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Abstract—In the past three years, there has been significant
interest in hyperspectral imagery (HSI) classification using vision
Transformers for analysis of remotely sensed data. Previous
research predominantly focused on the empirical integration of
convolutional neural networks (CNNs) to augment the network’s
capability to extract local feature information. Yet, the theoretical
justification for vision Transformers out-performing CNN archi-
tectures in HSI classification remains a question. To address this
issue, a unified hierarchical spectral vision Transformer archi-
tecture, specifically tailored for HSI classification, is investigated.
In this streamlined yet effective vision Transformer architecture,
multiple mixer modules are strategically integrated separately.
These include the CNN-mixer, which executes convolution oper-
ations; the spatial self-attention (SSA)-mixer and channel self-
attention (CSA)-mixer, both of which are adaptations of classical
self-attention blocks; and hybrid models such as the SSA+CNN-
mixer and CSA+CNN-mixer, which merge convolution with self-
attention operations. This integration facilitates the development
of a broad spectrum of vision Transformer-based models tai-
lored for HSI classification. In terms of the training process, a
comprehensive analysis is performed, contrasting classical CNN
models and vision Transformer-based counterparts, with particu-
lar attention to disturbance robustness and the distribution of the
largest eigenvalue of the Hessian. From the evaluations conducted
on various mixer models rooted in the unified architecture, it
is concluded that the unique strength of vision Transformers
can be attributed to their overarching architecture, rather than
being exclusively reliant on individual multi-head self-attention
(MSA) components. Extensive experiments demonstrate that
the derived vision Transformer models, based on the unified
architecture, surpass the classical methods when applied to
multiple hyperspectral benchmark datasets.

Index Terms—Hyperspectral imagery (HSI) classification, Uni-
fied vision Transformer architecture, Mixer, Disturbance robust-
ness, Hessian eigenvalue.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) enables detailed mate-
rial identification by representing the reflectance spectra

of objects via hundreds of contiguous bands. HSI data are used
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in diverse applications including environmental monitoring,
precision agriculture, geology, urban mapping, and defense
[1]–[4]. Owing to the rapid advancements in deep learning
[5]–[10], CNN architectures have emerged as the predominant
standard for HSI classification in recent years. In [11], a deep
feature fusion CNN is utilized to categorize each pixel of
HSI data. To bolster extraction of spectrally-based features,
[12], [13] introduce 3D-CNNs for HSI classification. Addi-
tionally, an attention mechanism can be integrated into the
CNN framework to facilitate band selection for HSI data,
as demonstrated in [14]. The efficacy of CNN-based HSI
classification faces two significant limitations: 1) CNNs often
struggle to adequately capture long-range dependencies; 2)
The adoption of small input image window patches serves as
a compromise between the high dimensionality of HSI data
and its corresponding lower spatial resolution. This restricts
the design possibilities of the network, impacting its depth
and width. In the past three years, the appeal of using vision
Transformers for HSI classification has grown [15]–[17]. This
is attributed to the understanding that the spectral dimension of
HSI parallels sequence data, irrespective of whether analysis
is conducted at the pixel or patch level. In [18], group-
wise spectral embedding is employed for HSI classification.
Similarly, [19] introduces a group-aware hierarchical vision
Transformer to strengthen HSI classification. Furthermore, the
LESSFormer design, as presented in [20], aims to increase
the capture of local information using adaptive spectral-spatial
tokens. However, some have suggested that this configuration
compromises the inductive bias inherent in CNNs [16], [21].
To address this, some have integrated vision Transformer and
CNN modules, either in parallel or sequentially, to harness
the advantages of both [22], [23]. Owing to the scalability of
vision Transformers, they typically have a higher number of
parameters compared to traditional CNNs. Incorporating an
additional CNN branch on top of the multi-head self-attention
(MSA) typically leads to a further increase in the model’s
parameter size. At the same time, it has been noted that the
overarching structure of vision Transformers, rather than just
the MSA mixer, is pivotal to delivering top-tier performance
[24]. This notion is further emphasized in studies where
MSAs are substituted for multi-layer perceptrons (MLPs),
as highlighted in [25]–[28]. While vision Transformer-based
network architectures presently have a pronounced edge in HSI
classification-based metrics relative to CNNs, the associated
exploration predominantly remains empirical. Thus, this field
continues to struggle with pivotal questions: (1) Does MSA
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serve as the critical component in vision Transformers that
enhances HSI classification? (2) What fundamental differences
exist relative to the training process for vision Transformer-
based models and CNNs in analysis of hyperspectral datasets?

To address these questions, this paper proposes a unified
hierarchical spectral vision Transformer architecture designed
to integrate discriminative features for HSI classification.
Notably, the simple yet effective unified architecture can be
seamlessly integrated with any type of mixer block to construct
a novel vision Transformer model. In this paper, various
mixer modules, including the CNN-mixer, spatial self-attention
(SSA)-mixer, channel self-attention (CSA)-mixer, SSA+CNN-
mixer, and CSA+CNN-mixer, are independently integrated
into the unified architecture, resulting in multiple vision Trans-
former models. A comprehensive analysis is conducted on
these derived vision Transformer models and classical models,
considering both the macroscopic aspect of the disturbance
robustness and the microscopic aspect of the distribution of
the maximum eigenvalue of the Hessian after the training
process. In this paper, the term ’Hessian’ specifically refers
to the Hessian of the loss function relative to the parameters
of the network. A key goal of this study is to explore the
influence of different mixers on training vision Transformer-
based models. A comprehensive comparison is conducted to
explore and highlight fundamental differences between the
vision Transformer and CNN models. To the best of our
knowledge, this is the first paper to thoroughly investigate the
key factors behind the superior performance of vision Trans-
formers in HSI classification. Other contributions include: a)
Conducting a rigorous evaluation of the training process for
both CNNs and vision Transformers; b) Demonstrating that the
unified architecture, rather than the MSA modules contribute
to the superior performance observed with vision Transformers
in HSI classification.

The remainder of this paper is structured as follows: Related
work is summarized in Section II. The proposed method is
detailed in Section III. The experimental setup and results are
presented in Section IV. Section V includes the conclusion.

II. RELATED WORK

CNN-based HSI classification: As highlighted in the first
review of deep learning-based HSI classification [1], tradi-
tional machine learning techniques often fall short in address-
ing the unique challenges inherent in HSI classification, and
particularly the significant spatial variability of spectral signa-
tures. Over the past decade, the application of CNN models has
advanced significantly, both in terms of enhanced performance
and efficiency in HSI classification. Compared to traditional
machine learning techniques, CNN-based methods excel in
their ability to capture localized and discriminative spatial
information, all while exhibiting resilience to translations and
other variations. In [29], a streamlined, end-to-end CNN struc-
ture utilizing 1 × 1 convolutional layers is adopted for HSI
classification. [30] introduces a dual-channel CNN, crafted to
jointly exploit spectral-spatial features from HSI. [31] develops
a spectral-spatial latent reconstruction framework that concur-
rently reconstructs spectral and spatial features, while also

performing pixel-wise classification with high accuracy. [32]
formulates a novel enhanced multiscale feature fusion network
to extract sufficiently multiscale features from the parallel
multipath architecture of three stages for HSI classification.
Additionally, [33] implements a novel online spectral infor-
mation compensation network for HSI classification. However,
conventional 1D and 2D-CNNs often fall short in concurrently
leveraging both spatial and spectral discriminative information.
Recognizing this gap, researchers pioneered 3D-CNN archi-
tectures. For instance, [34] investigates an enhanced 3D deep
CNN encompassing five layers. Furthermore, [35] proposes
a distinctive recurrent 3D-CNN, designed to refine the 3D-
CNN model by progressively diminishing the patch size.
[36] formulates a streamlined 3D-CNN model with minimal
parameters, resulting in a notable reduction in duration to
convergence, while boosting accuracy. However, it should be
noted that 3D-CNN models may encounter challenges such as
overfitting and substantial computational demands. Aiming to
alleviate such issues, [37] suggests a synergistic methodology
that intertwines 2D-CNN and 3D-CNN. In this approach, the
2D-CNN is employed to extract spatial features, while the 3D-
CNN, using small kernels, focuses on inter-band correlations.
Complementing this, [38] proposes a 2D-3D CNN that in-
corporates a multi-branch feature fusion architecture. Some
researchers specifically design CNN variants to efficiently
extract feature representations [39], [40]. Notably, [40] pro-
poses a novel geometry-aware convolutional foundation model
that excels in learning unique geometry- and category-aware
features and is informed by vehicle kinematics information to
significantly enhance inclusive object detection and extend the
perception range. Additionally, HSI shows category imbalance
and complex spatial-spectral distributions, limiting adaptation
performance. To address these issues, [41] proposes a class-
aligned and class-balancing generative domain adaptation
method for HSI classification. Similarly, [42] presents a novel
framework with multigranularity generators and discriminators
that uses adversarial and contrastive learning to continuously
improve discriminator classification performance with diverse
generated samples.

Recently, attention modules have gained widespread popu-
larity in the field of deep learning, owing to their plug-and-play
capability and their effectiveness in enhancing neural network
performance [43]–[45]. In [43], a hierarchical network for
efficient and accurate outdoor LiDAR point cloud registration
is proposed by introducing an attention-based neighbor encod-
ing module to gather neighborhood information. In pioneering
work in instance-level HSI classification, [44] proposes a
novel spectral–spatial feature pyramid network, which inte-
grates multi-scale spectral and spatial information for instance
segmentation in HSI. In [45], a ghost attention mechanism
is proposed to significantly reduce both the parameters and
FLOPs of the vision Transformer while achieving similar
or better accuracy. The introduction of attention modules
offers an alternative approach to boost HSI classification
accuracy. These modules, by selectively emphasizing the most
discriminative regions of an input small window patch or
feature map, guide the network to focus on pivotal areas.
Through the allocation of differential weights to various
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pixels, the attention mechanism captures essential details,
ignoring extraneous information. This refinement contributes
to the network’s more accurate predictions. In [46], a pixel
classification CNN is complemented with a superpixel-based
graph attention network. The work in [47] melds a spectral-
spatial attention network with ResNet for HSI classification.
Recognizing the potential of harnessing long-range semantic
information, [48] introduces an adaptive projection attention
technique. Concurrently, several studies corroborate that the
integration of attention modules significantly improves HSI
classification accuracies, as evidenced by [49]–[51].

Transformer-based HSI classification: Over the last three
years, the vision Transformer has excelled in the realm of HSI
classification, showcasing its distinctive advantage in handling
data sequences. The work in [18] introduces SpectralFormer,
which integrates group-wise spectral embedding and cross-
layer adaptive fusion modules. Specifically, the group-wise
spectral embedding is adept at capturing feature embeddings
from adjacent spectral bands. This combination facilitates the
capture of detailed local spectral representations and promotes
the transmission of memory-like components from superficial
to deeper layers. Meanwhile, [4] presents a multiscale and
cross-level attention learning network designed to holistically
harness both global and local multiscale features of pixels for
enhanced classification. In [19], a technique is introduced that
employs grouped pixel embedding to better represent local
representations. [52] proposes the spectral-spatial feature tok-
enization Transformer (SSFTT) approach, crafted to efficiently
encapsulate HSI’s low, mid, and high-level semantic features.
Aiming to optimize classification and reduce computational
overhead, [53] devises a neighborhood-centric representation
of multi-scale HSI features. In [54], a novel local vision Trans-
former, complemented by a spatial partition restore network,
is introduced for HSI classification. [20] details LESSFormer,
a design for HSI classification that converts HSI into adaptable
spectral-spatial tokens. These tokens are then enriched to
capture both local and extensive data nuances. Addressing the
vision Transformer’s predominant focus on global data, [55]
integrates it with a CNN, aiming to extract local features and
thereby enhance classification. [23] develops a hybrid Trans-
former, merging multi-granularity tokens with spatial-spectral
attention to model spatial-spectral information. Additionally,
[56] implements a dual-branch architecture, combining the
CNN and vision Transformer to seamlessly fuse spectral and
spatial features. [57] proposes a novel hybrid deep learning
network that systematically combines hierarchical CNNs and
Transformers for feature extraction and fusion. This approach
effectively learns spatial-spectral features in HSIs and el-
evation information in LiDAR, significantly enhancing the
accuracy of the joint classification. Similarly, [58] introduces
a novel layered architecture that integrates Transformer with
CNN, utilizing a feature dimensionality reduction module and
a Transformer-style CNN module to extract shallow features
and enforce texture constraints, while employing the origi-
nal Transformer encoder to extract deep features. Inspired
by the observation that high-frequency information captures
local details and low-frequency information provides global
smooth variations, [59] develops a frequency domain feature

extraction vision Transformer network for HSI classification.
The work in [60] puts forward three essential elements for
efficient HSI classification through the integration of vision
Transformer and CNN networks: extensive exploration of
available features, effective reuse of representative features,
and differentiated fusion of multi-domain features. Utilizing
masked autoencoders’ self-supervised training paradigm [61],
some researchers adopt a masked image modeling strategy for
remote sensing image classification [62]–[64]. [62] develops a
novel 3D generative pretrained Transformer architecture based
on masked autoencoders for remote sensing applications.
[63] introduces LFSMIM, a self-supervised network for HSI
classification that employs low-pass filtering to construct the
target domain within the masked image modeling framework.
[64] proposes an unsupervised band selection framework that
captures nonlinear relationships between bands and leverages
spatial information in HSI. From these studies, it is evident
that while vision Transformers have advanced HSI classifi-
cation accuracy compared to CNN models, the majority of
research has concentrated on empirical modifications to the
self-attention modules, such as integrating CNN modules or
altering feature embeddings. Specifically, the current analysis
of model enhancements relies heavily on metric outcomes
and prediction maps, without a thorough exploration of the
variations throughout the training phase. This overlooks a
critical element that contributes to the superior performance
of vision Transformer architecture in HSI classification.

To bridge these gaps, a unified architecture for HSI clas-
sification built upon the vision Transformer is proposed in
this paper. Based on the unified architecture, the attributes
of the vision Transformer equipped with multiple mixers
are investigated from a model training perspective, and the
influence of different mixer modules on model performance is
explored.

III. PROPOSED METHOD

A. Overall architecture construction.

The HSI classification model based on the vision Trans-
former primarily consists of two main modules, as depicted in
Fig. 1: 1) a unified architecture and 2) mixer block options.
Subsequent sections provide detailed descriptions of these
modules. Additionally, rather than relying exclusively on pre-
diction accuracy and empirical analysis of various models, this
paper evaluates disturbance robustness and the distribution of
the largest eigenvalue of the Hessian. This evaluation provides
insights into the model training process from both macro and
micro perspectives.

The original HSI data are denoted as I ∈ Rh×w×c, where
h and w represent the spatial height and width, respectively,
and c signifies the number of spectral bands. The HSI data
I are divided into patches using a patch window size of
s × s, with each patch represented as P ∈ Rs×s×c. The
label assigned to the center point of a patch determines its
true label. The proposed vision Transformer model for HSI
classification is designed to categorize the center point of
each patch cube. The hierarchical vision Transformer archi-
tecture for HSI classification is depicted in Figure 1, referred
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Fig. 1: Overall framework for HSI classification. The model consists of a unified architecture and mixer block options. The
unified architecture is based on a novel hierarchical spectral vision Transformer, specifically tailored for HSI classification.
Mixer block options include five common mixer blocks. When different mixers are individually chosen by the mixer blocks,
it results in the creation of five unique Transformer models. The visualization in the bottom right corner demonstrates how
the SSA-mixer and CSA-mixer can be easily converted on sequence inputs using the transpose operator. Img2Seq: transfer the
image to sequence. LN: linear normalization. MLP: multilayer perceptron. CNN: convolutional neural network. SSA: spatial
self-attention. CSA: channel self-attention. FCL: fully connected layer.

to as the unified architecture. The network comprises four
stages: Stage 1, Stage 2, Stage 3, and Stage 4. In each
stage, feature information is extracted through the iterative
stacking of token embedding and the mixer module. The
number of layers in each stage is represented by s1, s2,
s3, and s4 respectively. Given the unique characteristics of
the input patch window, discriminative features are accumu-
lated across various layers, emphasizing the information in
the spectral and spatial dimensions. The respective channel
numbers for each stage are denoted as c1, c2, c3, and c4.
Similar with the Swin Transformer’s linear embedding tech-
nique [65], this paper utilizes nn.Conv2d(·) for processing
raw-valued features. To guarantee compatibility in data shape
with the mixer blocks modules, Seq2Img(·) and Img2Seq(·)
are judiciously placed before and after the nn.Conv2d(·)
operation, respectively. Importantly, Seq2Img(·) serves as
the inverse operation to Img2Seq(·). The token embedding
strategy employed here is designed to project the spectral
dimension to an arbitrary dimension, without impacting its
spatial dimension. Employing the token embedding module,
channel/pixel feature information is consolidated to produce a
hierarchical representation that prioritizes the spectral/spatial
dimension. Once processed by the token embedding module,
the feature signals are relayed to the mixer blocks module
for further discriminative feature extraction. After the feature
extraction through four stages, the latent representation will
further undergo processing by the adaptive average pooling,
flattening, and a fully connected layer to output the predicted

values for the center position of each patch. Notably, the
Swin Transformer achieves hierarchical representation by re-
ducing resolution and simultaneously expanding the number
of channels. In contrast, the HSI datasets from Houston 2013,
Botswana, and Pavia University consist of high-dimensional
input channels, with 144, 145, and 103 channels respectively,
which always include redundant information. To effectively
extract latent representations without substantially enlarging
the parameter size of the vision Transformer architecture, the
feature dimensions for the initial three layers are reduced,
while the spatial dimension size remains constant. Therefore,
the hierarchical paradigm for the proposed unified architecture
is achieved by leveraging the spectral dimension.

To promote the model’s capacity to generalize across clas-
sification tasks, the label smoothing cross-entropy is selected
as the loss. It is computed as follows:

L(y, ŷ) = −
C∑

c=1

(
(1− α) · yc +

α

C

)
log(ŷc) (1)

where the y is the ground truth label for the one-hot vector. ŷ
is the predicted probability distribution. C is the class number.
α is set at 0.1 to control the extent of smoothing. yc is the
value of the c-th element in the true label vector, while ŷc
is the value of the c-th element in the probability distribution
vector predicted by the model.
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B. Mixer block options

HSI has tens to hundreds of spectral bands. In HSI, each
pixel is characterized by a spectrum comprising reflectance
values across these bands. This provides a rich representation
of the scene or object, allowing for in-depth analysis and
identification of materials or features through their unique
spectral signatures. As a result, beyond the patch flattening,
each pixel in HSI can also be interpreted as a sequence of
data. This characteristic makes it possible to devise a variety of
mixer blocks tailored to their specific attributes, including the
CNN-mixer, SSA-mixer, CSA-mixer, SSA+CNN-mixer, and
CSA+CNN-mixer.

CNN-mixer: Similar to the vision Transformer block from
the Swin Transformer, the CNN-mixer module embeds an
MLP, but opts for a CNN in place of the MSA mechanism.
Notably, it sets itself apart by integrating an inductive bias,
which fosters local feature connections.As highlighted in [66],
the CNN-mixer module possesses the capability to model
locality, which is governed by the kernel size, as well as scale-
invariance. To avoid the influence of the attention mechanism
on model performance, this paper employs a simple two-
layer convolutional module. The module’s representation is
as follows:

CN(X) = Conv3×3(SiLU(BN(Conv3×3(X)))) (2)

where the Conv3×3 operation amplifies the channel count
fourfold using 3×3 filters. This is followed by the application
of the BN batch normalization. The module further integrates
the SiLU activation function, which precedes the Conv3×3

operation to refine the features. In this paper, unless stated
otherwise, X represents each patch input of P ∈ Rs×s×c.

The CNN-mixer module, incorporating the CNN block, is
computed as follows:

X̂ = Seq2Img(X)

Y = X̂+ CN(X̂)

Ŷ = Img2Seq(Y)

Z = Ŷ +MLP (LN(Ŷ))

(3)

where CN(·) is the CNN block. MLP (·) is the multilayer
perceptron operation. The function Seq2Img(·) denotes a
basic reshaping operation that transforms a one-dimensional
sequence into a feature map. Img2Seq(·) signifies the inverse
operation of Seq2Img(·). Utilizing these reshaping techniques
ensures the smooth integration of the CNN-mixer module
within the vision Transformer framework.

SSA-mixer: To maximize the benefits of the numerous
spectral bands in HSI, the SSA-mixer regards each pixel
within a patch window as a sequence. Consequently, the
length of the input sequence corresponds to the spectral
bands’ feature dimension, while the number of sequences is
defined by the window size, s × s. This sequential feature
information is then input to the MSA module to further distill
discriminative features.

Y = X+MSA(LN(X))

Z = Y +MLP (LN(Y))
(4)

where LN(·) is linear normalization. MSA(·) is the compu-
tation of MSA. It can be described as follows:

Attention(Q,K, V ) = SoftMax(QKT /
√
d)V (5)

where Q, K, V are the vectors of query, key and value. These
vectors are produced by projecting the input token embeddings
through three distinct linear projection layers. d is the token
embedding dimension.

CSA-mixer: In a similar manner, the sequential informa-
tion derived from token embedding is converted into three-
dimensional feature data using the Seq2Img(·) function.
These data are subsequently transposed and processed via
the Img2Seq(·) function, facilitating its transformation into
sequences for each channel. This sequential feature data is
then channeled through the MSA module to further refine and
extract key features. The process can be detailed as follows:

X̂ = Img2Seq(Transpose(Seq2Img(X)))

Y = X̂+MSA(LN(X̂))

Z = Y +MLP (LN(Y))

Ŷ = Img2Seq(Transpose(Seq2Img(Ŷ))

(6)

where Transpose(·) operation involves swapping the order
of the three axes in the image latent features, facilitating their
conversion into sequence data along different directions.

SSA+CNN-mixer: This architecture is designed by inte-
grating a CNN module alongside the SSA-mixer. The goal is
to explore potential improvements in the vision Transformer
model’s HSI classification performance by introducing the
CNN module. The structure can be outlined as follows:

Y = X+MSA(LN(X)) + Img2Seq(CN(Seq2Img(X)))

Z = Y +MLP (LN(Y))
(7)

CSA+CNN-mixer: This architecture is formulated by inte-
grating a CNN module alongside the CSA-mixer. The intention
is to explore potential improvements in the vision Transformer
model’s HSI classification efficacy with the inclusion of the
CNN module. The configuration can be detailed as follows:

X̂ = Img2Seq(Transpose(Seq2Img(X)))

Y = X̂+MSA(LN(X̂))

+ Img2Seq(Transpose(CN(Seq2Img(X))))

Ŷ = Y +MLP (LN(Y))

Z = Img2Seq(Transpose(Seq2Img(Ŷ))

(8)

C. Representation of the training process

In the evaluation of HSI classification models, especially
when contrasting vision Transformer and CNN models, it is
common for researchers to focus on performance metrics.
They often employ reverse engineering and empirical analysis
to emphasize the strength of specific methods. However, to
our knowledge, few studies have seriously investigated the
unique attributes of vision Transformer models from a model
training perspective. This paper delves into the distinctions
between vision Transformer and CNN models during the
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HSI classification training phase, analyzing them through the
’best’ pretrained weight disturbance robustness and the largest
eigenvalue of the Hessian. Specifically, the ’best’ pretrained
weight refers to the training weight achieved after completing
300 epochs on the training dataset, while the maximum
eigenvalue of the Hessian is calculated using the Hessian
matrix. This matrix is constructed from the second-order
partial derivatives of the neural network’s loss function. It
effectively describes the local curvature of a multi-variable
function. In the realm of deep learning training, the ’loss
landscape’ refers to the visualization or portrayal of the loss
function across the parameter space of a network [67], [68].
This landscape offers critical insights into the evolution of the
loss function as network parameters change during training. It
reveals useful insights about the model’s behavior relative to
the loss during its training phase. Notably, a smoother loss
surface in proximity to the closest point tends to improve
the model’s generalization capabilities. However, given the
huge number of parameters in deep learning models, capturing
the intricacies of the loss landscape with a simple three-
dimensional representation during the training process is a
challenging task.

Building on the technique to produce three-dimensional
loss landscapes, we can develop a new understanding of the
model’s training process. By introducing random disturbances
along two unique vector directions with different magnitudes,
based on the ’best’ pretrained weights, the response of the loss
value to these shifts can be assessed. This offers an avenue
to analyze the robustness of various models to disturbances
in post-training. To depict the three-dimensional loss surface
subsequent to the disturbance, the model’s loss value can be
illustrated as follows:

V (wx, wy) = Loss(Θ∗ + wxνx + wyνy) (9)

where Θ∗ is the ’best’ pretrained weight after training, which
is stored in the format of the dictionary. wx and wy are
scale parameters ranging from -1 to 1 [68]. The vectors
νx and νy are the basis vectors associated with the x-axis
and y-axis, respectively. The procedures outlined in [67] are
established through the following two steps. Initially, two new
dictionaries are created based on the function randn(·), and
these dictionaries are initialized with the same attributes as
Θ∗. Next, the weights and biases of each item in the these
dictionaries are normalized separately.

In a given deep learning model, the ’best’ pretrained weights
act as a baseline, with wx and wy serving as the horizontal
axes. By varying the values of wx and wy , introducing differ-
ent levels of perturbations to the weight, the corresponding loss
values of the model on the training dataset can be determined.
From the data derived from this set of three-dimensional
points, the associated three-dimensional loss surface can be
constructed. The framework of calculating the loss value with
varying magnitude of disturbance on the ’best’ pretrained
weight is shown as Algorithm 1.

To further investigate local flatness and convergence prop-
erties, a qualitative analysis using the maximum eigenvalue

Algorithm 1: Framework of calculating loss value with
varying magnitude disturbance of the best pretrained
weight
Input : ’Best’ pretrained weight Θ∗.
Output: Loss value array Varray .

1 /* The loss value is calculated on the

training dataset. */

2 V = [ ]
3 wx ← np.linspace(−1, 1, n) // n represents the

number of sampling points.

wy ← np.linspace(−1, 1, n)
4 Initialize two random normal vectors νinix and νiniy

// νini
x and νini

y are same shape with Θ∗.

5 Normalize νinix and νiniy : {νx[m,n], νy[m,n]} ←
{ νini

x [m,n]
∥νini

x [m,n]∥∥Θ
∗[m,n]∥, { νini

y [m,n]

∥νini
y [m,n]∥∥Θ

∗[m,n]∥}
// Θ∗[m,n] denotes the m-th filter

corresponding to the n-th layer.

V0 = LabelSmoothingCrossEntropy(Θ∗) +
weight decay ∗ L2 // L2 represents

regularization.

6 for i← 0 to n− 1 do
7 for j ← 0 to n− 1 do
8 Θ∗

dis = Θ∗ + wx[i] ∗ νx + wx[j] ∗ νy
9 Valign =

LabelSmoothingCrossEntropy(Θ∗
dis) +

weight decay ∗ L2 − V0

10 V.append(Valign)
11 end for
12 end for
13 Varray = np.array(V ).reshape(n, n)
14 return Varray

of the Hessian is necessary [69]. This explores the local
characteristics of the loss surface, highlighting both flat and
steep regions. These insights are pivotal in identifying areas
that might either impede or aid convergence. The eigenvalue
of the Hessian at a given point play a pivotal role in revealing
the inherent characteristics of the model’s loss function at that
specific location. They are instrumental in discerning whether
the point under consideration is a local minimum, a local
maximum, or a saddle point. Furthermore, they offer valuable
insights into the function’s curvature in various directions. A
negative eigenvalue in the Hessian is indicative of the curva-
ture being concave along at least one direction. In practical
terms, this means that a slight movement in the direction of
the corresponding eigenvector would lead to an increase in
the function’s value, signifying that the point in question is
not situated in a convex region of the function. Conversely, a
scenario in which all the Hessian’s eigenvalues at a specific
point are positive denotes that the function exhibits local
convexity at that juncture, categorizing the point as a local
minimum [69]. Based on the ’best’ pretrained weight after the
training process, this paper conducts a thorough analysis of
the distribution of the maximum eigenvalue of the Hessian. In
the distribution curve representing the maximum eigenvalue,
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TABLE I: Number of samples for each class of Houston 2013
dataset.

Class Training Validation Testing Total
1: Healthy grass 63 62 1126 1251
2: Stressed grass 62 63 1129 1254
3: Synthetic grass 35 35 627 697
4: Trees 62 62 1120 1244
5: Soil 62 62 1118 1242
6: Water 17 16 292 325
7: Residential 63 64 1141 1268
8: Commercial 62 62 1120 1244
9: Road 63 62 1127 1252
10: Highway 61 62 1104 1227
11: Railway 62 61 1112 1235
12: Parking lot 1 61 62 1110 1233
13: Parking lot 2 23 24 422 469
14: Tennis court 22 21 385 428
15: Running track 33 33 594 660

the ideal situation is for the horizontal coordinate of the
curve’s peak to not only exceed zero but also remain in close
proximity to it. This scenario is indicative of an augmented
level of local smoothness in the vicinity of the ’best’ pretrained
point, a state achieved in post-training. This is indicative
of the model’s generalization ability, showcasing its superior
performance capabilities. In this paper, the PyHessian tool
[70] is employed to compute the maximum eigenvalue of the
Hessian. Notably, if model parameter gradients are absent,
they are excluded from consideration. The derived maximum
eigenvalue of the Hessian then becomes the foundation for
applying the KernelDensity function from the sklearn
library, paired with a Gaussian kernel, to shape a distribution
curve.

To this end, an in-depth representation of the distinctions
between CNN and vision Transformer models, as well as the
impact of different mixer modules on the vision Transformer
model in HSI classification, can be illustrated by combining
performance metrics and training process analysis.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Dataset description and implementation detail

The performance of the proposed vision Transformer mod-
els for HSI classification is evaluated using three commonly
analyzed HSI datasets: Houston 2013, Botswana, and Pavia
University [71], [72].

1) Houston 2013: Houston 2013 airborne hyperspectral data
consist of 144 spectral bands. The dataset was collected over
the University of Houston campus and the surrounding urban
area. It comprises a total of 349 × 1905 pixels, with each pixel
of the orthorectified dataset having a spatial resolution of 2.5m.
The dataset has 15 thematic classes. It was partitioned into
three subsets for the analysis: a training set (5%), a validation
set (5%), and a test set (90%). The class information and
the number of training, validation, and testing samples for
each class are presented in Table I. The false color image
and ground reference map of the Houston 2013 dataset are
shown in Fig. 2.

2) Botswana: The Botswana dataset, acquired by the Hy-
perion sensor on the EO-1 satellite over the Okavano Delta,
consists of 242 spectral bands. After eliminating the noisy

(a)

(b)

Fig. 2: Houston 2013 dataset. (a) False color image (band R:
60, G: 45, B: 20). (b) Ground truth map.

TABLE II: Number of samples for each class of Botswana
dataset.

Class Training Validation Testing Total
1: Water 27 27 216 270
2: Hippo grass 10 10 81 101
3: Floodplain grasses 1 25 25 201 251
4: Floodplain grasses 2 22 21 172 215
5: Reeds 27 27 215 269
6: Riparian 27 27 215 269
7: Firescar 26 26 207 259
8: Island interior 21 20 162 203
9: Acacia woodlands 31 32 251 314
10: Acacia shrublands 24 25 199 248
11: Acacia grasslands 30 31 244 305
12: Short mopane 18 18 145 181
13: Mixed mopane 26 27 215 268
14: Exposed soils 10 9 76 95

and water absorption features bands, the dataset has 145
bands. Each pixel in the imagery has a spatial resolution of
30m. 14 classes were identified in the scene. The dataset was
partitioned into three subsets for the analysis: a training set
(10%), a validation set (10%), and a test set (80%). The class
information and the number of training, validation, and testing
samples for each class are detailed in Table II. The false color
image and ground reference map of the Botswana dataset are
shown in Fig. 3.

3) Pavia University: This scene was collected by the ROSIS
sensor during a flight campaign over Pavia, northern Italy.
There are 103 bands with 1.3m spatial resolution in this 610
× 340 image, for which 9 classes have been identified. The
dataset was partitioned into three subsets for the analysis: a
training set (2%), a validation set (2%), and a test set (96%).
The class information and the number of training, validation,
and testing samples for each class are presented in Table III.
The false color image and ground reference map of the Pavia
University dataset are shown in Fig. 4.

Hyperspectral data are targeted for specific projects. Air-
borne data are expensive to acquire, and high dimensional. The
data are standard common testbed data sets for algorithms,
and we did not undertake any additional processing on the
data. The benchmark data sets we analyze are widely used to
compare classification methods. The Houston data covers the
University of Houston and some of the city of Houston. The
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(a) (b)

Fig. 3: Botswana dataset. (a) False color image (band R: 60,
G:45, B: 15). (b) Ground truth map.

focus was to acquire information over a range of targets in an
urban area with different spatial and spectral characteristics.
Pavia University dataset is high resolution and covers a small
area with less diversity in the classes and where the spatial
representation of structures such as buildings was uniform
and are easy to indicate in the ground reference. Botswana
dataset was totally different both in terms of the sensor (30m
data from space) and as a natural environment. The ground
reference information was obtained using small homogeneous
patches obtained on the ground and by interpretation of high
resolution remotely sensed imagery. Thus, our analysis covers
three totally different scenarios.

The proposed method, along with other established common
methods, was implemented in Pytorch. The network was im-
plemented on an NVIDIA Quadro RTX 6000 GPU with 22 GB
RAM. The corresponding versions of Pytorch and CUDA were
1.10.1 and 10.2, respectively. The training process consisted of
300 epochs, with a batch size of 64. In this paper, the proposed
algorithms utilized the Stochastic Gradient Descent (SGD)
optimizer, configured with a learning rate of 0.001, momentum
at 0.9, and a weight decay parameter of 0.0001. Parameters
for the seven popular algorithms evaluated for comparison
are consistent with those in the original papers. For the
loss function, all algorithms employed label smoothing cross-
entropy, ensuring a consistent methodological approach across
the comparative analysis. To provide a quantitative comparison
of the proposed method’s performance with other classical
methods, the evaluation metrics employed were overall accu-
racy (OA), average accuracy (AA), and kappa coefficient (κ).
Each reported accuracy value represents an average obtained
from training with five different random seeds.

B. Comparison (baseline) methods

In the comparison study, several representative baseline
methods are evaluated, including DFFN [11], CNN3D [12],
M3D-DCNN [13], RSSAN [14], SpectralFormer [18], SSFTT

TABLE III: Number of samples for each class of Pavia
University dataset.

Class Training Validation Testing Total
1: Asphalt 132 133 6366 6631
2: Meadows 373 373 17903 18649
3: Gravel 42 42 2015 2099
4: Trees 62 61 2941 3064
5: Painted metal sheets 27 27 1291 1345
6: Bare soil 100 101 4828 5029
7: Bitumen 27 26 1277 1330
8: Self-blocking bricks 73 74 3535 3682
9: Shadows 19 19 909 947

(a) (b)

Fig. 4: Pavia University dataset. (a) False color image (band
R: 40, G: 30, B: 20). (b) Ground truth map.

[52], GroupTransformer [19]. The DFFN utilizes residual
learning to construct a deep 2D-CNN network. The CNN3D
integrates traditional CNN architecture with 3D convolution
operations. Similarly, the M3D-DCNN jointly learns both 2D
multi-scale spatial features and 1D spectral features through a
multiscale 3D deep convolutional neural network. The RSSAN
combines a spectral-spatial residual attention network with
long-short term memory (LSTM) to extract more discrimi-
native spectral and spatial features. In SpectraFormer, which
extends the vanilla vision Transformer architecture, a cross-
layer skip connection is introduced to merge features across
different layers. The SSFTT integrates a 3D convolution layer,
a 2D convolution layer, and a vision Transformer module
to construct a hybrid CNN-Transformer model for HSI clas-
sification. The GroupTransformer introduces a hierarchical
Transformer alongside a 2D group convolution network for
HSI classification. Thus, the aforementioned comparison of
methods includes the common 2D and 3D CNNs, as well as
the vision Transformer network. To ensure that each class of
interest is adequately represented, stratified random sampling
was employed for the dataset split. This technique consists
of forcing the distribution of the target variables among
the different splits to be the same. The strategy results in
training on the same population in which it is being evaluated,
achieving better predictions. Is is implemented by the function
of sklearn.model selection.train test split().
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TABLE IV: Parameter size and FLOPs of different models.

Datasets Complexity CNN-based method Transformer-based method
CNN3D DFFN M3D-DCNN RSSAN SpectralFormer SSFTT GroupTransformer CNN-mixer SSA-mixer CSA-mixer SSA+CNN-mixer CSA+CNN-mixer

Houston 2013 Parameters (M) 0.52 0.51 0.68 0.09 0.24 0.67 0.97 1.05 0.47 1.02 1.23 2.54
FLOPs (M) 6054.43 3979.24 3341.64 615.34 2429.33 2261.94 8628.74 8172.74 4760.42 5801.27 10636.20 16192.77

Botswana Parameters (M) 0.11 0.51 0.17 0.09 0.23 0.68 0.98 1.10 0.48 0.36 1.28 0.91
FLOPs (M) 1230.20 1611.91 996.46 250.53 2327.45 447.00 3241.43 3340.80 1694.47 1544.98 4189.52 3268.84

Pavia
University

Parameters (M) 0.25 0.51 0.28 0.07 0.18 0.48 0.93 0.84 0.37 1.36 0.97 2.62
FLOPs (M) 4343.47 3933.49 2282.17 523.19 1462.65 1615.03 8271.87 6508.44 3919.84 5324.28 8579.87 15089.90

(a) (b) (c)

Fig. 5: Training patch size effect on the overall accuracy. (a) Houston 2013 dataset. (b) Botswana dataset. (c) Pavia University
dataset.

C. Model structure and complexity analysis

Given the dataset variations outlined in Section IV-A,
tailoring model structural parameters considering the data
characteristics is crucial in HSI classification. Based on the
proposed unified architecture, the number of blocks per layer
[s1, s2, s3, s4] for the Houston 2013, Botswana, and Pavia
University datasets were set to [3, 2, 4, 2], [3, 3, 2, 2], and
[2, 2, 6, 2], respectively. The dimension of the features per layer
[c1, c2, c3, c4] were set to [96, 64, 32, 16], [96, 64, 32, 32], and
[96, 64, 32, 16], respectively. In the joint tuning process of the
number of blocks per layer and the dimension of features
per layer, the initial setting for the number of blocks per
layer was established as [2, 2, 6, 2], with the Swin Transformer
serving as a reference. Simultaneously, the dimensions of
the features per layer were set to [96, 64, 32, 16], ensuring a
gradual decrease in feature dimension as layer depth increased.
With these initial settings, the models were constructed to
ensure the parameter size comparable to the baseline methods.
The models were further optimized by adjusting the number of
blocks per layer and the dimension of the last layer’s features,
with careful consideration to avoid significant changes in the
model’s overall parameter size. It should be noted that changes
to the dimensions of the features in the first three layers were
avoided, as they have a greater impact on the size of the
parameter size. Furthermore, the selection of patch sizes for
each dataset was determined by an analytical comparison study
and evaluation of the spatial resolution of the data relative to
that of the scale of spatial information in the image. As shown
in Fig. 5, the optimal patch sizes were determined to be 11, 7,
and 11 for the Houston 2013, Botswana, and Pavia University
datasets, respectively.

Two metrics were introduced to represent the complexity
of the model, the size of the parameter set and FLOPs. The

results are shown in Table IV. All measurement results use a
patch cube as input, with a batch size that matches the training
batch, which was set at 64. In the Houston 2013 and Pavia
University datasets, the models built on SSA-mixer have the
smallest number of parameters and FLOPs among the five
proposed models. The number of parameters is even less than
that of the SSFTT and GroupTransformer algorithms. In the
Botswana dataset, the model built on the CSA-mixer has the
smallest number of parameters and FLOPs. This is because the
patch size in the Houston 2013 and Pavia University datasets
was set to 11, which is significantly larger than the patch size
of 7 set for the Botswana dataset. As the patch size increases,
the number of features in the models built on CSA-mixer
increases significantly, leading to a considerable increase in
the number of model parameters and FLOPs. Furthermore, it
is also observed that the models based on the CNN-mixer,
despite their simple construction, do not have the smallest
number of parameters and FLOPs among the five proposed
models. In addition, after adding a CNN branch to the MSA,
the two hybrid vision Transformer models (SSA+CNN-mixer
and CSA+CNN-mixer) have more parameters and FLOPs
than the classical Transformer models, resulting in greater
computational costs.

D. Experimental results

1) Analysis of classification performance: The mean and
standard deviation of each criterion index across the three
datasets are presented in Table V-VII. The highest value is
highlighted in bold.

The first comparison experiment was conducted on the
Houston 2013 dataset. Table V reports the prediction results
on the test dataset in terms of OA, AA, κ, and the accuracy
of each class. Among the four CNN-based models, DFFN



10

TABLE V: Classification results on the Houston 2013 dataset.

Class CNN-based method Transformer-based method
CNN3D DFFN M3D-DCNN RSSAN SpectralFormer SSFTT GroupTransformer CNN-mixer SSA-mixer CSA-mixer SSA+CNN-mixer CSA+CNN-mixer

1 92.43±3.09 96.16±1.84 94.01±2.73 97.50±1.31 92.22±2.88 98.72±2.04 97.96±2.38 97.50±2.24 97.99±1.25 98.35±1.85 98.38±2.64 98.15±1.60
2 99.68±0.16 99.42±0.20 99.27±0.84 98.42±0.70 96.35±2.09 99.61±0.20 98.87±0.85 99.03±0.62 99.19±0.45 98.57±0.62 99.47±0.21 99.33±0.52
3 100.00±0.00 99.81±0.19 100.00±0.00 99.87±0.16 99.04±0.62 99.71±0.43 99.84±0.17 99.94±0.13 99.78±0.13 99.65±0.42 99.94±0.08 99.90±0.13
4 99.57±0.19 99.45±0.49 99.18±0.54 98.79±1.09 96.12±2.02 99.27±0.78 99.11±0.67 99.34±0.58 99.34±0.35 99.66±0.47 99.21±0.56 99.14±0.77
5 99.18±0.44 99.86±0.20 99.19±0.37 98.30±1.27 98.07±0.66 100.00±0.00 100.00±0.00 99.98±0.04 100.00±0.00 100.00±0.00 100.00±0.00 99.95±0.11
6 87.88±4.52 93.49±6.08 86.78±5.35 82.05±2.57 87.40±5.19 95.89±5.31 96.03±5.10 95.48±5.00 94.25±5.28 94.45±5.07 95.41±4.12 96.44±5.11
7 95.34±0.78 98.23±0.82 96.69±1.14 96.39±0.57 91.15±3.14 98.07±1.11 99.54±0.33 99.28±0.53 99.12±0.66 99.16±0.71 99.04±0.76 99.51±0.54
8 84.38±3.36 92.04±2.68 88.88±3.05 89.95±1.98 87.68±3.47 95.09±0.91 93.91±1.44 94.39±0.64 94.07±1.28 94.91±1.24 95.43±0.35 94.52±0.75
9 91.54±1.95 95.21±0.68 92.83±1.34 93.58±0.83 86.14±0.98 97.04±0.88 97.52±0.91 98.01±1.03 97.59±0.87 96.95±1.06 97.37±1.16 97.64±1.06
10 93.04±1.11 98.79±0.77 96.12±1.22 96.78±2.11 91.52±2.54 99.26±0.41 99.33±0.82 99.78±0.19 99.80±0.31 99.80±0.20 99.87±0.25 99.49±0.85
11 91.76±1.74 97.45±1.02 93.47±2.23 96.46±0.85 89.46±2.44 99.30±0.96 98.87±1.17 99.59±0.54 99.51±0.97 99.78±0.29 99.86±0.25 99.51±0.75
12 92.29±3.47 97.26±1.53 95.17±0.73 95.24±1.31 93.21±2.31 97.21±1.78 97.15±1.39 97.37±2.11 97.75±0.97 97.68±1.37 97.03±2.21 98.25±1.02
13 91.04±1.88 97.39±1.42 90.81±2.36 89.05±3.08 69.19±5.99 97.87±1.49 98.77±1.60 98.34±1.68 97.30±2.56 96.64±2.22 97.73±2.27 98.67±1.74
14 99.32±0.45 99.74±0.52 99.53±0.42 98.81±0.71 95.69±1.44 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
15 99.93±0.13 100.00±0.00 99.87±0.27 98.48±1.13 96.73±1.07 99.97±0.07 99.56±0.88 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
OA 94.41±0.65 97.59±0.39 95.67±0.40 95.97±0.23 91.99±1.07 98.47±0.41 98.38±0.29 98.54±0.38 98.48±0.26 98.50±0.25 98.64±0.39 98.68±0.21
AA 94.49±0.70 97.62±0.32 95.45±0.66 95.31±0.23 91.33±1.28 98.47±0.48 98.43±0.41 98.53±0.48 98.38±0.28 98.37±0.26 98.58±0.39 98.70±0.30
Kappa 93.95±0.70 97.40±0.42 95.32±0.44 95.64±0.25 91.34±1.16 98.34±0.44 98.25±0.31 98.43±0.41 98.36±0.28 98.38±0.27 98.53±0.42 98.57±0.23

TABLE VI: Classification results on the Botswana dataset.

Class CNN-based method Transformer-based method
CNN3D DFFN M3D-DCNN RSSAN SpectralFormer SSFTT GroupTransformer CNN-mixer SSA-mixer CSA-mixer SSA+CNN-mixer CSA+CNN-mixer

1 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.91±0.19 99.91±0.19 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
2 96.54±2.39 100.00±0.00 100.00±0.00 99.75±0.49 98.52±1.44 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
3 98.11±1.49 99.50±0.77 99.50±0.63 100.00±0.00 96.12±2.56 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
4 98.60±1.31 99.88±0.23 99.30±0.93 97.79±2.13 97.91±1.86 99.88±0.23 100.00±0.00 100.00±0.00 100.00±0.00 99.88±0.23 100.00±0.00 99.88±0.23
5 89.40±3.85 98.05±2.27 96.28±2.56 95.35±3.59 78.79±3.12 95.53±4.27 99.35±0.47 98.79±1.43 98.70±1.62 99.53±0.93 97.86±2.62 99.63±0.35
6 78.23±7.61 98.33±1.37 92.84±3.79 98.23±0.74 93.95±1.72 98.23±1.12 97.40±2.57 98.42±1.60 98.42±1.37 98.42±1.46 97.12±3.16 98.70±1.15
7 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.32±0.66 100.00±0.00 100.00±0.00 100.00±0.00 99.71±0.58 100.00±0.00 100.00±0.00 100.00±0.00
8 95.06±5.05 100.00±0.00 100.00±0.00 100.00±0.00 96.30±4.40 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
9 93.94±4.57 99.76±0.20 97.61±3.02 98.73±1.81 92.59±4.54 98.49±2.05 99.84±0.32 100.00±0.00 100.00±0.00 99.92±0.16 100.00±0.00 99.92±0.16
10 97.09±0.80 100.00±0.00 99.60±0.59 100.00±0.00 97.99±0.95 100.00±0.00 99.70±0.40 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 99.90±0.20
11 96.39±0.88 97.95±2.07 99.84±0.20 99.75±0.33 98.69±0.40 99.51±0.98 99.43±0.71 99.92±0.16 99.67±0.66 100.00±0.00 99.43±0.80 99.75±0.49
12 99.31±0.44 99.03±0.83 100.00±0.00 98.07±1.60 95.45±2.33 100.00±0.00 99.86±0.28 100.00±0.00 99.59±0.83 100.00±0.00 99.86±0.28 99.72±0.55
13 99.81±0.23 100.00±0.00 100.00±0.00 100.00±0.00 99.53±0.42 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
14 91.05±2.55 96.32±7.37 97.63±4.74 97.11±3.94 84.74±5.17 98.95±2.11 96.84±5.03 98.42±2.11 96.84±3.87 97.37±3.63 99.47±0.64 97.63±3.16
OA 95.21±0.78 99.28±0.40 98.67±0.30 98.98±0.38 95.24±0.92 99.25±0.38 99.53±0.24 99.72±0.19 99.59±0.24 99.74±0.20 99.51±0.45 99.73±0.08
AA 95.25±0.81 99.20±0.68 98.76±0.32 98.91±0.52 94.99±1.05 99.32±0.40 99.45±0.40 99.68±0.17 99.49±0.33 99.65±0.29 99.55±0.39 99.65±0.19
Kappa 94.81±0.85 99.22±0.44 98.56±0.33 98.89±0.41 94.85±0.99 99.18±0.42 99.49±0.26 99.69±0.17 99.56±0.26 99.72±0.22 99.47±0.48 99.71±0.08

TABLE VII: Classification results on the Pavia University dataset.

Class CNN-based method Transformer-based method
CNN3D DFFN M3D-DCNN RSSAN SpectralFormer SSFTT GroupTransformer CNN-mixer SSA-mixer CSA-mixer SSA+CNN-mixer CSA+CNN-mixer

1 96.79±0.50 96.44±2.98 97.89±0.48 99.46±0.32 93.57±1.77 99.38±0.27 99.85±0.10 99.73±0.25 99.80±0.18 99.85±0.20 99.59±0.39 99.88±0.15
2 99.46±0.30 95.66±4.63 99.89±0.07 99.82±0.17 99.67±0.20 99.89±0.07 99.89±0.08 99.97±0.02 99.95±0.02 99.96±0.01 99.91±0.08 99.92±0.06
3 76.36±3.86 99.25±0.62 89.71±3.64 96.38±1.40 85.86±2.63 98.00±1.22 97.70±1.70 98.26±0.86 99.31±0.37 98.02±1.60 99.47±0.81 98.97±0.54
4 97.86±0.34 97.32±3.75 98.48±0.66 96.38±0.99 93.67±1.68 98.40±0.76 96.89±0.42 98.00±0.16 97.27±0.49 97.38±0.49 97.97±0.39 97.78±0.26
5 99.95±0.09 99.23±0.58 99.78±0.20 99.89±0.14 99.91±0.19 99.85±0.18 99.88±0.18 99.98±0.03 99.97±0.04 100.00±0.00 99.80±0.40 99.98±0.03
6 94.75±0.96 81.09±8.77 99.18±0.39 99.67±0.28 96.51±3.66 99.95±0.05 99.96±0.03 99.81±0.31 99.98±0.03 100.00±0.00 99.90±0.11 99.76±0.36
7 83.65±4.21 93.39±3.17 93.91±2.71 96.13±1.92 78.20±4.94 99.15±0.73 99.58±0.21 99.51±0.74 99.87±0.18 99.73±0.33 99.81±0.34 99.94±0.06
8 95.09±1.26 81.41±2.70 96.17±1.20 96.08±1.03 88.48±3.13 98.55±0.46 97.13±1.81 99.10±0.70 98.28±1.51 97.92±1.46 98.14±1.96 98.34±1.26
9 99.71±0.24 87.82±2.71 99.85±0.09 99.12±0.89 95.93±1.96 97.40±1.34 98.37±1.31 97.62±2.50 97.27±2.67 97.73±1.25 98.13±1.62 99.08±0.49
OA 96.40±0.30 93.53±0.35 98.38±0.23 98.88±0.19 95.54±0.53 99.43±0.17 99.29±0.13 99.55±0.15 99.50±0.15 99.44±0.11 99.50±0.14 99.54±0.10
AA 93.74±0.78 93.58±0.62 97.21±0.56 98.10±0.29 92.42±0.62 98.95±0.30 98.80±0.21 99.11±0.47 99.08±0.35 98.96±0.19 99.19±0.32 99.29±0.11
Kappa 95.21±0.41 93.01±0.38 97.86±0.31 98.52±0.25 94.07±0.72 99.24±0.22 99.06±0.17 99.40±0.20 99.34±0.19 99.25±0.14 99.34±0.18 99.40±0.14

stands out with an OA of 97.59%, marking a 3.18% increase
in performance compared to the CNN3D algorithm, which
has the lowest OA in this group. As for the three classical
vision Transformer algorithms, SpectralFormer, SSFTT, and
GroupTransformer have OA values of 91.99%, 98.47%, and
98.38%, respectively. In comparison to the SpectralFormer
algorithm based on the vanilla vision Transformer, the latter
two show significant improvements in classification accuracy.
Utilizing the unified hierarchical Transformer architecture
proposed in this paper, five mixer-based HSI classification
models demonstrated exceptional OA, ranging from 98.48% to
98.68%. On this dataset, the model built upon the CSA+CNN-
mixer outperforms other classical CNN and vision Trans-
former models, with accuracy improvements of 0.21% and
6.69%, respectively. The corresponding prediction map is
shown in Fig. 6. In the prediction maps for (a), (c), (d), and

(e), there is a comparatively higher occurrence of spurious
anomalies. The prediction map outcomes for (h) through (l),
which represent the five models developed using a unified
architecture, show a remarkable similarity.

The second comparative experiment was carried out us-
ing the Botswana dataset. The prediction results are listed
in Table VI. On this dataset, the CNN3D algorithm has a
significant decrease in accuracy, differing by at least 3.46%
compared to the other three common CNN algorithms. Among
these, DFFN is the top-performing CNN algorithm, attaining
a maximum accuracy of 99.28%. Similar to the results on
the Houston 2013 dataset, among the three typical vision
Transformer algorithms, SpectralFormer achieved a lower ac-
curacy at 95.24%, in contrast to GroupTransformer achieved
an OA value of 99.53%. Among the five models employing
different mixers, the one utilizing the CSA-mixer outperforms
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Fig. 6: Prediction map on Houston 2013 dataset. (a) CNN3D, (b) DFFN. (c) M3D-DCNN. (d) RSSAN. (e) SpectralFormer.
(f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed CSA-mixer. (k) Proposed
SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer. (m) Ground truth.

the rest, achieving an OA of 99.74%. The SSA+CNN-mixer-
based method performs the worst. However, its OA value is
only 0.02% lower than that of the GroupTransformer. The
prediction map is depicted in Fig. 7. The maps for (a), (c),
(d), (e), and (f) demonstrate suboptimal performance. Upon
exploring a magnified view, it is evident that (b) shows a
higher number of errors in predicting ’Riparian’ compared to
the proposed models based on the unified vision Transformer
architecture. This phenomenon matches the metrics provided
in Table VI.

The third comparative experiment utilized the Pavia dataset,
and Table VII displays the prediction results obtained by
different methods. Among the four prevalent CNN methods,
DFFN obtains an OA of 93.53%, which is comparatively
lower, while RSSAN distinguishes itself with a higher OA
of 98.88%. Within the three popular vision Transformer-
based methods, SpectralFormer lags slightly behind the other
two algorithms. Notably, in contrast to the previous two
datasets, the SSFTT algorithm outperforms the other two
popular vision Transformer methods, reaching an accuracy

of 99.43% and surpassing the GroupTransformer by 0.14%.
Meanwhile, the five HSI classification algorithms proposed
in this paper consistently demonstrate the highest accuracy,
ranging from 99.44% to 99.55%, with the CNN-mixer-based
algorithm arriving at 99.55%. Overall, the differences in OA
among these five algorithms remain relatively small. The
prediction map is depicted in Fig. 8. It illustrates that the
five models built on the unified Transformer architecture
demonstrate superior classification accuracy for the categories
’Gravel’ and ’Bitumen’.

In summary, the five models utilizing the unified hierarchi-
cal vision Transformer architecture demonstrate the highest
OA across three testbed datasets. Differences in accuracies
achieved by the five algorithms are generally insignificant.
This also implies that the performance of the proposed HSI
classification models predominantly hinges on the unified ar-
chitecture, rather than the specific mixer modules that attracted
attention in previous research.

2) Analysis of the training process: Based on traditional
evaluation methods such as OA metric and prediction maps,
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Fig. 7: Prediction map on Botswana dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d) RSSAN. (e) SpectralFormer. (f)
SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed CSA-mixer. (k) Proposed
SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer. (m) Ground truth.

the following two challenges remain difficult to address com-
prehensively: (1) Is MSA indeed the pivotal module in vision
Transformers for enhancing HSI classification? (2) What are
the critical differences in model characteristics between vision
Transformer-based models and CNN models regarding training
on hyperspectral datasets? To address these questions, as noted
previously, the macro and micro-level characteristics of the
models during the training process were investigated.

Fig. 9, 10, and 11 contain plots of three-dimensional sur-
faces representing the loss values for different models, follow-
ing the introduction of disturbance with varying amplitudes
into the ’best’ pretrained weights on the three datasets. (a) -
(d) depict loss surface contours based on four typical CNN
algorithms. From a macroscopic perspective, it is evident that
introducing two directional disturbances to the ’best’ pre-
trained weights across the three datasets results in a noticeable
spike in loss values calculated with these perturbed weights,
thereby accentuating the contour of the surface. It is important
to note that the HSI classification model based on DFFN, when
exposed to substantial disturbances, produces excessively high
loss values that surpass our predefined threshold of 100. This
leads to scenarios, as illustrated in (b), where loss values
become undefined as the values of the x and y axes approach
1. This suggests that the stability of the DFFN model is the
least resilient to disturbances in the ’best’ pretrained weight.
(e) - (g) depict three-dimensional loss surface contours cor-
responding to three representative vision Transformer models,
while (i) - (l) illustrate three-dimensional loss surface contours
for the five algorithms proposed in this paper. The figures
clearly show that the three-dimensional surface contours based
on vision Transformer algorithms are notably smoother when

compared to those based on CNN algorithms. However, in
the case of (e), it can be observed that after introducing
disturbances of varying magnitudes, the loss value along the
z-axis for SpectralFormer changes at a notably lower rate.
This suggests that the model exhibits a weak response to
disturbances when starting from the ’best’ pretrained weight.
Interestingly, this phenomenon may not favor the model’s
ability to converge towards an optimal solution during training.
This consequence may be attributed to the newly introduced
structures such as group-wise spectral embedding and cross-
layer adaptive fusion. Furthermore, by investigating (g) - (f),
it is apparent that as the magnitude of disturbances increases,
the model’s loss value initially experiences a slight increase
before eventually reaching saturation. An ideal model should
demonstrate the characteristic of a moderate increase in loss
value when disturbances are applied to the optimal training
weights. It’s noteworthy that (h) corresponds to the proposed
algorithm based on the CNN-mixer. This model lacks the MSA
module, yet the shape of its loss surface contours across the
three datasets differs significantly from those corresponding to
CNN models. In contrast, the loss surface contours for vision
Transformer models constructed with the five different mixers
exhibit remarkably similar shapes. This further indicates that
the distinctive characteristics of vision Transformer models
in HSI classification primarily are derived from their unified
hierarchical Transformer architecture rather than the specific
mixer modules. It also suggests that the MSA module is not
the fundamental reason for the differences between CNN and
vision Transformer models.

Through the aforementioned loss surface contours, the over-
all global features of different models after disturbances can be
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Fig. 8: Prediction map on Pavia University dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d) RSSAN. (e) SpectralFormer.
(f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed CSA-mixer. (k) Proposed
SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer. (m) Ground truth.

intuitively visualized. However, these contours do not offer a
microscopic analysis of the model’s local characteristics in the
neighborhood of the ’best’ pretrained weight. To address this
gap, this paper introduces the distribution of the maximum
eigenvalue of the Hessian, aiming to quantitatively analyze
the model’s gradient properties from a local perspective in
the vicinity of the ’best’ pretrained weight. Fig. 12, 13, and
14 depict the distribution of the maximum eigenvalue of
the Hessian for different models across the three datasets.
Among the four typical CNN models, CNN3D and M3D-
DCNN exhibit similar curves for the maximum eigenvalue of
the Hessian. The magnitude of the maximum eigenvalue of
the Hessian approaches zero, and negative values are virtually
absent. In contrast, for DFFN, the magnitude of the maximum
eigenvalue of the Hessian is relatively larger, especially on
the Houston 2013 and Botswana datasets. Consequently, in
general, CNN3D and M3D-DCNN, exhibit smoother local
behavior around the ’best’ pretrained weights among the
four classical CNN-based models. Interestingly, on the Pavia

University dataset, the magnitude of the maximum eigenvalue
of the Hessian for all four CNN algorithms is similar, and
none of them exhibit negative values. This implies that all
four CNN algorithms demonstrate remarkably smooth local
behavior around the optimal points as they approach the end of
model training. (e), (f), and (g) represent three classical vision
Transformer models. Among these models, it can be observed
that SpectralFormer’s distribution of the maximum eigenvalue
of the Hessian approaches the x = 0 axis. This indicates
that the model exhibits a highly flat behavior in the vicinity
of optimal weights, resulting in minimal responsiveness to
local perturbations. Conversely, for SSFTT, the maximum
eigenvalue of the Hessian is partly situated on the x < 0 side
across all three datasets. This implies non-convexity in the
model’s local behavior near this point, potentially hindering
its ability to search for optimal weights during training.
Within the GroupTransformer algorithm, the magnitude of
the maximum eigenvalue of the Hessian is notably higher
on the Botswana dataset compared to Houston 2013 and
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Fig. 9: Disturbance robustness visualization based on Houston 2013 dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d)
RSSAN. (e) SpectralFormer. (f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed
CSA-mixer. (k) Proposed SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer.

Pavia University. This leads to a sharper high-dimensional
loss surface near the optimal point. This discrepancy may be
attributed to the relatively smaller number of training samples
per class in Botswana, indicating a need for improved model
generalization. Upon comparing the five vision Transformer
models proposed, it is evident that the horizontal coordinate
of the peak value in the maximum eigenvalue distribution
of the Hessian consistently exceeds 0. This signifies their
capacity to maintain convexity in the vicinity of optimal points.
Moreover, when compared to the other three pure (CNN-
mixer, SSA-mixer, and CSA-mixer) models, the magnitude of
the Hessian eigenvalue for the two hybrid-mixer (SSA+CNN-
mixer and CSA+CNN-mixer) models approaches 0, indicating
that hybrid-mixer models tend to exhibit smoother behavior
near the optimal point. However, as shown in Fig. 9, 10, and
11, the smoothness of loss values after disturbance is already
relatively high. Consequently, while hybrid-mixer models can
further enhance local smoothness, they do not wield a decisive
influence on optimizing the entire model, given the closely
matched performance of all five models across the three
datasets.

3) Impact of training ratio on OA: To investigate the impact
of the number of training samples on the overall accuracy of
HSI classification, experiments were conducted using different
numbers of training samples in the three datasets with the
proposed five approaches based on the unified hierarchical

vision Transformer architecture. For the Houston 2013 dataset,
proportions of 1%, 3%, 5%, 7%, 9%, and 11% of the data
were selected for training using a stratified sampling strategy.
As shown in Fig. 15(a), when only 1% of the sample points
were used as the training dataset, the OA ranges from 87.98%
to 89.98%. At this stage, the model based on the CSA-mixer
exhibits an OA of 87.98%, while the model using CSA+CNN-
mixer achieves an OA of 89.98%, the highest accuracy among
the models. As the number of training samples increases,
the OA accuracy of all the five mixer models exhibits an
increasing trend. When the training sample proportion reaches
11%, the model accuracy approaches saturation. At this point,
the CSA+CNN mixer model reaches a notable accuracy of
99.56%, demonstrating a slight enhancement in performance
with an accuracy improvement of less than 0.14% relative
to four other models. For the Botswana dataset, a stratified
sampling strategy was also employed to select training data
in proportions of 2%, 6%, 10%, 14%, 18%, and 22%. As
illustrated in Fig. 15(b), when only 2% of the data was
utilized as training samples, the CNN-mixer-based model
records an OA of 90.54%. It is at least 0.44% less than the
accuracies achieved by the other four algorithms. Additionally,
as the number of training samples grows, all the five models
initially exhibit significant improvements in OA accuracy,
which gradually plateau as they approach saturation. When the
training sample proportion reaches 22% of the total dataset, the
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Fig. 10: Disturbance robustness visualization based on Botswana dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d) RSSAN.
(e) SpectralFormer. (f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed CSA-
mixer. (k) Proposed SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer.

accuracy of the five models ranges from 99.88% to 99.95%,
with an OA accuracy fluctuation of no more than 0.07%
among them. For the Pavia University dataset, only 0.5%,
1%, 1.5%, 2%, 2.5%, and 3% of the data were selected
as training samples. This is because the number of sample
points in this dataset is significantly greater than that of
the previous two datasets. As shown in Fig. 15(c), the OA
accuracy curves for the five mixer algorithms exhibit similar
trends to those observed in the previous two datasets. For
example, when the training samples increase from 0.5% to
3%, the OA accuracy improves dramatically from 90.99% to
99.75%, showing an impressive growth of 8.76%. With 2%
of the data used as the training set, the OA accuracy of the
five mixer models ranges from 99.44% to 99.55%. Overall,
under the constraint of limited annotated samples, the quantity
of training samples has a particularly noticeable impact on
the accuracy of HSI classification. Furthermore, based on the
proposed unified hierarchical vision Transformer architecture,
different HSI classification models constructed with vari-
ous mixers exhibit comparable performance across different
datasets. This provides additional empirical support that for
HSI vision Transformer classification algorithms, performance
primarily relies on the unified hierarchical vision Transformer
architecture rather than specific MSA or other mixer modules,
especially under conditions where the proportion of training
data is sufficiently substantial.

V. CONCLUSIONS

A novel unified hierarchical vision Transformer architecture
is developed for HSI classification. Five different vision Trans-
former models are constructed by configuring different mixers
within the proposed unified architecture. Experiments on three
commonly analyzed hyperspectral benchmark data sets with
different characteristics reveal that the proposed methods out-
perform traditional CNN-based or vision Transformer-based
HSI classification methods. Furthermore, an in-depth analysis
conducted from two perspectives, disturbance robustness and
the distribution of the maximum eigenvalue of the Hessian,
implies that the effectiveness of vision Transformer-based
HSI classification models primarily depends on the holistic
unified architecture, rather than the commonly presumed MSA
module. This paper provides insights into the design of vision
Transformer-based neural networks for future research in HSI
classification. Further work is warranted to incorporate self-
supervised learning and analyze the frequency characteristics
of feature space extraction in various mixer modules within
the vision Transformer architecture through a self-supervised
pre-training paradigm.
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Fig. 11: Disturbance robustness visualization based on Pavia University dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d)
RSSAN. (e) SpectralFormer. (f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed
CSA-mixer. (k) Proposed SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer.
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Fig. 12: Largest eigenvalue of the Hessian based on Houston 2013 dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d) RSSAN.
(e) SpectralFormer. (f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed CSA-
mixer. (k) Proposed SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer.
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Fig. 13: Largest eigenvalue of the Hessian based on Botswana dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d) RSSAN.
(e) SpectralFormer. (f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed CSA-
mixer. (k) Proposed SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer.



19

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 14: Largest eigenvalue of the Hessian based on Pavia dataset. (a) CNN3D. (b) DFFN. (c) M3D-DCNN. (d) RSSAN. (e)
SpectralFormer. (f) SSFTT. (g) GroupTransformer. (h) Proposed CNN-mixer. (i) Proposed SSA-mixer. (j) Proposed CSA-mixer.
(k) Proposed SSA+CNN-mixer. (l) Proposed CSA+CNN-mixer.

(a) (b) (c)

Fig. 15: Training ratio effect on the overall accuracy. (a) Houston 2013 dataset. (b) Botswana dataset. (c) Pavia University
dataset.



20

REFERENCES

[1] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9,
pp. 6690–6709, 2019.

[2] N. Chen, J. Yue, L. Fang, and S. Xia, “Spectraldiff: A generative
framework for hyperspectral image classification with diffusion models,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–
16, 2023.

[3] L. Fang, Y. Yan, J. Yue, and Y. Deng, “Towards the vectorization of
hyperspectral imagery,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 61, pp. 1–14, 2023.

[4] F. Xu, G. Zhang, C. Song, H. Wang, and S. Mei, “Multiscale and cross-
level attention learning for hyperspectral image classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15,
2023.

[5] B. Cheng, I. S. Saggu, R. Shah, G. Bansal, and D. Bharadia, “S 3
net: Semantic-aware self-supervised depth estimation with monocular
videos and synthetic data,” in European Conference on Computer Vision.
Springer, 2020, pp. 52–69.

[6] S. Li, K. Gong, C. H. Liu, Y. Wang, F. Qiao, and X. Cheng, “Metasaug:
Meta semantic augmentation for long-tailed visual recognition,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2021, pp. 5212–5221.

[7] Z. Xiong, F. Qiao, Y. Zhang, and N. Jacobs, “Stereoflowgan: Co-training
for stereo and flow with unsupervised domain adaptation,” arXiv preprint
arXiv:2309.01842, 2023.

[8] F. Lu, G. Chen, Y. Liu, Z. Qu, and A. Knoll, “Rskdd-net: Random
sample-based keypoint detector and descriptor,” Advances in Neural
Information Processing Systems, vol. 33, pp. 21 297–21 308, 2020.

[9] L. Wu, L. Fang, X. He, M. He, J. Ma, and Z. Zhong, “Querying labeled
for unlabeled: Cross-image semantic consistency guided semi-supervised
semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 7, pp. 8827–8844, 2023.

[10] J. Wu, D. Zhu, L. Fang, Y. Deng, and Z. Zhong, “Efficient layer
compression without pruning,” IEEE Transactions on Image Processing,
vol. 32, pp. 4689–4700, 2023.

[11] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral image classification
with deep feature fusion network,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 56, no. 6, pp. 3173–3184, 2018.

[12] A. B. Hamida, A. Benoit, P. Lambert, and C. B. Amar, “3-d deep
learning approach for remote sensing image classification,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 56, no. 8, pp. 4420–
4434, 2018.

[13] M. He, B. Li, and H. Chen, “Multi-scale 3d deep convolutional neural
network for hyperspectral image classification,” 2017 IEEE International
Conference on Image Processing, pp. 3904–3908, 2017.

[14] M. Zhu, L. Jiao, F. Liu, S. Yang, and J. Wang, “Residual spectral–
spatial attention network for hyperspectral image classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 59, no. 1, pp.
449–462, 2020.

[15] W. Liu, S. Prasad, and M. Crawford, “Cnn-mixer hierarchical spectral
transformer for hyperspectral image classification,” in IGARSS 2023-
2023 IEEE International Geoscience and Remote Sensing Symposium.
IEEE, 2023, pp. 5946–5949.

[16] X. Yang, W. Cao, Y. Lu, and Y. Zhou, “Hyperspectral image transformer
classification networks,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 60, pp. 1–15, 2022.

[17] D. Wang, J. Zhang, B. Du, L. Zhang, and D. Tao, “Dcn-t: Dual context
network with transformer for hyperspectral image classification,” IEEE
Transactions on Image Processing, vol. 32, pp. 2536–2551, 2023.

[18] D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanus-
sot, “Spectralformer: Rethinking hyperspectral image classification with
transformers,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 60, pp. 1–15, 2021.

[19] S. Mei, C. Song, M. Ma, and F. Xu, “Hyperspectral image classification
using group-aware hierarchical transformer,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.

[20] J. Zou, W. He, and H. Zhang, “Lessformer: Local-enhanced spectral-
spatial transformer for hyperspectral image classification,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.

[21] W. Qi, C. Huang, Y. Wang, X. Zhang, W. Sun, and L. Zhang, “Global-
local three-dimensional convolutional transformer network for hyper-
spectral image classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 61, pp. 1–20, 2023.

[22] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li,
“Maxvit: Multi-axis vision transformer,” in European conference on
computer vision. Springer, 2022, pp. 459–479.

[23] E. Ouyang, B. Li, W. Hu, G. Zhang, L. Zhao, and J. Wu, “When multi-
granularity meets spatial–spectral attention: A hybrid transformer for
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 61, pp. 1–18, 2023.

[24] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit et al., “Mlp-mixer:
An all-mlp architecture for vision,” Advances in Neural Information
Processing Systems, vol. 34, pp. 24 261–24 272, 2021.

[25] Y. Shao, J. Liu, J. Yang, and Z. Wu, “Spatial–spectral involution
mlp network for hyperspectral image classification,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 15, pp. 9293–9310, 2022.

[26] J. Guo, Y. Tang, K. Han, X. Chen, H. Wu, C. Xu, C. Xu, and
Y. Wang, “Hire-mlp: Vision mlp via hierarchical rearrangement,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 826–836.

[27] W. Yu, C. Si, P. Zhou, M. Luo, Y. Zhou, J. Feng, S. Yan, and
X. Wang, “Metaformer baselines for vision,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.

[28] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu,
and W. Gao, “Pre-trained image processing transformer,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2021, pp. 12 299–12 310.

[29] S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspec-
tral image classification,” Neurocomputing, vol. 219, pp. 88–98, 2017.

[30] J. Yang, Y. Zhao, J. C.-W. Chan, and C. Yi, “Hyperspectral image
classification using two-channel deep convolutional neural network,”
in 2016 IEEE international geoscience and remote sensing symposium
(IGARSS). IEEE, 2016, pp. 5079–5082.

[31] J. Yue, L. Fang, and M. He, “Spectral-spatial latent reconstruction
for open-set hyperspectral image classification,” IEEE Transactions on
Image Processing, vol. 31, pp. 5227–5241, 2022.

[32] J. Yang, C. Wu, B. Du, and L. Zhang, “Enhanced multiscale feature
fusion network for hsi classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 59, no. 12, pp. 10 328–10 347, 2021.

[33] J. Yang, B. Du, Y. Xu, and L. Zhang, “Can spectral information work
while extracting spatial distribution?—an online spectral information
compensation network for hsi classification,” IEEE Transactions on
Image Processing, vol. 32, pp. 2360–2373, 2023.

[34] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A new deep
convolutional neural network for fast hyperspectral image classification,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp.
120–147, 2018.

[35] X. Yang, Y. Ye, X. Li, R. Y. Lau, X. Zhang, and X. Huang, “Hyperspec-
tral image classification with deep learning models,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 56, no. 9, pp. 5408–5423, 2018.

[36] M. Ahmad, A. M. Khan, M. Mazzara, S. Distefano, M. Ali, and
M. S. Sarfraz, “A fast and compact 3-d cnn for hyperspectral image
classification,” IEEE Geoscience and Remote Sensing Letters, vol. 19,
pp. 1–5, 2020.

[37] C. Yu, R. Han, M. Song, C. Liu, and C.-I. Chang, “A simplified 2d-3d
cnn architecture for hyperspectral image classification based on spatial–
spectral fusion,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 13, pp. 2485–2501, 2020.

[38] Z. Ge, G. Cao, X. Li, and P. Fu, “Hyperspectral image classification
method based on 2d–3d cnn and multibranch feature fusion,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 13, pp. 5776–5788, 2020.

[39] Z. Xia, X. Pan, S. Song, L. E. Li, and G. Huang, “Vision transformer
with deformable attention,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2022, pp. 4794–4803.

[40] Z. Meng, X. Xia, and J. Ma, “Toward foundation models for inclusive
object detection: Geometry-and category-aware feature extraction across
road user categories,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, 2024.

[41] J. Feng, Z. Zhou, R. Shang, J. Wu, T. Zhang, X. Zhang, and L. Jiao,
“Class-aligned and class-balancing generative domain adaptation for
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 62, pp. 1–17, 2024.

[42] J. Feng, Z. Gao, R. Shang, X. Zhang, and L. Jiao, “Multi-complementary
generative adversarial networks with contrastive learning for hyperspec-
tral image classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 61, pp. 1–18, 2023.



21

[43] F. Lu, G. Chen, Y. Liu, L. Zhang, S. Qu, S. Liu, R. Gu, and C. Jiang,
“Hregnet: A hierarchical network for efficient and accurate outdoor lidar
point cloud registration,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 10, pp. 11 884–11 897, 2023.

[44] L. Fang, Y. Jiang, Y. Yan, J. Yue, and Y. Deng, “Hyperspectral image
instance segmentation using spectral–spatial feature pyramid network,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–
13, 2023.

[45] H. Cao, Z. Qu, G. Chen, X. Li, L. Thiele, and A. Knoll, “Ghostvit:
Expediting vision transformers via cheap operations,” IEEE Transactions
on Artificial Intelligence, 2023.

[46] Y. Dong, Q. Liu, B. Du, and L. Zhang, “Weighted feature fusion of con-
volutional neural network and graph attention network for hyperspectral
image classification,” IEEE Transactions on Image Processing, vol. 31,
pp. 1559–1572, 2022.

[47] Y. Zhan, K. Wu, and Y. Dong, “Enhanced spectral–spatial residual
attention network for hyperspectral image classification,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 15, pp. 7171–7186, 2022.

[48] R. Shang, W. Li, W. Zhang, J. Feng, Y. Li, and L. Jiao, “Simplified
nonlocal network based on adaptive projection attention method for
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 60, pp. 1–15, 2022.

[49] Y. Xu, Y. Zhang, C. Yu, C. Ji, T. Yue, and H. Li, “Residual spatial at-
tention kernel generation network for hyperspectral image classification
with small sample size,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 60, pp. 1–14, 2022.

[50] H. Zhai, J. Zhao, and H. Zhang, “Double attention based multilevel one-
dimensional convolution neural network for hyperspectral image classifi-
cation,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 15, pp. 3771–3787, 2022.

[51] Y. Liu, K. Cao, R. Wang, M. Tian, and Y. Xie, “Hyperspectral image
classification of brain-inspired spiking neural network based on attention
mechanism,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp.
1–5, 2022.

[52] L. Sun, G. Zhao, Y. Zheng, and Z. Wu, “Spectral–spatial feature
tokenization transformer for hyperspectral image classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14,
2022.

[53] B. Tu, X. Liao, Q. Li, Y. Peng, and A. Plaza, “Local semantic feature
aggregation-based transformer for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–
15, 2022.

[54] Z. Xue, Q. Xu, and M. Zhang, “Local transformer with spatial partition
restore for hyperspectral image classification,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp.
4307–4325, 2022.

[55] H. Gao, H. Wu, Z. Chen, Y. Zhang, and S. Xu, “Fusion network for local
and global features extraction for hyperspectral image classification,”
International Journal of Remote Sensing, vol. 43, no. 10, pp. 3843–
3867, 2022.

[56] H. Yan, E. Zhang, J. Wang, C. Leng, A. Basu, and J. Peng, “Hybrid conv-
vit network for hyperspectral image classification,” IEEE Geoscience
and Remote Sensing Letters, vol. 20, pp. 1–5, 2023.

[57] G. Zhao, Q. Ye, L. Sun, Z. Wu, C. Pan, and B. Jeon, “Joint classification
of hyperspectral and lidar data using a hierarchical cnn and transformer,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–
16, 2022.

[58] Y. Chen, P. Liu, J. Zhao, K. Huang, and Q. Yan, “Shallow-guided
transformer for semantic segmentation of hyperspectral remote sensing
imagery,” Remote Sensing, vol. 15, no. 13, p. 3366, 2023.

[59] X. Qiao and W. Huang, “A dual frequency transformer network for
hyperspectral image classification,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 2023.

[60] J. Yang, B. Du, and L. Zhang, “Overcoming the barrier of incomplete-
ness: A hyperspectral image classification full model,” IEEE Transac-
tions on Neural Networks and Learning Systems, pp. 1–15, 2023.

[61] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked au-
toencoders are scalable vision learners,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp.
16 000–16 009.

[62] D. Hong, B. Zhang, X. Li, Y. Li, C. Li, J. Yao, N. Yokoya, H. Li,
P. Ghamisi, X. Jia et al., “Spectralgpt: Spectral remote sensing foun-
dation model,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[63] Y. Chen and Q. Yan, “Lfsmim: A low-frequency spectral masked
image modeling method for hyperspectral image classification,” IEEE
Geoscience and Remote Sensing Letters, 2024.

[64] Y. Liu, X. Li, Z. Hua, C. Xia, and L. Zhao, “A band selection method
with masked convolutional autoencoder for hyperspectral image,” IEEE
Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.

[65] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10 012–10 022.

[66] Q. Zhang, Y. Xu, J. Zhang, and D. Tao, “Vitaev2: Vision transformer
advanced by exploring inductive bias for image recognition and beyond,”
International Journal of Computer Vision, pp. 1–22, 2023.

[67] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[68] N. Park and S. Kim, “How do vision transformers work?” arXiv preprint
arXiv:2202.06709, 2022.

[69] B. Ghorbani, S. Krishnan, and Y. Xiao, “An investigation into neural net
optimization via hessian eigenvalue density,” in International Conference
on Machine Learning. PMLR, 2019, pp. 2232–2241.

[70] Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney, “Pyhessian:
Neural networks through the lens of the hessian,” in 2020 IEEE
International Conference on Big Data (Big data). IEEE, 2020, pp.
581–590.

[71] (2023) Hyperspectral remote sensing scenes. Accessed: 2023-10-
30. [Online]. Available: https://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral Remote Sensing Scenes

[72] (2023) 2013 ieee grss data fusion contest – fusion of hyperspectral and
lidar data. Hyperspectral Imaging Laboratory, University of Houston.
Accessed: 2023-10-30. [Online]. Available: https://hyperspectral.ee.uh.
edu/?page id=459

https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://hyperspectral.ee.uh.edu/?page_id=459
https://hyperspectral.ee.uh.edu/?page_id=459

	Introduction
	Related Work
	Proposed Method
	Overall architecture construction.
	Mixer block options
	Representation of the training process

	Experimental Setup and Results
	Dataset description and implementation detail
	Comparison (baseline) methods
	Model structure and complexity analysis
	Experimental results

	Conclusions
	Acknowledgments
	References

