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Deep Cross-Modal Hashing with Hashing
Functions and Unified Hash Codes Jointly

Learning
Rong-Cheng Tu, Xian-Ling Mao, Bing Ma, Yong Hu, Tan Yan, Wei Wei and Heyan Huang

Abstract—Due to their high retrieval efficiency and low storage cost, cross-modal hashing methods have attracted considerable
attention. Generally, compared with shallow cross-modal hashing methods, deep cross-modal hashing methods can achieve a more
satisfactory performance by integrating feature learning and hash codes optimizing into a same framework. However, most existing
deep cross-modal hashing methods either cannot learn a unified hash code for the two correlated data-points of different modalities in
a database instance or cannot guide the learning of unified hash codes by the feedback of hashing function learning procedure, to
enhance the retrieval accuracy. To address the issues above, in this paper, we propose a novel end-to-end Deep Cross-Modal Hashing
with Hashing Functions and Unified Hash Codes Jointly Learning (DCHUC). Specifically, by an iterative optimization algorithm, DCHUC
jointly learns unified hash codes for image-text pairs in a database and a pair of hash functions for unseen query image-text pairs. With
the iterative optimization algorithm, the learned unified hash codes can be used to guide the hashing function learning procedure;
Meanwhile, the learned hashing functions can feedback to guide the unified hash codes optimizing procedure. Extensive experiments
on three public datasets demonstrate that the proposed method outperforms the state-of-the-art cross-modal hashing methods.

Index Terms—Cross-modal Retrieval, Deep Hashing, Multimedia
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1 INTRODUCTION

W ITH a tremendous amount of multimedia data being gener-
ated on the Internet everyday such as texts, images and

so on, similarity-preserving hashing methods [1], [2], [3], [4],
[5], [6], [7], [8], [9] have been extensively studied for large-
scale multimedia search due to their high retrieval efficiency and
low storage cost. Because the corresponding data of different
modalities may have semantic correlations, it is essential to
support cross-modal retrieval that returns relevant results of one
modality when querying another modality, e.g., retrieving images
with text queries. Hence, cross-modal hashing methods [10], [11],
[12], [13], [14], [15] get more and more attention.

Roughly speaking, cross-modal hashing methods can be di-
vided into shallow cross-modal hashing methods [16], [2], [17],
[10], [18], [19] and deep cross-modal hashing methods [20],
[21], [14], [22], [11], [23]. Shallow cross-modal hashing methods
mainly use hand-crafted features to learn projections for mapping
each example into a binary code. The feature extraction procedure
in shallow cross-modal hashing methods is independent of the
hash codes learning procedure. It means that the shallow cross-
modal hashing methods may not achieve satisfactory performance
in real applications, because the hand-crafted features might
not be optimally suitable for hash codes optimizing procedure.
Compared with shallow cross-modal hashing methods, deep cross-
modal hashing methods can integrate feature learning and hash
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codes learning into a same framework, and capture non-linear
correlations among cross-modal instances more effectively to get
better performance, where each instance contains two correlated
data-points of different modalities like image-text pairs.

However, the existing deep cross-modal hashing methods
either cannot learn a unified hash code for the two correlated data-
points of different modalities in a database instance or cannot
guide the learning of unified hash codes by the feedback of
hashing function learning procedure, to enhance the retrieval
accuracy. First, most deep cross-modal hashing methods assume
that there are different hash codes for the two correlated data-
points of different modalities in a database instance, and then try
to decrease the gap between two hash codes through optimizing
certain pre-defined loss functions. Thus, they just learn the similar
hash codes for two correlated data-points of different modalities in
a same instance, and cannot obtain unified hash codes. However,
the unified hash code schema has been proved that it can enhance
the retrieval accuracy [24], [25], [26]. Second, as far as we know,
until now there is only one deep cross-modal hashing method
that can learn unified hash codes [11]. The method is a two
step framework. It first learns unified hash codes for instances
in a database, and then utilizes the learned unified hash codes to
learn modal-specific hashing function. It means the deep hashing
method cannot guide the learning of unified hash codes by the
feedback of hashing function learning procedure.

To address the issues above, in this paper, we propose a novel
Deep Cross-Modal Hashing with Hashing Functions and Unified
Hash Codes Jointly Learning, called DCHUC. DCHUC can jointly
learn unified hash codes for database instances and modal-specific
hashing functions for unseen query points in an end-to-end frame-
work. More specifically, by minimising the objective function,
DCHUC uses a four-step iterative scheme to optimize the unified
hash codes of the database instances and the hash codes of query
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data-points generated by the learned hashing networks. With the
iterative optimization algorithm, the learned unified hash codes
can guide the hashing functions learning procedure; Meanwhile,
the learned hashing function can feedback to guide the unified
hash codes optimizing procedure. Moreover, the objective function
consists of a hashing loss and a classification loss. The hashing
loss is used to make the learned hash codes can preserve both
inter-modal and intra-modal similarity, and the classification loss
can be used to make the learned hashing codes preserve more
discriminative semantic information.

In addition, because the training phase of deep models is
typically time-consuming, so it is hard to use all instances in a
large-scale database to train hashing model. Inspired by ADSH
[27], we use an asymmetric scheme to reduce the training time
complexity to O(mn). Specially, we samples m anchors instances
from n database instances (m � n) to approximate query
datasets, and constructs an asymmetric affinity to supervise hash-
ing functions learning for unseen query instances and unified hash
codes optimizing for instances in a database.

To summarize, the main contributions of DCHUC are outlined
as follows:

• To the best of our knowledge, DCHUC is the first deep
method that can jointly learn unified hash codes for
database instances and hashing functions for unseen query
points in an end-to-end framework. By using the end-to-
end framework, our method can get the high-quality hash
codes to improve the retrieval accuracy.

• By treating the query instances and database instances in
an asymmetric way, DCHUC can use the whole set of
database instances in training phase to generate higher-
quality hash codes even if the size of a database is large.

• Experiments on three large-scale datasets show that
DCHUC can outperform the state-of-the-art cross-modal
hashing baselines in real applications.

2 RELATED WORK

In this section, we briefly review the related works of cross-modal
hashing methods, including shallow cross-modal hashing methods
and deep cross-modal hashing methods.

2.1 Shallow Cross-Modal Hashing Methods
Shallow cross-modal hashing methods [4], [28], [29], [25], [18],
[19] mainly use hand-crafted features to learn a single pair of
linear or non-linear projections to map each example into a binary
vector. The representative methods in this category include Cross
Modality Similarity Sensitive Hashing (CMSSH) [4], Seman-
tic Correlation Maximization (SCM) [28], Cross View Hashing
(CVH) [29],Latent Semantic Sparse Hashing (LSSH) [25], Col-
lective Matrix Factorization Hashing (CMFH) [26], Semantics
Preserving Hashing (SePH) [30], Supervised Discrete Manifold-
embedded Cross-Modal Hashing (SDMCH) [18], Discrete Latent
Factor hashing (DLFH) [19] and Discrete Cross-modal Hashing
(DCH) [31]. CMSSH is a supervised hashing methods, which
designs a cross-modal hashing method by preserving the intra-
class similarity via eigen-decomposition and boosting. SCM uti-
lizes label information to learn a modality-specific transformation,
and preserves the maximal correlation between modalities. CVH
presents an unsupervised cross-modal spectral hashing method
so that the cross-modality similarity is also preserved in the

learned hash functions. LSSH utilizes sparse coding and matrix
factorization in the common space to obtain a unified binary by a
latent space learning method. CMFH learns a unified binary hash
code by performing matrix factorization with latent factor model
in the training stage. SePH generates a unified binary hash code by
constructing an affinity matrix in a probability distribution while
at the same time minimizing the Kullback-Leibler divergence.
SDMCH generates binary hash codes by exploiting the non-linear
manifold structure of data and constructing the correlations among
heterogeneous multiple modalities with semantic information.
DLFH directly learns the binary hash codes without continuous
relaxation by a discrete latent factor model. DCH jointly learns
the unified binary codes and the modality-specific hash functions
under the classification framework with discrete optimization
algorithm.

Despite of significant progress in this category has been
achieved, the performance of hand-crafted feature based methods
are still unsatisfactory in many real-world applications. Because
the feature extraction procedure is independent of the hash-code
learning procedure in hand-crafted feature based methods, which
means that the hand-crafted features might not be optimally
suitable for the hash codes optimizing procedure.

2.2 Deep Cross-Modal Hashing Methods

Recently, deep cross-modal hashing methods [21], [32], [20],
[14], [22], [11] have been proposed to achieve promising perfor-
mance due to the powerful arbitrary non-linear representation of
deep neural network. For example, deep visual-semantic hashing
(DVSH) [21] learns a visual semantic fusion network with cosine
hinge loss to generate the binary codes and learns modality-
specific deep networks to obtain hashing functions. However,
DVSH can only be used for some special cross-modal cases
where one of the modalities have to be temporal dynamics.
Deep cross-modal hashing (DCMH) [32] utilized a negative log-
likelihood loss to generate cross-modal similarity preserving hash
codes by an end-to-end deep learning framework. Correlation
Autoencoder Hashing (CAH) [20] learns hashing functions by
designing an auto-encoder architecture to jointly maximize the
feature and semantic correlation between different modalities.
Adversarial cross-modal retrieval (ACMR) [14] utilizes a classifi-
cation manner with adversarial learning approach to discriminate
between different modalities and generate binary hash codes.
Self-supervised adversarial hashing (SSAH) [22] generates binary
hash codes by utilizing two adversarial networks to jointly model
different modalities and capture their semantic relevance under
the supervision of the learned semantic feature. Cross-modal deep
variational hashing (CMDVH) [11] uses a two step framework. In
the first step the method learns unified hash code for image-text
pair in a database, and utilize the learned unified hash codes to
learn hashing functions in the second step. Thus, for CMDVH, the
learned hashing function in the second stage cannot give feedback
to guide unified hash codes optimizing.

Typically, deep cross-modal hashing methods can outperform
shallow hashing methods in terms of retrieval accuracy. However,
most of existing deep cross-modal hashing methods cannot bridge
the modality gap well to generate unified hash codes for image-
text pairs in a database. Although CMDVH can generates uni-
fied binary codes for points of modalities, its hashing function
learning procedure cannot feedback to guide the unified hash
codes optimizing. Hence, CMDVH cannot get the optimal unified
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Fig. 1. The DCHUC learning framework. It contains three parts: image modal hashing network, text modal hashing network and hash code
optimizing. The hash codes of image modal query data-points can be generated by the image modal hashing network with an element-wise
function sign(·), and the hash codes of text modal data-points can be generated text modal hashing network with an element-wise function sign(·).
In the hash codes optimizing part, a four-step iterative scheme is used to optimize hash codes for both database instances and query instances by
minimising the hashing loss and the classification loss

hash codes to bridge the modality gap well. Furthermore, please
note that, although DCH can jointly learn unified hash codes for
instances in a database and hashing functions for query instances,
it is a shallow hashing method. Its feature extraction procedure is
independent of the hash codes learning procedure, and DCH need
use all the database instances to lean hashing functions which
means it is hard to reconstruct DCH to a deep architecture. Thus,
we propose a novel deep hashing method that can learn the unified
hash codes for instances in a database and hashing functions for
query instances in an end-to-end framework.

3 OUR METHOD

3.1 Problem Definition
Assume that we have n training instances in a database, and
each instance has two modal data points. Without loss of gen-
erality, we use image-text databases for illustration in this paper,
which means that each instance in the database has both a data
point of text modality and a data point of image modality. We
use O = {oi}ni=1 to denote a cross-modal dataset with n
instances, and oi = (xi,yi, li), where xi and yi denote the
original image and text points in the ith instance oi, respectively.
li = [li1, li2, . . . , lic]

T is the label annotation assigned to oi,
where c is the class number. If oi belongs to the jth class lij = 1,
otherwise lij = 0. Furthermore, a pairwise similarity matrix
S ∈ {−1,+1}n×n is used to describe the semantic similarities
between two instances. If Sij = 1, it means that oi is semantically
similar to oj , otherwise Sij = −1. Specifically, if two instances
oi and oj are annotated by multiple labels, we define Sij = 1
when oi and oj share as least one label, otherwise Sij = −1.

Given the above database O and similarity information S, the
goal of DCHUC is to learn the similarity-preserving hash codes
B = {bi}ni=1 ∈ {−1,+1}n×k for instances in the database,

where k is the length of each binary code and bi denotes the
learned hash code for the instance oi, i.e., a unified hash code
for the image-text pair xi and yi. Meanwhile, the Hamming
distance between bi and bj should be as small as possible when
Sij = 1. Otherwise, the Hamming distance should be as large
as possible. Moreover, in order to generate a binary code for any
unseen image modal query point xq or text modal query point
yq , DCHUC should learn two modal-specific hashing functions
bxq

= F(xq) ∈ {−1,+1}k and byq
= P(yq) ∈ {−1,+1}k,

respectively. In order to learn the two hash functions, we sample
a subset or use the whole set of O as the query set Q = OΦ

for training, where OΦ denotes the query instances indexed by
Φ from the database O. Moreover, we use Υ = {1, 2, . . . , n}
to denote the indices of all the database instances and Φ =
{i1, i2, . . . , im} ⊆ Υ to denote the indices of the m sampled
query instances, and XΦ and Y Φ denote image modal points and
text modal points in query set Q, respectively. Correspondingly,
the similarity between query instances and database instances can
be denoted as SΦ ∈ {−1,+1}m×n, which is formed by the
rows of S indexed by Φ. In addition, in this paper, sign(·) is
an element-wise sign function which returns 1 if the element is
positive and returns −1 otherwise.

3.2 Deep Cross-Modal Hashing with Hashing Func-
tions and Unified Hash Codes Jointly Learning

The model architecture for DCHUC is shown in Fig. 1, which
contains three parts: image modal hashing network, text modal
hashing network and hash codes optimizing.

For the image modal hashing network part, it contains a con-
volutional neural network (CNN) which is adapted from Alexnet
[33]. The CNN component contains eight layers. The first seven
layers are the same as those in Alexnet [33]. The eighth layer is
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a fully-connected layer with the output being the learned image
features, which is named as hashing layer. The hashing layer
contains k units where k is the length of hash codes. An activation
function tanh(·) is used to make the output features close to
” − 1” or ” + 1”. We use vi = F(xi; Θ) ∈ Rk to denote
the final output features of the image modal hashing network.

For the text modal hashing network part, a neural network
containing two fully-connected layers is used to learn text modal
features. We represent each text point yi as a bag-of-words (BoW)
vector, and use the BoW as the input of the two-fully-connected
neural network. The first fully-connected layer has 10, 240 hidden
units, and the activation function for the first fully-connect layer
is RELU [33]. The second fully-connected layer is also named as
hashing layer with k nodes. Similar to the image feature learning
part, a tanh(·) function is used as an activation function to make
the output features close to ” − 1” or ” + 1”. We use ti =
P(yi; Ψ) ∈ Rk to denote the final output features of the text
modal hashing network.

For the hash codes optimizing part, it will optimize hash codes
for both database instances and query instances the objective
function whose details will be introduced in section 3.3. More
specially, with a four-step iterative scheme, the unified hash codes
B for database instances will be learned directly and the modal-
specific hashing functions can be learned by back-propagation
algorithm which will be introduced in section 3.4 in detail.
Furthermore, the hash codes for query instances are generated by
the final output features of modal-specific hashing network with an
element-wise function sign(·). Specifically, for an image modal
query point xi, we can get its binary hash codes hi = sign(vi);
for a text modal query point yi, its binary hash codes can be
generated by gi = sign(ti).

3.3 Objective Function

The goal of DCHUC is to map instances in the database and
the unseen query data-points into a semantic similarity-preserving
Hamming space where the hash codes of data-points from the
same categories should be similar no mater which modalities
they belong to, and the hash codes of data-points from different
categories should be dissimilar. In the following, we present more
details about the objective function of our CMDAH.

In order to bridge the gap across different modalities well,
we first assume the image point xi and text point yi for any
instance oi in a database share the same hash code bi, i.e., learn
a unified hash code bi for an image-text pair xi and yi. Thus,
the hash code bi can preserve the image modal information and
text modal information at the same time. Moreover, in order to
make the learned hash codes of instances in the database and the
hash codes of query data-points generated by the learned hashing
functions can preserve the semantic similarity, one common way
is to minimize the Frobenius norm loss between the semantic
similarities and inner product of binary code pairs. Therefore, the
hashing loss can be defined as follow:

min
B,H,G

Lh =
∥∥∥HBT − kSΦ

∥∥∥2

F
+
∥∥∥GBT − kSΦ

∥∥∥2

F

+ µ
∥∥∥HGT − kSΦ

Φ

∥∥∥2

F

s.t. B = [b1, b2, · · · , bn]T ∈ {−1,+1}n×k,
H = sign(V ) ∈ {−1,+1}m×k,
G = sign(T ) ∈ {−1,+1}m×k

(1)

where µ is a hype-parameter, B ∈ {−1,+1}n×k denotes the
unified binary hash codes for n database instances; SΦ

Φ denotes
the columns of SΦ indexed by Φ; H ∈ {−1,+1}m×k denotes
the binary hash codes for m images modal query data-points, and
G ∈ {−1,+1}m×k denotes the binary hash codes for m text
modal query data-points; V = [vi1 ,vi2 , · · · ,vim ]T is the output
of images modal hashing network for image query set XΦ, and
T = [ti1 , ti2 , · · · , tim ]T is the output of text modal hashing
network for text query set Y Φ.

Furthermore, in order to make the learned hashing codes
preserve more discriminative semantic information, we expect the
learned hashing codes can be ideal for classification too. Then the
classification loss function can be defined as follow:

min
B,H,G,W

Lc = α(
∥∥∥HW −LΦ

∥∥∥2

F
+
∥∥∥GW −LΦ

∥∥∥2

F
)

+ β ‖BW −L‖2F + η ‖W ‖2F
s.t. B = [b1, b2, · · · , bn]T ∈ {−1,+1}n×k,

H = sign(V ) ∈ {−1,+1}m×k,
G = sign(T ) ∈ {−1,+1}m×k.

(2)
where L = [l1, l2, · · · , ln]T ∈ {0, 1}n×c is the label matrix of
instances in the database O, and LΦ ∈ 0, 1m×c denotes the label
matrix of query instances indexed by Φ from the label matrix
L. W = [w1,w2, · · · ,wc] ∈ Rk×c and wj ∈ Rk×1 is the
classification projected vector of the class j.

Thus, our objective hashing function can be defined as follow:

min
B,H,G,W

L = Lh + Lc

s.t. B = [b1, b2, · · · , bn]T ∈ {−1,+1}n×k,
H = sign(V ) ∈ {−1,+1}m×k,
G = sign(T ) ∈ {−1,+1}m×k.

(3)

However, it is hard to learn functions V = F(XΦ; Θ)T and
T = P(Y Φ; Ψ)T due to the derivation of sign(·) function is
0. Moreover, considering the query set is sampled from the whole
database, the hash codes generated by the learned hashing function
should be the same with the directly learned hash codes, i.e., if an
instance oi in the database is sampled as query instance, then
the hash code hi for image modality data-point and gi for text
modality data-point in oi should be the same with bi. Thus, we
can further reformulate Formula (3) as:

min
B,V ,T

L =
∥∥∥V BT − kSΦ

∥∥∥2

F
+
∥∥∥TBT − kSΦ

∥∥∥2

F

+ µ
∥∥∥V T T − kSΦ

Φ

∥∥∥2

F
+ β ‖BW −L‖2F

+ α(
∥∥∥V W −LΦ

∥∥∥2

F
+
∥∥∥TW −LΦ

∥∥∥2

F
)

+ η ‖W ‖2F + γ
∥∥∥BΦ − 0.5(V + T )

∥∥∥2

F

s.t. B ∈ {−1,+1}n×k.

(4)

where α, β, η, γ, µ are hyper-parameters, BΦ ∈ {−1,+1}m×k
is formed by the rows of B indexed by Φ.

3.4 Optimization

In order to optimize Formula (4), we propose a four-step iterative
scheme as shown below. More specifically, in each iteration we
sample a query set from the database and then carry out our
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Algorithm 1 Learning algorithm for DCHUC
Require: Database instances O = {X,Y ,L}, the length of

hash codes k.
Ensure: Database instances codes B, image modal hashing net-

work parameters Θ and text modal hashing network parame-
ters Ψ.

1: Initialize parameters: B, Θ, Ψ, α, η, γ. learning rate: lr,
iteration number: tout, tin, the size of mini-batch z = 64 (see
Implementation Details).

2: Utilize label L to generate similarity matrix S.
3: repeat
4: Randomly generate index set Φ and sample m instances

OΦ = {XΦ,Y Φ,LΦ} from database O as query set.
Select SΦ from S

5: for iter = 1, 2, · · · , tin do
6: for iter batch = 1, 2, · · · ,m/z do
7: Randomly sample z image points from XΦ as a mini-

batch
8: Update parameter Θ based on Formula (5)
9: end for

10: for iter batch = 1, 2, · · · ,m/z do
11: Randomly sample z image points from Y Φ as a mini-

batch
12: Update parameter Ψ based on Formula (6)
13: end for
14: end for
15: for iter bit = 1, 2, · · · , k do
16: Update B∗iter bit based on Formula (12)
17: end for
18: Update W based on Formula (14)
19: until Up to tout

learning algorithm based on both the query set and database. The
whole four-step learning algorithm for DCHUC is briefly outlined
in Algorithm 1, and the detailed derivation steps will be introduced
in the following content of this subsection.

3.4.1 Learn Θ with Ψ, B and W fixed

When Ψ, B and L are fixed, we update the parameter Θ of image
hashing network by using a mini-batch stochastic gradient descent
with back-propagation (BP) algorithm. More specifically, for each
sampled image point xi in XΦ, we first compute the following
gradient:

∂L
∂vi

= 2
n∑

j=1

[(vT
i bj − kSΦ

ij)bj ] + 2µ
m∑
j=1

[(vT
i tj − kSΦ

Φ ij)tj ]

+ 2α
c∑

j=1

[(vT
i wj −LΦ

ij)wj ] + γ(vi + ti − 2bi)

(5)
Then we can compute ∂L

∂Θ based on ∂L
∂vi

by using chain rule, and
use BP to update the parameter Θ.

3.4.2 Learn Ψ with Θ, B and L fixed

When Θ and B are fixed, we also update the parameter Ψ of text
hashing network by using a mini-batch stochastic gradient descent

with BP algorithm. More specifically, for each sampled text point
yi in Y Φ, we first compute the following gradient:

∂L
∂ti

= 2
n∑

j=1

[(tTi bj − kSΦ
ij)bj ] + 2µ

m∑
j=1

[(tTi vj − kSΦ
Φ ij)vj ]

+ 2α
c∑

j=1

[(tTi wj −LΦ
ij)wj ] + γ(vi + ti − 2bi)

(6)
Then we can compute ∂L

∂Ψ based on ∂L
∂ti

by using chain rule, and
use BP to update the parameter Ψ.

3.4.3 Learn B with Θ, Ψ and W fixed

When Θ, Ψ and W are fixed, we can reformulate Formula (4) as
follows:

min
B
L =

∥∥∥V BT − kSΦ
∥∥∥2

F
+
∥∥∥TBT − kSΦ

∥∥∥2

F

+ β ‖BW −L‖2F + γ
∥∥∥BΦ − 0.5(V + T )

∥∥∥2

F

=
∥∥∥V BT

∥∥∥2

F
− 2ktr(BV TSΦ) +

∥∥∥TBT
∥∥∥2

F

− 2ktr(BT TSΦ) + β ‖BW ‖2F − 2βtr(BWLT )

− γtr(BΦ(V T + T T )) + const

s.t. B ∈ {−1,+1}n×k
(7)

where const is a constant independent of B and tr(·) is the trace
norm. For convenience of calculations, we can further reformulate
Formula (7) as follows:

min
B
L =

∥∥∥V BT
∥∥∥2

F
+
∥∥∥TBT

∥∥∥F
2

+ β ‖BW ‖2F − tr(B(γV̊ T

+ γT̊ T + 2kV TSΦ + 2kT TSΦ + 2βWLT ))

+ const

=
∥∥∥V BT

∥∥∥2

F
+
∥∥∥TBT

∥∥∥F
2

+ β ‖BW ‖2F
− tr(BD) + const

s.t. B ∈ {−1,+1}n×k
(8)

where D = γV̊ T + γT̊ T + 2kV TSΦ + 2kT TSΦ + 2βWLT ;
V̊ = [v̊1, v̊2, · · · , v̊n]T ; T̊ = [̊t1, t̊2, · · · , t̊n]T , and v̊i, t̊i are
respectively defined as follows:

v̊i =

{
vi, if i ∈ Φ,
0, if i /∈ Φ.

(9)

t̊i =

{
ti, if i ∈ Φ,
0, if i /∈ Φ.

(10)

The above Formula (8) is NP hard. Inspired by SDH [34], the
binary codes B can be learned by the discrete cyclic coordinate
descent (DCC) method. It means that we directly learn hash codes
B bit by bit. Specifically, we update one column of B with the
other column fixed. We let B∗i denotes the ith column of B,
and B̂i denotes the matrix of B without the column B∗i; Let
V∗i denotes the ith column of V , and V̂i denotes the matrix of
V without the column V∗i; Let T∗i denotes the ith column of
T , and T̂i denotes the matrix of T without the column T∗i; Let
Wi∗ denotes the ith row of W , and W̃i denotes the matrix of
W without the row Wi∗; Let Di∗ denotes the ith row of D, and
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D̃i denotes the matrix of D without the row Di∗. Then we can
optimize B∗i by the following function:

min
B∗i
L =

∥∥∥V BT
∥∥∥2

F
+
∥∥∥TBT

∥∥∥F
2

+ β ‖BW ‖2F
− tr(BD) + const

= tr(B∗i(2V
T
∗i V̂iB̂

T
i + 2T T

∗i T̂iB̂
T
i + 2βWi∗W̃

T
i B̂T

i

− D̃i∗)) + const

s.t. B∗i ∈ {−1,+1}n×k
(11)

Finally, we can get the optimal solution of Formula (11):

B∗i = −sign(2B̂iV̂
T
i V∗i+2B̂iT̂

T
i T∗i+2βB̂iW̃iW

T
i∗−D̃T

i∗)
(12)

then we can use Formula (12) to update B bit by bit.

3.4.4 Learn W with Θ, Ψ and B fixed
When Θ, Ψ and B are fixed, we can reformulate Formula (4) as
follows:

min
W
L = α(

∥∥∥V W −LΦ
∥∥∥2

F
+
∥∥∥TW −LΦ

∥∥∥2

F
)

+ β ‖BW −L‖2F + η ‖W ‖2F
(13)

For Formula (13), it is easy to solve W by the regularized least
squares problem, which has a closed-form solution:

W = (αV TV +αT TT+βBTB+ηI)−1(αV̊ +αT̊+βB)TL
(14)

3.5 Out-of-Sample Extension
For any instance which is not in the retrieval set, we can obtain
the hash code of its two modalities. In particular, given the image
modality xq in an instance oq , we can adopt forward propagation
to generate the hash code as follows:

hq = sign(F(xi; Θ)) (15)

Similarly, we can also use the text hashing network to generate the
hash code of the instance oq with only textual modality yq:

gq = sign(P(yi; Ψ)) (16)

4 EXPERIMENTS

To evaluate the performance of DCHUC, we will carry out
extensive experiments on three image-text datasets and compared
it with seven state-of-the-art cross-modal hashing methods.

4.1 Datasets
Three datasets are used for evaluation, i.e., MIRFLICKR-25K
[35], IAPR TC-12 [36] and NUS-WIDE [37], which are described
below.

The MIRFLICKR-25K dataset [35] contains 25,000 instances
collected from Flickr website. Each image is labeled with several
textual tags. Here, we follow the experimental protocols given in
DCMH [32]. In total, 20,015 data instances which have at least 20
textual tags have been selected for our experiment. The text modal-
ity for each instance is represented as a 1,386-dimensional bag-
of-words (BoW) vector. Furthermore each instance is manually
labeled with at least one of the 24 unique labels. For this dataset,
we randomly sampled 2,000 instances as the test set, and the
remaining as the database (retrieval set). Furthermore, the training

phase of the existing deep cross-modal hashing methods are
typically time-consuming, which makes them cannot efficiently
work on large-scale datasets. Therefore, for deep methods, we
randomly sample 10,000 instances from the retrieval set as the
training set.

The IAPR TC-12 [36] consists of 20,000 instances which
are annotated using 255 labels. After pruning the instance that is
without any text information, a subset of 19999 image-text pairs
are select for our experiment. The text modality for each instance
is represented as a 2000-dimensional BoW vector. For this dataset,
we randomly sampled 2,000 instances as test set, with the rest of
the instances as retrieval set. We randomly select 10,000 instances
from retrieval set for training deep cross-modal baselines.

The NUS-WIDE dataset [37] contains 269,648 instances
crawled from Flickr. Each image is associated with textual tags,
and each instance is annotated with one or multiple labels from 81
concept labels. Only 195,834 image-text pairs that belong to the 21
most frequent concepts are selected for our experiment. The text
modality for each instance is represented as a 1000-dimensional
BoW vector. For this dataset, we randomly sampled 2,100 instance
as test set, with the rest of the instances as retrieval set. Because
the deep hashing baselines are very time-consuming for training,
we randomly select 10,500 instances from database for training
deep cross-modal baselines.

For all the shallow cross-modal baselines, all the database are
used for training. For all datasets, the image xi and text yj will be
defined as a similar pair if xi and yj share at least one common
label. Otherwise, they will be defined as a dissimilar pair.

4.2 Baselines and Implementation Details
We compare our DCHUC with seven state-of-the-art methods,
including four shallow cross-modal hashing methods, i.e., DLFH
[19], SCM [28], CCA-ITQ [38] and DCH [31], and three deep
cross-modal hashing methods, i.e., DCMH [32], CMDVH [11]
and SSAH [22]. The source codes of all baselines but CMDVH
and DCH are kindly provided by the authors. We carefully tuned
their parameters according to the scheme suggested by the authors.
For CMDVH and DCH, we implement it carefully by ourselves.
In order to make a fair comparison, we utilize Alexnet [33], which
has been pretrained on the ImageNet dataset [39] to extract deep
features as the image inputs of all shallow cross-modal baselines,
and the input for image modality hashing network of each deep
cross-modal baseline is the 224× 224 raw pixels.

For the proposed method, we initialize the first seven layers
neural network in image feature learning part with the pre-trained
Alexnet [33] model on ImageNet [39]. All the parameters of
the text modal hashing network and the hashing layer of image
hashing network are initialized by Xavier initialization [40]. The
unified binary code B is initialized randomly and zero-centered.
The image input is the 224×224 raw pixels, and the text inputs are
the BoW vectors. The hyper-parameters α, γ, β, µ, η in DCHUC
are empirically set as 50, 200, 1, 50, 50, respectively, and they
will be discussed in Section 4.7. We set tout = 30, tin = 3,
|Φ| = 2000 by using a validation strategy for all datasets. We
adopt SGD with a mini-batch size of 64 as our optimization
algorithm. The learning rate is initialized as 0.0001 for image
hashing network and 0.004 for text modal hashing network. To
avoid effect caused by class-imbalance problem between positive
and negative similarity information, we empirically set the weight
of the element ” − 1” in S as the ratio between the number of
element ”1” and the number of element ”− 1” in S.
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TABLE 1
MAP. The best accuracy is shown in boldface and the second best accuracy is underlined. The baselines are based on Alexnet features

Task Method MIRFLICKR-25K IAPR TC-12 NUS-WIDE
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

T → I

CCA-ITQ 0.599 0.587 0.582 0.578 0.403 0.399 0.396 0.390 0.426 0.415 0.410 0.401
SCM 0.639 0.612 0.584 0.592 0.438 0.423 0.414 0.398 0.403 0.371 0.349 0.328
DCH 0.759 0.780 0.793 0.794 0.536 0.559 0.564 0.582 0.619 0.652 0.653 0.681
DLFH 0.769 0.796 0.805 0.809 0.470 0.498 0.516 0.555 0.599 0.608 0.619 0.630
DCMH 0.763 0.771 0.771 0.779 0.511 0.525 0.527 0.535 0.629 0.642 0.652 0.662
CMDVH 0.612 0.610 0.553 0.600 0.381 0.383 0.396 0.381 0.371 0.359 0.399 0.424
SSAH 0.783 0.793 0.800 0.783 0.538 0.566 0.580 0.586 0.613 0.632 0.635 0.633
DCHUC 0.850 0.857 0.853 0.854 0.615 0.666 0.681 0.693 0.698 0.728 0.742 0.749

I → T

CCA-ITQ 0.593 0.582 0.577 0.574 0.312 0.311 0.310 0.309 0.424 0.412 0.398 0.387
SCM 0.626 0.595 0.588 0.578 0.313 0.310 0.309 0.308 0.395 0.368 0.353 0.335
DCH 0.748 0.786 0.799 0.805 0.486 0.486 0.496 0.502 0.648 0.678 0.699 0.708
DLFH 0.719 0.732 0.742 0.748 0.417 0.451 0.484 0.490 0.558 0.578 0.591 0.593
DCMH 0.721 0.733 0.729 0.742 0.464 0.485 0.490 0.498 0.588 0.607 0.615 0.632
CMDVH 0.611 0.626 0.553 0.598 0.376 0.373 0.365 0.376 0.370 0.373 0.414 0.425
SSAH 0.779 0.789 0.796 0.794 0.539 0.564 0.581 0.587 0.659 0.666 0.679 0.667
DCHUC 0.878 0.882 0.880 0.881 0.630 0.677 0.695 0.701 0.750 0.771 0.783 0.791

TABLE 2
Precision@1000. The best accuracy is shown in boldface and the second best accuracy is underlined. The baselines are based on Alexnet

features

Task Method MIRFLICKR-25K IAPR TC-12 NUS-WIDE
16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits 16bits 32bits 48bits 64bits

T → I

CCA-ITQ 0.690 0.676 0.666 0.652 0.491 0.492 0.488 0.482 0.622 0.672 0.684 0.683
SCM 0.749 0.714 0.675 0.639 0.504 0.506 0.523 0.497 0.598 0.576 0.532 0.668
DCH 0.848 0.848 0.843 0.852 0.664 0.695 0.701 0.712 0.808 0.819 0.808 0.815
DLFH 0.834 0.857 0.865 0.870 0.563 0.604 0.638 0.660 0.685 0.707 0.717 0.735
DCMH 0.815 0.824 0.834 0.835 0.596 0.610 0.613 0.626 0.694 0.710 0.721 0.731
CMDVH 0.613 0.636 0.545 0.601 0.396 0.410 0.403 0.396 0.340 0.293 0.408 0.417
SSAH 0.824 0.834 0.846 0.855 0.641 0.664 0.674 0.677 0.701 0.729 0.736 0.731
DCHUC 0.896 0.897 0.890 0.888 0.711 0.760 0.771 0.782 0.799 0.825 0.839 0.849

I → T

CCA-ITQ 0.666 0.656 0.649 0.635 0.401 0.341 0.302 0.302 0.607 0.657 0.667 0.666
SCM 0.738 0.704 0.676 0.660 0.376 0.349 0.324 0.315 0.606 0.565 0.550 0.504
DCH 0.844 0.866 0.860 0.868 0.593 0.604 0.612 0.617 0.813 0.829 0.822 0.817
DLFH 0.800 0.817 0.824 0.825 0.480 0.536 0.584 0.596 0.646 0.682 0.703 0.698
DCMH 0.764 0.795 0.817 0.822 0.546 0.572 0.580 0.595 0.667 0.686 0.704 0.709
CMDVH 0.693 0.761 0.695 0.733 0.371 0.380 0.331 0.371 0.493 0.527 0.598 0.589
SSAH 0.840 0.854 0.859 0.863 0.648 0.663 0.681 0.678 0.738 0.749 0.765 0.749
DCHUC 0.917 0.918 0.912 0.911 0.724 0.766 0.781 0.783 0.845 0.859 0.872 0.881

The source codes of CMDVH, DCH and our proposed method
will be available at: https://github.com/Academic-Hammer

4.3 Evaluation Protocol

For hashing-based cross-modal retrieval task, Hamming ranking
and hash lookup are two widely used retrieval protocols to evaluate
the performance of hashing methods. In our experiments, we use
three evaluation criterions: the mean average precision (MAP),
the precision at n (P@n) and the precision-recall (PR) curve.
MAP is the widely used metric to measure the accuracy of the
Hamming ranking protocol, which is defined as the mean of
average precision for all queries. PR curve is used to evaluate the
accuracy of the hash lookup protocol, and P@n is used to evaluate
precision by considering only the number of top returned points.

4.4 Experimental results

All experiments are run 3 times to reduce randomness, then the
average accuracy is reported.

4.4.1 Hamming Ranking Task

Table 1 and Table 2 present the MAP and Precision@1000 on
MIRFLICKR-25K, IAPR TC-12 and NUS-WIDE datasets, re-
spectively. ”I → T” denotes retrieving texts with image queries,
and ”T → I” denotes retrieving images with text queries. In
general, from Table 1 and Table 2, we have three observations:
(i) Our proposed method can outperforms the other cross-modal
hashing methods for different length of hash code. For example,
on MIRFLICKR-25K, comparing with the best competitor SSAH
on 16-bits, the results of DCHUC for ”I → T” have a relative
increase of 12.7% on MAP and 9.2% on Precision@1000; the
results of DCHUC for ”T → I” have a relative increase of
8.6% on MAP and 8.7% on Precision@1000. On IAPR TC-12,
comparing with the competitor SSAH on 64-bits, the results of
DCHUC for ”I → T” have a relative increase of 19.4% on
MAP and 15.5% on Precision@1000; the results of DCHUC
for ”T → I” have a relative increase of 18.3% on MAP and
15.5% on Precision@1000. On NUS-WIDE, comparing with the
best competitor DCH on 64-bits, the results of DCHUC for
”I → T” have a relative increase of 12.3% on MAP and 7.8%
on Precision@1000; (ii) Integrating the feature learning of data-
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Fig. 2. Precision-recall curve on MIRFLICKR-25K dataset
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Fig. 3. Precision-recall curve on IAPR TC-12 dataset

points and hashing function learning into an end-to-end network
can get the better performance. For example, our proposed method
can get a better performance than DCH which also can jointly
learning unified hashing codes for instances in the database and
modal-specific hashing functions for unseen data-points but the
feature extraction procedure is independent of the hash codes
learning procedure. (iii) Jointly learning unified hashing codes
for database instances and modality-specific hashing functions for
unseen data-points can greatly increase the retrieval performance.
For instance, DCHUC can get better performance on MAP and
Precision@1000 over three benchmark datasets than CMDVH.
Note that, the results of CMDVH is not as good as the results of
the original article. It maybe the reason that we used more classes

of label to carry out our experimental, which is hard to train the
svm used in CMDVH. Furthermore, although DCH is a shallow
hashing method, its retrieval performances on MIRFLICKR-25K
and IAPR TC-12 datasets are similar to the best deep baseline
SSAH, and its retrieval performances on NUS-WIDE dataset is
batter than SSAH.

4.4.2 Hash Lookup Task

When considering the lookup protocol, we compute the precision
and recall (PR) curve for the returned points given any Hamming
radius. The PR curve can be obtained by varying the Hamming
radius from 0 to k with a step-size of 1. Fig. 2, Fig. 3 and
Fig. 4 show the precision-recall curve on MIRFLICKR-25K,
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Fig. 4. Precision-recall curves on NUS-WIDE dataset

IAPR TC-12 and NUS-WIDE datasets, respectively. It is easy to
find that DCHUC can dramatically outperform the state-of-the-
art baselines, which means our DCHUC generates hash codes for
similar points in a small Hamming radius. For example, compared
with baselines, the precision value of DCHUC decreases more
slowly with the recall value increasing, and DCHUC can get a
high precision value even though the recall value increasing to 0.9
on MIRFLICKR-25K and NUS-WIDE datasets.

4.5 Convergence Analysis

To verify the convergence property of DCHUC, we conduct an
experiment over NUS-WIDE dataset with the code length being
64. Fig. 5 shows the convergence of objective function value and
MAP. As shown in Fig. 5 (a), the objective function value can
convergence after only 10 iterations. In Fig. 5 (b), ”I → T”
denotes retrieving texts with image queries, and ”T → I” denotes
retrieving images with text queries. We can find the MAP values
of both the two retrieval task can convergence. Furthermore,
combining the two subfigure Fig. 5 (a) and (b), we can find both
the two map values can increase with the objective function value
decrease and eventually converge.
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Fig. 5. Objective function value and MAP of DCHUC over NUS-WIDE on
64 bits.

4.6 Training efficiency

To evaluate the training speed of DCHUC, we conduct experi-
ments between the deep cross-modal baselines except CMDVH on
three datasets. Fig. 6 shows the variation between MAP and train-
ing time on the three datasets for DCHUC, SSAH and DCMH.
It can be find that DCHUC can not only training faster than the
two deep cross-modal baselines, but also get a better performance
on retrieval tasks than them. For the CMDVH baseline, it is a
two step method. Then it is unfair to compare MAP-Time curve.
In here, we calculate the the whole training time of CMDVH.
The cost times of training phase on IAPR TC-12, MIRFLICKR-
25K and NUS-WIDE datasets with 32-bits are 16.3s, 21.2s and
39.2s for CMDVH, and are 11.8s, 12.9s and 28.2s for DCHUC,
respectively. We can find that DCHUC is also the faster one.

4.7 Sensitivity to Parameters

We study the influence of the hyper-parameters α, γ, β, η and µ
on IAPR TC-12, MIRFLICKR-25K and NUS-WIDE datasets with
the code length being 64-bits. More specially,Fig. 7 (a), (f) and (k)
show the affect of the hyper-parameter α over the three datasets
with the value between 1 and 600. Fig. 7 (b), (g) and (i) show the
affect of the hyper-parameter γ over the three datasets with the
value between 1 and 600. Fig. 7 (c), (h) and (m) show the affect
of the hyper-parameter β over the three datasets with the value
between 10−3 and 10. Fig. 7 (d), (i) and (n) show the affect of the
hyper-parameter η over the three datasets with the value between
1 and 600. Fig. 7 (e), (j) and (o) show the affect of the hyper-
parameter µ over the three datasets with the value between 1 and
600. It can be found that DCHUC is not sensitive to α, γ, β, η and
µ. For instance, DCHUC can achieve good performance on all the
three datasets in the range of 1 to 600 for the hyper-parameters
α, γ and η, and also can achieve good performance on all the three
datasets with 1 ≤ β ≤ 300. Furthermore, DCHUC can get the
high MAP values with different β from the range of 10−3 to 10.
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Fig. 6. Training Efficiency of DCHUC, SSAH and DCMH on Three Datasets.
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Fig. 7. MAP values with different parameters on three datasets.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

5 CONCLUTION

In this paper, we have proposed a novel cross-modal deep hashing
method for cross-modal data, called DCHUC. To the best of our
knowledge, DCHUC is the first deep method to jointly learn
unified hash codes for database instances and hashing functions
for unseen query points in an end-to-end framework. Extensive
experiments on three real-world public datasets have shown that
the proposed DCHUC method outperforms the state-of-the-art
cross-modal hashing methods.
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