance information is an h bit number which states an interval, not a certain time

spot. Therefore, there exists an uncertainty in the specified time interval which cor-

responds to our resolution. So, there occurs a tradeoff between the network overhead

and the resolution of the measured delay. As an example, if h is 4 and probe packet

period is 80ms, our resolution is 5ms. For this case network overhead consists of 4

bits for each packet and probe packet size of 80ms. To be more clear, resolution and

network cost can be stated as;

resolution = p/(2h) (6.2)

traffic overhead = (ps+ (p/pd)× h) per period p (6.3)

where;

pd: packet density or period,

ps: probe packet size.

For the above equation, resolution is assumed to be much greater than maximum

delay measurement error. For those cases they are comparable, resolution definition
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will be sum of both.

6.1 Sequence Number

The sequence number is used for preventing problems caused by loss of a probe

packet. Without any sequence number, if a probe packet is lost, our scheme adds one

period to successive packets’ delay. Therefore, one probe packet period error cannot

be recovered for period N and all the packets in this period N have at least one probe

packet period error. By utilizing a sequence number in each periodic probe packet,

a recovery in one probe packet period can be realized by comparing the sequence

number of successive probe packets.

6.2 Without probe packets

For a network with periodic packets, above defined sequence number can be inserted

to all packets. By using periodicity of the actual user data packets, our delay mea-

surement scheme can be realized easily. Successive packet drop probability defines

the size of sequence number. However for any network it can be kept small compared

to the size of any header of probe packets. For this case, all the traffic overhead arises

from the sequence number (ss).

traffic overhead = ss per period pd (6.4)

Therefore, maximum delay measurement error becomes equal to the resolution.

Having periodic data packets is a special case. Period or density of packets (pd) is

assumed to be a network dependent value and is accepted as a constant for a given

network. Resolution depends on probe packet period p. Moreover, p should be much

smaller compared to N . Assume that N is very large and to be able to minimize the

overhead p can be selected as a much larger value than pd. For this case, overheads

of two cases for a p period;
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Case 1 overhead = (ps+ (p/pd)× h) (6.5)

Case 2 overhead = (p/pd)× ss (6.6)

Case 1 resolution = (p/(2h)× p) (6.7)

Case 2 resolution = maximum error (6.8)

Therefore, case 1 is superior for;

(p/pd)× (ss− h) > hs+ ss (6.9)

For cases where h (distance number size) is greater than ss (sequence number size),

using periodicity of data packets is always a better option. For other cases, if resolu-

tion meets the design requirements above equations should be considered to have less

traffic overhead.

If a network does not contain periodic data packets or packets do not have any space

for sequence numbers, probe packet insertion is the only option. In that case, tradeoff

between traffic overhead and resolution should carefully be analyzed.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The present work deals with the problem of one way delay measurement without any

hard clock synchronization and two-way messaging. The method presented in this

thesis utilizes assumptions derived by considering the physical conditions that may

affect clock speed in associated network nodes. With the help of these assumptions

most of the delayed packets at the receiver side are easily revealed to be so and a

candidate set of packets is formed by including probable nondelayed packets only. All

possible pairs in this candidate set, which implies a skew value, are then considered

to calculate a weighted average skew value. For calculation of the weights, certain

attributes such as proximity and recency of the packets in each pair in the candidate set

are utilized. The closest packet to the obtained average skew line (value) is then used

as a reference point to perform the delay measurement. Moreover, as a consequence

of the assumptions made, an error bound is also computed for every reported delay.

To the best of knowledge of the authors OWADME is the first method of its kind,

which adaptively modifies its skew measurement and the error bound simultaneously

for every delay measurement result it produces.

OWADME is compared with a recent one way delay measurement technique called

as Synch & Sense [5]. Simulation results show that our proposal is superior to the

existing work of the same category and comparable to other OWDM schemes that

utilizes two-way messaging.

Similar to [5], the network topology implemented for our evaluation purposes has

one bottleneck link. For the case that includes multiple bottleneck links, a congestion
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avoidance algorithm should be implemented as future work to make the prevailing

assumptions of the paper to be applicable to commonly encountered network types in

practice.

For the cases a better congestion avoidance algorithm may not be possible to imple-

ment, a variable N can be considered. As stated above, period N is the duration in

which at least one nondelayed packet arrives. However, changing N takes away the

certainty in the computed error boundary. Hence a trade off exists between having

an error bound and having a congestion avoidance algorithm that is sufficient for the

assumption of the proposed scheme. With other additional assumptions and obser-

vation of nondelayed packets, period N could be managed; but, in this case use of

variable N may increase the complexity. To sustain the proposed algorithm, a better

merging mechanism may also be implemented as an alternative.
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