
Aggregate Nearest Neighbor Queries in Road Networks

Man Lung Yiu† Nikos Mamoulis† Dimitris Papadias‡

†Department of Computer Science ‡Department of Computer Science

University of Hong Kong Hong Kong University of Science and Technology

Pokfulam Road, Hong Kong Clear Water Bay, Hong Kong

{mlyiu2,nikos}@cs.hku.hk dimitris@cs.ust.hk

Correspondence Author:

Nikos Mamoulis

Department of Computer Science

University of Hong Kong

Pokfulam Road

Hong Kong

Tel (852)28578243

Fax (852)25598447

E-mail: nikos@cs.hku.hk

Keywords: H.2.4.h Query processing, H.2.4.k Spatial databases, H.2.8.o Spatial databases

and GIS, J.9.a Location-dependent and sensitive

This is the Pre-Published Version

Aggregate Nearest Neighbor Queries in Road Networks

Man Lung Yiu†, Nikos Mamoulis†, and Dimitris Papadias‡

†Department of Computer Science ‡Department of Computer Science

University of Hong Kong Hong Kong University of Science and Technology

Pokfulam Road, Hong Kong Clear Water Bay, Hong Kong

{mlyiu2,nikos}@cs.hku.hk dimitris@cs.ust.hk

Abstract

Aggregate nearest neighbor queries return the object that minimizes an aggregate

distance function with respect to a set of query points. Consider, for example, several

users at specific locations (query points) that want to find the restaurant (data point),

which leads to the minimum sum of distances that they have to travel in order to

meet. We study the processing of such queries for the case where the position and

accessibility of spatial objects are constrained by spatial (e.g., road) networks. We

consider alternative aggregate functions and techniques that utilize Euclidean distance

bounds, spatial access methods, and/or network distance materialization structures.

Our algorithms are experimentally evaluated with synthetic and real data. The results

show that their relative performance depends on the problem characteristics.

1 Introduction

In many applications that manage spatial data (e.g., location-based services) the position

and accessibility of spatial objects are constrained by spatial networks. In such cases the

actual distance between two objects corresponds to the length of the shortest path connecting

1

them in the network. Recently, there has been an increasing interest in processing nearest

neighbor queries over road networks [14, 12, 7, 17]. Given a set P of interesting objects (e.g.,

facilities) and a location q, the nearest neighbor query returns the nearest object of q in P .

Formally, the query retrieves a point p ∈ P , such that d(p, q) ≤ d(p′, q),∀p′ ∈ P , where d()

is a distance function (i.e., the network distance in our setting).

In this paper, we study an interesting generalization of nearest neighbor search. Given a

set P of interesting objects, a set Q of query points, and an aggregate function f (e.g.,

sum, max) an aggregate nearest neighbor (ANN) query retrieves the object p in P , such

that f{d(p, qi),∀qi ∈ Q} is minimized. Consider the example of Figure 1, where a set of

interesting objects P = {p1, p2, p3, p4} (e.g., restaurants) and a set of query points Q =

{q1, q2} (e.g., users) lie on the edges of a road network. The numbers on the edges represent

travel cost (in terms of distance, time etc.). An ANN with f = sum as aggregate function

retrieves the point pi ∈ P that minimizes the total cost required by q1, q2 to meet at pi, when

traveling along network edges. The result of this ANN query is p3 with aggregate distance

(6+4+4)+(1+1) = 16. Another important aggregate function is f = max, which minimizes

the maximum (as opposed to the total) distance traveled by any user. For instance, assume

that the costs of the network edges correspond to travel time, and the two users want to

meet as fast as possible at a restaurant pi. The result of this ANN query is object p1 with

max{d(p1, qi)} = d(p1, q1) = 12.

ANN queries are a natural way to express requests by groups of mobile users, who want to

optimize their routes according to an aggregate function applying on the traveling distances.

Apart from the meeting-restaurant example, other application instances include (i) estab-

lishing a meeting station for members of a new church, based on its distances from their

homes, (ii) selecting the location of a touristic office based on its distances to attractions in

a city. ANN queries find application in geographic information systems, location-based ser-

vices, navigation systems, mobile computing systems, data mining (e.g., clustering objects

in a road network [19]).

2

3
6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p

p4

q1
2

2

q2
1

p1
3

2

3

3

5

n10

3
6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p

p4

q1
2

2

q2
1

p1
3

2

3

3

5

n10

n2

n4

n3

n1

1.5 (2.0)

3.5 (2.7)

2.5 (4.5)

2 (4.0)
1.5 (2.5)

n2

n4

n3

n1

3

7

5
4

3

max(eu/net) = (4.0)/2=2
multiply all with 2

6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p3

p4

q1
2

2

q2
1

p1
3

2

3

3

5

Figure 1: Example of ANN queries

The contributions of the paper can be summarized as follows:

• We propose and solve ANN query processing in the context of large road networks.

To the best of our knowledge, this constitutes the first comprehensive study on this

important problem.

• We develop three methods for ANN queries, utilizing connectivity information (pre-

served by the network) and spatial locality. The first algorithm can be applied when

the Euclidean distance between any two network nodes lower bounds their network

distance. It incrementally retrieves Euclidean ANN using a spatial index (R–tree) and

then computes their aggregate network distance, until the query results are guarranteed

to be found. We also propose two adaptations of top-k algorithms for this problem,

based on the observation that ANN queries combine distances from multiple sources

(and therefore, they can be thought of as top-k queries [3]).

• We conduct an extensive experimental study to evaluate the efficiency of the proposed

algorithms on real road networks for various problem characteristics. In addition, we

explore the efficiency of the proposed algorithms in the presence of data structures that

3

materialize shortest path distances between network nodes. The results show that the

best technique depends on the problem input (e.g., underlying network, edge weights,

aggregate function).

The rest of the paper is organized as follows. Section 2 defines the problem and discusses

related work. Sections 3 and 4 present our methodology. Section 5 discusses interesting

variants of ANN queries. The proposed methods are experimentally compared in Section 6.

Finally, Section 7 concludes the paper.

2 Definitions and Background

We first present the network distance definitions that we follow throughout the paper. Then,

we overview related work on shortest path algorithms, distance materialization, nearest

neighbor search, and top-k queries.

2.1 Problem definition

A network is an undirected weighted graph G = (V, E, W) where V is the set of vertices

(i.e., nodes), E is the set of edges, and W : E → IR+ associates each edge to a positive real

number (i.e., the weight or cost of the edge). Interesting objects (i.e., data points) are located

on edges e ∈ E. The position of an object p lying on the edge (ni, nj) can be expressed by

the triplet 〈ni, nj, pos〉 where pos ∈ [0, W (e)] is the distance of p from node ni. To ensure

that the location of the object is expressed unambiguously by one triplet, we require that

ni < nj (assuming a total ordering of node labels). Figure 2 shows an example of a network,

where nodes are denoted by squares, and every edge is associated with a distance label.

Each object (denoted by a cross) lies on exactly one edge.1 For instance, p2 lies on (n1, n3)

1In real-life problems, some objects may not lie on edges of the network. In such cases, we assume that
the object is represented by the closest position on the network [12]. If a data point is on the intersection of
multiple edges (i.e., on a network node) it may have multiple equivalent representations, out of which only
one is stored.

4

and it is 1.0 units away from n1 along the edge. Therefore, its position can be expressed by

〈n1, n3, 1.0〉.

m
4 2 2 16

6

3

2 2 p1p2p3

p4

p5

n3

n1
n2

n5

n4 4

p4

n2

6.0

n4

n5

n6

n3

n1

(5.1)

p6(2.5)
p5(2.8)4.2

3.5

3.0
2.0

2.7
4.5

4.0

2.5

p1(1.3)

p2(1.0)

p3(3.2)

Figure 2: Example of a spatial network

Let pi and pj be two points at 〈na, nb, pospi
〉 and 〈nc, nd, pospj

〉, respectively. If na = nc and

nb = nd (i.e., pi and pj lie on the same edge), the direct distance dL(pi, pj) between pi and pj

is defined as |pospi
− pospj

| ; otherwise, it is ∞. For instance, in Figure 2, dL(p2, p3) = 2.2

(the points lie on the same edge) and dL(p2, p1) = ∞. The direct distance between a

point and a network node is defined only when the point lies on an edge adjacent to the

node. Given a point p with position 〈na, nb, posp〉, the direct distance dL(p, na) between p

and na is posp. Similarly, the direct distance dL(p, nb) is W (na, nb) − posp. For example,

dL(p1, n1) = 1.3 and dL(p1, n2) = 2.7 − 1.3 = 1.4. Notice that the direct distance of two

points on the same edge is not necessarily the shortest distance between them. For instance,

consider an edge (nx, ny) with W (nx, ny) = 10 and assume that nx and ny are connected

to nz, such that W (nx, nz) = 2 and W (nz, ny) = 2. For points pi = 〈nx, ny, 1.0〉 and

pj = 〈nx, ny, 9.0〉, dL(pi, pj) = 8, whereas the distance of the path from pi to pj via nx, nz,

and ny is 1 + 2 + 2 + 1 = 6. We assume that the edges are bidirectional and that the direct

distance is symmetric, i.e., dL(pi, pj) = dL(pj, pi) and dL(p, ni) = dL(ni, p).

The network distance d(ni, nj) of nodes ni and nj, is defined as the minimum sum of weights

of any path between them. In Figure 2, d(n2, n6) = 6.2. Given points pi and pj, where pi

lies on edge (na, nb) and pj lies on the edge (nc, nd), the network distance d(pi, pj) can be

5

computed as minx∈{a,b},y∈{c,d}(dL(pi, nx) + d(nx, ny) + dL(ny, pj)), if pi and pj lie on different

edges; otherwise, d(pi, pj) is the minimum of the previous quantity and dL(pi, pj). The

network distance is symmetric and satisfies the inequality d(pi, pj) ≤ d(pi, pk) + d(pk, pj)

(because d(pi, pj) is the shortest distance between pi and pj).

Let p be a point and Q be a set of query points that lie on the network. Then, an aggregate

network distance function dagg(p, Q) is defined as agg{d(qi, p),∀qi ∈ Q}, where agg is an ag-

gregate function that applies on sets of numbers (e.g., sum, max, etc.); dagg(p, Q) is monotone

if ∀p, p′ (∀qi ∈ Q, d(p, qi) ≥ d(p′, qi)) ⇒ dagg(p, Q) ≥ dagg(p
′, Q). In this paper, we only con-

sider monotone functions. We call each d(p, qi) a component distance (implying the query

component qi). Two popular aggregate functions are: dsum(p, Q) =
∑

∀qi∈Q d(p, qi); and

dmax(p, Q) = max∀qi∈Q d(p, qi). For instance, in Figure 1, for Q = {q1, q2}, dsum(p1, Q) = 20

and dmax(p1, Q) = 12.

Given a set of query points Q, a set of interesting objects P (P and Q are located on the

network), and an aggregate distance function dagg(p, Q), an aggregate k-nearest neighbor

query k-ANNagg(P, Q) retrieves S ⊂ P , such that |S| = k and dagg(p, Q) ≤ dagg(p
′, Q),∀p ∈

S, p′ ∈ P − S for some k < |P |. E.g., in Figure 1, for Q = {q1, q2}, 1-ANNsum(P, Q) = {p3}

(with dsum(p3, Q) = 16). Although ANN queries can have multiple results with the same

quality, only one of them is reported for simplicity.

2.2 Related work

Our problem is closely related to shortest path computation in large graphs. Given a source

ns and a destination node nd, Dijkstra’s algorithm [2] expands the network from ns until nd

is reached. A priority queue H is used to organize the neighbors of the nodes found so far,

so that intermediate nodes from ns to nd are visited in increasing order of their distances

from ns. A shortcoming of the algorithm is that it may visit many nodes far from the

shortest path. A∗ search (e.g., see [15]) alleviates this effect using lower distance bounds.

Assume that the Euclidean distance dE(ni, nj) lower-bounds the network distance d(ni, nj).

6

A∗ organizes the nodes ni to be visited by Ld(ni) = d(ns, ni)+dE(ni, nd). Ld(ni) restricts the

shortest path distance from ns to nd, via ni. The node with the minimum Ld(ni) is visited

next and its neighbors are added on the heap H. The process continues until the destination

node nd is popped from H.

Shortest path search can be accelerated by materializing the network distance between ev-

ery pair of nodes. The high storage cost of fully materialized distances makes this approach

infeasible even for networks of moderate sizes. For instance, for a graph of |V |=100K nodes

we need to store |V |(|V | − 1)/2 ∼= 5 × 109 distances. HiTi [9] and HEPV [8] avoid the

extreme space requirements by partial materialization. HiTi first partitions the network into

subgraphs that are small enough to fit in memory. These subgraphs can be abstracted as

network nodes which are recursively grouped at the higher level. At each level, all the edges

that connect boundary nodes of different subgraphs at the lower level are explicitly stored

together with the corresponding distance. To compute a shortest path distance between two

given nodes, it suffices to find the most detailed subgraphs that contain the nodes and use

the materialized information stored in higher-level nodes of the two search paths. HEPV

performs a similar hierarchical partitioning, but pre-computes and stores more network dis-

tances.

ANN queries are also closely related to nearest neighbor search and related forms of spatial

information processing over networks. [12] propose a storage scheme for objects that lie on

a network, as well as algorithms for range selections, nearest neighbor queries, and distance

joins. The Euclidean distance is employed (like in A∗ search) to guide search and prune

parts of the network. In addition, R–trees are used to efficiently compute Euclidean distance

bounds. [14] transform the spatial network to a high dimensional space and use simple

distance functions to approximate the network distance. However, the query results are

only approximate and the storage overhead high, so that the method cannot handle large

networks. [7] discuss nearest neighbor queries for objects moving in a network. [17] study

the problem of finding nearest neighbors along a given route instead from a single query

7

point. [5] propose methods for solving shortest path queries with spatial constraints.

[11] solve ANN queries considering only Euclidean distance and the sum function. The

methods proposed there utilize R–trees and distance bounds to converge to the result, by

minimizing the I/O and computational cost. In this paper, we study the problem considering

the network distance and additional aggregate functions. Our work is essentially different

due to the non-trivial computation of the network distances. For instance, given a point p

on the plane and a set of query objects Q, it takes O(|Q|) time to compute the aggregate

Euclidean distance from p to Q. On the other hand, the aggregate network distance requires

expensive network traversal.

Finally, since our techniques aggregate distances from multiple sources, they are related to

top-k queries [3]. Consider a database that contains multiple orderings for a given set P of

objects (e.g., images) with respect to their similarity to a query object q, based on different

criteria (e.g., color, texture). For example, ordering O1 could rank the objects in P based

on color similarity with q, and O2 could rank them based on texture similarity with q. The

top-k query retrieves the k objects with the maximal aggregate similarity to q. We can

express ANN queries as top-k queries by sorting the objects in P based on their distances

from each qi ∈ Q and then combine the sorted streams to derive the final result.

3 Storage and Distance Computation

Before presenting our techniques for processing ANN queries, we briefly describe the storage

architecture for the network. Next, we show how to compute aggregate distances of points on

network edges. Finally, we propose a transformation that allows the application of Euclidean

distance bounds for pruning the search space.

8

3.1 Disk-based storage of the network

We use a disk-based storage model that groups network nodes based on their connectivity

and distance, as in [16, 12, 19]. Figure 3 contains a graphical illustration of the files and

indexes for the network of Figure 2. Adjacency lists and points are stored in two separate

flat files. The header of the adjacency list file contains, for each node n, a pointer to the

corresponding list. Furthermore, recall that the A∗ algorithm requires computation of the

Euclidean distance between network nodes. For this purpose, the header also stores the

coordinates of n. The adjacency list of n keeps the neighboring nodes of n together with

their edge weight. Points on the same edge (nx, ny) form a point group and are kept together

in the file for data points. In addition, this file stores the node ids nx, ny and the direct

distance dL(p, nx) of every point on (nx, ny). Each edge in the adjacency list has a pointer

to the corresponding point group (if any). In this way, network traversal algorithms can

efficiently retrieve the points on the adjacent edges (and nodes) to a given node n. Finally,

a sparse B+–tree is built on top of the point file. Thus, given a point p, we can efficiently

find (i) the edge where p lies and (ii) all other points on this edge.

n1

n2

.

.

.
n2

n3

2.7
4.0

n1 2.7
n3 4.5
n4 2.0

Adjacency list file

list for
n1

list for
n2

p1 1.3

Data point file

n1 ,n2()

p2 1.0
n1 ,n3()

p3 3.2

.

.

.

.

.

.

p1

p1

p2

B-tree on points

n1x(,n1y)
n2x(,n2y)

Figure 3: Disk-based storage representation

An issue that deserves further clarification refers to the grouping of lists in the adjacency

list file. In particular, the lists of neighboring nodes should be stored in the same disk-

page in order to minimize the I/O cost during the graph traversal. [16, 18] propose several

methods for disk-based organization of network nodes and/or adjacency lists. However,

9

these algorithms (based on graph partitioning) are complex and expensive. Instead, we

follow a simple technique which, as we conjecture, should achieve similar performance. We

first partition the graph using the spatial coordinates of the nodes (e.g., by a c × c grid)

such that each partition fits in memory. For every partition, a random node n is first chosen

and its adjacency list is written into the current disk page. The process is repeated for n’s

neighbors; i.e., the part of the network in the partition is traversed in a breadth-first manner,

packing adjacency lists until the page is full. For the next page, breadth-first traversal is

re-initialized for the next unpacked node in order, etc. In this way, nodes in the same page

are close in the network with high probability.

Finally, some of the proposed algorithms require the efficient indexing of points based on

their spatial coordinates and their clustering on the network edges. For this purpose, we

may need to build an R–tree on top of the point file, as elaborated later.

3.2 Aggregate distances on edges

Given a network edge (nx, ny) and the component distances of nx and ny, we can compute

dagg(p, Q) for each point on (nx, ny). While solving ANN queries, it is useful to know the

minimum possible dagg(p, Q) for any p on (nx, ny), so that we can prune the edge if it cannot

contain any better ANN (without accessing the point file). Towards this goal, we study the

possible range of dagg(p, Q) as a function of d(p, qi), ∀qi ∈ Q. We first discuss how d(p, qi)

ranges depending on (i) whether qi lies on (nx, ny) and (ii) qi’s distance from nx and ny.

Consider for example, a part of the network, as shown in Figure 4a and three query points

q1, q2, q3. We have three distance distributions for d(p, qi) all of which are piecewise linear

functions. In the first case, qi is not on the edge and d(ny, qi) = d(nx, qi) + W (nx, ny). In

other words, the shortest path from qi to ny passes through nx and the distance of any

point p along (nx, ny) increases linearly and monotonically. In the example of Figure 4, q1

corresponds to such a query point. In the symmetric case, d(nx, qi) = d(ny, qi) + W (nx, ny)

and d(p, qi) linearly decreases. The second case applies when qi lies on edge (nx, ny) (e.g., q2),

10

so that d(p, qi) first decreases and then increases linearly. Finally, the third case applies for

|d(ny, qi)− d(nx, qi)| < W (nx, ny) (e.g., q3), where d(p, qi) first increases and then decreases

linearly.

p4

n2

6.0

n4

n5

n6

n3

n1

(5.1)

p6(2.5)
p5(2.8)4.2

3.5

3.0
2.0

2.7
4.5

4.0

2.5

p1(1.3)

p2(1.0)

p3(3.2)

4 2 1 7

2

3

4 2 p1p2p3

p4

p5

n3

n1
n2

n5

n4 4

1

n4

1

p7

p6

4 2 1 5

2

3

2 p1p2p3

p4

p5

n3

n1

n2

n5

4

1

n4

1

p6

4

n6

p1 p2 p3 p4 p6 p5

1

3

6

1

12

0

11

7
8

d

nynx
q2q1

4

73

32

q3

5
q1

q2

q3

()qi,nx d()qi,ny

10

22
26

d ,()Qnxsum ()d ,Qnysum

13

p4

n2

6.0

n4

n5

n6

n3

n1

(5.1)

p6(2.5)
p5(2.8)4.2

3.5

3.0
2.0

2.7
4.5

4.0

2.5

p1(1.3)

p2(1.0)

p3(3.2)

4 2 1 7

2

3

4 2 p1p2p3

p4

p5

n3

n1
n2

n5

n4 4

1

n4

1

p7

p6

4 2 1 5

2

3

2 p1p2p3

p4

p5

n3

n1

n2

n5

4

1

n4

1

p6

4

n6

p1 p2 p3 p4 p6 p5

1

3

6

1

12

0

11

7
8

d

nynx
q2q1

4

73

32

q3

5
q1

q2

q3

()qi,nx d()qi,ny

10

22
26

d ,()Qnxsum ()d ,Qnysum

13

p4

n2

6.0

n4

n5

n6

n3

n1

(5.1)

p6(2.5)
p5(2.8)4.2

3.5

3.0
2.0

2.7
4.5

4.0

2.5

p1(1.3)

p2(1.0)

p3(3.2)

4 2 1 7

2

3

4 2 p1p2p3

p4

p5

n3

n1
n2

n5

n4 4

1

n4

1

p7

p6

4 2 1 5

2

3

2 p1p2p3

p4

p5

n3

n1

n2

n5

4

1

n4

1

p6

4

n6

p1 p2 p3 p4 p6 p5

1

3

6

1

12

0

11

7
8

d

nynx
q2q1

4

73

32

q3

5
q1

q2

q3

()qi,nx d()qi,ny

10

22
26

d ,()Qnxsum ()d ,Qnysum

13

 (a) network (b) d(p, qi) (c) dsum(q, Q)

Figure 4: dagg(p, Q) along edge (nx, ny)

Thus, given an edge (nx, ny) and a set of query points Q, we can define a sequence of

split points on (nx, ny), consisting of the edge endpoints and the extrema of the second and

third cases for each qi ∈ Q. In Figure 4b, the split points are denoted by the dotted lines.

By using the split points, we can find the position on the edge that minimizes dsum and

dmax. Figure 4c shows the distribution of dsum(p, Q) for our example. Note that the distance

function between two adjacent split points can remain constant, increase or decrease linearly.

Therefore, the optimal location can be found by computing only the aggregate distances at

the split points. dmax(p, Q) along edge (nx, ny) corresponds to the upper contour of the

shaded area in Figure 4b.

3.3 Using Euclidean bounds

If the edge weights correspond to the Euclidean distance of the connected nodes, the network

distance d(ni, nj) between any pair of nodes is lower bounded by their Euclidean distance

dE(ni, nj). We can generalize this property for any pair of points on the network.

Lemma 1 Let G = (V, E, W) be a network, such that for each edge (nx, ny) ∈ E, dE(nx, ny) ≤

W (nx, ny). For any two points p, q on the network, dE(p, q) ≤ d(p, q).

11

Proof. The network distance d(p, q) is defined by the sum of weights along the shortest

path from p to q. This quantity is no smaller than the sum of the Euclidean distances of the

edges, which in turn is no smaller than dE(p, q) (triangular inequality).

In addition, we can show that the Euclidean aggregate distance dE
agg(p, Q) from a data point

to a set of query points is a lower bound for the corresponding aggregate network distance

dagg(p, Q). This property is used by our first ANN algorithm.

Lemma 2 Let G = (V, E, W) be a network, such that for each edge (nx, ny) ∈ E dE(nx, ny) ≤

W (nx, ny). Let Q be a set of query points, p be a point on the network and agg be a mono-

tone aggregate function. The Euclidean aggregate distance dE
agg(p, Q) is a lower bound of the

network aggregate distance dagg(p, Q).

Proof. The lemma holds since dE(p, qi) ≤ d(p, qi) for each qi ∈ Q (by Lemma 1) and by the

definition of monotone aggregate functions.

Nevertheless, edge weights do not necessarily correspond to Euclidean distances between the

connected nodes. For instance, consider a city road network, where weights correspond to

the cost of traveling along the corresponding road segments. Roads that cross tunnels or

bridges are more expensive due to toll fees. As another example, assume that the weights

reflect the time required to cross a road segment. In this case, traffic-congested roads have

much higher weight than freeways of the same length.

We deal with networks of arbitrary weights, by normalizing them so that (i) for each edge

(nx, ny) ∈ E, dE(nx, ny) ≤ W (nx, ny), (ii) the correctness of shortest path and nearest

neighbor computations is not affected by the change, and (iii) the Euclidean distance lower

bounds are as tight as possible. This normalization is based on the scaling ratio defined as:

r = max{dE(nx,ny)

W (nx,ny)
,∀(nx, ny) ∈ E}. Figure 5a shows an example of a network. The edges

are tagged by weights, followed by the Euclidean distance between the corresponding nodes

enclosed in parentheses. Note that the weights of the network are not proportional to the

Euclidean distances. First we compute r = max{dE(nx,ny)

W (nx,ny)
} = dE (n1,n3)

W (n1,n3)
= 2 and then we

12

multiply all weights by r, resulting in the network of Figure 5b. The shortest path between

any pair of points on the network remains the same, since all weights are multiplied by the

same factor. In addition, the Euclidean distance bounds hold, permitting the application

of Lemmas 1 and 2 by shortest path and (aggregate) nearest neighbor search algorithms.

Note, however, that if the Euclidean distance length of edges is not proportional to their

weights, Euclidean distance (after normalization) becomes a loose lower bound, degrading

the performance of ANN search methods that use it, as we verify later.

3
6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p

p4

q1
2

2

q2
1

p1
3

2

3

3

5

n10

3
6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p

p4

q1
2

2

q2
1

p1
3

2

3

3

5

n10

n2

n4

n3

n1

1.5 (2.0)

3.5 (2.7)

2.5 (4.5)

2 (4.0)
1.5 (2.5)

n2

n4

n3

n1

3

7

5
4

3

max(eu/net) = (4.0)/2=2
multiply all with 2

6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p3

p4

q1
2

2

q2
1

p1
3

2

3

3

5

3
6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p

p4

q1
2

2

q2
1

p1
3

2

3

3

5

n10

3
6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p

p4

q1
2

2

q2
1

p1
3

2

3

3

5

n10

n2

n4

n3

n1

1.5 (2.0)

3.5 (2.7)

2.5 (4.5)

2 (4.0)
1.5 (2.5)

n2

n4

n3

n1

3

7

5
4

3

max(eu/net) = (4.0)/2=2
multiply all with 2

6

4

1

6

7

4 3

4

n1

n2
n3

n4

n5

n6

n7
n8 n9

p
p3

p4

q1
2

2

q2
1

p1
3

2

3

3

5

(a) original network (b) transformed network

Figure 5: Transformation of network weights

4 Algorithms for ANN queries

Given a set of interesting points P and a set of query points Q on a network, a brute-

force method to evaluate a k-ANNagg(P, Q) query is to traverse the network from each

qi ∈ Q, compute d(p, qi) for each p ∈ P and, finally, sort the points in P to find those

with the k smallest dagg(p, Q). This method is expensive, since the entire network has to

be traversed |Q| times. In this section, we propose three algorithms that solve ANN queries

by effectively minimizing network traversal. The first one utilizes Euclidean lower bounds

and an incremental Euclidean ANN method. The other two algorithms are motivated by

aggregate top-k query processing techniques.

13

4.1 Incremental Euclidean Restriction (IER)

The Incremental Euclidean Restriction (IER) paradigm was first applied for conventional

nearest neighbor queries in road networks [12]. Assume that we have a single query point

q and we wish to find its NN in a set of points P , lying on a network. An R–tree that

indexes P is used to incrementally retrieve the Euclidean nearest neighbors of q in P using

the algorithm of [4]. For each point p retrieved, d(p, q) is computed using a shortest path

algorithm. If the Euclidean distance dE(p, q) of the next point p is larger than or equal to the

network distance of the best NN found, IER terminates since (due to Lemma 1) no closer

neighbor can be found. The IER ANN algorithm is based on this paradigm. Specifically,

IER (i) incrementally retrieves points p ∈ P based on their dE
agg(p, Q), (ii) for each point p,

it computes dagg(p, Q) and (iii) updates the result accordingly, until the aggregate Euclidean

distance of the next point exceeds the network aggregate distance of the NN. In addition,

we apply two optimizations for avoiding redundant shortest path computations.

4.1.1 The generic algorithm

IER requires an incremental algorithm for Euclidean ANN search. The existing Euclidean

ANN algorithms [11], however, are not incremental and focus exclusively on the dE
sum ag-

gregate distance function. Thus, we first propose a generalized, incremental technique that

works for any monotone aggregate function. Let e be an entry of an R–tree that indexes P

and e.B its minimum bounding box. Let mindist(e, qi) be the minimum Euclidean distance

between e.B and qi, reflecting the minimum possible distance of any point p ∈ P , indexed

under e, from qi. Given a monotone aggregate function agg, dE
agg(e, Q) can be defined by

agg{mindist(e, qi),∀qi ∈ Q}. Now, we can prove the following lemma:

Lemma 3 Let Q be a set of query points and e an R–tree node entry. For any point p

indexed under e, dE
agg(e,Q) ≤ dE

agg(p, Q) holds.

Proof. True, due to mindist(e, qi) ≤ dE(p, qi) and the fact that agg is monotone.

14

Based on Lemma 3, we can solve ANN queries in the Euclidean space as follows. Initially,

all entries of the R–tree root are added to a heap H sorted on dE
agg(e,Q). The top element e

of H is dequeued. If it is a directory entry, then the corresponding R–tree node is accessed

and its entries are added to H. If it is a point (i.e., leaf entry), it is returned as the next

Euclidean ANN. Thus, this method allows us to incrementally retrieve points in ascending

order of their aggregate Euclidean distance from Q.

Figure 6 presents the pseudocode for network ANNs by combining the above method with

the multi-step processing framework [13]. IER retrieves Euclidean ANNs and computes

their actual aggregate distance by shortest path queries (SPQs). The k-ANN set is updated

and the process continues until the k-th network ANN found so far has distance smaller than

or equal to the Euclidean distance of the next entry from H. For SPQs, we apply A* due

to its superior performance compared to Dijkstra’s algorithm. IER can output the network

ANNs incrementally (i.e., without prior knowledge of k) by re-inserting in H each point

after computing its network aggregate distance. If the dequeued element from H is a point

p whose network distance has already been computed, p is reported as the next NN.

Algorithm IER(G,R,P ,Q)
1. best dist:=∞; H:=new priority queue;
2. for each entry e in root(R) enqueue(H, e, dE

agg(e,Q));
3. while (notempty(H))
4. e:=dequeue(H);
5. if (dE

agg(e,Q) ≥ best dist) then stop;
6. if (e is an object in P) then
7. compute dagg(e,Q) using SPQs;
8. update best-k results and best dist if necessary;
9. else // e is a R–tree node
10. for each entry e′ in R–tree node pointed by e
11. enqueue(H, e′, dE

agg(e
′, Q));

Figure 6: The IER ANN algorithm

For instance, assume that we want to find the 1-ANNsum(P, Q) in the graph of Figure 7a

(let Q = {q1, q2} and P = {p1, p2, p3, p4}) using IER. Figure 7b shows the two leaf nodes

15

of a 2-level R–tree that indexes P . Initially, the R–tree root entries are enqueued and H =

{(M2, 5), (M1, 11)}. M2 is then dequeued, its points are enqueued and H = {(p1, 7), (p3, 8), (M1, 11)}.

After p1 is dequeued, IER applies SPQs to find its network distance and p1 becomes the cur-

rent ANN with best dist = 10. Next, p3 is dequeued and since dE
sum(p3, Q) < best dist, we

compute its network distance dsum(p3, Q) = 14 > best dist. Finally, M1 is dequeued. Since

dE
sum(M1, Q) = 11 ≥ best dist, the algorithm terminates reporting p1 as the ANN.

1

4

4
3

6

4

4
3

4

3

n1
n2

n3n4

n5

n6
n7

q1

q2
p1

p2

1

p3

p4

2

1

1

1

6

4
3

3

5

6
5

6

7
4

3
2

8

n1

n2

n3
n4

n5

n6
n7

n8

n9

q1

q2 p1

p2

2

1

p3

p4

2

3

1

1

7

3 5 11

n1 n2 n3 n4 n5 n6 n7p1p2 q1 q2q3

q1

q2

mindist (, MBR())q1 n1

mindist (, MBR())q2 n1

M1

M2
4

1

5

6

6

4

p2 p4

p1
p3

(a) network (b) point group R–tree

Figure 7: ANN search example

4.1.2 Optimizations of IER

If multiple points appear on an edge (nx, ny), IER has to apply SPQs for nx and ny several

times. In addition, each time a point p is popped from H, the point B+–tree of Figure 3

must be accessed for finding the edge where p lies. In order to minimize the shortest path

computations and avoid visiting the same edge multiple times, we apply the following opti-

mization. Whenever a Euclidean ANN p is popped, dagg(p
′, Q) is computed for all points p′

in the same point group as p. The effectiveness of this optimization requires a modification

of the R–tree structure because whenever we access a data point, we also need to retrieve

all the other points lying on the same edge. Thus, we first create, for each edge populated

by some p ∈ P , a minimum bounding box containing all the data points on the edge. Then,

the R–tree is built on these bounding boxes (instead on the data points).

16

As a motivation for the second optimization, note that all SPQs have a common set of source

nodes (i.e., the query points Q). Thus, for each query point qi, we can re-use information

about network nodes visited by previous SPQs that originated from qi. In particular, the

network nodes (and their distances) discovered by every SPQ are stored in a hash table Tqi
.

In addition, for each qi, we maintain the heap contents so that the network expansion can

continue from its previous state. Assume a new SPQ with source qi and destination nx. If nx

is in Tqi
, we directly use the network distance stored in Tqi

. Otherwise, we use the previous

state of the A∗ heap to resume search until nx has been reached (recording any newly visited

nodes in Tqi
).

4.2 The threshold algorithm (TA)

Our second algorithm is based on the observation that the network traversal from each

qi ∈ Q visits the nodes in increasing order of their distances from qi. Thus, the network

node with the minimum aggregate distance from Q can be found by (i) concurrently and

incrementally expanding the network around each qi ∈ Q, (ii) applying some top-k aggregate

query processing technique [3] to guide and terminate search when the k nodes with the

minimum dagg(n,Q) are guaranteed to be found.

Note that there is a subtle difference between this problem and the ANN problem we study

in this paper. The above method will derive the ANN only if V = P , i.e., the network nodes

correspond to the points in P , but not in the general case, where points in P lie on (arbitrary)

edges. Consider the network of Figure 7a; even though n6 minimizes dsum(P, Q), the ANN

in P is p1, which is not close to n6. Therefore, we need extensions of top-k algorithms that

consider the special nature of the problem.

The threshold algorithm (TA) takes its name from the corresponding technique used for

top-k queries [3]. Figure 8 shows the pseudocode of TA. For each query point qi, TA first

computes dagg(p, Q) for all points on the edge (nx, ny) containing qi. In addition, nx and ny

are added to a heap H that stores triplets (nx, d(qi, nx), qi). H keeps nodes nx visited by

17

some qi ordered on d(qi, nx). Thus, its top element corresponds to the next nearest node

from any qi. TA iteratively pops nodes from H, computes dagg(p, Q) on their adjacent edges,

and adds their adjacent nodes to H (if they have not been visited from the same qi before).

During the process, a set of k-ANNs retrieved so far is maintained.

Let best dist be the distance of the k-th ANN found. TA terminates when the next node

popped from H has distance larger than or equal to a threshold θ. θ = best dist
|Q| for dsum and

θ = best dist for dmax. If this condition is met, then no unexamined edge can contain better

solutions, as guaranteed by the following lemma.

Lemma 4 Let (nx, ny) be an edge that does not contain any point qi ∈ Q. For any θ ≥ 0,

if ∀qi ∈ Q, (d(nx, qi) ≥ θ ∧ d(ny, qi) ≥ θ) then ∀p on (nx, ny), dsum(p, Q) ≥ |Q| · θ and

dmax(p, Q) ≥ θ.

Proof. Since no qi lies on (nx, ny), the shortest path from each qi to any p on the edge should

be an extension of one of the shortest paths from qi to nx or from qi to ny. Thus, for each qi,

d(p, qi) ≥ min{d(nx, qi), d(ny, qi)} ≥ θ and, as a result, dsum(p, Q) ≥ |Q| · θ, dmax(p, Q) ≥ θ.

Consider the network of Figure 7a and assume that we want to find the 1-ANNsum(P, Q)

using TA. First, the edges where q1 and q2 lie are examined. Since edge (n7, n2) is populated,

TA applies a SPQ (e.g., by using A∗) from q1 to find d(q1, n2) and d(q1, n7). The aggregate

distance of p1 (on (n7, n2)) can directly be computed and p1 becomes the current ANN with

best dist = 10. The threshold is θ = 5 (best dist/2). Now the expansion heap is initialized

to H = {(n5, 1, q1), (n7, 2, q2), (n2, 3, q2), (n4, 4, q1)}. Entries (n5, 1, q1) and (n7, 2, q2) are then

popped in this order, not affecting the result since the (unexamined) edges adjacent to n5

and n7 are not populated. Thus, TA continues by popping n2, examining edge (n2, n3), and

rejecting p4 with dsum(p4, Q) > 10. Next, entries (n4, 4, q1) and (n6, 4, q1) are popped and

p2 and p3 are also rejected after computing their aggregate distances. TA finally terminates

when entry (n6, 6, q2) is dequeued, since its distance is greater than θ.

18

Algorithm TA(G,P ,Q)
1. best dist:=∞; H:=new priority queue;
2. for each query point qi ∈ Q
3. let qi lie on the edge (nx, ny);
4. if (nx, ny) is populated then
5. compute dagg(p, Q) by SPQ for all p on (nx, ny);
6. update best-k results (and best dist) if necessary;
7. create new queue entries Bx, By;
8. Bx.node:=nx; Bx.qid:=qi; Bx.dist:=dL(qi, nx);
9. By.node:=ny; By.qid:=qi; By.dist:=dL(qi, ny);
10. enqueue(H, Bx); enqueue(H, By);
11. while (notempty(H))
12. B:=dequeue(H);
13. if B.dist ≥ θ then terminate;
14. if (B.node not visited by B.qid before) then
15. for each adjacent node nz of B.node
16. if (B.node, nz) is populated and not checked then
17. compute dagg(p, Q) by SPQ for all p on (B.node, nz);
18. update best-k results (and best dist) if necessary;
19. create a new queue entry B′;
20. B′.node:=nz; B′.id:=B.id;
21. B′.dist:=B.dist + W (e(nz, B.node));
22. enqueue(H, B′);

Figure 8: The threshold ANN algorithm

TA uses the optimizations of IER to reduce redundant shortest path computations and

to avoid multiple SPQs from the same query points. Furthermore, in order to minimize

accesses to the point file, TA first computes lb(nx, ny), a lower bound for any possible p on

(nx, ny), according to the methodology described in Section 3.2. If lb(nx, ny) ≥ best dist,

the corresponding group of points does not need to be accessed.

4.3 Concurrent expansion (CE)

The concurrent expansion (CE) algorithm is similar to TA in that it concurrently and in-

crementally expands the network around each qi ∈ Q. However, unlike TA, it does not

19

perform SPQs to compute all component distances d(qi, nx) and d(qi, ny) when a populated

edge (nx, ny) is visited, but waits until the edge has been seen from all qi during the concur-

rent expansion. Only then, CE can derive the aggregate distance for any points on (nx, ny).

Thus, CE avoids shortest path computations, which can be expensive, because they traverse

network nodes in a less systematic way, incurring more random I/Os.

When a populated edge (nx, ny) is visited by CE, some component distances d(qi, nx) and

d(qi, ny) might not be known yet. However, such an edge may contain solutions. For instance,

in Figure 7a, the ANN (point p1) is near q2, but it is far from q1. Thus, CE maintains a set

S of populated edges, which have been visited and may contain data points with aggregate

distance smaller than best dist. Before CE can terminate, all edges in S have to be visited

from all qi ∈ Q in order to compute dagg(p, Q) for each point p on them and verify whether

p is in the k-ANN set.

Figure 9 shows a pseudo-code for CE. Initially, the nodes that form the edges where each

qi lies are pushed on a common heap H, labeled using the id of the corresponding query

point (i.e., qi), and organized based on their distance from it (lines 2–9). CE iteratively pops

elements from H while the heap is not empty and a termination condition (to be discussed

shortly) is not met. After popping an entry nx that has not been visited before from the same

query point, CE visits all neighbors nz of nx and enqueues them in H (by adding W (nx, nz)

to nx’s distance from its expansion source qi). At the same time, it checks whether nx or

nz have been visited from all query points qi (lines 20–22). In this case, we can derive an

aggregate distance for all points in P that lie on (nx, nz).
2 Thus all p ∈ P on (nx, nz) (if

any) are visited and potentially added on the best k results found so far.

CE terminates if at some point we know that no better solution than the k-th best so far

can be found. This can happen when (i) S = ∅ and (ii) the distance of the last popped node

exceeds θ (the same threshold as TA). The first condition ensures that we have visited and

eliminated all edges that may contain a better solution based on the (partial) component

2Note that these aggregate distances are just upper bounds, since edge (nx, nz) can be later visited again
(via another path) and the distances points on it can be improved.

20

Algorithm CE(G,P ,Q)
1. H:=new priority queue; best dist:=∞; S:=∅;
2. for each query point qi ∈ Q
3. let qi lie on the edge (nx, ny);
4. if (edge (nx, ny) is populated) then
5. add (nx, ny) to S;
6. create new queue entries Bx, By;
7. Bx.node:=nx; Bx.qid:=qi; Bx.dist:=dL(qi, nx);
8. By.node:=ny; By.qid:=qi; By.dist:=dL(qi, ny);
9. enqueue(H, Bx); enqueue(H, By);
10. while (notempty(H))
11. B:=dequeue(H);
12. if (S = ∅ ∧B.dist ≥ θ) then terminate;
13. if (B.node not visited by B.qid before) then
14. for each adjacent node nz of B.node
15. if (nz not visited by B.qid before) then
16. create a new queue entry B′;
17. B′.node:=nz; B′.qid:=B.qid;
18. B′.dist:=B.dist + W (e(nz, B.node));
19. enqueue(Q,B′);
20. if (∀qi ∈ Q,
21. (B.node or nz have been visited by qi)
22. ∨ (qi on edge (B.node, nz))) then
23. for each p ∈ (B.node, nz) compute dagg(p, Q)
24. update best-k results (and best dist) if necessary;
25. if (edge (B.node, nz) is populated) then
26. compute lb(B.node, nz);
27. if lb(B.node, nz) < best dist then
28. add (B.node, nz) to S;
29. else if (B.node, nz) in S;
30. delete (B.node, nz) from S;

Figure 9: The concurrent expansion ANN algorithm

distances available. When we visit an adjacent edge (nx, nz) to the currently popped node

nx, we add it in S if it is populated and lb(nx, nz), the lower aggregate distance bound

of any point on it, is smaller than best dist (lines 25–28). lb(nx, nz) is computed by the

methodology described in Section 3.2; for each qi, if nx (nz) has been visited by qi we use

21

the actual d(qi, nx) (d(qi, nz)), else we use a lower bound for d(qi, nx) (d(qi, nz)), which is

equal to the last distance popped from H (i.e., B.dist). If (nx, nz) is populated and already

in S, but now lb(nx, nz) ≥ best dist, we remove it from S; no point in (nx, nz) can be in the

k-ANN set (lines 29–30). Thus S initially grows (when no best dist is available) and later

shrinks as the ANN bound becomes tighter. For all unvisited populated edges, we know that

their end-nodes are further than θ from all query points. Thus, due to Lemma 4 they may

not contain any points better than the current solution. When the two conditions are met,

CE terminates with the correct results.

Let us see how CE finds the 1-ANNsum(P, Q) in the graph of Figure 7a. Network nodes

are concurrently visited from different query points in ascending order of their component

distance to the nearest query point. Thus, (n5, 1, q1), (n7, 2, q2), (n2, 3, q2) and (n4, 4, q1) are

dequeued from H in this order; first n5 will be visited (from q1), then n7 (from q2), etc. n7,

n2, and n4 will add to S populated edges (n2, n7), (n2, n3), and (n1, n4) respectively, since

currently best dist = ∞. Next, (n6, 4, q1) is dequeued and (n3, n6) is added to S. Then, when

(n6, 6, q1) is dequeued and edge (n3, n6) is checked, note that the condition of lines 20–22 is

met; we can compute an upper distance bound for all points on (n3, n6) (since n6 has been

reached from all query points). This gives us the first ANN p3 with dsum(p3, Q) ≤ 14. Note

that 14 is just an upper bound for dsum(p3, Q), since it is possible to visit p3 via another

path (i.e., via node n3) and find a smaller value. Now, best dist is updated to 14 and

(n3, n6) is removed from S, since from the information so far d(n6, q1) = 4, d(n6, q1) = 6,

d(n3, q1) ≥ 6, and d(n3, q2) ≥ 6, dsum(p3, Q) cannot be improved. When (n3, n6) is later

visited (at dequeuing (n3, 7, q2)), it is added to S for the same reason. CE continues this

way, and when (n7, 8, q1) is popped, the actual ANN p1, with dsum(p1, Q) = 10 is found.

Then, (n2, n7) is removed from S, and, eventually, CE terminates when S becomes empty.

The points of an edge are examined at most |Q| times and a node can be enqueued at most |Q|

times. In addition, CE does not use Euclidean distance bounds, thus it can be applied in the

general case, where there are no relationships between edge weights and Euclidean distances

22

between the corresponding nodes. Nevertheless CE can be adapted to use Euclidean bounds

in the computation of lb(B.node) (see line 26) by considering the max{dE(B.node, qi),B.dist}

for each qi where from B.node has not been seen.

5 Variants of ANN queries

An interesting variant of the ANN query takes as input a set of query points Q and finds the

location l on the network that minimizes the aggregate function, without requiring l to be

an object. For instance, suppose that the mobile users want to meet at the best location in

the graph, without caring whether there is a particular facility there. We call such queries

aggregate center (AC) queries. Euclidean AC queries can be solved efficiently using numerical

methods. However, in a spatial network, it is not trivial to find the center of a group of query

points. Aggregate center queries can directly be processed by the proposed algorithms. All

edges are treated as populated. In addition, there are no accesses to any points, but the

virtual points on the edges that minimize the aggregate function are computed as discussed

in Section 3.2. IER in this case, employs an R–tree that indexes the edges of the network.

Concerning ANN queries, the dsum and dmax functions have some interesting weighted vari-

ants. Assume, for instance, that every qi is the position of some vehicle carrying wi passengers

and the goal is to find the facility p that minimizes the total distance traveled by all pas-

sengers (as opposed to vehicles), i.e., sum{wid(qi, p),∀qi ∈ Q}. Similarly, if each vehicle

has average travel speed vi, then the facility p that leads to the earliest meeting time is the

one that minimizes max{d(qi, p)/vi,∀qi ∈ Q}, i.e., wi =1/vi. Our algorithms can be easily

adapted for weighted queries. For IER, we can show that the weighted Euclidean component

distance lower bounds the corresponding weighted network component distance. In addition,

the Euclidean ANN algorithm used by IER is tuned to return incrementally weighted ANN.

Finally, in TA and CE, the network nodes are visited in order of their weighted distance from

any query point and the termination conditions and lower bounds are adjusted accordingly.

23

Finally, our algorithms can be used for complex ANN queries, carrying selection constraints

or preferences on attributes of the interesting points other than their locations. For instance,

consider three users who want to meet at the nearest restaurant which serves Mexican food.

In this case, the interesting points (e.g., restaurants) carry some non-location information

(e.g., the food they serve). During search, our algorithms can filter out from consideration

those points that do not qualify the selection conditions (e.g., restaurants that do not serve

Mexican food). As an example of another ANN query that carries non-location preferences,

consider three users who want to meet at the nearest and cheapest restaurant. In this case,

the aggregate function also contains non-location components (e.g., restaurant price) for the

interesting points. For such queries, incremental versions of our ANN algorithms could be

used in combination with incremental ranking algorithms for the non-location components

to retrieve the combined top-k results (e.g., using the rank-join operators of [10, 6]).

6 Experimental Evaluation

In this section, we evaluate the efficiency of the proposed IER, TA, and CE algorithms. We

also developed three SPQ variants that use none, partial, or full materialization of network

distances. The first is the A∗ algorithm. For the second SPQ variant, we implemented a 2-

level HiTi graph for each network as suggested in [9]. The number of subgraphs in HiTi was

tuned to 102, after comparing versions of 52, 102, 152, and 202 subgraphs. For the third SPQ

algorithm, we constructed a secondary memory array that materializes all O(V 2) distances.

Each access to a materialized network distance costs a disk page access.3 The algorithms

were developed in C++ and the experiments were executed on a PC with a Pentium 4 CPU

of 2.3GHz. We used an LRU memory buffer of 1Mb and the page size was set to 4Kb.

3Network distances from the same source node can span across an average of 1
2 |V |/1024 pages (assuming

that a float takes 4 bytes).

24

6.1 Experimental setup

Table 1 contains the real road networks of the evaluation. NA and CN were downloaded

from www.maproom.psu.edu/dcw/. SF, TG, and OL were obtained from [1]. Since the

original networks were not connected, we extracted the largest connected components from

them. The coordinates of the nodes are normalized in the domain [0, 10000]2. The weight

of each edge was set to the Euclidean distance between the end-points, multiplied by a

random number chosen from the range [1, F]. In this way, the Euclidean lower bound of

Lemma 1 holds, whereas, F reflects the factor by which the actual weight may deviate from

the Euclidean distance.

Id Description # nodes # edges
NA road segments in North America 175,813 179,179
CN rail-roads of China 32,925 33,120
SF San Francisco road map 174,956 223,001
TG San Joaquin County road map 18,263 23,874
OL Oldenburg road map 6,105 7,035

Table 1: Real datasets used in the experiments

We uniformly generated points on the network edges. In order to control the density of the

generated points, we set the distance between adjacent points to a parameter G. On the

CN network, in specific, we used a real point dataset, which is a hypsography supplemental

point dataset (51,663 points) obtained from the same source. The points in the query set

Q are generated randomly on edges of a random connected sub-network covering A% of the

network edges.

Unless otherwise stated, each query has |Q| = 8 query points randomly generated in A = 4%

of the network and the number of aggregate nearest neighbors k is set to 10. The default

values for the other parameters are F = 1 and G = 0.1W where W is the average edge

weight. For each experimental setting, we averaged the results of the algorithms over 10

queries in order to reduce the randomness effect.

25

6.2 Performance study

Table 2 shows the performance of the algorithms on the SF network, using the default data

and query generation parameters. Each row corresponds to an ANN algorithm, the SPQ

variant used by it, and the aggregate distance function (dsum or dmax). We show the results

of SPQ implementations that use partial and full materialization for IER. Materialization

is expected to produce similar results for TA, whereas it is inapplicable for CE. Note that

the full materialization approach is too slow in terms of I/O and response time, since each

network distance computation incurs a random access. Although the HiTi implementation

incurs few page accesses, its execution cost is high because HiTi search cannot be used

incrementally, as opposed to A∗. The reason is that HiTi computes each time the shortest

path distance, without going through the intermediate nodes. Thus, any distance for these

nodes (if required later) has to be computed from scratch at a non-negligible computational

cost. On the other hand, the optimized version of A∗, discussed in Section 4.1, caches the

distances of intermediate nodes in path computations, and uses the heap of the previous

search incrementally to compute the next shortest path(s) efficiently. Since the full mate-

rialized approach and the HiTi search have high execution cost, we omit them from the

remainder of the evaluation and consider A∗ as a standard implementation for SPQs.

Observe that CE performs better for dmax than for dsum. This is attributed to the fact that

the lower bound used for pruning edges is much tighter for dmax compared to dsum. For

dmax, in order for a visited edge to be inserted or maintained in S, it should be closer than

best dist from all query points. On the other hand, TA performs better for dsum than for

dmax because the termination condition holds earlier for dsum than for dmax. IER is fast and

has fewer page accesses than the other methods. Also, its performance is stable over different

aggregate functions. The last two rows of Table 2 show the performance of IER for aggregate

center queries (described in Section 5). Note that AC queries have similar performance to

ANN queries in this setting, since most edges are populated.

Table 3 shows the effect of different networks on the number of page accesses by the algo-

26

Method I/O time (sec) network node accesses
dsum

CE 1286 12.06 35995
TA-A∗ 569 1.38 5000
IER-A∗ 530 1.66 6343
IER-HiTi 543 189.51 1.1e6
IER-Full 70320 140.64 4395

dmax

CE 707 2.22 8380
TA-A∗ 736 2.68 9568
IER-A∗ 515 1.41 5575
IER-HiTi 479 44.25 2.9e5
IER-Full 35808 71.62 2238

ANN center queries
IER-A∗, dsum 510 1.65 6338
IER-A∗, dmax 507 1.38 5557

Table 2: Comparisons of different algorithms

Method CE,sum TA,sum IER,sum CE,max TA,max IER,max
NA 421 210 367 262 290 283
SF 1286 569 530 707 736 515
TG 213 115 99 139 153 119
OL 64 28 41 34 43 34
CN 135 67 130 114 114 147

Table 3: Page accesses on different networks

rithms. The cost of IER is linear to the size of the network (i.e., the number of edges). On

the other hand, the costs of TA and CE increase superlinearly with the network density.

For instance, CE’s cost on SF is nearly triple compared to its cost on NA, even though the

two networks have similar number of nodes. Since TA and CE traverse the network around

the query points exhaustively, in dense networks, the same edges and nodes are visited from

multiple paths, greatly increasing the complexity. On the other hand, IER is based mainly

on shortest path computations, which are not very sensitive to the network density. As in

the previous experiment, CE performs better for dmax than dsum, TA performs better for

dsum than dmax, and IER has stable and best overall performance for different aggregate

functions.

In the next experiment, we compare the three algorithms on the SF network, as a function

27

R-tree

point

network

Page Accesses

A (%)

CE,sum TA,sum IER,sum

Page Accesses

R-tree

point

network

CE,max TA,max IER,max

0

400

800

1200

1600

2000

1 2 4 8 16

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16
A (%)

(a) Page accesses for dsum

R-tree

point

network

Page Accesses

A (%)

CE,sum TA,sum IER,sum

Page Accesses

R-tree

point

network

CE,max TA,max IER,max

0

400

800

1200

1600

2000

1 2 4 8 16

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16
A (%)

(b) Page accesses for dmax

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(s

)

A (%)

CE,sum
TA,sum

IER,sum
CE,max
TA,max

IER,max

(c) Execution time

Figure 10: Cost as a function of query area A

of A, i.e., the sub-network area where the query points lie. Figure 10 shows the performance

in terms of page accesses and response time. The I/O cost is decomposed to accesses on

the network adjacency list file, on the point file, and on the R–tree. As expected, the cost

increases with A, since the query points span a wider range of the network. For dsum queries,

TA and IER have similar performance, with IER being marginally better in most cases. On

the other hand, CE has consistently worse performance than the other methods. For dmax

queries, IER consistently outperforms CE and TA, but the difference is not large. CE is

marginally faster than TA in this case. The execution times, in general, agree with the

I/O figures, with the exception of CE for dsum queries, which is much slower than the other

methods due to the large part of the network it has to explore from all query points. The

difference is not as high in terms of I/O due to buffering effects.

28

R-tree

point

network

Page Accesses

Page Accesses

R-tree

point

network

|Q|

CE,sum TA,sum IER,sum

CE,max TA,max IER,max

0

200

400

600

800

1000

1200

1400

4 8 16 32 64

0

200

400

600

800

1000

1200

4 8 16 32 64
|Q|

(a) Page accesses for dsum

R-tree

point

network

Page Accesses

Page Accesses

R-tree

point

network

|Q|

CE,sum TA,sum IER,sum

CE,max TA,max IER,max

0

200

400

600

800

1000

1200

1400

4 8 16 32 64

0

200

400

600

800

1000

1200

4 8 16 32 64
|Q|

(b) Page accesses for dmax

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

E
xe

cu
tio

n
tim

e
(s

)

|Q|

CE,sum
TA,sum

IER,sum
CE,max
TA,max

IER,max

(c) Execution time

Figure 11: Cost as a function of the number of query points |Q|

Figure 11 shows the effect of the number |Q| of query points on the performance of the

algorithms. Observe that the number of page accesses converges as |Q| increases because the

query points are distributed in the same query area. Similar to the previous experiments, CE

does not perform well for dsum queries, whereas it outperforms TA for dmax queries. The cost

of CE increases fast with |Q|, for dsum queries, because the same edges and their point groups

are checked multiple times (at most |Q|) and the cost of each check is directly proportional

to |Q|. For dmax queries the effect is smoother, due to the stricter pruning condition. TA’s

execution cost is also high due to the larger number of SPQ queries it has to perform. On

the other hand, the cost of IER is affected less by |Q| because, with the help of the tree, it

can discover fast a good best dist which prunes the search space effectively.

In Figure 12, we compare the algorithms by varying the number k of ANN to be retrieved.

29

R-tree

point

network

Page Accesses

k

CE,sum TA,sum IER,sum

Page Accesses

R-tree

point

network

CE,max TA,max IER,max

k

400

600

800

1000

1200

1400

1600

0

200

1 10 100 1000

0

200

400

600

800

1000

1 10 100 1000

(a) Page accesses for dsum

R-tree

point

network

Page Accesses

k

CE,sum TA,sum IER,sum

Page Accesses

R-tree

point

network

CE,max TA,max IER,max

k

400

600

800

1000

1200

1400

1600

0

200

1 10 100 1000

0

200

400

600

800

1000

1 10 100 1000

(b) Page accesses for dmax

 0

 5

 10

 15

 20

 1 10 100 1000

E
xe

cu
tio

n
tim

e
(s

)

k

CE,sum
TA,sum

IER,sum
CE,max
TA,max

IER,max

(c) Execution time

Figure 12: Cost as a function of k

Observe that the number of network and R–tree I/Os is insensitive to this parameter. On the

other hand, the accesses on the point file increase linearly with k. Figure 12c shows the effect

on the execution time. Since the dominating cost is the network access, the performance

scales well with k and the execution time increases slowly as k increases.

The next comparison factor is the density G/W of the data points on the network (Figures

13). Note that the density of the points is high when G/W is small and vice versa. As G/W

increases, The number of network pages accessed increases slowly, since more edges become

empty. On the other hand, the accesses to the point file and the R–tree (by IER) decrease,

since P becomes smaller. In general, the performance of all algorithms is insensitive to this

parameter.

In the next experiment, we test the effect of points distribution in the network. We generated

30

R-tree

point

network

Page Accesses

Page Accesses

R-tree

point

network

G/W

100

200

300

400

500

600

700

800

0
0.1 0.5 1 5 10

G/W

CE,sum TA,sum IER,sum

CE,max TA,max IER,max

200

400

600

800

1000

1200

1400

0
0.1 0.5 1 5 10

(a) Page accesses for dsum

R-tree

point

network

Page Accesses

Page Accesses

R-tree

point

network

G/W

100

200

300

400

500

600

700

800

0
0.1 0.5 1 5 10

G/W

CE,sum TA,sum IER,sum

CE,max TA,max IER,max

200

400

600

800

1000

1200

1400

0
0.1 0.5 1 5 10

(b) Page accesses for dmax

 0

 5

 10

 15

 20

 0.1 1 10

E
xe

cu
tio

n
tim

e
(s

)

G/W

CE,sum
TA,sum

IER,sum
CE,max
TA,max

IER,max

(c) Execution time

Figure 13: Cost as a function of the ratio G/W

four clusters of 100K points each, according to the methodology of [19]. For each cluster, a

random point is generated as its first point. Then, the network is traversed from this point.

Whenever an edge is met for the first time, points are generated on it. The approximate

distance between two consecutive generated points is initially G and increases as the network

is expanded to reach G × spread for the final point. Large values of spread generate more

uniform distributions, whereas small values generate more skewed data. Figure 14 shows

the performance of the algorithms as a function of the spread parameter. As expected, for

skewed distributions, the algorithms are slower, since they have to explore larger parts of

the network until they find the solutions.

We also compared the algorithms for weighted ANN queries, described in Section 5. Figure 15

shows the performance of the algorithms as a function of the skew in the distribution of

31

weights to query points. Note that only the performance of CE for dsum queries is affected

by the skew on the weights. The more skewed the weights are, the larger part of the network

CE has to explore from a single source. All visited populated edges are then added on S,

which cannot be removed until visited by all other points.

 0

 10

 20

 30

 40

 50

 60

 70

 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e
(s

)

Spread

CE,sum
TA,sum

IER,sum
CE,max
TA,max

IER,max

Figure 14: Effect of points skew

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

E
xe

cu
tio

n
tim

e
(s

)

Weight skewness

CE,sum
TA,sum

IER,sum
CE,max
TA,max

IER,max

Figure 15: Weighted ANN

So far, IER dominates over TA and CE in almost all tested cases. Nonetheless, IER is not

the best method when the weights of the edges are not proportional to their lengths as the

next experiment suggests. We compared the algorithms after distorting the edge weights by

different factors F (Figure 16). Observe that TA and CE are not affected by this parameter.

On the other hand, the performance of IER degrades with F , especially for dmax queries,

since the algorithm is based on the effectiveness of Euclidean distance as a lower bound of the

network distance. As the edge weights become less proportional to the Euclidean distance,

the Euclidean ANN distances become looser as a bound and IER explores a large number

of edges and points before the result is guarranteed to be found. Thus, for large values of F

TA becomes the best method for dsum queries and CE dominates for dmax queries.

7 Conclusion

In this paper, we have studied the interesting problem of aggregate nearest neighbor queries

in road networks. Processing ANN queries in road networks cannot be achieved by straight-

32

R-tree

point

network

Page Accesses

F

CE,sum TA,sum IER,sum

Page Accesses

R-tree

point

network

CE,max TA,max IER,max

F

1 2 5 10
0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

3000

1 2 5 10

(a) Page accesses for dsum

R-tree

point

network

Page Accesses

F

CE,sum TA,sum IER,sum

Page Accesses

R-tree

point

network

CE,max TA,max IER,max

F

1 2 5 10
0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

3000

1 2 5 10

(b) Page accesses for dmax

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(s

)

F

CE,sum
TA,sum

IER,sum
CE,max
TA,max

IER,max

(c) Execution time

Figure 16: Effect of F

forward applications of previous approaches for the Euclidean space [11] due to the complex-

ity of shortest path computations as opposed to geometric distances. We presented three

algorithms that consider this inherent difficulty of the problem. IER incrementally retrieves

Euclidean aggregate nearest neighbors and computes their network distance by shortest path

queries, until the result cannot be improved. TA and CE explore the network around the

query points until the aggregate nearest neighbors are discovered. Our techniques can be

applied for various aggregate distance functions (sum and max). In addition, they can

be combined with spatial access methods and shortest path materialization techniques. A

thorough experimental study suggests

that their relative performance depends on the problem characteristics. IER is the best algo-

rithm when the edge weights are proportional to their lengths, since in that case Euclidean

33

distance becomes a quite tight lower bound of the actual network distance. Nevertheless

the performance of IER degrades fast as the weights are less reflected by the edge lengths.

For such cases, TA is the most appropriate method for sum queries, whereas CE is the best

approach for max queries. In addition, TA and CE are the only choices when the interest-

ing points are not indexed by R-trees, or when the Euclidean distance bounds may not be

used (e.g., in non-spatial networks). In the future, we plan to study the applicability of our

techniques for problems where the set of query points is very large (i.e., it does not fit in

memory), considering appropriate memory management techniques.

References

[1] T. Brinkhoff. A framework for generating network-based moving objects. GeoInformatica,

6(2):153–180, 2002.

[2] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik,

1:269–271, 1959.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS,

2001.

[4] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. TODS, 24(2):265–318,

1999.

[5] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Integrated query processing strategies for

spatial path queries. In ICDE, 1997.

[6] I. F. Ilyas, W. Aref, and A. Elmagarmid. Supporting top-k join queries in relational databases.

In VLDB, 2003.

[7] C. S. Jensen, J. Kolar, T. B. Pedersen, and I. Timko. Nearest neighbor queries in road

networks. In ACM GIS, 2003.

34

[8] N. Jing, Y. W. Huang, and E. A. Rundensteiner. Hierarchical encoded path views for path

query processing: An optimal model and its performance evaluation. TKDE, 10(3):409–432,

1998.

[9] S. Jung and S. Pramanik. An efficient path computation model for hierarchically structured

topographical road maps. TKDE, 14(5):1029–1046, 2002.

[10] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting incremental join

queries on ranked inputs. In VLDB, 2001.

[11] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. In ICDE,

2004.

[12] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial network

databases. In VLDB, 2003.

[13] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest neighbor search. In ACM SIGMOD,

1998.

[14] C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embedding technique

for k-nearest neighbor search in moving object databases. In ACM GIS, 2002.

[15] S. Shekhar, A. Kohli, and M. Coyle. Path computation algorithms for Advanced Traveller

Information System (ATIS). In ICDE, 1993.

[16] S. Shekhar and D. Liu. CCAM: A connectivity-clustered access method for networks and

network computations. TKDE, 19(1):102–119, 1997.

[17] S. Shekhar and J. S. Yoo. Processing in-route nearest neighbor queries: a comparison of

alternative approaches. In ACM GIS, 2003.

[18] S. H. Woo and S. B. Yang. An improved network clustering method for I/O-efficient query

processing. In ACM GIS, 2000.

[19] M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network. In ACM SIGMOD,

2004.

35

