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Abstract—Physical and budget constraints often result in
irregular sampling, which complicates accurate subsurface imag-
ing. Pre-processing approaches, such as missing trace or shot
interpolation, are typically employed to enhance seismic data in
such cases. Recently, deep learning has been used to address
the trace interpolation problem at the expense of large amounts
of training data to adequately represent typical seismic events.
Nonetheless, most research in this area has focused on trace
reconstruction, with little attention having been devoted to shot
interpolation. Furthermore, existing methods assume regularly
spaced receivers/sources failing in approximating seismic data
from real (irregular) surveys. This work presents a novel
shot gather interpolation approach which uses a continuous
coordinate-based representation of the acquired seismic wavefield
parameterized by a neural network. The proposed unsupervised
approach, which we call coordinate-based seismic interpolation
(CoBSI), enables the prediction of specific seismic characteristics
in irregular land surveys without using external data during
neural network training. Experimental results on real and
synthetic 3D data validate the ability of the proposed method
to estimate continuous smooth seismic events in the time-space
and frequency-wavenumber domains, improving sparsity or low-
rank-based interpolation methods.

Index Terms—Seismic shot interpolation, deep internal learn-
ing, irregular land surveys, positional encodings.

I. INTRODUCTION

INTERPOLATION is of great importance within the seismic

data processing workflow because environmental or topo-

graphic restrictions usually result in incomplete and irregular

receiver and source sampling. Some limitations include nat-

ural and anthropological factors such as water bodies, and

infrastructure, as well as equipment errors [1]. The most

common seismic interpolation approach involves recovering

missing traces of a shot gather. A more complex approach

focuses on estimating complete missing shot gathers, entailing

greater economic, environmental, and implementation benefits.

Nonetheless, most of the work reported in the literature deals
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with trace interpolation, with limited consideration having

been given to shot interpolation. Thus, this work focuses on

interpolating missing seismic shots in irregularly sampled land

surveys.

Shot interpolation has typically been addressed by convex

optimization, aiming at inverting the acquisition model using

a regularizer that imposes prior knowledge about the data

such as sparsity in domains like wavelet, curvelet, shearlet

and learned dictionaries [2]–[4]. More recently [5], sparse

regularization has been jointly integrated with implicit regu-

larization provided by denoising algorithms by using the plug

and play priors and consensus equilibrium framework [6]–

[8]. The versatility of deep learning has also been explored to

solve the shot interpolation problem in a supervised fashion

[9], specifically with a residual network architecture trained

on data samples generated with bicubic interpolation of the

incomplete data set.

A key aspect of supervised deep learning approaches for

seismic data interpolation is that they employ external data

sets. For instance, a number of authors [10]–[14] employ

convolutional neural networks (CNN) following an end-to-

end training strategy that requires large training data sets.

Alternatively, deep internal learning approaches that exploit

the structural redundancy of the field data itself, rather than

employing vast training data sets, have been proposed for

seismic trace interpolation [15], [16], using deep image priors

(DIP) [17], [18] and recurrent neural networks (RNN) [19].

Further, a combination of internal and external learning for

trace interpolation has been studied [20]. Although all these

works have explored deep learning-based solutions for irregu-

lar sub-sampling schemes [21], [22], they implicitly require a

binning process to rearrange irregularly sampled seismic data

onto a regular grid with missing entries (traces).

In contrast, this work presents a deep internal learning

approach to estimate complete missing shot gathers in an

irregular land survey bypassing the binning step. The pro-

posed method takes advantage of a recent branch of work

in computer graphics, coordinate-based neural representations,

which allows the encoding of a continuous spatial field into

the weights of a multilayer perceptron (MLP) by mapping

coordinates to pixel values, in an unsupervised manner [23]–

[25]. Specifically, the proposed coordinate-based seismic in-

terpolation (CoBSI) method learns a continuous mapping

from the spatial and temporal coordinates of the (incomplete)

acquired seismic data to the underlying recorded field. The

continuous nature of the neural representation can model

http://arxiv.org/abs/2211.11889v2
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irregular sampling scenarios without a binning process and is

not constrained to have a spatial resolution, reducing memory

costs compared with discrete representations. Furthermore,

in contrast to current state-of-the-art methods, the proposed

approach enables seismic shot interpolation for both regular

and irregular 3D land surveys, in an unsupervised fashion,

i.e., without additional training data. The proposed approach

is validated using 3D seismic data from orthogonal grids such

as cross-spreads, focusing specially on randomly subsampled

regular and irregular grids with acoustic synthetic data, Strat-

ton survey [26] and SEAM Phase II Foothills model [27]. The

results show that CoBSI outperforms the multichannel singular

spectrum analysis (MSSA), damped-MSAA (DMSSA), se-

quential generalized K-means (SGK), and sparsity-based shot

reconstruction methods.

II. BACKGROUND

Coordinate-based neural representations have been success-

fully applied to unsupervised generation of highly realistic

views of scenes with complicated geometries and appearance

[25], [28], and implicit neural representations of signals for

solving boundary value problems [24]. In the same line of

work, the coordinate-based internal learning (CoIL) approach

in [23] extrapolated these ideas to solve imaging inverse

problems by modeling a continuous measurement field from

a subsampled and noisy set of measurements, using geometry

parameters of a tomographic imaging system. Since a seismic

acquisition can be described in terms of a coordinate system,

resembling the continuous field modeling from the computer

vision area, this work explores a coordinate-based modeling

to address the seismic shot interpolation problem in a deep

internal learning approach. It is worth pointing out that CoBSI

addresses a substantially more complex interpolation than that

in [23], since the seismic wavefield we want to interpolate

contains different responses from reflected, refracted, and

surface waves.

This approach consists of two main processing blocks, a

positional encoder and a multilayer perceptron (MLP). The

positional encoding maps help to preserve high-frequency

information through the encoding of coordinate positions [29],

while the MLP works as an interpolator from the encoded

coordinates to the signal amplitude. For instance, [28] shows

that passing input points through a simple Fourier feature

mapping enables a MLP to learn high-frequency functions

in low-dimensional problem domains. It is worth noting that

the seismic interpolation task with MLP relies on a low-

dimensional problem as explained below.

III. 3D SEISMIC ACQUISITION MODEL

Ideal seismic surveys are orthogonal grids with uniformly

spaced receivers and sources (i.e. pre–plot design). In practice

however, environmental and topographic restrictions induce

irregularities that result in non-uniform spatial intervals, as

illustrated by the cross-spread acquisition example in Fig-

ure 1(a-b), where missing shots are depicted in red. Data

from cross-spread surveys is modeled as cubes of k stacked

shot gathers Fi ∈ R
m×n, with m time samples and n

receivers. Thus, the whole data set can be denoted as a tensor

F = {Fi}
k
i=1 ∈ R

m×n×k. Figure 1(c) shows a survey with

missing shot gathers F3 and Fk−1. Letting f ∈ R
mnk be the

vector representation of the full cross-spread seismic survey

F , the acquisition model can be written as the linear system

r = Φf + ω , (1)

with Φ as the matrix modeling the sampling process, ω
the acquisition noise, and r ∈ R

mn(k−s) is the incomplete

acquired data (seismic response). Specifically, the acquisition

operator Φ ∈ R
mn(k−s)×mnk is defined as Φ = S ⊗ Imn,

where ⊗ represents the Kronecker product [30], Imn is a

mn×mn identity matrix, S ∈ Rk−s×k is an identity matrix

modeling the subsampling effect by setting to zero the s rows

that correspond to the linear indices of the missing sources.

S
h
ot

 l
in

e

Receiver line

1

b)

.....2 3 .....

.....

n

z1

c)

. .
. .

 . 
. .

1

2

3
.
.
.

m

1  2  3  ...           n

a)

Fig. 1. Cross-spread geometry in irregular survey with missing shots F3 and
Fk−1 in red. (a) Perspective view. (b) Plan view and (c) Seismic data in
tensor representation F .

Previous works have shown that the underlying seismic

data f can be estimated from the incomplete acquisition

y, following either optimization or data-driven approaches.

Specifically, optimization methods consider that seismic sig-

nals are sparse in some transformation domain Ψ, such that

they can be represented as Ψf = α, where α corresponds to

the coefficients in the transformed domain [2], [3], [5], [31],

[32]. Using such a sparsity prior, it is possible to estimate f

by solving the optimization problem given by

f∗ = argmin
f

(1/2) ‖r−Φf‖22 + λ ‖Ψf‖1 , (2)

where λ > 0 is a regularization parameter weighting the

sparsity term in the solution. On the other hand, missing

seismic data can be recovered using data-driven approaches,

such as convolutional neural networks that learn internal struc-

tures of extensive seismic data sets [10]–[12]. Nonetheless, all

these methods rely on the sensing matrix Φ, which accounts

for indexed sampling positions. Thus, it assumes a regular

sampling grid, as illustrated in Figure 2(a), i.e., it cannot model
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irregularly-spaced sources. Therefore, reconstruction methods

still face limitations in providing accurate seismic estimates for

irregular surveys, as the one depicted in Figure 2(b), where the

distance between sources is not fixed.

To address this problem, [33] incorporated a non-equispaced

curvelet transform within a sparsity-promoting prior, and [4]

used interpolation operators on the irregular grid before apply-

ing reconstruction algorithms with a binning pre-processing

step to cast the irregularly sampled data into a regular grid.

The main drawback of these approaches is that the inter-

polator assumes linear continuity, since it is applied only

in the shots direction, which in 3D acquisitions does not

allow interpolation of the two-dimensional wavefield. For this

reason, the approach in [4] is limited to 2D shots in split-

spread geometries.

a)

b)

Fig. 2. Source sampling with (a) uniform and regular interval with distance d
and, (b) irregular interval with variable distance. Black dots represent missing
shots to be interpolated.

IV. COORDINATE-BASED SEISMIC SHOT INTERPOLATION

Unlike state of the art interpolation methods that rely on

index-based modeling of the survey, the proposed coordinate-

based seismic interpolation (CoBSI) method employs a

coordinate-based deep internal learning approach for modeling

the seismic survey in a more realistic fashion. The core idea of

the proposed approach is motivated by recent computational

imaging works in neural interpolation [23]–[25], [28], [34],

[35], and consists in representing the acquired response of the

wavefield r ∈ R from a given coordinate v = [x, y, z] ∈ R
3,

where x, y, z respectively denote the time, receiver and source

positions, with a neural network Mθ with parameters θ. The

goal of this neural network is to map input coordinates to

the sampled wavefield responses, i.e., r =Mθ(v). Based on

this representation, we can model the acquired cross-spread r

from Equation (1) by querying Mθ using the corresponding

coordinates of the acquired response (see Figure 3).

The proposed neural network Mθ is the composition of

a high dimensional mapping γ, and a multilayer perceptron

(MLP) Nθ such thatMθ(v) = Nθ(γ(v)). Recent works have

demonstrated that this separation mitigates the performance

degradation observed in MLP to represent high frequency

variations [28], [34], [36], such as those measured in seismic

data due to abrupt changes in the continuity of reflection

events, or coherent noise such as head waves and ground roll.

The following subsections present the details of the mapping

function γ and the MLP Nθ architecture.

T
im
e

Sources/shots

Re
ce
ive
rs

Fig. 3. Illustration of the coordinate-based representations v in a single
cross-spread grid for seismic acquisition (blue dots), with x, y, z denoting
receiver, time, and source coordinates, respectively. Coordinates v

∗ belong to
the desired shot gathers to interpolate (black dots).

A. Anisotropic Positional Encoding

To address the problem of representing high frequency

components of natural images, [28] proposed to employ a

positional encoding γ as high dimensional mapping, given by

γU (v) = [cos(ω1v), sin(ω1v), ..., cos(ωiv), sin(ωiv), ...,

cos(ωUv), sin(ωUv)]
T , (3)

where U is the total number of components, {ωi}Ui=1, the

frequency mappings are given by ωi = iπ/2 or ωi = π2i−1

in the linear and exponential sampling, respectively, and v is

some arbitrary coordinate normalized to lie in [0, 1]3. Note that

the positional encoding defined in Equation (3) expands the

input coordinates as the combination of different frequency

components and, all coordinates are mapped to the same

number of frequencies.

However, in the particular case of seismic data, each signal

coordinate represents substantially different features (sources,

receivers and time samples), which should not be equally

encoded to preserve the structure of the data. Therefore, this

work proposes to employ an anisotropic positional encoding,

in which a different number of frequency components is

used for each axis direction. Thus, for the particular three

dimensional case of seismic data, the anisotropic positional

encoding is defined as

ΓMNK(v) = [γM (x), γN (y), γK(z)]T , (4)

where M,N,K are the number of frequency components

associated with x (time), y (receiver) and z (shot) axes as

shown in Figure 3. Figure 4 illustrates an example of the

anisotropic positional encoding for M = 8, N = 5 and K = 8,

where the horizontal axis for all encoding maps represents the

normalized coordinate values lying in [0, 1], the vertical axis

represents the number of encoding frequencies, and the output

Γ lies in [−1, 1]. The number of frequency components for

each coordinate M,N,K is found via parameter tuning.
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Fig. 4. Conceptual example of anisotropic positional encoding maps with
linear sampling with M = 8, N = 5 and K = 8 number of frequencies. The
matrices on the left represent the γ functions for each coordinate, respectively.
The vectors in the middle represent the corresponding mapping for a given
coordinate x, y and z. Finally, the vector in the right Γ858(v) illustrates the
final mapping of the proposed anistropic positional encoding.

B. Network Architecture

A multilayer perceptron (MLP) is here used to approximate

the function Nθ . This architecture is modeled as the nested

functions

Nθ(v) = fL (fL−1 (· · · f2(f1(v)))) , (5)

where L is the number of layers or depth of the MLP, and

fi(vi) = φ (Wivi + bi) is the ith layer of the MLP, which is

an affine transformation represented by the matrix Wi and bias

bi, followed by a non-linear activation function φ. This work

adopts the rectified linear unit (ReLU) as activation function,

which is one of the most widely employed in modern neural

networks [37]. Moreover, since seismic data are normalized

in the range [0, 1], the sigmoid activation function has been

selected for the output layer.

The overview of the proposed coordinate-based neural net-

work is depicted in Figure 5 with a fully-connected block of

NN neurons and L layers, and a single-neuron output layer.

Note that it can be seen as a regression problem, such that we

can simply employ a mean squared error (MSE) loss function

to find the optimal network parameters, θ
∗. The MSE loss

function can be written as

L(θ) =
1

mn(k − s)

mn(k−s)∑

i

(ri −Nθ(ΓMNK(vi)))
2 , (6)

where s and k are the number of missing and total shots,

respectively; vi = [xi, yi, zi] is the ith element of the set

of coordinates V , and ri is the i-th entry of the acquired

amplitude values r from Equation (1).

We remark here that training data from additional seismic

surveys are not necessary because we just employ the available

discrete samples of the acquisition of interest for training the

network.

...
...

...
...

...
...

...
...

Anisotropic P.E. Interpolation neural network

Fully-connected block

OUTPUT:

Seismic response

INPUT: 

Coordinates

Fig. 5. Coordinate-based neural network Mθ with anisotropic Positional
Encoding (P.E) and interpolation neural network Nθ

C. Interpolation Algorithm

The anisotropic positional encoding and MLP from sections

IV-A and IV-B are combined as the CoBSI method decribed

in Algorithm 1. Specifically, the inputs of the algorithm are:

i) The set of coordinates of the available (acquired) data

V = {vi}
mn(k−s)
i=1 , with vi = [xi, yi, zi]

ii) The corresponding amplitude values of the acquired data

r = [r1, · · · , ri, · · · , rmn(k−s)] from Eq. (1).

iii) The set of coordinates of the missing data V∗ = {v∗

i }
mns

i=1

In step 1, the anisotropic positional encoding of each point

vi is calculated using Eq. 4. Then, in lines 3−10 the positional

encodings and the amplitude values are used to train the MLP

Nθ in an end-to-end fashion, to obtain the optimized network

parameters θ∗θ∗θ∗, as in step 11 of Algorithm 1. In lines 12− 14,

the network with optimal parameters is used to estimate the

amplitude values of the missing shots by queryingMθ , using

the corresponding coordinates V∗ = {v∗

i }
mns
i=1 of the s missing

shot-gathers, as long as the input coordinates are in the same

acquisition domain. Specifically, note that in terms of seismic

surveys, the acquisition domain is related to the maximum

coverage in receiver and source lines as shown in Figure 3. In

Line 15, these amplitudes are concatenated to the known data

amplitudes, and rearranged as 2D structures corresponding to

the seismic shots (Line 16). Thus, a full seismic data cube F
is obtained.

V. SIMULATIONS AND RESULTS

Three different experiments were carried out to evaluate the

effectiveness of CoBSI in regular and irregular cross-spread

acquisition geometries, using synthetic and real data. In all

the experiments, we fixed the number of layers of the MLP

architecture to L = 15 with the same number of neurons (NN)

per layer. Table I summarizes the main network parameters

used for training on each experiment: data set, NN, learning

rate, epochs, and number of trainable parameters (NTP). These

parameters were found by grid search, so that the best PSNR

metric was obtained on each experiment.

Particular details on each data set and experiment are

included in the following subsections. All experiments were

conducted using a NVIDIA Tesla P100 16GB GPU. The

peak signal-to-noise ratio (PSNR) is here used to assess the

accuracy of the reconstructions, exactly as described by [38],
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Algorithm 1 Seismic shot interpolation using CoBSI method

Require: V : Set of coordinates; r: Data amplitude values

corresponding to each coordinate. V∗: Set of coordinates

for the missing shots. NE: Number of iterations.

1: Calculate set P = {ΓMNK(vi)}
mn(k−s)
i=1 using Eq. 4 and

vi ∈ V .

2: Initialize θ randomly

3: for i = 1....NE do

4: Draw Pt ⊂ P , rt from r ⊲ Draw data batch

5: for each ΓMNK(vj) ∈ Pt, rj from rt do

6: r̂j ← Nθ(ΓMNK(vj)) ⊲ Estimate the seismic

response

7: Compute MSE loss L(θ) using r̂j , rj , and Eq. 6.

8: Update θ using ADAM optimizer

9: end for

10: end for

11: Get the optimal parameter θ
∗

from last iteration

12: for each v
∗

i ∈ V
∗ do

13: r̂∗i ← Nθ∗(ΓMNK(v∗

i )) ⊲ Estimate the seismic

responses for missing shots

14: end for

15: f ← [r̂∗, r] ⊲ Concatenate acquired and interpolated

seismic response

16: F ∈ R
m×n×k ← reshape(f ∈ R

mnk) ⊲ Rearrange vector

to tensor representation

17: Output: F complete seismic data

TABLE I
SUMMARY OF PARAMETERS FOR THE COORDINATE-BASED NEURAL

NETWORK Mθ ON EACH EXPERIMENT. NN: NUMBER OF NEURONS, LR:
LEARNING RATE, NTP: NUMBER OF TRAINABLE PARAMETERS.

Experiment Dataset NN LR Epochs NTP

I Synthetic 128 1e-3 1000 232449
II Stratton 256 1e-3 5000 932865
III SEAM Phase II 128 1e-4 50000 234241

as well as the Structural Similarity Image Metric (SSIM) from

[39]. Both metrics were applied in the time-domain shots, with

respect to the ground truth. Interpolated shots obtained with

CoBSI are compared against those resulting from the F-XY

domain multichannel singular spectrum analysis (MSSA) and

damped-MSSA (DMSSA) method [40] with fhigh=550 and

iter=50 implemented using the DRR Matlab package [41],

sequential generalized K-means (SGK) using fast dictionary

learning for high-dimensional seismic reconstruction [42],

[43], and the sparsity-based interpolation (SBI) in Equation

(2), solved with the ADMM algorithm from [3]. All the

parameters in these methods were fixed to those suggested

by the authors of each work.

Experiment I: A synthetic data set of an irregular acqui-

sition from a cross-spread grid using the acoustic forward

modeling operator from DEVITO [44], [45] to propagate the

seismic wavefield was used in this experiment. The cross-

spread comprises m = 900 time samples, n = 101 receivers

and k = 14 shots. The interval samplings are dt = 1
ms, dg = 25 m, respectively for time and receivers. For

this experiment, 5 shots (S4, S6, S8, S11, and S13) were

removed from the data set, and interpolated using the proposed

CoBSI method. Figure 6 depicts the irregular interval in shot

sampling, where the 5 missing shots are represented by black

dots. Note that the removed shots account for different distance

intervals among known data.

shot axis

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Fig. 6. Synthetic irregular shot acquisition employed in Experiment I, with
d1 = 75 m, d2 = 100 m and d3 = 125 m. Black dots indicate missing
shots.

Besides evaluating the ability of CoBSI to interpolate seis-

mic shots from a synthetic irregular data set, this experiment

aims at analyzing the behavior of linear and exponential

frequency mappings in the anisotropic positional encoding.

Table III summarizes the CoBSI interpolation metrics for

the 5 missing shots. Specifically, as a result of parameter

tuning, the number of frequencies were fixed at 1 for time

and shots, and 2 for receivers, i.e., Γ121. The attained results

show small variations in the metrics obtained with the two

types of sampling for the anisotropical positional encoding

function. Figure 7 presents the interpolation results of shot

S6, which exhibits discontinued seismic events highlighted

by the arrows, that are not fully interpolated by CoBSI with

exponential sampling. On the other hand, with linear sampling,

CoBSI is able to smooth the entire signal by estimating more

continuous events throughout the shot.
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Fig. 7. Comparison between Shot 6 interpolation using linear and exponential
sampling in the positional encoding function for the experiment I in a) time
and (b) frequency-wavenumber domain. Arrows point at the main differences
and correspond to events whose continuity is better approximated by CoBSI-
Lin.

Table II summarizes CoBSI-Exp interpolation results com-

pared with those from DMSSA, MSSA SGK and SBI. It can
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TABLE II
RESULTS SUMMARY FOR THE INTERPOLATED SHOTS OBTAINED WITH COBSI, COMPARED WITH RESPECT TO DMSSA, MSSA, SGK AND SBI METHODS

USING THREE DIFFERENT SEISMIC ACQUISITION SURVEYS.

Experiment Shot
SSIM PSNR (dB)

CoBSI DMSSA MSSA SGK SBI CoBSI DMSSA MSSA SGK SBI

S4 0.990 0.294 0.284 0.493 0.547 42.368 17.737 18.379 19.261 20.845

Experiment I:
S6 0.983 0.237 0.239 0.459 0.741 42.070 14.933 15.707 19.146 26.463

Synthetic

S8 0.977 0.277 0.253 0.453 0.921 36.589 20.276 19.486 19.562 22.026
S11 0.977 0.183 0.135 0.461 0.583 37.343 19.241 17.867 18.155 21.199
S13 0.980 0.060 0.065 0.431 0.481 37.479 14.188 14.318 15.609 17.264

Average 0.981 0.210 0.195 0.459 0.655 39.170 17.275 17.151 18.347 21.559

Experiment II:
S3 0.651 0.084 0.070 0.435 0.503 22.621 15.419 14.850 16.510 17.371

Stratton 3D survey
S6 0.552 0.106 0.092 0.402 0.520 19.970 15.412 14.900 16.098 19.233

Average 0.602 0.095 0.081 0.419 0.512 21.296 15.416 14.875 16.304 18.302

Experiment III:
S2 0.724 0.150 0.083 0.399 0.296 23.379 17.398 15.416 18.082 20.195

SEAM Phase II

S4 0.728 0.255 0.185 0.436 0.229 24.812 19.768 18.154 19.183 19.807
Average 0.726 0.203 0.134 0.418 0.263 24.096 18.583 16.785 18.633 20.001

TABLE III
INTERPOLATION RESULTS FOR 5 MISSING SHOTS IN EXPERIMENT I, USING

THE PROPOSED COBSI METHOD WITH EXPONENTIAL AND LINEAR

SAMPLING, (COBSI-EXP AND COBSI-LIN, RESPECTIVELY)

Shot
SSIM PSNR (dB)

CoBSI-Exp CoBSI-Lin CoBSI-Exp CoBSI-Lin

S4 0.990 0.987 42.368 42.701
S6 0.983 0.980 42.070 41.542
S8 0.977 0.969 36.859 34.767

S11 0.977 0.976 37.343 40.587
S13 0.980 0.977 37.479 36.707

Average 0.982 0.978 39.224 39.261

Std. Dev. 0.005 0.007 2.746 3.373

be seen that the proposed approach outperforms the evaluated

counterparts in both metrics. Figure 9 shows that unlike

the comparison methods, where most of the reconstruction

errors occur in the reflection events, CoBSI shows a small

distribution of errors towards the edges of the shot gather, thus,

exhibiting a high reconstruction accuracy in the first arrivals, as

well as in linear and hyperbolic events. Moreover, considering

the averaged results, CoBSI outperforms the comparative

methods in up to 0.786 (SSIM) and 22.018 dB (PSNR).

Experiment II: The seismic data set employed for this

experiment is the Stratton survey [26], a real 3D land swath

acquisition project from South Texas, which was rearranged as

a cross-spread using a geometric analysis based on the survey

characteristics. A subset of 1001 time samples, 90 receivers,

and 10 sources, with a gap between the fifth and sixth shots,

as illustrated in Figure 8. The goal of this experiment is to

evaluate the ability of the proposed method to deal with real

more complex data. To this end, we removed shots S3 and

S6, such that two different gap lengths are considered. The

interpolation challenge in these real data is to determine the

correct position of the seismic reflection event in the vertical

axis (time axis). In this case, the number of frequencies for

the positional encoding were fixed at 9 for the time axis, 5 for

receivers and 8 for shots, i.e., Γ958.

Figure 10 presents a comparison between the interpolation

results for shot S6, where it can be seen that the interpolated

signals are smoother and more continuous than the ground

truth, which explains the resulting lower metric values. These

results show that the main advantage provided by CoBSI with

shot axis

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Fig. 8. Irregular real seismic acquisition employed in Experiment II, with
d1 = 50 m, d2 = 100 m. Black dots indicate missing shots.

Γ958 in linear sampling is that it can preserve the polarities

and location of events on the time axis, pointed by arrows.

For instance, SBI fails in interpolating the events signaled

by arrows in Figure 10, located close to receiver index 25

and in the time samples 300 and 500, respectively, because it

does not have enough neighboring shot information to estimate

the correct temporal position of the events. Moreover, CoBSI

provides a stronger denoised signal enhancing and highlighting

the seismic events in the shot. As in the previous case,

the results for Experiment II in Table II show that CoBSI-

Exp interpolation provides more accurate results compared

to DMSSA, MSSA SGK and SBI, for both metrics. The

improvements in this experiment go up to 0.521 (SSIM) and

6.421 dB (PSNR), for the averaged results of all shots.

Experiment III: The data set used in this experiment is a

part of the SEAM Phase II Foothills model. The acquisition

is an orthogonal survey over a complex geological model

simulating the Llanos Foothills of the Andes Mountains in

Colombia, one of the most challenging regions of active land

exploration [27], mainly because of complex seismic events

with abrupt changes in amplitude caused by the topography.

The data set comprises m = 128 time samples, n = 128
receivers and k = 7 shots. The interval samplings are dt=8

ms, dg = 50 m and ds = 50 m for time, receivers and shots,

respectively. In this experiment we evaluate the performance

of CoBSI in regular acquisitions. Thus, shots S2 and S4

were removed from the survey, and the interpolated shots are

illustrated in Figure 11. It can be seen that CoBSI with Γ551

in linear sampling reconstructs the events preserving the tilt

and polarities, while SBI method yields to events with low

amplitude, as well as artifacts in the main reflection events

located in the center of the shot. Further, due to the complexity

of the distribution of the reflection events, the competing

interpolation methods fail in correctly reconstructing the low

amplitude signals, this can be seen in the error images, with
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Fig. 9. Comparison of Shot 6 interpolation results from Experiment I using CoBSI, DMSSA, MSSA, SGK and SBI methods.

larger error values distributed throughout the shot, while in

CoBSI the errors occur mostly at the bottom of the shot gather.

Therefore, in this scenario CoBSI exhibits higher accuracy as

it is able to highlight the main seismic reflection events in the

shot gathers. The results for this experiment in Table II verify

this behavior with gains of up to 0.592 (SSIM) and 7.311 dB

(PSNR) in the average results.

VI. DISCUSSION

In general, the previous results demonstrate that CoBSI

interpolation outperforms DMSSA, MSSA SGK and SBI for

all experiments, providing adequate representations of the

typical characteristics of a seismic shot such as smoothness

and continuity in the events, noise reduction, and ampli-

tude compensation. The following sub-sections discuss the

advantages and limitations of CoBSI related to seismic neural

representation and computational costs.

1) Seismic Neural Representation: This work aims to show

that a complete and continuous representation of seismic

data can be obtained by coupling the anisotropic positional

encoding and the MLP, despite the simplicity of the neural

network, as it has been previously shown for other computa-

tional imaging problems [25], [34]. Further, it should be noted

that the CoBSI formulation is flexible, so that other, more

complex neural network architectures can be employed instead

of the MLP, at the expense of their inherent computational

complexity. One of the main advantages of CoBSI is that once

the seismic neural representation is obtained from the available

incomplete data, it is possible to estimate the response of the

continuous field at any arbitrary coordinate within the analysis

domain, so that complete missing shot gathers can be accu-

rately estimated. In addition, compared to other interpolation

or reconstruction methods where parameter tuning must be

done, in CoBSI the number of frequencies in the mapping

function is closely related to the dimensionality of the seismic

data. Therefore, the hyperparameters M,N,K from Equation

(4) can be found by analyzing the type of seismic acquisition

survey. Specifically, with few seismic sources in a cross-

spread array, the signal variation will be mainly focused in the

receiver direction (in-line), because more spatial information

exists. On the other hand, dealing with inline-offset spread or

marine data, where the density of shots is high, the greatest

variation of the signal occurs in the source direction (Xline).

2) Computational cost: As shown in Table I, there are

fewer than one million trainable parameters in CoBSI. To

provide a comparison with respect to more complex net-

work architectures employed in seismic reconstruction, Table

IV presents the number of trainable parameters (NTP) of

convolutional neural networks such as U-Net [22], [46] and

autoencoders [47]–[49] under supervised learning schemes, as

well as an ordinary convolutional neural network CNN [35].

It is worth noting that these methods focus on interpolating

receivers in 2D and 3D seismic data. In contrast, CoBSI aims

to estimate complete missing shots, which is substantially

a more complex task. Further, it is able to obtain such

interpolations employing a simpler network (MLP), entailing

less computational resources in an unsupervised strategy, as

only the weights and bias of the MLP are learned. While [35]

is an unsupervised learning approach, it only considers miss-

ing trace reconstruction for uniform subsampling, which is

unrealistic for field applications.
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TABLE IV
COMPARISON OF THE NUMBER OF TRAINABLE PARAMETERS (NTP)

REQUIRED IN SEISMIC RECONSTRUCTION METHODS

Seismic Data Network NTP Learning

2D [22] U-NET 87M Supervised
2D [35] CNN ordinary 42K Unsupervised
3D [46] U-NET 27M Supervised
2D [47] Autoencoder 18M Supervised
3D [49] Autoencoder 6M Supervised
Shotgather (i.e. 3D) CoBSI (MLP) <1M Unsupervised

VII. CONCLUSIONS

A coordinate-based seismic interpolation (CoBSI) method

to estimate missing seismic shots in both regular and irregular

3D land seismic acquisitions has been proposed. Unlike state-

of-the-art reconstruction methods that employ index-based

models, CoBSI employs a coordinate-based approach that

allows data interpolation in irregular geometries. Further, a

key component of CoBSI is an anisotropic positional encoding

layer in the neural network to map from low to high dimension

coordinates to consider the variation in the reference axes

corresponding to time, receivers and shots domains. Exper-

imental results showed the ability of the proposed method on

three different scenarios: (i) irregular geometry and synthetic

wavefield, (ii) geometry with a gap in real acquisition from

Texas, and (iii) the well-known geophysical SEAM Phase II

Foothills model with regular acquisition. The obtained results

demonstrated the advantages of the proposed method with

respect to sparsity-based and low-rank interpolation, since

CoBSI can estimate continuous seismic events while providing

a smooth signal in the space-time domains. Quantitatively, in

average CoBSI outperformed the competing methods by up to

22.11 dB of PSNR in synthetic data and 6.4 dB and 7.31 dB

for the real-data experiments.
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Paul Goyes-Penãfiel received the B.Sc. in geology from the Universidad
Industrial de Santander, Bucaramanga, Colombia, and M.Sc. in geophysics
from the Perm State University, Perm, Russia, in 2009 and 2018 respectively.
He currently is a Ph.D. candidate in Computer Science with the Universidad
Industrial de Santander. His research interests are in inverse theory and
applications in geophysics, seismic acquisition and processing, potential-EM
methods and deep learning applications in geoscience.

Edwin Vargas (Student Member, IEEE) received the B.Sc. and M.Sc. degrees
in electronics engineering from the Universidad Industrial de Santander,
Bucaramanga, Colombia, in 2016 and 2018, respectively, where he is currently
pursuing the Ph.D. degree in Electronics Engineering. His research interests
include high-dimensional signal processing, computational imaging, and deep
learning.

Claudia V. Correa (Member, IEEE) received the B.Sc. and M.Sc. degrees in
computer science from the Universidad Industrial de Santander, Bucaramanga,
Colombia, in 2009 and 2013, respectively, and the M.Sc. and Ph.D. degrees in
electrical and computer engineering from the University of Delaware, Newark,
DE, USA, in 2013 and 2017, respectively. She is currently a research fellow
at the Computer Science Department, Universidad Industrial de Santander.
Her research interests include computational imaging, compressive spectral
imaging, and machine learning applications to seismic problems.

Yu Sun (Student Member, IEEE) received the B.Eng. degree in electronics
and information from Sichuan University, Chengdu, China, in 2015, and
the M.S. degree in data analytics and statistics in 2017 from Washington
University in St. Louis, St. Louis, MO, USA, where he is currently working
toward the Ph.D. degree with the Computational Imaging Group. During his
Ph.D., he worked as an Intern with Nvidia Corporation in 2021. His research
interests include computational imaging, machine learning, deep learning, and
optimization.

Ulugbek S. Kamilov (Senior Member, IEEE) received the B.Sc./M.Sc. degree
in communication systems and the Ph.D. degree in electrical engineering
from EPFL, Lausanne, Switzerland, in 2011 and 2015, respectively. He is
an Assistant Professor and the Director of Computational Imaging Group
(CIG), Washington University in St. Louis, MO, USA. From 2015 to 2017,
he was a Research Scientist with Mitsubishi Electric Research Laboratories
(MERL), Cambridge, MA, USA. Prof. Kamilov is a Senior Editor of IEEE
Signal Processing Magazine, a Member of Bio Imaging and Signal Processing
Technical Committee of the IEEE Signal Processing Society. He was a
recipient of the IEEE Signal Processing Society’s 2017 Best Paper Award
and the NSF CAREER Award in 2021.

https://dataunderground.org/no/dataset/stratton
https://arxiv.org/abs/2107.02561


11

Brendt Wohlberg (Fellow, IEEE) received the B.Sc. (Hons.) degree in applied
mathematics, and the M.Sc. (applied science) and Ph.D. degrees in electrical
engineering from the University of Cape Town, Cape Town, South Africa,
in 1990, 1993, and 1996, respectively. He is currently a Staff Scientist with
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM,
USA. His primary research interests include signal and image processing
inverse problems and computational imaging. He was a co-recipient of the
2020 SIAM Activity Group on Imaging Science Best Paper Prize. He was an
Associate Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING
from 2010 to 2014, and for the IEEE TRANSACTIONS ON COMPUTA-
TIONAL IMAGING from 2015 to 2017, and was the Chair of the Com-
putational Imaging Special Interest Group (now the Computational Imaging
Technical Committee) of the IEEE SIGNAL PROCESSING SOCIETY from
2015 to 2017. He was Editor-in-Chief of the IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING from 2018 to 2021, and is currently Editor-
in-Chief of the IEEE OPEN JOURNAL OF SIGNAL PROCESSING.

Henry Arguello (Senior Member, IEEE) received the B.Sc. Eng. degree
in electrical engineering and the M.Sc. degree in electrical power from the
Universidad Industrial de Santander, Bucaramanga, Colombia, in 2000 and
2003, respectively, and the Ph.D. degree in electrical engineering from the
University of Delaware, Newark, DE, USA, in 2013. He is currently an
Associate Professor with the Department of Systems Engineering, Universidad
Industrial de Santander and associate editor for IEEE TRANSACTIONS
ON COMPUTATIONAL IMAGING. In 2020, he was a Visiting Professor
with Stanford University, Stanford, CA, USA, funded by Fulbright. His
research interests include high-dimensional signal processing, optical imaging,
compressed sensing, hyperspectral imaging, and computational imaging.


	I Introduction
	II Background
	III 3D Seismic Acquisition Model
	IV Coordinate-based Seismic Shot Interpolation
	IV-A Anisotropic Positional Encoding
	IV-B Network Architecture
	IV-C Interpolation Algorithm

	V Simulations and Results
	VI Discussion
	VI-1 Seismic Neural Representation
	VI-2 Computational cost


	VII Conclusions
	References
	Biographies
	Paul Goyes-Penãfiel
	Edwin Vargas
	Claudia V. Correa
	Yu Sun
	Ulugbek S. Kamilov
	Brendt Wohlberg
	Henry Arguello


