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Abstract—A signed graph offers richer information than an
unsigned graph, since it describes both collaborative and com-
petitive relationships in social networks. In this paper, we study
opinion dynamics on a signed graph, based on the Friedkin-
Johnsen model. We first interpret the equilibrium opinion in
terms of a defined random walk on an augmented signed graph,
by representing the equilibrium opinion of every node as a
combination of all nodes’ internal opinions, with the coefficient
of the internal opinion for each node being the difference of two
absorbing probabilities. We then quantify some relevant social
phenomena and express them in terms of the ℓ2 norms of vectors.
We also design a nearly-linear time signed Laplacian solver for

assessing these quantities, by establishing a connection between
the absorbing probability of random walks on a signed graph
and that on an associated unsigned graph. We further study the
opinion optimization problem by changing the initial opinions
of a fixed number of nodes, which can be optimally solved in
cubic time. We provide a nearly-linear time algorithm with error
guarantee to approximately solve the problem. Finally, we execute
extensive experiments on sixteen real-life signed networks, which
show that both of our algorithms are effective and efficient, and
are scalable to massive graphs with over 20 million nodes.

Index Terms—Opinion dynamics, signed graph, social network,
graph algorithm, polarization, opinion optimization.

I. INTRODUCTION

D
ue to the ever-increasing availability of the power of

computing, storage, and manipulation, in the past years,

social media and online social networks have experienced

explosive growth [1], which have constituted an important

part of people’s lives [2], leading to a substantial change of

the ways that people exchange and form opinions [3], [4]

regarding voter, product marketing, social hotspots, and so

on. Numerous recent studies have shown that online social

networks and social media play a vital role during the whole

process of opinion dynamics, including opinion diffusion,

evolution, as well as formation [5]–[7]. In view of the practical

relevance, opinion dynamics in social networks has received

considerable recent attention from the scientific community,

spanning various aspects of this dynamical process, such as

modelling opinion formation, quantifying some resultant social

This work was supported by the National Natural Science Foundation of
China (Nos. U20B2051, 62372112, and 61872093). (Corresponding author:

Zhongzhi Zhang.)

Xiaotian Zhou, Haoxin Sun, Wanyue Xu, and Zhongzhi Zhang are with
Shanghai Key Laboratory of Intelligent Information Processing, School
of Computer Science, Fudan University, Shanghai 200433, China. Wei Li
is with the Academy for Engineering and Technology, Fudan University,
Shanghai, 200433, China.
E-mail: 22110240080@m.fudan.edu.cn, 21210240097@m.fudan.edu.cn,
xuwy@fudan.edu.cn, fd_liwei@fudan.edu.cn, zhangzz@fudan.edu.cn

Manuscript received xxxx; revised xxxx.

phenomena (e.g., polarization [8], [9], disagreement [9], and

conflict [10]), and optimizing opinion [11]–[14].

The most important step in the study of opinion dynamics

is probably the establishment of a mathematical model. Over

the past years, a rich variety of models have been proposed

for modelling opinion dynamics. Among these models, the

Friedkin-Johnsen (FJ) model [15] is a popular one, which has

found practical applications. For example, the concatenated

FJ model has been applied to explain the Paris Agreement

negotiation process [16] and the FJ model with multidimen-

sional opinions has been used to account for the change of

public opinion on the US-Iraq War [17]. To the best of our

knowledge, the FJ model is the only opinion dynamics model

that has been confirmed by a sustained line of human-subject

experiments [16]–[18]. Thus, the FJ model, despite being

simple, has received much recent interest. It has been recently

used to quantify various social phenomena such as disagree-

ment [9], [19], polarization [8], [9], [19], and conflict [10],

for which some nearly-linear time approximation algorithms

were designed [20], [21]. Moreover, optimization of the overall

opinion for the FJ model was also heavily studied [11]–

[14], [22]–[24]. Finally, diverse variants of this well-known

model have been introduced [3], [4], by considering different

factors affecting opinion formation, such as susceptibility to

persuasion [12], peer pressure [25], stubbornness [21], and

algorithmic filtering [26].

Because of the outstanding merits of the FJ model detailed

above, in this work we also choose this model as our subject.

Note that in addition to the aforementioned aspects, opinion

shaping is also significantly affected by the interactions among

individuals. Most previous studies for the FJ model only

capture positive or cooperative interactions among agents

described by an unsigned graph, neglecting those negative or

competitive interactions, in spite of the fact that both friendly

and hostile relationships often exist simultaneously in many

realistic scenarios, especially in social networks [27], [28]. In

view of the ubiquity of competitive interactions in real systems,

the FJ model on signed graphs has been built and studied [29]–

[32], which takes into account both collaborative and antago-

nistic relationships, providing a comprehensive understanding

of human relationships in opinion dynamics [33].

However, the properties and complexity of various graph

problems change once there are negative edges. For instance,

for a signed graph having cycles with negative edges, the

shortest-path problem is known to be NP-hard [34]. In the

context of the signed FJ model, the inclusion of antagonistic

relationships presents more challenges to analyze relevant

properties and develop good algorithms. First, the proba-

http://arxiv.org/abs/2407.10680v2
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bility explanation for the equilibrium opinions in unsigned

graphs [11] no longer holds for their signed counterparts.

Moreover, measures and their expressions for some social

phenomena (polarization, disagreement, and conflict) are not

fully defined and studied. Finally, existing fast approaches for

eventuating or optimizing relevant quantifies about opinion

optimization on unsigned graphs [20], [21] cannot be directly

carried over to signed graphs, while the prior algorithm for

signed graphs has cubic complexity [29] and is thus not

applicable to large signed graphs. These enlighten us to solve

the challenges for the FJ model on signed graphs.

In order to fill the aforementioned gap, in this paper, we

present an extensive study for the FJ model on a signed graph.

Our main contributions are summarized as follows.

• We interpret the equilibrium expressed opinion in terms

of a newly defined random walk on an augmented signed

graph. We represent the expressed opinion of each node as a

combination of the internal opinions of all nodes, where the

coefficient of every node’s internal opinion is the difference

of two absorbing probabilities.

• We provide measures and expressions for some relevant

social phenomena, including conflict, polarization, and dis-

agreement based on signed FJ model. Particularly, we

express each quantity in terms of the ℓ2 norm of a vector.

• We construct an unsigned graph for any signed graph,

and prove the equivalence of the absorbing probabilities

for random walks on the augmented signed graph and its

associated augmented unsigned graph. Utilizing this con-

nection, we develop a nearly-linear time signed Laplacian

solver approximating the equilibrium expressed opinion and

relevant social phenomena.

• We address the problem of maximizing (or minimizing) the

overall opinion by selecting a small fixed number of nodes

and changing their initial opinions, which can be optimally

solved in cubic time. We propose an approximation algo-

rithm solving the problem, which has nearly-linear time

complexity and an error guarantee, based on our proposed

signed Laplacian solver.

• We demonstrate the performance of our two efficient al-

gorithms by performing extensive experiments on realistic

signed graphs, which indicate that both algorithms are fast

and accurate, and are scalable to graphs with over 20 million

nodes.

II. PRELIMINARIES

In this section, we provide an overview of the notations,

signed graphs and their related matrices, and the FJ model.

A. Notations

For a vector a , the i-th element is denoted as a i. For a

matrix A, the element at the i-th row and j-th column is

denoted as Ai,j ; the i-th row and j-th column are represented

as Ai,: and A:,j , respectively. For matrix A and vector a ,

A⊤ and a⊤ denote, respectively, their transpose. I and O

denote, respectively, the identity matrix and the zero matrix

of the appropriate dimension. The vector ei is a vector of

appropriate dimension, where the i-th element is 1 and all

other elements are 0’s. The vector 0 (or 1) is a vector of

appropriate dimension with all entries equal to 0 (or 1). For

a vector a , its ℓ2 norm is ‖a‖2 =
√

∑

i a
2
i , its ℓ0 norm is

denoted as ‖a‖0 defined as the number of nonzero elements

in a , and its norm with respect to a matrix A is ‖a‖A =√
a⊤Aa .

For two nonnegative scalars a and b and 0 < ǫ < 1/2, we

say that a is an ǫ-approximation of b, denoted by a ≈ǫ b,
if (1 − ǫ)a ≤ b ≤ (1 + ǫ)a. For two positive semidefinite

matrices X and Y , we say that X � Y if Y −X is positive

semidefinite, meaning that x⊤Xx ≤ x⊤Yx holds for any

real vector x .

B. Signed Graph and Their Related Matrices

Let G = (V,E,w) denote a connected undirected signed

graph with n = |V | nodes, m = |E| edges, and edge sign

function w : E → {−1,+1}. We call an edge e = (i, j) ∈ E
a positive (or negative) edge if w(i, j) is +1 (or -1). The edge

sign w(i, j) of edge e = (i, j) ∈ E represents the relationship

between node i and node j. If w(i, j) = +1, nodes i and

j are cooperative; and if w(i, j) = −1, nodes i and j are

competitive. Let Ni be the set of neighbours of node i, which

can be classified into two disjoint subsets: the friend set NF
i

and the enemy (or opponent) set NE
i . Any node in NF

i is

directly connected to i by a positive edge, while any node in

NE
i is linked to i by a negative edge. The degree di of node

i is defined as di =
∑

j∈Ni
|w(i, j)|.

For an undirected signed graph G, let D be its de-

gree matrix, which is a diagonal matrix defined as D =
diag{d1, d2, . . . , dn}. Let A ∈ Rn×n be its signed adjacency

matrix, with the entry Ai,j defined as follows: Ai,j = w(i, j)
for any edge (i, j) ∈ E, and Ai,j = 0 otherwise. The signed

Laplacian matrix L of G is defined as L = D −A. For any

edge in G, we fix an arbitrary orientation. Then we can define

the edge-node incidence matrix Bm×n of G, whose entries

are defined as follows. For any edge e = (u, v), Be,u = 1 if

node u is the head of edge e; Be,v = −w(u, v) if node v is

the tail of e; and Be,x = 0 for x 6= u, v. Then, matrix L can

be written as L = B⊤B , implying that L is symmetric and

positive semidefinite. Note that matrix L is called “opposing”

Laplacian in [27], where another Laplacain matrix named

“repelling” Laplacian is also defined. In this paper, we focus on

the “opposing” Laplacian L, called Laplacian matrix hereafter.

According to the sign of edges, any signed graph G can be

divided into two spanning subgraphs: the positive graph G+ =
(V,E+, w+) and the negative graph G− = (V,E−, w−). Both

G+ and G− share the same node set V as graph G. G+ contains

all positive edges in E, while G− includes all negative edges in

E. In other words, E = E+∪E−, and for any edge e ∈ E with

end nodes i and j, w+(i, j) = 1 if e ∈ E+, w−(i, j) = −1
if e ∈ E−, and w+(i, j) = w−(i, j) = 0 otherwise. Let A+

and A− be the adjacency matrices of G+ and G−, respectively.

Then, A+ is a non-negative matrix, while A− is a non-positive

matrix. Similarly, for graphs G+ and G−, we use D+ and D−

to denote their degree matrices, use B+ and B− to represent

their incidence matrices, and use L+ and L− to denote their

Laplacian matrices.
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We now provide some useful matrix relations involving the

signed Laplacian matrix L in Fact II.1, which will be used in

the proofs in the sequel.

Fact II.1. We have L+ � L, L− � L, I � I+L, L � I +L,

I + L � 2nI , and 1
2nL � I .

C. Friedkin-Johnsen Model on Signed Graphs

The Friedkin-Johnsen (FJ) model is a popular model for

analysing opinion evolution and formation on graphs. In the

FJ model [15], each node or agent i ∈ V is associated with two

opinions. One is the internal opinion si, which is a constant

value in the interval [−1, 1], reflecting the intrinsic position of

node i on a certain topic. The other is the expressed opinion

z i(t) at time t. At each time step, node i updates its expressed

opinion according to the rule of minimizing its psycho-social

cost (z i(t) − s i)
2 +

∑

j∈Ni
(z i(t) − Ai,jz j(t))

2, which is

a function of its expressed opinion, its neighbours’ expressed

opinions, and its internal opinion [30], [31], [35]. To minimize

this social cost function, each agent updates its expressed

opinion as follows

z i(t+ 1) =
si +

∑

j∈Ni
Ai,jz j(t)

1 + di
. (1)

That is to say, the expressed opinion z i(t + 1) for node i
at time t + 1 is updated by averaging its internal opinion

si, the expressed opinions of its friends at time t, and the

opposite expressed opinions of its opponents at time t. We

define the initial opinion vector as s = (s1, s2, . . . , sn)
⊤,

and define the vector of expressed opinions at time t as

z (t) = (z 1(t), z 2(t), . . . , zn(t))
⊤. After long-time evolution,

the expressed opinion vector converges to an equilibrium

vector z = (z 1, z 2, . . . , zn)
⊤ satisfying

z = lim
t→∞

z (t) = (I + L)−1s . (2)

Although on both signed and unsigned graphs, the dynamics

equation (1) and the equilibrium opinion (2) for the FJ model

have the same form of mathematical expressions. There are

some notable differences between the unsigned FJ model [15]

and the signed FJ model [29], [31]. For example, their fun-

damental matrix [11] (I + L)−1 have obviously different

properties. For an unsigned graph, matrix (I+L)−1 is a doubly

stochastic matrix, with every element being positive [8], [11].

As a result, the expressed opinion of each node is a convex

combination of the internal opinions of all nodes. In contrast,

for a signed graph, (I+L)−1 is generally not a positive matrix

and is thus not doubly stochastic. Thus, the expressed opinion

of each node is not a convex combination of the internal

opinions of all nodes. This poses an important challenge

for computing expressed opinion vector and analyzing and

optimizing relevant problems for opinion dynamics on signed

graphs since existing algorithms for unsigned graphs are no

longer applicable.

III. INTERPRETATION OF EXPRESSED OPINION FOR THE

SIGNED FJ MODEL

The unsigned FJ model has been interpreted from various

perspectives. For example, the opinion evolution process has

been explained according to Nash equilibrium [35], and the

equilibrium opinion has been accounted for based on absorb-

ing random walks [11] or spanning diverging forests [20],

[21], [24]. However, these interpretations do not hold for

signed graphs anymore, since those methods are based on the

unsigned graph structure and do not apply to signed graphs.

In this section, we give an explanation for the equilibrium

expressed opinions of the signed FJ model. For this purpose,

we introduce absorbing random walks on signed graphs, based

on which we provide an interpretation of the equilibrium

expressed opinion of each node in terms of the absorbing prob-

abilities, and highlight the parallels and distinctions between

the FJ model on signed and unsigned graphs.

We begin by extending the signed graph G = (V,E,w)
to an augmented graph H = (X,R, y) with absorbing states,

defined as follows:

1) The node set X is defined as X = V ∪ V̄ , where V̄ is a

set of n nodes such that for each node i ∈ V , there is a

copy node σ(i) ∈ V̄ of node i;
2) The edge set R includes all the edges E of G, plus a new

set of edges between each node i ∈ V and the copy node

σ(i) ∈ V̄ of node i. That is, R = E ∪ Ē, where Ē =
{(i, σ(i))|i ∈ V };

3) The edge sign y(e = (i, σ(i))) of each new edge e =
(i, σ(i)) ∈ Ē is set to +1. For edge e = (i, j) ∈ E, its edge

sign y(e = (i, j)) is identical to the sign w(e = (i, j)) of

the corresponding edge in G.

Neglecting the sign of each edge, we can define an absorb-

ing random walk on this augmented graph H, where nodes

in V are transient states and nodes in V̄ are absorbing states.

Then, the transition matrix P for this absorbing random walk

has the form

P =

[

(I +D)−1(A+ −A−) (I +D)−1

O I

]

For a random walk r = (u0, u1, . . . , ut) on signed graphs,

we introduce a sign l(r) as [36], [37]

l(r) = sign

(

t
∏

x=1

w(ux−1, ux)

)

,

where sign(x) denotes the sign of nonzero x defined as:

sign(x) = +1 if x > 0, sign(x) = −1 otherwise. Thus, the

sign l(r) of the walk r is +1 if the number of its negative

edges is even, and l(r) = −1 otherwise. For a random walk

r on signed graphs, if l(r) = +1 we call it a positive random

walk; if l(r) = −1 we call it a negative random walk.

Based on the above-defined two types of random walks, we

define two absorbing probabilities for an absorbing random

walk on a signed graph. For each node i ∈ V and any

absorbing state σ(j) ∈ V̄ , we define two probabilities as

follows:

• pi,σ(j): the probability that a positive random walk starting

from transient state i is absorbed by node σ(j).
• qi,σ(j): the probability that a negative random walk starting

from transient state i is absorbed by node σ(j).
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Using these two absorbing probabilities, we provide an inter-

pretation of the equilibrium opinion for each node.

Theorem III.1. For the FJ model of opinion dynamics on

a signed graph G = (V,E,w), let s be the initial opinion

vector. Then the equilibrium expressed opinion of node i ∈ V
is expressed by

z i =
∑

j∈V

(pi,σ(j) − qi,σ(j))sj .

Proof. First, we use a recursive method to derive the

expressions for the two absorbing probabilities pi,σ(j) and

qi,σ(j) for any i ∈ V and σ(j) ∈ V̄ . To this end, for an

absorbing random walk on graph H, we define two matrices,

X (t) and Y (t) for t ≥ 0. The element X (t)i,j of X (t)
represents the probability that a positive random walk starting

from a transient state i arrives at a transient state j at the t-
th step. The element Y (t)i,j of Y (t) denotes the probability

that a negative random walk starting from a transient state i
reaches a transient state j at the t-th step.

By definition of the signed random walk, we obtain the

following recursive relations

X (t+ 1)i,: = X (t)i,:(I +D)−1A+ −Y (t)i,:(I +D)−1A−,

Y (t+ 1)i,: = Y (t)i,:(I +D)−1A+ −X (t)i,:(I +D)−1A−.

Considering X (0) = I and Y (0) = O , we obtain

X (t)i,: +Y (t)i,: = e
⊤
i

(

(I +D)−1(A+ −A
−)

)t
,

X (t)i,: −Y (t)i,: = e
⊤
i

(

(I +D)−1(A+ +A
−)

)t
.

Solving the above two equations leads to

X (t)i,: =
e⊤
i

2
(((I +D)−1(A+ −A

−))t

+ ((I +D)−1(A+ +A
−))t),

Y (t)i,: =
e⊤
i

2
(((I +D)−1(A+ −A

−))t

− ((I +D)−1(A+ +A
−))t).

Note that if a walk arrives at j ∈ V at a certain step, it will
move to σ(j) with probability 1/(1+dj). Then the absorbing
probability pi,σ(j) is exactly the sum of the probabilities of a
positive random walk starting at node i and being absorbed
by node σ(j) in t = 1, 2, . . . ,∞ steps. Thus, we have

pi,σ(j) =

∞
∑

t=0

1

1 + dj
X (t)i,j

=
1

2
e
⊤
i ((I +D −A

+ +A
−)−1 + (I +D −A

+ −A
−)−1)ej .

In a similar way, we obtain

qi,σ(j) =
∞
∑

t=0

1

1 + dj
Y (t)i,j

=
1

2
e
⊤
i ((I +D −A

+ +A
−)−1 − (I +D −A

+ −A
−)−1)ej .

Using the obtained expressions for pi,σ(j) and qi,σ(j), we

obtain
∑

j∈V

(pi,σ(j) − qi,σ(j))sj = e⊤
i (I + L)−1s = z i,

which completes the proof. �

Theorem III.1 shows that for each i ∈ V , its equilibrium

expressed opinion z i is a weighted average of the internal

opinions of all nodes, with the weight of the internal opinion sj
being pi,σ(j)−qi,σ(j), where j = 1, 2 . . . , n. When there are no

negative edges, the absorbing probability by negative random

walks of each node is 0, and Theorem III.1 is consistent with

the previous result obtained for unsigned graphs [11]. However,

pi,σ(j) − qi,σ(j) may be negative in the presence of negative

edges, which is in sharp contrast to that for unsigned graphs,

where the absorbing probability pi,σ(j) is always positive and

qi,σ(j) is zero.

IV. MEASURES AND FAST EVALUATION OF SOME SOCIAL

PHENOMENA

Besides the equilibrium expressed opinions, quantifying

some social phenomena based on the FJ model has also

attracted much interest. Although some social phenomena such

as polarization, and disagreement have been quantified and

evaluated for the unsigned FJ model [9], [10], [19], [20],

the definition, expressions and algorithms for these quantities

on signed graphs are still lacking, since the antagonistic

relationships between individuals make it more complicated

to measure these social phenomena.

In this section, we first introduce the measures for some

relevant social phenomena based on the signed FJ model and

express them in terms of quadratic forms and the ℓ2 norms of

vectors. Then, we design a signed Laplacian solver and use it

to propose an efficient algorithm to approximate these social

phenomena on signed graphs.

A. Quantitative Measures for Social Phenomena

We focus on some common phenomena in real social

systems, such as conflict, polarization, and disagreement. Al-

though quantitative indices and computation for these phenom-

ena have been extensively studied for unsigned graphs, their

counterparts for signed graphs require careful reconsideration

due to the existences of negative social links. Here we intro-

duce the measures to quantify these phenomena based on the

FJ model on signed graphs.

As in unsigned graphs [10], we define the internal conflict

of the signed FJ model as follows.

Definition IV.1. For the FJ model on a signed graph G =
(V,E,w) and the initial opinion vector s , the internal conflict

I(G, s) is the sum of squares of the differences between the

internal and expressed opinions over all nodes:

I(G, s) =
∑

i∈V

(z i − si)
2.

Besides internal conflict, individuals also suffer from the

social cost incurred by their neighbours, as they prefer to

express similar opinions as their friends or opposite opinions

to their opponents. This social cost is called external conflict

or disagreement on unsigned graphs [9], [10], [19]. Below

we extend the measure of the disagreement to the signed FJ

model.
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Definition IV.2. For the FJ model on a signed graph G =
(V,E,w) with an initial opinion vector s , its disagreement

(or external conflict) D(G, s) is defined as

D(G, s) =
∑

(i,j)∈E

(z i −Ai,jz j)
2.

Note that at time t the stress or psycho-social cost function

of node i is (z i(t) − s i)
2 +

∑

j∈Ni
(z i(t) − Ai,jz j(t))

2.

At every time step, each node updates its expressed opinion

with an aim to minimize its stress [30], [31], [35]. At the

equilibrium, the total social cost, defined as the sum of the

cost function over all nodes is I(G, s) +D(G, s).
Since for a node i, each neighbour is either a friend or an

enemy, its external social cost can be decomposed into two

components: the cost
∑

j∈NF

i

(z i(t) − z j(t))
2 incurred from

disagreeing with friends and the cost
∑

j∈NE

i

(z i(t)+ z j(t))
2

incurred from agreeing with opponents. Hence, we give two

variants of the disagreement for the FJ model on a signed

graph G: disagreement with friends denoted by F (G, s), and

agreement with opponents denoted by E(G, s).

Definition IV.3. For the FJ model on a signed graph G =
(V,E,w) with an initial opinion vector s , the disagreement

with friends F (G, s) is the sum of squares of the differences

between expressed opinions over all pairs of friends:

F (G, s) =
∑

(i,j)∈E+

(z i − z j)
2.

Definition IV.4. For the FJ model on a signed graph G =
(V,E,w) with an initial opinion vector s , the agreement

with opponents E(G, s) is the sum of squares of the sums

of expressed opinions over all pairs of opponent nodes:

E(G, s) =
∑

(i,j)∈E−

(z i + z j)
2.

Polarization can be thought of as the degree to which

expressed opinions deviate from neutral opinions, i.e., opinion

value 0. In the following, we introduce the metric of polariza-

tion [8], [30].

Definition IV.5. For the FJ model on a signed graph G =
(V,E) with an initial opinion vector s , the polarization is

defined as:

P (G, s) = 1

n

∑

i∈V

z 2
i .

According to their definitions, we can explicitly represent

the aforementioned social phenomena in terms of quadratic

forms and the ℓ2 norms of vectors, as summarized in

Lemma IV.6.

Lemma IV.6. For the FJ model on a signed graph G =
(V,E,w) with an initial opinion vector s , the internal con-

flict I(G, s), disagreement D(G, s), disagreement with friends

F (G, s), agreement with opponents E(G, s), and polarization

P (G, s) can be conveniently expressed in terms of quadratic

forms and the ℓ2 norms as:

I(G, s) = z⊤L2z = s⊤(I + L)−1L2(I + L)−1s

=
∥

∥L(I + L)−1s
∥

∥

2

2
,

F (G, s) = z⊤L+z = s⊤(I + L)−1L+(I + L)−1s

=
∥

∥B+(I + L)−1s
∥

∥

2

2
,

E(G, s) = z⊤L−z = s⊤(I + L)−1L−(I + L)−1s

=
∥

∥B−(I + L)−1s
∥

∥

2

2
,

D(G, s) = z⊤Lz = s⊤(I + L)−1L(I + L)−1s

=
∥

∥B(I + L)−1s
∥

∥

2

2
,

P (G, s) = 1

n
z⊤z =

1

n
s(I + L)−2s =

1

n

∥

∥(I + L)−1s
∥

∥

2

2
.

It is easy to verify that these quantities satisfy the following

conservation law:

I(G, s) + 2D(G, s) + nP (G, s) =
n
∑

i=1

s2
i ,

F (G, s) + E(G, s) = D(G, s),
which extends the result in [9] for unsigned graphs to signed

graphs.

B. Signed Laplacian Solver

As shown in Lemma IV.6, directly calculating the social

phenomena concerned involves inverting matrix I +L, which

takes O(n3) time and is impractical for large graphs. Although

some efficient techniques have been proposed for unsigned

graphs [20], [21], they cannot apply to signed graphs in a

straightforward way.

In this subsection, we first establish a connection between

the absorbing probabilities for random walks on a signed

graph and the absorbing probabilities for random walks on

an unsigned graph, which is associated with the signed graph.

Then, based on this connection we present a signed Laplacian

solver, which allows for a fast approximation of relevant social

phenomena with proven error guarantees.

For a signed graph G = (V,E,w) with n nodes and m
edges, we can define an unsigned graph Ĝ = (V̂ , Ê) with 2n
nodes and 2m edges. For the associated unsigned graph Ĝ,

we label its 2n nodes as 1, 2, . . . , 2n. The edge set Ê of Ĝ is

constructed as follows. If there is a positive edge (i, j) ∈ E,

then there are two edges (i, j) and (i + n, j + n) in Ê. If

there is a negative edge (i, j) ∈ E, then there are two edges

(i, j + n) and (i + n, j) in Ê.

For the unsigned graph Ĝ = (V̂ , Ê), we can define its

augmented unsigned graph Ĥ = (X̂, R̂) with absorbing states.

The construction details of graph Ĥ = (X̂, R̂) are as follows.

1) The node set X̂ is defined as X̂ = V̂ ∪ Ṽ , where Ṽ is a

set of 2n nodes such that for each node i ∈ V̂ , there is a

copy node η(i) ∈ Ṽ of node i;
2) The edge set R̂ includes all the edges Ê of Ĝ, plus a new

set of edges between each node i ∈ V̂ and the copy node

η(i) ∈ Ṽ of node i. That is, R = Ê ∪ Ẽ, where Ẽ =
{(i, η(i))|i ∈ V̂ }.
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We now define an absorbing random walk on the augmented

graph Ĥ with 4n nodes, where the 2n nodes in V̂ are transient
nodes and the 2n nodes in Ṽ are absorbing nodes. Then, the
transition matrix P ′ of this absorbing random walk is written
as P ′ =






(I +D)−1A+ −(I +D)−1A− (I +D)−1 O

−(I +D)−1A− (I +D)−1A+ O (I +D)−1

O O I O
O O O I






,

Define matrix Q as Q =
[

(I +D)−1A+ −(I +D)−1A−

−(I +D)−1A− (I +D)−1A+

]

, and define matrix T

as T =

[

(I +D)−1 O

O (I +D)−1

]

. For a transient state

i ∈ V̂ and an absorbing state η(j) ∈ Ṽ , let p′
i,η(j) be the

absorbing probability of a random walk starting from i being

absorbed by η(j). Define a 2n× 2n matrix S as

S =

[

I +D −A+ A−

A− I +D −A+

]

. (3)

Clearly, S is symmetric, diagonally-dominant (SDD), since

it can be expressed as S = I + L(Ĝ), where L(Ĝ) is the

Laplacian matrix of the unsigned graph Ĝ. Then, p′i,η(j) can

be represented as p′
i,η(j) = e⊤

i (I −Q)−1Tej = e⊤
i S

−1ej .

Since S is a block matrix, according to the matrix

inversion in block form, we can further derive an

expression of p′
i,η(j) by distinguishing four cases:

(i) i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}; (ii)

i ∈ {1, 2, . . . , n} and j ∈ {n + 1, n + 2, . . . , 2n}; (iii)

i ∈ {n + 1, n + 2, . . . , 2n} and j ∈ {1, 2, . . . , n}; and (iv)

i ∈ {n + 1, n + 2, . . . , 2n} and j ∈ {n + 1, n + 2, . . . , 2n}.

For the first case i, j ∈ {1, 2, . . . , n}, we have p′
i,η(j) =

1
2e

⊤
i

(

(I +D −A+ +A−)−1 + (I +D −A+ −A−)−1
)

ej .

For the second case i ∈ {1, 2, . . . , n} and

j ∈ {n + 1, n + 2, . . . , 2n}, we have p′
i,η(j) =

1
2e

⊤
i

(

(I +D −A+ +A−)−1 − (I +D −A+ −A−)−1
)

ej−n.

For the remaining two cases, considering the symmetry of

the matrix S , it is easy to verify that p′
i+n,η(j) = p′

i,η(j+n)

and p′
i+n,η(j+n) = p′

i,η(j) hold for i, j ∈ {1, 2, . . . , n}.

Theorem III.1 shows that in order to determine the ex-

pressed opinion z i of node i, we can alternatively compute

the absorbing probabilities pi,σ(j) and qi,σ(j) of positive and

negative random walk on the augmented signed graph H of the

signed graph G. According to the above arguments, we estab-

lish a direct relationship between the absorbing probabilities

for absorbing random walks on signed graph H and unsigned

graph Ĥ. Specifically, for any i, j ∈ {1, 2, . . . , n}, p′
i,η(j) =

p′
i+n,η(j+n) = pi,σ(j) and p′

i,η(j+n) = p′
i+n,η(j) = qi,σ(j).

These relations allow us to provide an alternative expression

for the equilibrium expressed opinion for the FJ model on a

signed graph, by using a matrix associated with an unsigned

graph.

Remark 1. It should be mentioned that Hendrickx [38]

introduced a lifting approach, which implicitly establishes a

relationship for opinions between the continuous-time DeG-

root model on a signed graph and the DeGroot model on a

corresponding unsigned graph with twice the number of nodes

in the signed graph. We consider the discrete-time FJ model on

signed graphs. Although our work looks somewhat similar to

the previous work [38], they differ in at least several crucial

ways. Firstly, discrete-time algorithms are more suitable for

practical implementation because continuous-time algorithms

need infinite information transmission rate [39]. Secondly,

since the FJ model is an extension of the DeGroot model [40],

our result is more general than existing work [38]. Finally, our

technique and algorithm presented below are also applicable

to the discrete-time DeGroot model on signed graphs. Thus,

our work offers a slightly more general framework for studying

discrete-time opinion dynamics on signed graphs.

Theorem IV.7. For the FJ model of opinion dynamics on
a signed graph G with an initial opinion vector s , the
equilibrium opinion vector can be expressed as

z =
1

2

[

I −I
]

S
−1

[

I
−I

]

s , (4)

where matrix S is defined by (3), which is the fundamental

matrix for an unsigned graph Ĝ associated with the signed

graph G.

Theorem IV.7 shows that to determine the equilibrium

opinion z for the FJ model on a signed graph G, we can

alternatively evaluate S−1

[

s

−s

]

denoted by s ′, where S is

an SDD matrix, which in fact corresponds to a fundamental

matrix for the FJ model on an unsigned graph Ĝ, expanded

from G. In order to compute s ′, we resort to the fast SDD

linear system solver [41], [42]. Specifically, we propose a

signed solver by extending the SDD solver to the FJ model

on signed graphs, which avoids computing the inverse of S or

I + L, but has proven error guarantees for various problems

defined on signed graphs. Before doing so, we first introduce

the SDD solver.

Lemma IV.8. [41], [42] Given a symmetric positive semi-

definite matrix K ∈ R
n×n with m nonzero entries, a vector

b ∈ R
n, and an error parameter δ > 0, there exists a solver,

denoted as a = SOLVER(K , b, δ), which returns a vector a ∈
R

n such that
∥

∥a −K−1b
∥

∥

K
≤ δ

∥

∥K−1b
∥

∥

K
. The runtime

of this solver is expected to be Õ(m), where Õ(·) notation

suppresses poly(logn) factors.

Note that the SDD solver in Lemma IV.8 has been pre-

viously applied to solve many problems for opinion dynam-

ics [20], [43], [44]. This solver allows us to provide a detailed

analysis for the signed Laplacian solver described below, and

has an error guarantee. In addition, as deep learning evolves,

some other solvers based on gradient propagation have been

also utilized in the study on opinion dynamics [14], [45].

Lemma IV.9. Given a signed graph G = (V,E,w) with

Laplacian matrix L, a matrix S defined in (3), a vector

y ∈ R
n, and an error parameter δ > 0, there is a

signed Laplacian solver f = SIGNEDSOLVER(I +L, y , δ) =

1
2

[

I −I
]

·SOLVER

(

S ,

[

I

−I

]

y , δ

)

, which returns a vector

f satisfying
∥

∥f − (I + L)−1y
∥

∥

I+L
≤ δ

∥

∥(I + L)−1y
∥

∥

I+L
. (5)
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This signed Laplacian solver runs in expected time Õ(m),
where Õ(·) notation suppresses the poly(log n) factors.

Proof. In order to prove (5), it is equivalent to prove

f ⊤(I +L)f + y⊤(I +L)−1y − 2f ⊤y ≤ δ2y⊤(I +L)−1y .

Let c = SOLVER

(

S ,

[

I

−I

]

y , δ

)

. Eliminating f and I + L

by c and S yields

1

8
c⊤
[

I

−I

]

[

I −I
]

S

[

I

−I

]

[

I −I
]

c

+
1− δ2

2
y⊤ [I −I

]

S−1

[

I

−I

]

y − c⊤
[

I

−I

]

y ≤ 0. (6)

By definition of c, to prove (6), we only need to prove

1

8
c⊤
[

I

−I

]

[

I −I
]

S

[

I

−I

]

[

I −I
]

c − 1

2
c⊤Sc ≤ 0,

which can be recast as

c⊤
(

4S −
[

I −I

−I I

]

S

[

I −I

−I I

])

c ≥ 0. (7)

Plugging the expression for matrix S in (3) into (7) gives the

following equation:

4S −
[

I −I

−I I

]

S

[

I −I

−I I

]

=

[

2M 2M
2M 2M

]

,

where M = I +D−A++A− is an SDDM matrix. Rewrite

c as c =

[

u

v

]

. Then (7) is expressed as

u⊤Mu + v⊤Mv + 2u⊤Mv = (u + v)⊤M (u + v) ≥ 0,

which is true since matrix M is a positive definite matrix.

Combining the above analyses completes the proof. �

C. Fast Evaluation Algorithm

Lemma IV.9 indicates that for those quantities on signed

graphs having form (I + L)−1s , we can exploit the signed

solver to significantly reduce the computational time. We next

apply Lemma IV.9 to obtain approximations for the quantities

defined in Section IV-A.

Lemma IV.10. Given a signed graph G = (V,E,w) with

Laplacian matrix L, incident matrix B , positive incident

matrix B+, negative incident matrix B−, and a parameter

ǫ ∈ (0, 12 ), consider the FJ model of opinion dynamics on

G = (V,E,w) with the internal opinion vector s and let

q = SIGNEDSOLVER(I + L, s, δ), where

δ ≤ min

{

ǫ

3
√
2n

,
‖s‖L
6
√
2n2

ǫ,
‖Ls‖2
12

√
2n3

ǫ,
‖s‖2
2
√
2n

ǫ

}

.

Then, the following relations hold:
∥

∥(I + L)−1s
∥

∥

2

2
≈ǫ ‖q‖22 , (8)

∥

∥B(I + L)−1s
∥

∥

2

2
≈ǫ ‖Bq‖22 , (9)

∥

∥L(I + L)−1s
∥

∥

2

2
≈ǫ ‖Lq‖22 , (10)

∣

∣

∣

∥

∥B+q
∥

∥

2

2
−
∥

∥B+(I + L)−1s
∥

∥

2

2

∣

∣

∣
≤ ǫ, (11)

∣

∣

∣

∥

∥B−q
∥

∥

2

2
−
∥

∥B−(I + L)−1s
∥

∥

2

2

∣

∣

∣
≤ ǫ. (12)

Proof. We prove this lemma in turn. We first prove (8). By

Lemma IV.9, we obtain

∥

∥q − (I + L)−1s
∥

∥

2

I+L
≤ δ2

∥

∥(I + L)−1s
∥

∥

2

I+L
.

The term on the left-hand side (lhs) is bounded by

∥

∥q − (I + L)−1s
∥

∥

2

I+L
≥
∥

∥q − (I + L)−1s
∥

∥

2

2

≥
∣

∣‖q‖2 −
∥

∥(I + L)−1s
∥

∥

2

∣

∣

2
,

while the term on the right-hand side (rhs) is bounded by

∥

∥(I + L)−1s
∥

∥

2

I+L
≤ 2n

∥

∥(I + L)−1s
∥

∥

2

2
.

These two bounds together lead to

∣

∣‖q‖2 −
∥

∥(I + L)−1s
∥

∥

2

∣

∣

2 ≤ 2nδ2
∥

∥(I + L)−1s
∥

∥

2

2
.

Considering δ ≤ ǫ

3
√
2n

, we get

∣

∣‖q‖2 −
∥

∥(I + L)−1s
∥

∥

2

∣

∣

‖(I + L)−1s‖2
≤

√
2nδ2 ≤ ǫ

3
.

Using the condition 0 < ǫ < 1
2 , we have

(1− ǫ)
∥

∥(I + L)−1s
∥

∥

2

2
≤ ‖q‖22 ≤ (1 + ǫ)

∥

∥(I + L)−1s
∥

∥

2

2
,

which completes the proof of (8).

Then, we prove (9). By Lemma IV.9, we have

∥

∥q − (I + L)−1s
∥

∥

2

I+L
≤ δ2

∥

∥(I + L)−1s
∥

∥

2

I+L
.

The lhs is bounded as

∥

∥q − (I + L)−1s
∥

∥

2

I+L
≥
∥

∥q − (I + L)−1s
∥

∥

2

L

=
∥

∥Bq −B(I + L)−1s
∥

∥

2

2
≥
∣

∣‖Bq‖2 −
∥

∥B(I + L)−1s
∥

∥

2

∣

∣

2
,

while the rhs is bounded as

∥

∥(I + L)−1s
∥

∥

2

I+L
≤ 2n

∥

∥(I + L)−1s
∥

∥

2

2
≤ 2n2,

where the relation |s i| ≤ 1 is used. These two obtained bounds

give

∣

∣‖Bq‖2 −
∥

∥B(I + L)−1s
∥

∥

2

∣

∣

2 ≤ 2δ2n2.

On the other hand,

∥

∥B(I + L)−1s
∥

∥

2

2
≥ 1

4n2
‖s‖2L .

Considering δ ≤ ‖s‖
L

6
√
2n2

ǫ, one obtains

∣

∣‖Bq‖2 −
∥

∥B(I + L)−1s
∥

∥

2

∣

∣

‖B(I + L)−1s‖2
≤
√

8δ2n4

‖s‖2L
≤ ǫ

3
.

Using 0 < ǫ < 1
2 , we obtain

(1− ǫ)
∥

∥B(I + L)−1s
∥

∥

2

2
≤ ‖Bq‖22 ≤ (1 + ǫ)

∥

∥B(I + L)−1s
∥

∥

2

2
,

completing the proof of (9).
Next, we prove (10). Applying Lemma IV.9, we obtain

∥

∥q − (I + L)−1
s
∥

∥

2

I+L
≤ δ2

∥

∥(I + L)−1
s
∥

∥

2

I+L
.
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The term on the lhs is bounded by
∥

∥q − (I + L)−1
s
∥

∥

2

I+L
≥

∥

∥q − (I + L)−1
s
∥

∥

2

2

≥ 1

4n2

∥

∥Lq − L(I + L)−1
s
∥

∥

2

2

≥ 1

4n2

∣

∣‖Lq‖2 −
∥

∥L(I + L)−1
s
∥

∥

2

∣

∣

2
.

Using the above-proved relation
∥

∥(I + L)−1s
∥

∥

2

I+L
≤ 2n2,

we have
∣

∣‖Lq‖2 −
∥

∥L(I + L)−1s
∥

∥

2

∣

∣

2 ≤ 8δ2n4.

On the other hand,

∥

∥L(I + L)−1s
∥

∥

2

2
≥ 1

4n2
‖Ls‖22 .

Combining the above-obtained inequalities and δ ≤ ‖Ls‖
2

12
√
2n3

ǫ
yields

∣

∣‖Lq‖2 −
∥

∥L(I + L)−1s
∥

∥

2

∣

∣

‖L(I + L)−1s‖2
≤
√

32δ2n6

‖Ls‖22
≤ ǫ

3
.

Considering 0 < ǫ < 1
2 , we derive

(1− ǫ)
∥

∥L(I + L)−1s
∥

∥

2

2
≤ ‖Lq‖22 ≤ (1 + ǫ)

∥

∥L(I + L)−1s
∥

∥

2

2
,

which finishes the proof of (10).

Finally, we prove the last two inequalities (11) and (12). By

Lemma IV.9, we have
∥

∥q − (I + L)−1s
∥

∥

2

I+L
≤ δ2

∥

∥(I + L)−1s
∥

∥

2

I+L
.

The term on the lhs is bounded as
∥

∥q − (I + L)−1s
∥

∥

2

I+L
≥
∥

∥q − (I + L)−1s
∥

∥

2

L+

=
∥

∥B+q −B+(I + L)−1s
∥

∥

2

2

≥
∣

∣

∥

∥B+q
∥

∥

2
−
∥

∥B+(I + L)−1s
∥

∥

2

∣

∣

2
,

while the term of the rhs is bounded as
∥

∥(I + L)−1s
∥

∥

2

I+L
≤ 2n

∥

∥(I + L)−1s
∥

∥

2

2
≤ 2n2 .

Combining these two bounds gives
∣

∣

∥

∥B+q
∥

∥

2
−
∥

∥B+(I + L)−1s
∥

∥

2

∣

∣

2 ≤ 2δ2n2.

Considering the fact that δ ≤ ‖s‖
2

2
√
2n

ǫ, we have

∣

∣

∣

∥

∥B
+
q
∥

∥

2

2
−

∥

∥B
+(I + L)−1

s
∥

∥

2

2

∣

∣

∣

=|
(∥

∥B
+
q
∥

∥

2
+

∥

∥B
+(I + L)−1

s
∥

∥

2

)

·
(
∥

∥B
+
q
∥

∥

2
−

∥

∥B
+(I + L)−1

s
∥

∥

2

)

|
≤2
√
2δn

∥

∥B
+(I + L)−1

s
∥

∥

2
≤ 2
√
2δn ‖s‖2 ≤ ǫ,

which completes the proof of (11).

Through replacing B+ in the proof process of (11) by B−,

we can prove (12) in a similar way. �

Based on Lemmas IV.9 and IV.10, we propose a nearly-

linear time algorithm called APPROXQUAN, which approxi-

mates the internal conflict I(G), disagreement D(G), disagree-

ment with friends F (G), agreement with opponents E(G),
and polarization P (G) for the FJ model on a signed graph.

Algorithm 1 provides the details of algorithm APPROXQUAN,

the performance of which is summarized in Theorem IV.11.

Algorithm 1: APPROXQUAN (G, s, ǫ)
Input : G = (V, E,w): a signed graph; s: initial opinion

vector; ǫ: the error parameter in (0, 1
2
)

Output : {Ĩ(G), D̃(G), F̃ (G), Ẽ(G), P̃ (G)}
1 δ = min

{

ǫ

3
√

2n
,

‖s‖L
6
√

2n2
ǫ,

‖Ls‖2
12

√
2n3

ǫ,
‖s‖2
2
√

2n
ǫ
}

2 q = SIGNEDSOLVER(I + L, s , δ)

3 Ĩ(G, s) = ‖Lq‖22
4 D̃(G, s) = ‖Bq‖22
5 F̃ (G, s) =

∥

∥B+q
∥

∥

2

2

6 Ẽ(G, s) =
∥

∥B−q
∥

∥

2

2

7 P̃ (G, s) = ‖q‖22 /n
8 return {Ĩ(G), D̃(G), F̃ (G), Ẽ(G), P̃ (G)}

Theorem IV.11. Given a signed undirected graph G, an

error parameter ǫ ∈ (0, 1
2 ), and the internal opinion vector

s , the algorithm APPROXQUAN (G, s, ǫ) runs in expected

time Õ(m), where Õ(·) notation suppresses the poly(log n)
factors, and returns approximations Ĩ(G, s), D̃(G, s), F̃ (G, s),
Ẽ(G, s), P̃ (G, s) for the internal conflict I(G, s), disagree-

ment D(G, s), disagreement with friends F (G, s), agreement

with opponents E(G, s), and polarization P (G, s), satisfy-

ing Ĩ(G, s) ≈ǫ I(G, s), D̃(G, s) ≈ǫ D(G, s), |F̃ (G, s) −
F (G, s)| ≤ ǫ, |Ẽ(G, s) − E(G, s)| ≤ ǫ, and P̃ (G, s) ≈ǫ

P (G, s).

V. OVERALL OPINION OPTIMIZATION

Except for relevant social phenomena, the overall opinion

is another important quantity for opinion dynamics. In this

section, we first propose a problem of optimizing the overall

expressed opinion for the signed FJ model by changing the

initial opinions of a fixed number of nodes. We then provide

an algorithm optimally solve the problem in O(n3) time. To

reduce the running time, we also design an efficient algorithm

to approximately solve the problem in nearly-linear time.

A. Problem Statement

The overall expressed opinion is defined as the sum of ex-

pressed opinions z i of nodes i ∈ V at equilibrium, which can

be expressed as
∑n

i=1 z i = 1
⊤(I + L)−1s . This expression

shows that the overall expressed opinion is influenced by both

the internal opinion s i of each node and the network structure

encoded in matrix (I + L)−1. These two factors determine

together the opinion dynamics in the signed FJ model. Define

vector h = (I +L)−1
1. Then the overall opinion is rewritten

as 1⊤(I +L)−1s = h⊤s =
∑n

i=1 h isi, where h i determines

the extent to which the internal opinion si of node i contributes

to the overall opinion. Note that h i is determined by the

network structure, which is thus called the structure centrality

of node i in the FJ model [46].

As shown above, the overall opinion is a function g(·) of

the initial opinion s and structure centrality h . Then, it can

be expressed as g(s) = 1
⊤(I +L)−1s = h⊤s =

∑n

i=1 h isi,

when the network structure is fixed. In this paper, we study

the influence of initial opinions on the overall opinion, while

keeping the network structure unchanged. Then, a natural

problem arises, how to maximize the multi-variable objective
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function g(s) by changing the initial opinions of a fixed

number of nodes. Mathematically, the opinion maximization

problem is formally stated as follows.

Problem 1 (OpinionMax). Given a signed graph G =
(V,E,w), an initial opinion vector s , and an integer k ≪ n,

suppose that for each i ∈ V , its internal opinion si is

in the interval [−1, 1]. The problem is how to optimally

choose k nodes and change their internal opinions, leading

to a new initial opinion vector y ∈ [−1, 1]n, such that

the overall opinion g(y) is maximized under the constraint

‖y − s‖0 ≤ k.

In a similar way, we can minimize the overall opinion by

optimally changing the initial opinions of k nodes, which

is called problem OPINIONMIN. Note that both problem

OPINIONMAX and problem OPINIONMIN are equivalent to

each other. One can invert positive and negative signs of the

initial opinions to ascertain this equivalence. Thus, in what

follows, we focus on problem OPINIONMAX.

It should be mentioned that a similar opinion maximization

problem has been proposed in [29] by changing the initial

opinions of an unfixed number of nodes. In the problem, the

total amount of modification of the initial opinions has an

upper bound [29]. In contrast, we focus on selecting a fixed

number of nodes to change their initial opinions, with no

constraints on the change of initial opinions, as long as they

lie in the interval [−1, 1].
It is easy to show that for unsigned undirected graphs,

increasing the internal opinion si of any node i leads to

the increase of the overall equilibrium opinion. However, for

signed graphs, increasing si of node i not necessarily results

in an increase in the overall equilibrium opinion, as node i
may have negative structure centrality h i. According to the

expression g(s) =
∑n

i=1 h is i, we can draw the following

conclusion for a node i. If h i > 0, increasing si implies

increasing the overall opinion; If h i < 0, decreasing si leads

to an increase of the overall opinion; If h i = 0, changing

si has no influence on the overall opinion. Moreover, it

is not difficult to derive that for any node i ∈ V with

h i 6= 0, changing si in a proper way can result in an increase

of the overall opinion, with the maximum increment being

ci = |h i|(1 − si|h i|/hi) if hi 6= 0 for any i ∈ V . Below we

leverage this property to develop two algorithms solving the

problem OPINIONMAX.

B. Optimal Solution

Despite the combinatorial nature, the OPINIONMAX prob-

lem can be optimally solved as follows. We first compute

ci = |h i|(1 − si|h i|/h i) for each node i with nonzero h i.

Since ci is the largest marginal gain for node i ∈ V , we then

select the k nodes with the maximum value of ci. Finally,

we change the initial opinions of these k selected nodes in

the following way. If nodes have positive structure centrality,

change their internal opinions to 1; otherwise change their

internal opinions to -1.

Based on the above three operations, we design an algo-

rithm to optimally solve the problem OPINIONMAX, which

Algorithm 2: OPTIMAL(G, s, k)
Input : A graph G = (V,E); an internal opinion vector

s; an integer k obeying relation 1 ≤ k ≪ n
Output : y : A modified internal opinion vector with

‖y − s‖0 ≤ k
1 Initialize solution y = s

2 Compute h = (I + L)−1
1

3 for i ∈ V do
4 if h i = 0 then
5 ci ← 0

6 else
7 ci ← |h i|(1− si|h i|/h i)

8 for t = 1 to k do
9 Select i s. t. i← argmaxi∈V ci

10 if h i = 0 then
11 break

12 Update ci ← 0
13 Update solution y i ← |h i|/h i

14 return y .

is outlined in Algorithm 2. This algorithm first computes the

inverse of matrix I + L in O(n3) time. It then computes the

vector h in O(n2) time, and calculates ci for each i ∈ V in

O(n) time. Finally, Algorithm 2 chooses k nodes and modifies

their internal opinions according to the structure centrality h i

and the value ci for each candidate node i, which takes O(n)
time. Therefore, the overall time complexity of Algorithm 2

is O(n3). It should be mentioned that Algorithm 2 returns

the same results as the method in [29] when the number of

selected nodes is fixed.

Since computing the vector h for structure centrality takes

much time, Algorithm 2 is computationally unacceptable for

large graphs. In the next subsection, we will design an efficient

algorithm based on the signed Laplacian solver SIGNED-

SOLVER.

C. Fast Algorithm for Opinion Optimization

To solve problem OPINIONMAX efficiently, using the

signed Laplacian solver SIGNEDSOLVER we propose a fast

algorithm to approximate the structure centrality vector h =
(I + L)−1

1 and solve the problem in nearly-linear time

with respect to m, the number of edges. Let vector h̄ be

an approximation of h returned by SIGNEDSOLVER. The

following lemma shows the relationship between elements in

h̄ and h .

Lemma V.1. Given a signed graph G with Laplacian matrix

L, a positive integer k, and a parameter ǫ > 0, let h̄ =
SIGNEDSOLVER(I + L,1, δ) be the approximation of h =
(I + L)−1

1. Then the following inequality holds:

|h i − h̄ i| ≤ ǫ/(4k),

for any δ = ǫ

4k
√
n+4m

.
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Algorithm 3: APPROXOPIN(G, s , k)
Input : A signed G = (V,E,w); an internal opinion

vector s ; an integer k obeying relation 1 ≤ k ≪ n
Output : y : A modified internal opinion vector with

‖y − s‖0 ≤ k
1 Set δ = ǫ

2k
√

n+4m

2 Initialize solution y = s

3 Compute h̄ = SIGNEDSOLVER(I + L,1, δ)
4 for i ∈ V do

5 if h̄ i = 0 then
6 c̄i ← 0

7 else

8 c̄i ← |h̄ i|(1− s i|h̄ i|/h̄ i)

9 for t = 1 to k do
10 Select i s. t. i← argmaxi∈V c̄i
11 if h̄ i = 0 then
12 break

13 Update c̄i ← 0
14 Update solution y i ← |h̄ i|/h̄ i

15 return y .

Proof. Let h̃ = h − h̄ , then we have

∥

∥

∥
h̃

∥

∥

∥

2

I+L
≤

δ2 ‖h‖2I+L. Thus, we obtain that for any i ∈ V ,

h̃
2

i ≤ h̃
⊤
i (I +L)h̃ i ≤ δ2h⊤(I +L)h ≤ (n+4m)δ2 ≤ ǫ2

16k2
,

which completes the proof. �

Based on Lemma V.1, we can approximate each element of

h with an absolute error guarantee. Exploiting this lemma, we

propose a fast algorithm to approximately solve the problem

OPINIONMAX, which is outlined in Algorithm 3. The perfor-

mance of this fast algorithm is stated in Theorem V.2.

Theorem V.2. For given parameters k and ǫ, algorithm

APPROXOPIN runs in time Õ(m), and outputs a solution

vector y satisfying |g(y∗)−g(y)| ≤ ǫ, where y∗ is the optimal

solution to problem OPINIONMAX.

Proof. Define c̄i = |h̄ i|(1−si|h̄ i|/h̄ i). Using Lemma V.1

and the relation ci = |h i|(1 − |h i|/h is i), we suppose that

inequality |ci − c̄i| < ǫ/(2k) holds for any i ∈ V . Assume

that sets T1 and T2 are returned by algorithms OPTIMAL and

APPROXOPIN, respectively. Then, we have

g(y∗)− g(y) =
∑

i∈T1

ci −
∑

j∈T2

cj ≥ 0.

On the other hand, using |ci − c̄i| < ǫ/(2k), we obtain

g(y∗)−g(y) =
∑

i∈T1

ci−
∑

j∈T2

cj ≤
∑

i∈T1

c̄i−
∑

j∈T2

cj+ǫ/2 ≤ ǫ,

which completes the proof. �

VI. EXPERIMENTS

To evaluate the accuracy and efficiency of our algorithms

APPROXQUAN and APPROXOPIN for two different tasks, we

conduct extensive experiments on sixteen signed networks of

different sizes.

A. Setup

Environment and repeatability. We conduct all experi-

ments using a single thread on a machine with a 2.4 GHz Intel

i5-9300 CPU and 128GB of RAM. All algorithms are realized

using the programming language Julia. The parameter ǫ is set

to be 10−5 for all experiments. Our code is publicly available

at https://github.com/signFJ/signFJ.

Datasets. We use sixteen datasets of two types of signed

graphs: real-world original signed graphs and artificially mod-

ified real-world graphs. The real-world original signed graphs

are from actual networks, for which the original signs are kept

unchanged. The artificially modified graphs are generated from

real unsigned graphs, by randomly assigning a negative sign to

each edge in unsigned graphs with a probability of 0.3. These

network datasets are publicly available in KONECT [47] and

SNAP [48], and their statistic is presented in Table I, where

networks are listed in increasing order of the number of nodes.

Internal opinion distributions. The initial opinion of each

individual is important for computing social phenomenon

measures and optimizing the overall opinion. In practice,

the initial opinion vector is generally not available, due to

privacy concerns. However, the initial opinions of nodes can

be estimated [49]. Since obtaining initial opinions is outside

the scope of this paper, in our experiments, we assume that

the initial opinion vector is known beforehand. We use three

different distributions of initial opinions: uniform, exponential,

and power-law, which are generated as follows. For the uni-

form distribution, the initial opinion of every node is generated

uniformly in the range of [−1, 1]. For the exponential and

power-law distributions, we first generate the initial opinions

of all nodes in the range of [0, 1] as in [20]. Then for every

node, we change its initial opinion to its opposite number with

probability of 0.5.

B. Performance of Algorithm APPROXQUAN

We first evaluate the efficiency of our fast algorithm AP-

PROXQUAN for quantifying various social phenomena. For

this purpose, we compare it with the exact algorithm, called

EXACT, which computes all relevant quantities by inverting

the matrix I + L. Table I reports the running time of AP-

PROXQUAN and EXACT on different networks. As shown in

Table I, the running time of APPROXQUAN is always less

than that of EXACT for each of the considered networks with

relatively small sizes. For networks with more than 40,000

nodes, EXACT fails to run due to the high memory and time re-

quirements. In contrast, APPROXQUAN is able to approximate

all the quantities in less than one thousand seconds. Moreover,

APPROXQUAN is scalable to massive networks with over 20

million nodes.

In addition to being highly efficient, algorithm APPROX-

QUAN is also very accurate, compared with algorithm EXACT.

To show this, in Table I, we compare the approximate results

for APPROXQUAN with the exact results for EXACT. For each

network, we compute the relative error |θ − θ̃|/θ for each

quantity θ and its approximation θ̃ returned by APPROXQUAN.

Table I gives the relative errors for the five estimated quantities,

https://github.com/signFJ/signFJ
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TABLE I: Statistics for networks and performance of algorithms APPROXQUAN and APPROXOPIN. The initial opinions obey

a uniform distribution.

Type Networks Nodes Edges
Quantification of Social Phenomena Opinion Optimization

Time (seconds) Relative Error (×10−8) Time (seconds) Relative
Error

(×10−8)EXACT APPROXQUAN I(G, s) D(G, s) F (G, s) E(G, s) P (G, s) OPTIMAL APPROXOPIN

Original
Signed
Graphs

Bitcoinalpha 3,783 24,186 1.92 0.38 0.26 0.01 0.02 0.37 0.02 1.78 0.21 2.47
Bitcoinotc 5,881 35,592 4.40 0.40 1.70 0.08 0.14 0.95 0.15 4.16 0.07 0.98
Wikielections 7,118 103,675 9.66 0.18 0.42 0.03 0.03 0.04 0.04 8.94 0.02 0.37
WikiS 9,211 646,316 19.11 1.41 3.54 0.59 0.67 1.01 1.56 19.51 0.12 0.15
WikiM 34,404 904,768 1276 2.42 7.15 0.18 0.02 1.36 0.23 1091 1.70 0.77
SlashdotZoo 79,120 515,397 – 1.32 – – – – – – 1.60 –
WikiSigned 138,592 740,397 – 1.70 – – – – – – 1.66 –
Epinions 131,828 841,372 – 1.89 – – – – – – 1.06 –
WikiL 258,259 3,187,096 – 7.03 – – – – – – 6.59 –

Modified
Signed
Graphs

PagesGovernment 7,057 89,455 9.31 0.72 1.88 6.94 8.41 0.04 0.91 8.33 0.40 1.57
Anybeat 12,645 49,132 87.3 0.52 0.23 1.94 0.01 1.23 0.06 85.9 0.53 0.87
Google 875,713 5,105,040 – 16.72 – – – – – – 16.03 –
YoutubeSnap 1,134,890 2,987,624 – 10.13 – – – – – – 9.27 –
Pokec 1,632,803 30,622,564 – 108.03 – – – – – – 97.57 –
DBpediaLinks 18,268,992 172,183,984 – 732.75 – – – – – – 703.17 –
FullUSA 23,947,300 57,708,600 – 186.72 – – – – – – 170.69 –

Fig. 1: Overall opinions for algorithms APPROXOPIN, OPTI-

MAL, and four baselines on four real networks: (a) Bitcoinal-

pha, (b) Wikielections, (c) WikiM, and (d) Anybeat.

including internal conflict I(G), disagreement D(G), disagree-

ment with friends F (G), agreement with opponents E(G), and

polarization P (G). The results indicate that the actual relative

errors for all quantities and networks are negligible, with all

errors less than 10−7. Thus, APPROXQUAN is not only highly

fast but also highly effective in practice.

C. Performance of Algorithm APPROXOPIN

We continue to evaluate the performance of APPROXOPIN.

To achieve our goal, we compare algorithm APPROXOPIN

with the optimal algorithm OPTIMAL and four baselines as

in [29], including RAND [36], TRUST [50], IO [9], and

EO [10]. RAND randomly selects k nodes and changes their

initial opinions to 1. TRUST selects k nodes with the largest

differences between the numbers of friends and opponents, and

changes their initial opinions to 1. IO selects k nodes with the

lowest internal opinions and changes their initial opinions to

1. EO selects k nodes with the lowest expressed opinions, and

changes their initial opinions to 1.

Fig. 2: Overall opinions for algorithms APPROXOPIN and four

baselines on four real networks: (a) Epinions, (b) WikiL, (c)

Pokec, and (d) FullUSA.

We first assess the effectiveness of APPROXOPIN. We

change the initial opinions of k = 1, 2, . . . , 50 nodes by using

APPROXOPIN, OPTIMAL, and the four baseline approaches.

Figure 1 illustrates the comparison of overall opinion for these

methods on four small networks with less than 40,000 nodes,

since for networks with over 40,000 nodes, OPTIMAL fails to

run. We observe that for these small networks, APPROXOPIN

consistently returns results that are close to the optimal solu-

tions, both of which outperform the other four baselines. To

further demonstrate the accuracy of APPROXOPIN, in Table I,

we compare the relative error for the gain of the overall opinion

for APPROXOPIN with respect to that for OPTIMAL on seven

small networks with k = 50. As shown in Table I, the relative

errors are all less than 10−7, indicating the high similarity

of the results obtained by APPROXOPIN and OPTIMAL. We

also compare APPROXOPIN with the baseline strategies on

four relatively large networks with over 40,000 nodes, and

report the results in Figure 2, which again indicates that

APPROXOPIN is much better than the four baselines.

With regard to the efficiency, in Table I, we compare the
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running time of APPROXOPIN and OPTIMAL on different

networks for k = 50. As shown in Table I, APPROXOPIN is

significantly faster than OPTIMAL, especially when networks

become larger. Particularly, OPTIMAL fails to run on networks

with more than 40,000 nodes, while APPROXOPIN can still

run efficiently, which is even scalable to massive networks

with more than twenty million nodes.

VII. RELATED WORK

FJ model for opinion dynamics. The FJ model [15] is a

popular model for opinion dynamics, which has been exten-

sively studied on unsigned graphs. For example, the sufficient

condition for stability was studied in [51], the formula for the

equilibrium expressed opinion was derived in [35], [49], and

the interpretations were provided from different aspects in [11],

[20], [35], [52]. Besides, by incorporating different aspects

affecting opinion evolution and formulation, many variants

of the FJ model have been proposed, including peer pres-

sure [25], stubbornness [21], interactions among higher-order

neighbours [53], and so on. Most prior works for the FJ model

are based on unsigned graphs, which capture only the positive

or cooperative relationships between individuals, ignoring the

antagonistic or competitive relationships. Very recently, the FJ

model was extended to the signed graphs, which incorporate

both cooperative and competitive relationships [29]–[32]. For

the FJ model on signed graphs, some relevant problems

have been addressed, including the convergence criteria [31],

explanation of opinion update [30], and opinion maximization

by changing initial opinion [29]. However, the interpretation

for expressed opinions is still lacking.

Quantification and algorithms for social phenomena. The

explosive growth of social media and online social networks

produces diverse social phenomena, such as polarization [8],

[9], [54], disagreement [9], filter bubbles [55], [56], con-

flict [10], and controversy [10], to name a few. In addressing

these challenges, research has evolved in different directions.

Fast algorithms were proposed to efficiently compute these

quantities [20], [21]. Some studies tried to find user groups

open to “counter-information” [57], [58] and tried to connect

users with opposing views, hoping to lessen filter bubble

effects [9], [44], [59], [60]. Moreover, the exploration of using

influence models in social media to combat filter bubbles has

also gained traction [61]–[64]. These measures and algorithms

for social phenomena tend not to apply to signed graphs. To

make up for this deficiency, we extend these measures for the

FJ model to signed graphs. Due to the incorporation of com-

petitive relationships, previous approximation algorithms [20],

[21] are not suitable for signed graphs anymore. This motivates

us to present a nearly linear time algorithm for estimating these

quantities on signed graphs.

Optimization of overall opinion. Various schemes have

been proposed to maximize or minimize the overall opinion

based on different models for opinion dynamics. On the

basis of the DeGroot model, many groups have addressed

the problem of maximizing the overall opinion by leader

selection [65]–[67] or link suggestion [43], [68]. Based on

independent cascade and linear threshold models, a similar

problem, called the influence maximization problem, has also

been studied [69]–[72]. The opinion optimization problem has

also attracted extensive attention for the FJ model. In the past

decade, different node-based strategies have been applied to

optimize the overall opinion of the FJ model on unsigned

graphs, including modifying initial opinions [22], expressed

opinions [11], and susceptibility to persuasion [12]–[14], [23].

Most previous research focused on opinion optimization on

unsigned graphs, with the exception of a few work [29].

In [29], the problem of opinion optimization on signed graphs

was studied by changing initial and external opinions, and

two algorithms were developed with complexity O(n3), which

are computationally infeasible for large graphs. Although we

address a similar problem, our algorithm is efficient and

effective, with nearly-linear time complexity and a proven

error guarantee compared to the optimal solution.

Research on signed graphs. A concerted effort has been

devoted to delving into diverse aspects of signed graphs,

including finding conflicting groups [73], exploring polariza-

tion [74], detecting communities [75], [76], and so on. More-

over, clique computation and enumeration have also attracted

much attention. Different algorithms have been proposed for

computing maximum structural balanced cliques [77], enumer-

ating maximal balanced bicliques [78], and searching signed

cliques [79] on signed graphs. Finally, the influence diffusion

process and influence maximization problem have also been

studied on signed networks [80]–[82]. However, the methods

for studies on signed graphs are not applicable to the FJ model

defined on signed networks.

VIII. CONCLUSION

In this paper, we studied the Friedkin-Johnsen (FJ) model

for opinion dynamic on a signed graph. We first interpreted the

equilibrium opinion of every node by expressing it in terms

of the absorbing probabilities of a defined absorbing random

walk on an augmented signed graph. We then quantified some

relevant social phenomena and represented them as the ℓ2
norms of vectors. Moreover, we proposed a signed Lapla-

cian solver, which approximately evaluates these quantities in

nearly-linear time but has error guarantees. We also considered

the problem of opinion optimization by modifying the initial

opinions of a fixed number of nodes, and presented two

algorithms to solve this problem. The first algorithm optimally

solves the problem in cubic time, while the second algorithm

provides an approximation solution with an error guarantee

in nearly-linear time. Extensive experiments on real signed

graphs demonstrate the effectiveness and efficiency of our

approximation algorithms.

It deserves to mention that although we focus on unweighted

signed graphs, our analyses and algorithms for the FJ opinion

dynamics model can be extended to weighted signed graphs.

Future work includes the applications of our signed Laplacian

solver to other problems for the FJ model on signed graph,

such as optimizing disagreement, conflict, and polarization

under different constraints, or maximizing (or minimizing) the

overall opinion by using other strategies different from that

used in this paper.
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