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Abstract—In this paper, to accelerate data acquisition and 

image reconstruction procedures in a multistatic short-range 

microwave imaging scenario, an orthogonal coding approach 

with Fourier domain processing is presented. First, a special two-

dimensional (2D) multiple-input multiple-output (MIMO) 

structure is introduced to fully electronically synthesize the 2D 

aperture. Then, the model of the transmitted and received signals 

by a MIMO stepped-frequency-modulated radar is presented, 

with special considerations about orthogonal, balanced and 

optimal sequences. On the receiver side, the backscatter 

frequency response extraction process is formulated with the aim 

of obtaining individual information of all channels. Finally, based 

on the introduced model, a fast Fourier-based algorithm with 

reduced dimensions, named MIMO coded generalized reduced 

dimension Fourier (CGRDF), is mathematically derived. It 

includes extracting phase and amplitude compensators with the 

aim of mapping 4D to 2D spatial data, transferring the 

backscatter transfer function from the spatial domain to the 

wavenumber domain, extracting the smoothing filter, 

compensating the curvature of the wavefront of all scatterers, 

extracting the reflectivity function and an additional range 

compensator. The results of numerical simulations show the 

satisfactory and reliable performance of the proposed approach 

in terms of the information retrieval process and processing 

speed. 

Index Terms—Coded generalized RDF, MIMO, short-range, 3D 

microwave imaging. 

I. INTRODUCTION

UE to a wide range of applications of microwave 

radar imaging in medical diagnosis, nondestructive 

testing and evaluation, security screening, structural 

health monitoring and through-wall imaging, this field has 

seen significant progress in physical, system and processing 

layers in recent years [1-3]. 

To reconstruct a three-dimensional (3D) image of a 

scene/target, a 2D aperture must be synthesized. This usually 
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requires a very large number of antenna elements to satisfy the 

Nyquist criterion [4]. The use of sparse aperiodic phased 

arrays [5, 6] and multistatic multiple-input multiple-output 

(MIMO) arrays [7, 8] are two solutions provided for this issue. 

It has been demonstrated that the high spatial information 

diversity obtained by antenna arrays with a MIMO 

configuration can lead to an increase in the quality of 

reconstructed images in an imaging system [9, 10]. Another 

major advantage of a MIMO array compared to a phased array 

is that a MIMO array has the potential to apply different 

antenna elements and/or waveforms to achieve simultaneous 

transmission and reception [11]. The importance of 

simultaneous transmission by transmitters (Txs) is the drastic 

reduction of data acquisition time. However, this requires that 

the processor on the receiver (Rx) side is somehow able to 

identify/separate the information of each pair of individual Tx-

Rx channels. Using orthogonal signals/information is a 

suitable way to achieve this purpose [12, 13]. Recently, in [14, 

15], coding-based mechanisms have been developed for radar 

imaging by frequency-modulated (FM) continuous-wave 

radar. Although these mechanisms minimize the required 

bandwidth and sampling rate, they have considerable 

complexity both on the Tx and Rx sides. Pedross-Engel et al. 

[16] presented a reliable approach that uses orthogonal coded

signals for scene illumination. However, the image

reconstruction process in [16] is based on a computationally

complex least-squares (LS) technique, which limits its real-

time application.

Fourier-based image reconstruction techniques [17-19] are 

computationally efficient alternatives to methods such as LS 

and matched filter [20]. The range migration algorithm (RMA) 

is a conventional technique for image reconstruction in the 

Fourier domain [21, 22]. Its generalized versions for the 

MIMO scenario [10, 23] are very efficient compared to non-

Fourier techniques; however, they still include 4D Fourier 

transforms and a Stolt interpolation (generally 5D to 3D in the 

wavenumber domain) [10, 13]. Recently, in [24], an algorithm 

called reduced dimension Fourier (RDF) has been presented to 

reduce the dimensions of Fourier operations. However, it has 

only been developed for 1D arrays, specifically sparse 

periodic arrays, and with the assumption of mechanical 

scanning perpendicular to the array, which requires significant 

data acquisition time. For real-time applications, sliding 

imaging systems with mechanical scanning are challenging. 

To overcome the challenges of data acquisition and the 

complexity of the image reconstruction algorithms mentioned 

above, in this paper, we first introduce a special 2D MIMO 

structure to fully electronically synthesize the 2D aperture. We 
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will prove that under a short-range (in the near-field (NF) 

region) [25, 26] multistatic imaging scenario, such a special 

structure can reliably lead us in reducing the dimensionality of 

raw spatial data from 4D to 2D ready for fast Fourier 

calculations. Then, the mathematical model of transmission 

and reception by a MIMO stepped-FM radar is expressed, 

taking into account special considerations about code 

sequences and the process of extracting the transfer function. 

Finally, based on the introduced model for the system and 

data, a fast Fourier-based algorithm with reduced dimensions 

(both in Fourier calculations and in the interpolation 

procedure) named MIMO coded generalized RDF (CGRDF) is 

derived. This part includes derivations of phase and amplitude 

compensators with the aim of mapping spatial data from 4D to 

2D, transferring the backscatter frequency response from the 

spatial domain to the wavenumber domain, extracting the 

smoothing filter, compensating the wavefront curvature of all 

scatterers (Stolt interpolation), extracting the spatial 

reflectivity function and an additional range compensator to 

mitigate the effect of propagation loss in the reconstructed 

image. It will be shown how the proposed algorithm settles for 

a 3D-to-3D interpolation by eliminating the 5D-to-3D 

interpolation that is required to resample the data onto a quasi-

uniform grid of the wavenumbers. This can be very effective 

in reducing the volume of calculations. In the mathematical 

derivation of the above algorithm, both terms of phases and 

amplitudes are taken into account, which leads to the 

production of more accurate final results. The performance of 

the proposed approach is qualitatively and quantitatively 

evaluated and discussed in various aspects by numerical 

simulations. 

In summary, the main novelties and contributions of this 

work are listed below: 

• Introduction of a special 2D MIMO structure to fully

electronically synthesize the 2D aperture, for a NF multistatic 

imaging scenario, to reduce the dimensionality of spatial raw 

data without losing valuable information and be compatible 

with fast Fourier-based calculations. 

• Introducing an efficient model based on orthogonal

coding with the aim of transmitting simultaneously by all Txs 

and with the ability to extract channels information separately. 

In addition, before using the codes, they are improved in terms 

of temporal correlation properties by defining an optimization 

problem and solving it. 

• Mathematical development of the RDF image

reconstruction algorithm to a more general mode (fully 

electronic scanning scenario). The proposed MIMO CGRDF 

algorithm has the following unique features: 

 Contrary to common works, both terms of phases and

amplitudes are fully taken into account in the

derivation.

 By benefiting from the introduced structure, the base of

calculations with smaller dimensions, and as a result,

less complexity is provided.

 Alleviation of the common propagation loss effect in

reconstructed images.

The rest of this paper is organized as follows: In Section II, 

first, the specific model of the system and data is introduced; 

then special considerations related to orthogonal code 

sequences in the proposed approach and also how to extract 

the channel transfer function are presented; finally, the 

proposed image reconstruction algorithm is derived 

mathematically. In Section III, the performance of the 

proposed approach is evaluated and discussed from various 

aspects through several experiments. Section IV is devoted to 

conclusions. Also, the details of some mathematical 

calculations and derivations are given in the appendix section. 

Notation: Throughout the paper, superscripts ( ). H
 and ( ). T

represent the conjugate transpose and transpose, respectively. 

The symbols j , 
m

I , 
m

0 , 
m

1 , min
x

, max
x

, {}Re . , {}.E  and

( ).O  denote the imaginary unit, m m×  identity and zero

matrices, 1m×  vector with all entries equal to one, minimum

and maximum values with decision variable x , real part, 

expected value operator, and asymptotic order of 

computational complexity, respectively. 

II. PROPOSED APPROACH

First, in Section II-A, the system and data model in the 

proposed approach are introduced. Then, in Section II-B, 

special considerations regarding the selection of code 

sequences on the Tx side and the procedure of extracting the 

transfer function on the Rx side are presented. Finally, in 

Section II-C, based on the introduced model, the proposed 

algorithm for image reconstruction is described. 

A. System and Data Model

In the proposed approach, it is assumed that radar

measurements are obtained fully electronically by two uniform 

rectangular arrays (URAs), as Tx and Rx, in the multistatic 

MIMO structure shown in Fig. 1(a). The physical Tx and Rx 

URAs are composed of 
x yT T

N N×  and
x yR R

N N×  antenna

elements, respectively, with inter-element spacings of 
xT

d  and 

xR
d  along the x-axis (horizontal), and 

yT
d  and 

yR
d  along the 

y-axis (vertical). To create a uniform effective aperture

consisting of virtual elements with uniform inter-element

spacing (see Fig. 1(b)), there must be a specific relationship

between the number of physical antennas and the spacing

between them. Creating a uniform synthesized aperture will

provide the necessary conditions for the development of the

algorithm proposed in Section II-C based on fast Fourier

calculations. According to the effective phase center principle

[27], under the far-field (FF) assumption, it can be easily

proved that if 
x x xT R R

d N d=  and
y y yT R R

d N d=  are chosen, then

the resulting effective aperture is a monostatic virtual URA 

with a size of x yN N×  and inter-element spacings of

2
xx R

d d=  and 2
yy R

d d= , respectively, in the horizontal

and vertical directions, where 
x xx T R

N N N= and
y yy T R

N N N= .



3 

> This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/TGRS.2023.3260565, IEEE Transactions on Geoscience and Remote 
Sensing 

< 

(a) 

(b) 

Fig. 1. The general structure of MIMO transceiver arrays in 

the proposed approach; (a) multistatic physical arrays, (b) 

equivalent monostatic virtual array under the FF assumption. 

Remark 1: Note that it has been demonstrated that the inter-

element spacing in the Tx array can take values larger than 

half wavelength without suffering from ambiguity at the 

receiving end [28, 29]. 

To illuminate the scene, a stepped-FM MIMO radar [16, 30] 

is considered. The i -th Tx antenna emits a binary phase-shift 

keying (BPSK) modulated signal, considering the i -th 

column of the matrix of binary code symbols (i.e. 

1 2, ,...,
T TL N N×   Φ φ φ φ≜ ), which satisfies the mutual

orthogonality condition in (2), in the following form: 

( ) ( ) 2

,

1

Re
L

j ft

i l i T

l

x t P t lT e πϕ
=

 = − 
 
  (1) 

,
T

H

N
L=Φ Φ I   (2) 

where L , f , and 
T

P  respectively represent the code length, 

carrier frequency, and unit rectangular pulse function with 

duration T , and 1, 2, ,, ,...,
T

i i i L i
ϕ ϕ ϕ  φ ≜ , { },

1, 1
l i

ϕ ∈ − + ,

x yT T T
N N N= , 1, 2,...,

T
i N=  and 

T
N L< . In fact, in (1), the

BPSK modulator modulates a sequence of constant amplitude 

tones with a phase shift of 0 or π  radians, which is controlled

by the code symbol sequence. The signal received by the i′ -th

element of the Rx array can be modeled as follows: 

( ) ( ) ( ) ( )2

, ,

1 1

Re ,
TN L

j ft

i i i l i T i

i l

s t H f P t lT e n t
πϕ′ ′ ′

= =

 = − + 
 

   (3) 

where ( )i
n t′  is the measurement noise, and 

x yR R R
N N N=  and

1,2,...,
R

i N′ = . In (3), ( ),i i
H f′ denotes the backscatter 

frequency response corresponding to the i -th Tx antenna and 

the i′ -th Rx antenna at frequency f . Assuming that the scene

consists of x y zN N N′ ′ ′× ×  hypothesized point scatterers with

reflectivities { }p
ρ , where 1, 2,..., x y zp N N N′ ′ ′= × × , we have

[31] 

( ) , ,2

, , ,

1

,
x y z

i i p

N N N
j f

i i p i i p

p

H f e
π τρ χ ′

′ ′ ′× ×
−

′ ′
=

=    (4) 

where , ,i i p
χ ′ and , ,i i p

τ ′ respectively represent the round-trip

path loss and round-trip propagation delay of the 

electromagnetic wave in free space corresponding to the i -th 

Tx, i′ -th Rx and p -th point scatterer.

After down-conversion and sampling with a sampling 

period T  [16], the sampled received signal [ ] ( )i i
s l s lT′ ′=

can be expressed in the following form: 

[ ] ( ) [ ], ,

1

,
TN

i i i l i i i

i

s l H f d n lϕ′ ′ ′ ′
=

= + +  (5) 

where 
i

d ′  represents the direct current (DC) offset introduced 

by non-ideal down-converters [32]. 

B. Special Considerations Regarding Code Sequences and

Transfer Function Extraction Procedure

1) Special considerations about code sequences on the Tx

side: A matrix 
L L×W with entries 1±  ( L  can be 1, 2 or a

multiple of 4), whose distinct column (or row) vectors are 

orthogonal, is known as a Hadamard matrix of order L  [33]. 

It is clear that the column sequences of such a matrix can 

provide the condition required in (2). However, the original 

sequences of Hadamard codes suffer from poor auto-

correlation properties due to their very regular structure [34]. 

In other words, mathematically, the auto-correlation functions 

(ACFs) of the original Hadamard matrix code sequences have 

high peak values even when the delay time is non-zero. This 

problem may cause the system performance to drop 

excessively in any possible timing mismatch conditions [35]. 

Therefore, in this subsection, we modify the structure of the 

Hadamard matrix in such a way that in addition to maintaining 

the orthogonality condition, the temporal correlation 

properties of the original structure are improved under the 

mentioned conditions. 
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Aperiodic ACF of 
i

ϕ  is defined as follows [36]: 

( )

1

, ,

0

1

, ,

0

1
, 0 1,

1
, 1 0,

0, .

L l

k i k l i

k

L l

i k l i k i

k

l L
L

A l L l
L

l L

ϕ ϕ

ϕ ϕ

− −
∗

+
=

+ −
∗

−
=

 ≤ ≤ −



= − ≤ <

 ≥





   (6) 

The goal is that the maximum values of out-of-phase aperiodic 

ACFs are as small as possible. Therefore, we define a fitness 

function with integer constraints in the following form: 

( )
[ ]

( ) ( )

1 2

1

1

1 ,

min such that 0,

, ,..., ,

max , 2,3,..., 1,

k

u

L

L

m T
m

l L

x L

f L L

x x x

f A l m N
−

= −

 ≤ ≤


− ≤
 = ∈

= +

x
x

x

x

ℤ

ɶ≜

 (7) 

where 
u

L  represents the length of the unique values in the 

vector x , ( )m
A lɶ  denotes the aperiodic ACF of

m
ϕɶ  belonging

to the matrix ( ), 2 : 1
TL N TN× +Φ Φ xɶ ≜ , and

T
N L< . Since the

above optimization problem has integer nonlinear constraints, 

genetic algorithms (GAs), surrogate optimization, etc. can be 

used to solve it [37-39]. It has been demonstrated that GA 

solves the integer problems best when lower and upper bounds 

are provided for every component of x  [40]. For this reason, 

we have used it for the optimization process in Section III. 

Another issue that we consider in practice at the stage of 

choosing code sequences is that, in addition to orthogonality, 

the sequences should be completely balanced (the number of 

positive and negative unity bits should be equal); that is, 

mathematically, 
T

H

L N
=Φ 1 0 . This makes their decoding by

processors to be done efficiently [41]. Fortunately, the 

columns of the Hadamard matrix with any order (except the 

first column) have such a property. Therefore, it is enough to 

ignore its first column. That is why in (7) the values of m , 

which correspond to the index of sequences related to Txs, are 

defined between 2 and 1
T

N + , and 
T

N L< .

Therefore, finally, what is considered as the matrix of 

binary code symbols Φ  is ( ), 2 : 1
TL N TN× +W W xɶ ≜ . Note

that in this case, the orthogonality and balance of the 

sequences are still preserved because the order of the bits in all 

the sequences is shifted identically, so 
T

T

NL=W W Iɶ ɶ and 

T

T

L N=W 1 0ɶ .

2) Channel transfer function extraction: By collecting and

concatenating L  samples received from the i′ -th Rx at

frequency f , and according to the explanation of subsection 

II-B-1, (5) can be written in matrix form as follows:

( ) ,
i i i L i

f d′ ′ ′ ′= + +s WH 1 nɶ  (8) 

where 

[ ] [ ] [ ]
( ) ( ) ( ) ( )

[ ] [ ] [ ]

1

1

1, 2, ,

1

1 , 2 ,..., ,

, ,..., ,

1 , 2 ,..., .

T

T

T L

i i i i

T
N

i i i N i

T L

i i i i

s s s L

f H f H f H f

n n n L

×
′ ′ ′ ′

×
′ ′ ′ ′

×
′ ′ ′ ′

 = ∈ 

 = ∈ 

 = ∈ 

s

H

n

ℂ

ℂ

ℂ

 (9) 

Due to the orthogonality property in the matrix Wɶ , an 

estimate of the channel transfer function can be obtained from 

(8) in the following form:

( ) 1ˆ .
T

i i
f

L
′ ′=H W sɶ   (10) 

Note that according to the balanced property in Wɶ , 

T

T

L N=W 1 0ɶ . Therefore, the effect of DC offset in (10) is

neutralized. 

C. Image Reconstruction

The 3D reconstruction of the scene image means obtaining

an estimate of the spatial reflectivity function ( ), ,x y zρ ,

which affects the backscatter frequency response (channel 

transfer function) according to (4). According to the geometry 

of the system in Fig. 1(a), the backscatter frequency response 

can be written as a spatial-frequency expression in the 

following form [13, 42]: 

( ) ( ) ( )
2

, ,
, , , ; ,

16

T Ri i

i i i i

i i

jk D D

T R T R

T RV

x y z
H x x y y f e dV

D D

ρ
π

′

′ ′

′

− +=    (11) 

where 2k f cπ=  represents the wavenumber, c  is the speed 

of light, dV dxdydz=  and

( ) ( )2 2
2
,

i i iT T TD x x y y z= − + − +   (12) 

( ) ( )2 2
2
.

i i iR R RD x x y y z
′ ′ ′

= − + − +   (13) 

According to (11), the backscatter frequency response in the 

current form is a 5D data. Therefore, extracting the reflectivity 

function with Fourier-based techniques directly from it 

requires multi-dimensional and complex calculations (taking 

the 4D Fourier transform (FT) and interpolating the 5D to 3D) 

[3, 13]. In order to significantly reduce the amount of 

computation, we map the 5D data ( )ˆ , , , ;
i i i iT R T R

H x x y y f
′ ′

 to a 
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3D data ( ), ;
i iC C

H x y f
′′ ′′

ɶ , so that ( ), 0
i iC C

x y
′′ ′′

represents the 

coordinates of the virtual elements shown in the grid of Fig. 

1(b), where 1, 2,...,
T R

i N N′′ = . Since in this paper, we are 

dealing with a NF multistatic imaging scenario, to match the 

uniform grid shown in Fig. 1(b), it is necessary to derive phase 

and amplitude compensations to apply to the raw data Ĥ . 

Specifically, the reason for this is that under a FF scenario, we 

can assume 
iT

D  and 
iR

D
′
 as well as their corresponding

distance in the virtual grid (i.e. 
iC

D
′′
) to be approximately

equal to each other (see Fig. 2), but this is not acceptable 

under the NF scenario. The range of the NF region depends on 

the wavelength λ  and the array aperture length ape
L  and is

defined as 
3 20.62 , 2ape apeL Lλ λ 

 
[43].

Fig. 2. The coordinates and distances of the physical Tx and 

Rx antennas and the corresponding virtual element to a point 

scatterer. 

Suppose that the coordinates of the physical antennas in 

( ), 0
i iT T

x y  and ( ), 0
i iR R

x y
′ ′

 have a shift of 
i

α ′′  in the horizontal 

direction and a shift of 
i

β ′′  in the vertical direction compared 

to the coordinates of the corresponding virtual element in their 

center (i.e. ( ), 0
i iC C

x y
′′ ′′

); that is, 

,

,

i i

i i

T C i

T C i

x x

y y

α
β

′′

′′

′′

′′

= −

= −
 (14) 

,

.

i i

i i

R C i

R C i

x x

y y

α
β

′ ′′

′ ′′

′′

′′

= +

= +
 (15) 

Clearly, the value of 
iC

D
′′
 can be calculated as follows (see

Fig. 2): 

( ) ( )2 2
2 .

i i iC C CD x x y y z
′′ ′′ ′′

= − + − +   (16) 

According to (12) and (14), as well as (13) and (15), 
iCD
′′
 can

be rewritten in terms of 
iT

D  and 
iR

D
′
 as (17) and (18),

respectively 

( ) ( )2 2 22 2 .
i i i iC T i T i T i i

D D x x y yα β α β
′′ ′′ ′′ ′′ ′′= − − − − + +   (17) 

( ) ( )2 2 22 2 .
i i i iC R i R i R i i

D D x x y yα β α β
′′ ′ ′ ′′′ ′′ ′′ ′′= + − + − + +   (18)

Total round-trip distance in virtual elements can be 

considered as the sum of the expressions on the right sides of 

(17) and (18)

( ) ( )
( ) ( )

2 2 2

2 2 2

2

2 2

2 2 .

i i

i i i

i i i

C C

T i T i T i i

R i R i R i i

D D

D x x y y

D x x y y

α β α β

α β α β

′′ ′′

′ ′ ′

′′ ′′ ′′ ′′

′′ ′′ ′′ ′′

= − − − − + +

+ + − + − + +

ɶ ≜

 (19) 

By applying 2D Taylor series expansion [44] with respect to 

i
α ′′  and 

i
β ′′  around zero, an approximation of 

iC
D

′′
ɶ  is provided

as (20). By ignoring the terms of the distance with powers of 

three in the denominator, we have  

----------------------------------------------------------------------------------------------------------------------------------------------------------- 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

2 2 2 2

2 2

3 3 3 3

1 1 1 1 1

2

2

i i i i

i i i

i i i i

i i i i

i i i ii i i i

i i

i T i R i T i R

C T R

T R T R

T R T R

i i

T R T RT R T R

T T

i i

T

x x x x y y y y
D D D

D D D D

x x x x y y y y

D D D DD D D D

x x y y

D

α α β β

α β

α β

′ ′

′′ ′

′ ′

′ ′

′ ′′ ′

′′ ′′ ′′ ′′

′′ ′′

′′ ′′

− − − −
+ − + − +

    − − − −    + + − − + + − −
       
    

− −
−

ɶ ≃

( )( )
3 3

.
i i

i i

R R

R

x x y y

D

′ ′

′

 − −
 −
 

 

(20)
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 <

( ) ( )

( ) ( )

2 2

2 2

2

2 .

i i i

i i

i

i i

i

C T R

i i
i T i T

T

i i

i R i R

R

D D D

x x y y

D

x x y y

D

α βα β

α βα β

′′ ′

′ ′

′

′′ ′′
′′ ′′

′′ ′′
′′ ′′

+

+− − − − +
+

+
− + − +

+

ɶ ≃

 (21) 

Finally, by considering 

( ) ( ) ( ) ( )2 2 2 2
2

, , ,
i i i iT T R R

x x y y x x y y z
′ ′

− − − − ≪ and 
0z z≃ , 

where 
0z  represents the range in the center of the scene, and 

according to (14) and (15), an approximation of the total 

round-trip distance for phase compensation in virtual elements 

can be calculated as follows: 

2 2

0

.
i i i

i i

C T RD D D
z

α β
′′ ′

′′ ′′+
+ −ɶ ≃   (22) 

On the other hand, with the aim of compensating the 

amplitude, the total round-trip path loss in virtual elements can 

be considered as the multiplication of the expressions on the 

right of (17) and (18) 

( ) ( )
( ) ( )

2

2 2 2

2 2 2

2 2

2 2 .

i i

i i i

i i i

C C

T i T i T i i

R i R i R i i

D D

D x x y y

D x x y y

α β α β

α β α β

′′ ′′

′ ′ ′

′′ ′′ ′′ ′′

′′ ′′ ′′ ′′

= − − − − + +

+ − + − + +

⌣
≜

(23) 

By calculating the terms of the Taylor series expansion, this 

time for 
iC

D
′′

⌣
 and after some mathematical simplifications, we 

have (24). With a method like the previous paragraph and 

ignoring the terms of the distance with powers of four in the 

denominator, we have 

( )2 2 2

0

2

0

.
i i i

i i

C T R

z
D D D

z

α β
′′ ′

′′ ′′ − +
 
  

⌣
≃                 (25) 

In (22) and (25), 
i

α ′′  and 
i

β ′′  can be calculated as 
i iC Tx x
′′

−

and 
i iC Ty y
′′

− (or equivalently
i iR Cx x

′′
− and 

i iR Cy y
′′

− ) 

respectively. In the approximations used in (21) and (25), in 

order to simplify long expressions and also to achieve 

approximate terms independent of the target positions (except 

the range in the center of the scene), terms containing 

distances in the denominator with higher powers have been 

ignored compared to lower exponents. These simplifications 

are reasonable because 
iTD  and 

iRD
′
 are dependent on the

target range and are dominant in terms of amplitude. 

Now, by using approximations 
iCD
′′
ɶ  and 

iCD
′′

⌣
 in (22) and 

(25), respectively, the reduced dimension data of 

( ), ;
i iC C

H x y f
′′ ′′

ɶ  can be written in the following form: 

( )

( ) ( )
2 2

0

2

0

2 2 2

0

, ;

ˆ , , , ; .

i i

i i

i i i i

C C

jk
z

T R T R

i i

H x y f

z
H x x y y f e

z

α β

α β

′′ ′′

′′ ′′

′ ′

+

′′ ′′− +

ɶ ≃

(26) 

Therefore, according to (19), (23) and (26), (11) is simplified 

to the following form: 

( )

( )
( ) ( )

( )
( )

( ) ( )

2 2

0

2 2

0

2

0

22 2 2

0

2 2 2

02

2

0

22

, ;

, ,

16

, ,

16

, , , ,

1616

i i

i i

T Ri i

i i

i i
T Ri i

i i

Ci

i

C C

jk
jk D Dz

T RVi i

jk D D
z

V i i

T R

jkD

CV

H x y f

x y zz
e e dV

D Dz

x y z
e dV

z
D D

z

x y z x y z
e dV

DD

α β

α β

ρ
πα β

ρ
α β

π

ρ ρ
ππ

′′ ′′

′′ ′′

′

′

′′ ′′
′

′

′′

′′

+
− +

′′ ′′

 +
 − + −
 
 

′′ ′′

−

− +

=
− +

= =






ɶ

ɶ ≃

⌣
2

2
.Ci

i

j kD

CV

e dV′′

′′

−


(27) 

----------------------------------------------------------------------------------------------------------------------------------------------------------- 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

2 2 2 2

2 2

2 2

4 4

2 2

2 2 2 21

2 2

i i i i

i i i

i i

i i i i

i i

i i i i

i i i i
i T i T i R i R

C T R

T R

i T i T i R i R

T R

i T R i T R i i

x x y y x x y y

D D D
D D

x x y y x x y y

D D

x x x x y y y y x

α β α βα β α β

α β α β

α β α β

′ ′

′′ ′

′

′ ′

′

′ ′

′′ ′′ ′′ ′′
′′ ′′ ′′ ′′

′′ ′′ ′′ ′′

′′ ′′ ′′ ′′


− + − − − − + − + +

− +



− + − − + −
− −

− − + − − + −
−

⌣
≃

( )( ) ( )( )( )
2 2

.
i i i i

i i

T R R T

T R

x y y x x y y

D D

′ ′

′

− + − −




(24) 
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Note that in the above equation, the complex term 

( )( )
2 2

02 2 2 2

0 0

i ijk
z

i i
z e z

α β

α β
′′ ′′+

′′ ′′− +  is independent of x , y  and z

and can be transferred into the integral. Equation (27) clearly 

states that from this point on we can work on a 3D data that 

contains information of virtual channels instead of a 5D data. 

By taking a 2D FT on the spatial dimensions of the virtual 

aperture and according to (27), the continuous signal 

( ), ;
C C

H x y fɶ  in the wavenumber domain can be expressed as

follows: 

( ) ( ){ }
( )

( )

1

,

2

2 2

I

, ; FT , ;

, ;

1
, , .

16

C C

y Cx C

C C

C

y Cx C

C C

x y x y C C

jk yjk x

C C C C

y x

j kD
jk yjk x

C C

CV y x

k k f H x y f

H x y f e e dx dy

e
x y z e e dx dy dV

D
ρ

π

−−

−
−−

=

=

 

  

ɶ ɶ≜

ɶ

�					
					�

H

(28) 

where ( ) ( )2 2 2

C C CD x x y y z= − + − + . By expressing the

double integral 
1I  in the particular oscillatory integral form 

[45, 46] with the aim of using the method of stationary phase 

(MSP) [45, 46], and performing some mathematical operations 

and simplifications, the result can be written as follows (full 

derivation details are given in Appendix): 

( )
1I ,x y zj k x k y k zj

e
kz

π − + +
≃  (29) 

where 

2 2 2 2 2 24 , 4 0.
z x y x y

k k k k k k k= − − − − ≥   (30) 

Note that unlike the conventional derivations of other versions 

of RMA such as [47-51], in which the amplitude term 21 CD , 

due to its less influence than the phase term and the 

simplification of the extraction, is either completely ignored or 

only its approximation, 1
C

D , is considered, in the derivation 

process by MSP, we have fully considered both phase and 

amplitude terms. This makes the output of the integral 
1I

closer to the actual value. 

By substituting (29) into (28), we have 

( )
( ) ( )

2 2 2

, ,

, ,
,

8

x y z

x y z

j k x k y k z

Vx y z

k k k

x y zj
e dV

zk k k

ρ

π
− + +

=

+ + 

⌣
H

(31) 

Comparing (28) and (30) indicates a mapping from signal 

( ), ,x yk k kɶH  to signal ( ), ,x y zk k k
⌣
H . Such a mapping, which is 

done by considering the dispersion relation in (30), is called 

Stolt interpolation [52, 53]. Equation (31) can be rewritten in 

the following form: 

( ) ( )

( )
2I

2 2 2

, ,

8 , , ,

x y zj k x k y k z

z y x

x y z x y z

x y z
e dxdydz

z

j k k k k k k

ρ

π

− + + =

− + +

  
�						
	 	�

⌣

				

H

(32) 

The term 2 2 28
x y z

j k k kπ− + +  acts as a filter in the Fourier

domain applied to the signal ( ), ,x y zk k k
⌣
H . Now let us define 

( ) ( ), , , ,x y z x y z zρ ρ′ ≜ and 

( ) ( )2 2 2, , 8 , ,
x y z x y z x y z

k k k j k k k k k kπ− +′ +
⌣

≜H H . Therefore, 

the signal ( ), ,x y zρ ′  can be obtained by applying a 3D

inverse FT (IFT) to 2I . As a result, according to the 

relationship between ( ), ,x y zρ  and ( ), ,x y zρ ′ , we have

( ) ( ){ }1

, ,, , FT , , .
x y zk k k x y zx y z z k k kρ − ′= H   (33) 

III. RESULTS AND DISCUSSION

In this section, the performance of the proposed approach is 

evaluated by numerical simulations in MATLAB. All 

computations are performed in MATLAB R2022b running on 

a 64-bit Windows 11 operating system with 16 GB of random-

access memory and a Core-i7 central processing unit at 2.8 

GHz. Wherever not mentioned, the values of the main 

simulation parameters are as in Table I, where λ  is the

wavelength corresponding to the highest frequency in free 

space, 
fN  represents the number of uniformly distributed 

frequency samples, and 
z

D  is the length of target space in the 

range direction. The value of the frequency sample step, which 

depends on the bandwidth and fN , satisfies the condition of 

the Nyquist theorem [47]. Also, according to the values in 

TABLE I 

VALUES OF SIMULATION PARAMETERS 
Parameter 

x y x yT T R R
N N N N= = =

x yT T
d d=

x yR R
d d= f

f
N 0

z
z

D L
i

d ′

Value 11 56.86 mm (11 2λ ) 5.17 mm ( 2λ ) 18-29 GHz 71 0.5 m 0.75 m 128 0 
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Table I, the theoretical resolutions of cross-range and range 

[50] are approximately equal to 1.03 cm and 1.36 cm

respectively. In GA simulations, the value of constraint

tolerance and the maximum number of generations [54, 55]

are considered equal to 610−  and 1000, respectively. In the

simulations only related to extracting the backscatter

frequency response (Examples 1 and 2), a provision has been

made to evaluate the performance of the proposed approach

independently of any particular scene. In these cases, the

evaluation criterion is the frequency response normalized

mean square error (FRNMSE), which can be calculated as

follows [16]:

( ) ( ){ }
{ }

ˆ ˆ

FRNMSE .

H

i i i i

H

i i

′ ′ ′ ′

′ ′

− −
=

H H H H

H H

E

E

  (35) 

Also, the amplitudes of the simulated channels have a Weibull 

distribution with the values of the shape parameter and scaling 

parameter equal to 1.8 and 0.975, respectively, so that 

( ){ }2

, 1i iH f′ =E  [16, 56]. It has been demonstrated that such

a distribution provides a good fit for the statistical modeling of 

the indoor radio propagation channel [56]. Channel phases are 

modeled as uniformly distributed in [ )0, 2π .

Example 1: In the first experiment, we evaluate the 

performance of optimizing code sequences, which were 

proposed in Section II-B-1. Fig. 3 shows the maximum values 

of the aperiodic ACF for the original sequences and optimized 

sequences for code lengths of 32 and 128. As can be seen, 

after the optimization process, the temporal correlation 

properties of the sequences have been improved. In addition to 

aperiodic ACF, based on the obtained vector x , the behavior 

of maximum values of aperiodic cross-correlation functions 

(CCF) was also investigated. The corresponding results are 

shown in Fig. 4, which are again a confirmation of the 

improvement of the aforementioned features after 

optimization. Moreover, we have calculated the average 

FRNMSE values in 400 independent Monte-Carlo runs, the 

results of which are given for different symbol-energy-to-

noise-spectral-density ratios (
0s

E N s) in Fig. 5. Lags are 

considered as a discrete uniform random distribution in 

[ ]1, 1L − . The effect of the optimization process in improving

the FRNMSE values is clear in Fig. 5. 

(a) (b) 

Fig. 3. Maximum values of aperiodic ACF for original 

sequences and optimized sequences; (a) for 32L = , (b) for

128L = .

(a) (b) 

Fig. 4. Maximum values of aperiodic CCF for original 

sequences and optimized sequences; (a) for 32L = , (b) for

128L = .

(a) (b) 

Fig. 5. The effect of improving the temporal correlation 

properties of the code sequences on the improvement of the 

FRNMSE values; (a) for 32L = , (b) for 128L = . Dashed

lines and solid lines are associated with the original and 

optimized sequences, respectively. 

Example 2: In the second example, the performance of the 

proposed approach is compared with the conventional 

approach (without coding the transmitted signals (assuming 

temporal orthogonality)) by the FRNMSE criterion in terms of 

code length, number of Tx antennas, and DC offset. The 

results are obtained based on the average of 400 independent 

executions. Fig. 6 shows the outputs for varying code lengths 

when 
T

N  is fixed at 3. It can be seen that the outputs of the 

proposed approach (solid lines) are always superior to the 

corresponding outputs in a single Tx case without any coding 

(dashed lines). This is due to the additional coding gain, 

because in the first case, the noise power is averaged over L  

measurements. Mathematically, this means that the FRNMSE 

is equal to the estimated variance 2

n Lσ , where 2

nσ represents

the measurement noise variance (see [16] for more details). 

This is why in the case of solid lines, when the length of the 

code increases, the error decreases. The error reduction rate is 

consistent with the above theoretical analysis (see Fig. 6 

where the solid lines are almost identical with the dotted 

lines). Now let us consider the code length as fixed and 

examine the FRNMSE changes versus 
T

N . The results for 

A
p

e
ri
o

d
ic

 A
C

F
 M

a
g

n
it
u

d
e

-100 -50 0 50 100

Lag

0

0.2

0.4

0.6

0.8

1
Original

Optimized

A
p
e

ri
o

d
ic

 C
C

F
 M

a
g

n
it
u
d

e
F

re
q
u
e
n

c
y
 R

e
s
p
o

n
s
e
 N

M
S

E
 (

d
B

)

F
re

q
u
e

n
c
y
 R

e
s
p

o
n

s
e
 N

M
S

E
 (

d
B

)



9 

> This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI10.1109/TGRS.2023.3260565, IEEE Transactions on Geoscience and Remote 
Sensing 

different values of 
0s

E N  are shown in Fig. 7. Similar to Fig. 

6, it was expected that the outputs related to the coded signals 

scenario (solid lines) would show lower error values. It can 

also be seen from Fig. 7 that the error values are independent 

of the number of Tx antennas. The reason for this is the 

mutual orthogonality between the codes of different Txs. In 

the next experiment, we investigate the performance of 

orthogonal coding in the proposed approach on suppressing 

unwanted complex DC offsets. Fig. 8 shows the output of the 

simulations (FRNMSE) for different values of  versus 
id ′ , 

where the phase of 
i

d ′  is considered as a uniform random 

distribution in [ )0, 2π . It can be seen that the outputs related

to the proposed approach are independent of the DC offset 

value and are only affected by 
0s

E N . This is due to the 

balanced property in Wɶ , which was analytically pointed out 

after (10). Unlike the scheme based on orthogonal coding, it 

can be seen in Fig. 8 that the single Tx mode without any 

coding is prone to distortion caused by DC offset in channel 

estimation. In the latter case, there are breakpoints, after which 

the error values start to increase. These points are the 

boundary of the dominance of DC offset to noise, which occur 

for 
0

1
i s

d E N′ >  and change the value of FRNMSE from 

0
1

s
E N  to 

2

id ′ . 

Fig. 6. Comparison of FRNMSE values versus code length. 

3
T

N = . Dashed lines, solid lines, and dotted lines are

associated with the outputs without any coding, the outputs of 

the proposed approach and values of 
2

n Lσ , respectively.

Fig. 7. Comparison of FRNMSE values versus the number of 

Txs. Dashed lines, solid lines, and dotted lines are associated 

with the outputs without any coding, the outputs of the 

proposed approach and the approximation of the estimated 

variance 
2

n Lσ , respectively. 

Fig. 8. Comparison of FRNMSE values versus 
i

d ′ . Dashed 

lines and solid lines are associated with the outputs without 

any coding and the outputs based on orthogonal coding in the 

proposed approach, respectively. 

Example 3: In this example, a point scatterer located at 

( )0,0,0.4 , in meters, is assumed as the target, resulting in a

point spread function (PSF). Two URAs with sizes of 9 9×
are considered and the inter-element spacings in them are 

determined according to the explanation given in Section II-A. 

The reconstructed images obtained by using the proposed 

CGRDF algorithm for different values of 
0s

E N  are shown in 

Fig. 9. It can be seen that in all cases, the location of the target 

in the cross-range and range directions is correctly detected. 

However, as expected, with the decrease of 
0s

E N , the 

difference between the peak and the floor of the normalized 

signal corresponding to the reconstructed image decreases (in 

other words, the desired signal is more drowned in noise). 
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Note that since in this example all the conditions in the x and y 

directions are the same, for cross-range views, only the 

reconstructed PSF display in the x direction is provided. 

(a) 

(b) 

(c) 

Fig. 9. The normalized reconstructed PSFs (in cross-range and 

range directions) by employing the proposed CGRDF 

algorithm; (a) 
0

20dB
s

E N = , (b) 
0

0dB
s

E N = , (c)

0
10dB

s
E N = − . 

Example 4: In this example, the performance of the 

proposed algorithm is investigated from the point of view of 

the effect of the derived terms and the approximations used on 

the results, as well as the resolution. It is assumed that three 

point scatterers are located at positions ( )0.05, 0.04,0.46− − ,

( )0,0,0.5  and ( )0.05,0.04,0.54 , all in meters.

First, the effect of fully taking into account the amplitude 

terms, which were specially considered in the mathematical 

derivations of the proposed CGRDF algorithm, is shown on 

the outputs related to multiple specific targets. Fig. 10(a) 

shows the image reconstructed by the proposed algorithm (in 

3D and 2D views) when the derived amplitude terms (range 

compensators in (33) and (25) and smoothing filter in (32)) are 

ignored. In Fig. 10(a), it can be seen that the farthest target is 

not detected. The reason for this is the propagation loss effect, 

which is a well-known issue in conventional RMA-based 

techniques [13, 42]. Fig. 10(b) shows the output of the 

proposed approach by including the derived amplitude terms. 

As can be seen, applying the derived terms has been effective 

in relaxing the propagation loss effect, and now all three point 

targets can be identified. Note that although the distant targets 

may also be displayed by reducing the Isovalue, reducing it 

simultaneously increases the strength of the sidelobes, which 

is not desirable. 

(a) (b) 

Fig. 10. The isosurfaces of the images reconstructed by the 

proposed approach in 3D and 2D views; (a) when the derived 

amplitude terms are ignored, (b) when the derived amplitude 

terms are fully included. Isovalue: -10 dB. 

Now, let us examine the effect of the target being too close 

to the aperture, assuming other parameters remain unchanged. 

Figs. 11(a) and 11(b) show the outputs of the proposed 

approach when 
0

z  is equal to 0.3 m and 0.25 m, respectively. 

By comparing these figures and Fig. 10(b), it can be seen that 

distortions appear in the reconstructed target by getting closer 

to the aperture. Such behavior can be expected at ranges too 

close to the aperture, due to some approximations used in the 

derivations of Section II-C. 
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< 

(a) (b) 

Fig. 11. The isosurfaces of the images reconstructed by the 

proposed approach in Example 4; (a) when 
0

0.3mz = , (b)

when 
0

0.25mz = . Isovalue: -10 dB.

To evaluate the resolutions in the proposed approach, we 

brought the point scatterers close to each other to the extent 

that they can be separated from each other and extracted the 

corresponding mesh surface PSF plots for greater clarity. Figs. 

12(a), 12(b), and 12(c) show the reconstructed images focused 

at a range of 0.5 m when the point scatterers are separated by a 

distance of 1.9, 1.8, and 1.7 cm from each other in the x and y 

directions, respectively. The range of the targets is 0.5 meters. 

By considering the -3 dB full-width at half-maximum 

(FWHM) criterion to determine the resolution [57], at 1.7 cm 

separation, it can be seen that the PSF main lobes of the point 

scatterers remain above the -3 dB width, setting the cross-

range resolution limit. Although it is naturally expected that 

the resolution values in practice are larger than the 

corresponding theoretical values, here the difference between 

the practical value (1.7 cm) and the theoretical value (1.03 cm 

as mentioned at the beginning of Section III) might seem 

slightly larger than expected. This is due to the close range of 

the targets to the aperture. In fact, as discussed in the previous 

paragraph, due to the approximations used in the extraction of 

NF terms, the closer we get to the aperture, the more 

distortions and errors we expect to encounter (compared to 

distances farther from the aperture). To confirm this aspect of 

the cross-range resolution, we repeated the above test, this 

time at a range of 1 m. Obviously, the theoretical resolution is 

doubled (i.e. 2.06 cm), because it has a direct linear 

relationship with the range. The results are shown in Figs. 

12(d)-12(f). By observing the -3 dB FWHM of the PSF main 

lobes, a resolution of 2.2 cm can be obtained for the proposed 

approach, which is much closer to the corresponding 

theoretical value. A similar experiment (this time by fixing the 

horizontal and vertical position of the targets at ( )0,0  and

changing the range of the two side targets) was conducted to 

evaluate the range resolution, the results of which are shown 

in Fig. 13. According to the obtained plots, a range resolution 

of 2 cm is provided (while the corresponding calculated 

theoretical value is 1.36 cm). 

(a) (d) 

(b) (e) 

(c) (f) 

Fig. 12. Mesh surface plots of reconstructed images (focused 

in the ranges of 0.5 and 1 m for the left and right columns, 

respectively) by employing the proposed CGRDF algorithm 

when the targets are located at (a) ( )0.019, 0.019,0.5− − ,

( )0,0,0.5  and ( )0.019,0.019,0.5 , (b) ( )0.018, 0.018,0.5− − ,

( )0,0,0.5  and ( )0.018,0.018,0.5 , (c) ( )0.017, 0.017,0.5− − ,

( )0,0,0.5  and ( )0.017,0.017,0.5 , (d) ( )0.023, 0.023,1− − ,

( )0,0,1  and ( )0.023,0.023,1 , (e) ( )0.022, 0.022,1− − , ( )0,0,1

and ( )0.022,0.022,1 , (f) ( )0.021, 0.021,1− − , ( )0,0,1  and

( )0.021,0.021,1 , all in meters.

Example 5: In the last experiment, the performance of the 

proposed approach is compared with other techniques. A T-

shaped distributed target with dimensions of 
30.099 0.099 0.01m× ×  is considered (see Fig. 14). The

number of voxels to define the scene is 121 121 146× × .

According to the values in Table I as well as the Nyquist 

criterion [58], the conditions required for spatial sampling in 

the x and y directions in order to avoid aliasing, i.e. 
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 <

( ) ( )2
2

0
0.5 4v t v t

x x x x x
d L L z L Lλ≤ + + +  and 

( ) ( )2
2

0
0.5 4

v t v t

y y y y y
d L L z L Lλ≤ + + + , where λ ,

0
z , 

v

x
L , 

v

yL , 
t

xL  and 
t

yL  represent wavelength corresponding to the 

highest frequency in free space, range in the center of the 

scene, and sizes of the virtual aperture and the scene (see Fig. 

1(b)), respectively, are met in the proposed algorithm. Fig. 15 

shows the reconstructed images by the generalized synthetic 

aperture focusing technique (GSAFT) [8, 59], the method [16] 

and the proposed algorithm. The target image is clearly 

identifiable in all three outputs. However, visually, the outputs 

of the first two methods seem to be of higher quality and more 

like the original target image form in Fig. 10. In addition, 

Table II quantitatively confirms that the reconstructed images 

by GSAFT and method [16] are similar in terms of quality. In 

Table II, once Fig. 15(a) and once Fig. 15(b) are considered as 

reference images, and the corresponding reconstructed image 

NMSE (RINMSE) values are calculated for them as [13]: 

( ) ( )

( )

2

Rec Ref

1 1 1

2

Ref

1 1 1

RINMSE

, , , ,

,

, ,

yxx z

yx z

NN N

q q q q q q

q q q

NN N

q q q

q q q

x y z x y z

x y z

ρ ρ

ρ

′′ ′

′ ′′ ′ ′′
′ ′′= = =

′′ ′

′ ′′
′ ′′= = =

=

−



(36) 

where 
Rec

ρ and
Ref

ρ denote the reconstructed image and

reference image. Also, the image contrast (IC) values in Table 

II are calculated in the following form [13]: 

( ) max minIC ,I I I= −  (37) 

where 
max

I  and 
min

I  respectively represent the maximum and 

minimum value intensities in image I  obtained based on the 

corresponding values averaged from the reconstructed 2D 

images (in the xy-plane) focused on different ranges (when the 

pixel values are normalized by dividing by 255). Quantitative 

comparisons in Table II are consistent with visual findings 

from Fig. 15. 

(a) (b) 

Fig. 13. Mesh surface plots of reconstructed images focused at 

0y =  m by employing the proposed CGRDF algorithm when

the targets are located at (a) ( )0,0,0.48 , ( )0,0,0.5  and

( )0,0,0.52 , (b) ( )0,0,0.481 , ( )0,0,0.5  and ( )0,0,0.519 , all

in meters. 

(a) (b) 

Fig. 14. General imaging configuration in Example 5; (a) 3D 

view of the aperture and target structure, (b) 2D view of the T-

shaped target. 

The noteworthy point is the computational time required to 

implement the above algorithms. Table II indicates that the 

proposed CGRDF algorithm has reconstructed an 

understandable image of the scene after about one second, 

while the computation time for GSAFT and method [16] is 

more than 1000 seconds, which is not optimal for real-time 

applications. Although computational time can provide a 

preliminary idea of computational efficiency, computational 

complexity provides a more reliable picture. The total 

computational complexity of the proposed algorithm, 

considering the major multiplications involved in extracting 

the transfer function, Fourier calculations and the interpolation 

process, is given in (38), where p
N  represents the order of the 

multiplicative complexity for one Stolt’s mapping [60]. The 

total computational complexity of CGRDF in terms of the 

number of frequency samples and the number of antennas is 

plotted in Fig. 16 and compared with the complexities of the 

GSAFT, the method [16] and the conventional MIMO RMA 

(for the details on the computational complexity of the 

mentioned methods, refer to [10, 13, 61]). It can be seen that 

the method [16] (due to the use of an LS-based approach) and 

the GSAFT algorithm have very high complexity. Also, Fig. 

16 demonstrates that the CGRDF algorithm has better 

computational performance even compared to MIMO RMA 

that is a Fourier-based scheme. The main reason for this is the 

reduction of Stolt interpolation stage calculations (migration 

from 5D-to-3D interpolation to 3D-to-3D one). 

----------------------------------------------------------------------------------------------------------------------------------------------------------- 

( ) ( )( )2 2
log log

f T R f T R T R x y p x y z x y z
N N N L N N N N N N N N N N N N N N′ ′ ′ ′ ′ ′ ′ ′+ + +O (38)
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(a) 

(b) 

(c) 

Fig. 15. The isosurfaces of the reconstructed images of a T-

shaped target; (a) by GSAFT technique, (b) by method [16], 

(c) by proposed CGRDF algorithm. Isovalue: -10 dB.

(a) (b) 

Fig. 16. Comparison of computational complexity in different 

algorithms; (a) versus the number of frequency samples, (b) 

versus the number of antennas. 

IV. CONCLUSION

In this paper, with the aim of sensing scene information 

with the simultaneous operation of all Txs, an approach based 

on optimal orthogonal coding was presented in a NF 

multistatic imaging scenario. In particular, a specific MIMO 

configuration was introduced, through which, in the above 

scenario, it was possible to map 4D to 2D spatial data 

compatible with fast Fourier calculations. After introducing 

the model of the transmitted and received signals, the method 

of extracting the paired information of Tx-Rx channels was 

presented. Then, a low-cost computational algorithm was 

derived mathematically according to the data extracted from 

the channel information, taking into account all terms of 

phases and amplitudes. The performance of the proposed 

approach was evaluated in various experiments with 

qualitative measures of reconstructed images, as well as 

quantitative measures of ACF, CCF, FRNMSE, RINMSE, 

computational time and computational complexity. The results 

of numerical simulations showed that the proposed approach 

is able to meet the requirements of reliable real-time imaging. 

In this work, beyond image reconstruction, the aspects of 

waveform diversity and retrieval of individual channel data in 

an imaging system were also considered. The scheme of 

simultaneous transmission of orthogonal signals by multiple 

Txs was used only for sensing. In the current model, it is 

possible to extract the channel transfer function on the Rx side 

(mathematically, in (8), an estimate of ( )i f′H  can be

calculated). For the purpose of sensing considered in this 

paper, there is no need to retrieve Wɶ  (see (8)). But from 

another point of view, if we look at Wɶ  as a message, its 

retrieval at the Rx side means that communication is achieved. 

The development of the current model to integrate sensing and 

communication functions [62, 63] will be considered as future 

work. 

APPENDIX 

Details of solving the integral 
1

I : The integral 
1

I  in (28) 

can be asymptotically evaluated using MSP [64]. This method 

can be used to obtain an analytical solution for integrals in the 

general form of the left side of the following equation [65]: 

( ) ( ) ( ) ( )0 0,,

0 0
2

2
, , ,

jk x yjk x y j
g x y e dxdy g x y e

k

πσ
ηι γ

ΘΘ

−
 ≃ (39) 

where the domain of integration is determined by the aperture 

and the stationary phase position ( )0 0
,x y [66] is obtained by

finding the zeros of the first derivative of the exponential term 

argument; that is, 

C
o
m

p
u
ta

ti
o
n
a
l 
C

o
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p
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it
y
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N
T
=N

R
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GSAFT

Ref. [16]

MIMO RMA

Proposed approach

TABLE II 

QUANTITATIVE COMPARISON OF PERFORMANCE OF DIFFERENT METHODS CORRESPONDING TO FIG. 15 
Approach RINMSE 1 RINMSE 2 IC Computational Time 

GSAFT 0.00051 Reference image 136.74 1044 Sec 

[16] Reference image 0.0005 141.94 1679 Sec 

Proposed 0.92 0.9 125.71 0.93 Sec 
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 <

( ) ( )0 0 0 0
, ,

0.
x y x y

x y

∂Θ ∂Θ= =
∂ ∂

                                                 (40) 

Also, in (39), 
( )0 0

2 2

,x y
xη = ∂ Θ ∂ , 

( )0 0

2 2

,x y
yι = ∂ Θ ∂ and 

( )0 0

2

,x y
x yγ = ∂ Θ ∂ ∂ , and [65]

2

2

2

1, , 0,

1, , 0,

1, .

ηι γ η
σ ηι γ η

ηι γ

 > >


= − > <
− <

 (41) 

By comparing the integral 
1I  in (28) with the form (39), it 

can be written 

( ) ( ),

1I , C C

C C

jk x y

C C C C

y x

g x y e dx dy
Θ=    (42) 

where ( ) 2, 1
C C C

g x y D= and 

( ), 2
C C C x C y C

x y D k k x k k yΘ = − − − . The first partial 

derivatives of the phase function are 

2 ,

2 ,

C x

C C

yC

C C

x x k

x D k

ky y

y D k

−∂Θ = −
∂

−∂Θ = −
∂

 (43) 

and from them, the required second partial derivatives are 

obtained, which after some algebraic simplifications we have 

( )

( )

( )( )

2 22

2 3

2 22

2 3

2

3

2 ,

2 ,

2 .

C

C C

C

C C

C C

C C C

y y z

x D

x x z

y D

x x y y

x y D

− +∂ Θ = −
∂

− +∂ Θ = −
∂

− −∂ Θ =
∂

 (44) 

Now it is necessary to calculate the stationary phase 

position according to (40). So, we have 

( ) ( )0 0 0 0

0

, ,

0 2 ,x

C Cx y x y

x x k

x D k

−∂Θ =  =
∂

  (45) 

( ) ( )0 0 0 0

0

, ,

0 2 ,
y

C Cx y x y

ky x

y D k

−∂Θ =  =
∂

  (46) 

Equations (45) and (46) after some simplifications lead to (47) 

and (48), respectively 

 

( ) ( )2 2
2 0 2

0 2 2
,

4
x

x

y y z
x x k

k k

− +
− =

−
 (47) 

( ) ( )2 2
2 0 2

0 2 2
.

4
y

y

x x z
y y k

k k

− +
− =

−
  (48) 

To obtain the two unknowns 
0x  and 

0y  by using the above 

two equations, we substitute (48) in (47) as follows: 

( )

( )

( )( ) ( )
( )( )

2 2

0 2 2

2 2
2 2

0 2 2

22 2 2 2 2
2 2

0
2

2 2 22 2 2 2
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4

4
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44 4
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k x x z z k k z k
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k k kk k k k

− +
+

−
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− + + −
= =

− −− −

(49) 

By extracting the positive root of the above equation, we have 

0
2 2 2

.
4

x

x y

k
x x z

k k k
= −

− −
  (50) 

In a similar way, we can get 
0y  which becomes 

0
2 2 2

.
4

y

x y

k
y y z

k k k
= −

− −
  (51) 

Since 0x  and 0y  must be real values, as a result, the 

frequency wavenumber must satisfy the inequality 
2 2 2

4 0
x y

k k k− − ≥ .

Finally, it is necessary to evaluate the functions g , Θ , η ,

ι and γ  in the stationary phase position. The outputs after

mathematical simplifications are given below

( )

( )

( ) ( )

( ) ( )

( )

2 2 2

0 0 2 2

2 2 2

0 0

2 2 2 2 2

0 0 3
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k k k k k
x y
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Also, we have 

( ) ( )
( ) ( ) ( )

( ) ( )

0 0 0 0

2 2 2 2 2 2 2

6 2

2 2 2 2 2

2

0 0 6 2

, ,

4 4 4
,

16
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, .

16

x y x y
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x y x y

k k k k k k k
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k k k k k
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k z

η ι
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− − − −

− −
=

(53) 

As a result, 

( ) ( ) ( ) ( ) ( )2
2 2 2 2 4 2

0 0 0 0 0 0, , , 4 4x yx y x y x y k k k k zη ι γ− = − − , 

which always returns a positive value. Also, according to (44), 

η  is always a negative value. Therefore, by considering (41),

σ must be 1. Finally, according to (39), (42), (52) and (53),

as well as the above points, the integral 
1I  can be 

approximated in the following form: 

( ) ( )

( )

2 2 2

2 2 2

2 2 2

1 2 22
2 2 2 4 2

4

4
2 2 2

42
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(54) 
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