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 

Abstract— Traffic on future Fifth-Generation (5G) mobile 

networks is predicted to be dominated by challenging video 

applications such as mobile broadcasting, remote surgery and 

augmented reality, demanding real-time and ultra-high quality 

delivery. Two of the main expectations of 5G networks are that 

they will be able to handle Ultra High Definition (UHD) video 

streaming and that they will deliver services that meet the 

requirements of the end user’s perceived quality by adopting 

Quality of Experience (QoE) aware network management 

approaches. This paper proposes a 5G-QoE framework to 

address the QoE modelling for UHD video flows in 5G networks. 

Particularly, it focuses on providing a QoE prediction model that 

is both sufficiently accurate and of low enough complexity to be 

employed as a continuous real-time indicator of the ‘health’ of 

video applications flows at the scale required in future 5G 

networks. The model has been developed and implemented as 

part of the EU 5G PPP SELFNET autonomic management 

framework, where it provides a primary indicator of the likely 

perceptual quality of UHD video application flows traversing a 

realistic multi-tenanted 5G mobile edge network testbed. The 

proposed 5G-QoE framework has been implemented in the 5G 

testbed, and the high accuracy of QoE prediction has been 

validated through comparing the predicted QoE values with not 

only subjective testing results but also empirical measurements in 

the testbed. As such, 5G-QoE would enable a holistic video flow 

self-optimisation system employing the cutting-edge Scalable 

H.265 video encoding to transmit UHD video applications in a 

QoE-aware manner. 

 
Index Terms— QoE, 5G networks, video streaming, UHD. 

I. INTRODUCTION 

IDEO applications currently account for 73% of all IP 

based Internet traffic [1] and are predicted to consume 

82% by 2021. Over the same period traffic from mobile 

devices is set to rise from 7% of all traffic to 17%, increasing 

at twice the rate of fixed IP traffic. Also as Fifth Generation 

(5G) mobile networks [2],[3] enter service, expected higher 

bandwidths, lower end to end delays and improved reliability; 

are likely to increase demand for mobile video consumption. 

Similarly, new video compression standards such as High 
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Efficiency Video Coding (H.265/HEVC) [4][5] and the 

availability of Ultra-High-Definition (UHD) portable 

consumer devices may further fuel growth in mobile video 

traffic. Some portable devices already have screen resolutions 

of 4K with 8K possible by the early 2020’s. An 8K laptop 

screen, using version 1.4 of the embedded DisplayPort 

standard (eDP) [6] has already been demonstrated Japan 

Display [7])  

These two technological advances will provide the 

infrastructure for ‘anywhere anytime’ access to real time 

broadcast media and  possibly inspire new classes of video 

services, again increasing the video related load on mobile 

networks. Despite anticipated improvements in Quality of 

Service (QoS) and resilience [8] in 5G networks, enormous 

volumes of video traffic will continue to pose significant 

challenges for network operators. Recently, the network 

quality focus has changed from a network provider’s QoS 

perspective to the less easily quantified end user’s Quality of 

Experience (QoE) viewpoint. 

In this context, the EU 5G PPP SELFNET project [9][10] 

has proposed a QoE-aware Self-Optimisation Use Case for 

UHD video flows using the Scalable H.265 video coding 

standard. The key enabler in this use case is s a QoE 

prediction model for Scalable H.265 encoded UHD video 

flows in 5G infrastructures. There are a number of technical 

challenges to achieve this enabler, as explained below. 

Firstly, finding a reliable, accurate, scalable and robust QoE 

prediction model for streamed video over mobile networks is 

an unresolved and very challenging task. The specific set of 

challenges investigated in this paper cover the immensely 

important area of delivering UHD video to demanding users in 

5G mobile networks. These include significantly increased 

bandwidth, the predicted growth video streaming traffic and 

subjective  factors such user expectations 5G networks. 

Secondly, current QoE models including those promoted by 

standardisation bodies [11], do not focus on 5G networks 

where additional challenges such as virtualisation, mobility 

and multi-tenancy requirements exist.    

Thirdly, although video encoder type is a significant factor 

in QoE modelling [12], existing QoE models usually only 

consider single layer video encoders mostly for the H.264 

Advanced Video Coding standard (H.264/AVC) [13] or in a 

small number of cases the latest H.265 standard [4][5].  

To address the above challenges, this paper investigates 

QoE prediction of UHD video, encoded using the scalable 

extension to the H.265 standard (SHVC) [14] over 5G 

networks. By focusing on fast and efficient prediction of QoE 
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from 5G network congestion indicators, it can predict the QoE 

of the whole scalable video stream and estimate the QoE 

achieved by dropping a layer (or layers) from a scalable H.265 

video stream. This model is one of the components of the 

SELFNET autonomic 5G network management system [10] 

This work addresses real time, RTP based video streaming 

often used for video conferencing, video chat and video 

surveillance applications rather the Dynamic Streaming over 

HTTP (DASH) based streaming used in Content Delivery 

Networks (CDNs) such as Netflix [15] or Hulu [16] where a 

number of pre-recorded and pre-encoded representations of a 

video stream serve different client types and network 

conditions. 

The model was developed and evaluated through subjective 

evaluation experiments using over 50 human subjects. 

Validation compared the results of further subjective 

evaluations with those predicted by the model. Empirical 

results show that, for a range of different content types, the 

predictions of QoE produced by the model closely tracked the 

subjective opinions of the test subjects. 

In summary, this paper will highlight the following novel 

contributions: 

 A 5G-QoE framework comprising essential 

building blocks to enable the chain of 

sensing/monitoring, aggregation, QoE modelling 

and QoE prediction; 

 A low-complexity QoE estimation and prediction 

scheme that is practical to be deployed in real-

world networking environment with real-time 

processing requirements; 

 A 5G-aware QoE system that is capable of 

extracting video metadata and flow QoS metrics to 

enable the QoE modelling for video flows over a 

multi-tenancy 5G infrastructure; 

 A UHD capable, Scalable H.265 (and H.265) 

aware QoE system ready for the emerging next 

generation mainstream video applications in 5G 

and Internet.      

The rest of the paper is organised as follows, in Section 2 

the state of the art in QoE modelling for streamed video, 

scalable video codecs and, where relevant in this context, 

advances towards autonomic functionality in 5G networks. 

Section 3 provides an insight into the QoE-driven, self-

optimising features of the SELFNET 5G network management 

architecture, whilst Section 4 explains the methodology used 

and the subjective testing experiments undertaken. In Section 

5, the QoE prediction model is developed and the results of 

validation experiments presented. Finally, Section 6 concludes 

the paper. 

II. RELATED WORK 

This section reviews existing QoE modelling techniques 

and highlights key technologies relevant to this work. 

A.  QoE modelling Approaches 

Existing QoE assessment and modelling for video can be 

divided into two broad categories, subjective or objective. 

Irrespective of which modelling technique has been employed,  

all QoE models, through some function or mapping, provide a 

prediction of the perceived subjective quality of a video under 

a given set of circumstances. The metric used in these models 

is normally predicted Mean Opinion Score (MOS). QoE 

prediction models are commonly validated by comparing the 

outputs of the model with the results of subjective (from 

human subjects) evaluations of quality. Where models target a 

networking environment, they may be further validated 

experimentally using a network simulator or a testbed. As 

there are several recent comprehensive survey papers (e.g., 

[17], [18] and [19]) in this domain, this subsection only 

summarises the technical approaches that are most relevant to 

this paper. 

1) Subjective QoE Assessment and Models 

Subjective QoE assessment methods employ organised 

sessions of end users who view video content and rate the 

visual quality using a Mean Opinion Score (MOS) metric. 

ITU-T recommendations [20] for subjective quality evaluation 

follow strict t setup and testing conditions. MOS scores are 

considered to reliably reflect the quality perceived by the 

Human Vision System (HVS) and therefore, can also be used 

to validate an objective QoE model. Nevertheless, subjective 

QoE tests are time-consuming, labour-intensive, expensive 

and do not scale. Additionally, subjective testing does not 

provide an instantaneous QoE metric suitable for real-time 

video  assessment or prediction.  

Subjective video quality models attempt to leverage insights 

into HVS through psychological or psychophysiological 

factors such as user expectations of a service, service type, 

age, mood and time of day to predict how a user will perceive 

the quality of a particular video. For instance, Reiter et 

al[21]have shown that age, sex and socio-economic status are 

all factors influencing QoE, while Kara et al. [22] claim that 

economic context such as the brand perception of viewing 

device (in their case a smartphone) and the price, if any, paid 

to view the content were significant factors. However, such 

factors are also difficult to manage and correlate in a unified 

model for efficient, real-time systems. 

2) Objective QoE Models 

In light of the drawbacks of subjective QoE assessment and 

modelling, objective QoE modelling has gained significant 

popularity over the years. Some models directly map an 

objective measurement of video quality such as the well-

known Peak Signal to Noise ratio (PSNR) and Structural 

Similarity Index Matrix (SSIM) metrics directly to a 

prediction of user perceived quality. However, these metrics 

are often criticised for either requiring full (or reduced) 

reference comparisons to the original video frames or for 

being unreliable.   

Consequently, practical, no reference QoE modelling is 

highly desirable. Parametric QoE models, which derive a 

predicted MOS from a model that is a function of some 

number of objectively measured parameters, are now the most 

commonly used objective method of modelling QoE [47]. 

These parameters have often included Quality of Service 

(QoS) metrics such as bandwidth, delay, packet loss, bit error 
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rate etc. In some cases the parameters used have also 

considered the nature of the video stream being transmitted 

such as content type, resolution, frame rate etc. QoS to QoE 

mapping, by exploring and establishing a relationship between 

QoS metrics and QoE for specific use cases is a primary way 

to achieve such objective metrics. For instance, the 

H.264/AVC-encoded 3D video model  proposed by 

Alreshoodi et al. [23], maps QoS parameters from both the 

video encoding layer (content type, spatial resolution and 

quantization parameter) and the network layer (packet loss 

rate and mean burst length). Their model was developed using 

fuzzy logic inference systems, and may have significant 

system complexity and computational power requirements. 

Seyedebrahimi et al. [24] developed a QoE metric called 

Pause Intensity (PI) for TCP-based video streaming, in which 

the PI is determined from video playout rate and network 

throughput. PI is a shown to be  the ratio of the rate difference 

(λ – η) to the playout rate λ. The model was validated through 

simulations using video sequences encoded with H.264. 

Another QoS/QoE function was proposed by Hsu and Lo [25] 

for cloud-based multicast video streaming using a simulated 

platform. Finally, Khan [26] et al. designed a QoE metric for 

H.264 video in 3G networks simulated by the ns2 simulator.  

Compared with these existing studies, this paper proposes a 

new objective QoE model for UHD video streaming encoded 

using the latest standard Scalable H.265. The modelling 

methodology has leveraged subjective QoE assessment 

information and has been validated using both subjective and 

objective approaches and empirically validated in a realistic 

5G testbed. 

B. 5G UHD Networking, QoE and H.265 Standards   

1) 5G UHD Networking and QoE Modelling Requirements 

Driven by ever-growing user requirements and 

expectations, research on future 5G networks has gained 

global momentum. In Europe, the SELFNET project [9], one 

19 EU 5G PPP Phase 1 projects [27], focuses on cognitive 

network management.  A primary use case of SELFNET is 

self-optimisation of UHD video streaming in 5G hotspots in 

venues such as airports, and stadiums. The aim is to deliver 

high-quality (potentially UHD) video streams, from a network 

media server to multiple users in a 5G hotspot, with sustained 

levels of user QoE. The main task being to maintain QoE in 

the face of network congestion and decreasing available 

bandwidth caused by many users concurrently streaming 

video.  

QoE awareness and prediction are the key enablers in 

SELFNET’s self-optimisation scheme to mitigate the impact 

of congestion on users. The design and prototype aims to 

deliver a complete operational chain including practical 

sensors that gather network metrics and video metadata 

needed to build the QoE model. In contrast, most existing 

related work either just assumes the availability of the required 

metrics/metadata or use simulated values in their modelling. 

However, it is not trivial to obtain the required 

metrics/metadata, especially at run-time, for real-time QoE 

prediction. 

Additionally, other 5G requirements [28][29] need to be 

addressed. New virtualisation, cloud computing and 

softwarisation technologies (e.g. Software-Defined 

Networking (SDN) and Network Function Virtualisation 

(NFV)) will reduce capital and operational expenditure in 5G 

networks. Multi-tenancy is required as a built-in feature to 

allow the infrastructure to be shared by two or more operators, 

and mobility support is fundamental in 5G mobile networks (. 

e.g., through the General Packet Radio Service (GPRS) 

Tunnelling Protocol (GTP) based on the evolution of the 

Fourth Generation (4G)  Long-Term Evolution (LTE) 

networks). All these requirements have implications on the 

design and implementation of the 5G-QoE system.  

To the best of our knowledge, no existing 5G video related 

projects have considered all the above requirements. For 

instance, the UHD-on-5G project [30] focusses on 

Information-Centric Networking (ICN) and SDN technologies 

for efficient 5G UHD video streaming with no consideration 

of QoE. Kourtis et al. [31] proposed a Video Quality 

Assessment (VQA) method based on SSIM to address quality 

degradation introduced by a bottleneck of the small cell 

backhaul. This work uses a reduced reference, rather than our 

preferred no reference approach, and does not consider the 

latest codecs, UHD or multi-tenancy. Ge et al. [32] address 4K 

UHD video delivery in 5G networks and focus on an adaptive 

video prefetching scheme deployed at the edge of the network 

to help improve QoE. However, no QoE modelling is reported 

apart from using video buffer status as an indicator of a video 

session’s QoE. In addition, no codec or multi-tenancy support 

is mentioned. 

2)  H.265 and Scalable H.265 Video Coding Standards, and 

QoE Studies 

The H.265/HEVC standard introduced in 2013 reduces 

bandwidth requirements, compared with H.264/AVC by up to 

50% with no perceptual loss of quality [35]. Recent speed 

improvements in H.265 (e.g., in [36]), demonstrate its 

potential to replace H.264 codecs in 5G networking, while  

interest on the impact of H,265 on network has also gained 

traction [37]. 

Despite the need, acknowledged by standardisation bodies 

(3GPP [33]),and industry alliances (NGMN [34] ), for new 

high compression codecs such as H.265 to reduce bandwidth 

requirements in 5G networks; the vast majority of related 

work employs H.264 or older video coding standards.  H.265 

codecs will help mitigate the vastly increased bandwidths 

needed by UHD video with potential spatial resolutions of up 

to 8K and frame rates of up to 300 frames per second (fps).  

The current (4
th

 version) of the H.265 standard [5], fully 

supports scalable video encoding using a range of scalability 

options including spatial, quality, bit depth and colour gamut. 

Temporal scalability is native to the H.265 standard itself. 

Scalable video encoders allow a video stream to be adapted 

within the network by dropping layers from the stream [38]. 

Fig. 1 shows the enhancement layer on a scalable stream 

(Enh1) being dropped at a media adaptaion element while the 

base layer is delivered.. 
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Fig. 1 Video stream adaptation using scalable video codecs. 

 

Existing publications on the scalable extension to H.265 in 

the context of UHD video, have only made subjective 

comparisons with previous codecs [39] [40], investigated 

playback quality across different device types [41] or 

considered scalable H.265 streaming over HTTP [42] using 

the Dynamic Adaptive Streaming over HTTP (DASH) [43] 

protocol rather than the RTP based streaming approach 

investigated in this paper. None of these recent H.265 QoE 

studies has proposed a QoE prediction model specifically 

aimed at the scalable extension to H.265 or the 5G context. 

Also, they only consider packet loss [44][38][39][45] or 

address a multi-user scenario where a mapping of an objective 

metric [46] is used to estimate QoE rather than the cost/benefit 

trade-off in quality offered by scalable H.265 when congestion 

is encountered. 

III. PROPOSED 5G-QOE SYSTEM OVERVIEW  

The SELFNET 5G Video QoE system provides a set of 

virtualised network agents within the multi-tenant SELFNET 

Mobile Edge Network architecture. These components, 

acquire, in real time, data on all video flows and the network 

resources through which they pass as they traverse the 

network from end to end. The data is aggregated and used to 

provide a fast, scalable and accurate estimate of the perceived 

quality of the video carried under the prevailing network 

conditions. An overview of the system architecture is shown 

in Fig.2. 

 

 
 

Fig.2. Overview of 5G-QoE system architecture. 

The health of the 5G video transmission ecosystem is 

constantly monitored and analysed by periodically calculating 

the Quality Index of each video flow. The analysis module 

provides both instantaneous and time-varying QoE statistics to 

enable reporting or the raising of alerts on each individual 

video stream or set of video streams sorted by (for example) 

network resources such as a physical or virtual appliance or by 

network location (either logical or physical) or by tenant since 

the SELFNET platform on which this QoE system resides 

provides a multi-tenant infrastructure. 

The analysis module can report when a video stream (or set 

of video streams) has fallen below the acceptable QoE 

threshold, or is predicted to fall below that threshold in the 

next reporting period, given the trend over the most recent 

reporting periods. It is also aware of the current adaptation 

state of each scalable video stream and can include in its 

reports information on whether a video stream has the ability 

to be further adapted and what the likely cost/benefit will be in 

terms of any trade-off between bandwidth saving and potential 

reduction of the Quality Index that may result from dropping 

one or more layers from the scalable video stream. 

A. SELFNET 5G Network Monitoring Layer  

The SELFNET 5G network monitoring layer consists of a 

three main sensors which, inspect and extract metrics from 

each of the components of the 5G mobile edge network (both 

physical and virtual) and the data flows traversing the 

network. Monitoring data is stored in a database, used to 

inform decisions in the SELFNET autonomic network 

management system and is also available, in aggregated form 

(e.g. by tenant, physical or logical zone), in SELFNET’s 

network management dashboard. Since the aggregated data is 

not associated with any subscriber data (e.g. from the home 

subscriber server (HSS) database), there is no impact on user 

privacy. 

1) Flow Sensor 

The SELFNET flow sensor is a virtualised 5G network 

agent, which inspects every flow passing through the network, 

acquiring information and metrics from each level of the 

complex set of encapsulations found in future 5G/mobile edge 

networks (see diagrammatic representation in Fig. 2). This 

sensor uniquely identifies and provides a wide range of 

information and metrics such as flow state (active, retired 

etc.), source, destination, packet count and bandwidth 

consumed at each level of encapsulation and tunnelling of a 

flow. Which in turn enables the SELFNET 5G QoE system to 

uniquely identify, and acquire metrics for, each layer in a 

scalable H.265 encoded video stream. The data is collected on 

a configurable periodic basis and pushed to a monitoring 

database. The flow sensor is a flow monitoring tool based on 

IPFIX protocol l[56] [57]. It is hooked into the data plane by 

using the fast AF_PACKET [57] sniffing capabilities of the 

Linux kernel. This is similar to the techniques used by other 

well-known packet classifiers such as Wireshark [58]. 

AF_PACKET allows to scale the acquisition of raw packets 

up to 7-10 Gb/s depending on the packet size. The only 

difference between traditional IPFix sensors is that our flow 

sensor contains a customized packet classification to allow the 
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processing up to the double encapsulation imposed by the 5G 

virtualized network. Notice that IPFIX sensor is not 

performing any type of Deep Packet Inspection (DPI) and 

allows the classifier for being prototyped using an O(n) linear 

parsing algorithm. This linear classification is analogous to the 

one already existing IPFIX flow sensors such as nProbe [59], 

Telesoft [60]. In terms of overhead, there is not any increase in 

the packet dropped (0%) and delay (0.000001%) over the 

interface where the flow sensor is running with respect to the 

same interfaces and traffic when the flow sensor is not 

running. This is due to the fact that linux kernel performs a 

copy of the packets into the kernel space in order to do not 

interference in the performance of the data plane. The 

overhead of the flow sensor cannot be compared against the 

performance of an IPFIX flow monitoring sensor since it does 

not provide the capabilities of the flow sensor and would be 

unfair to perform such comparison since traditional IPFIX 

sensors do not fit in virtualized 5G networks. IPFIX has 

recently been proposed by other authors in a similar context 

[61]. 

2) Video Sensor 

Whenever a new RTP based video flow is detected by the 

flow sensor, it is immediately mirrored to the  video sensor. 

Metadata, previously inserted into the stream as new 

Supplemental Enhancement Messages (SEI messages) by 

SELFNET’s modified SHVC encoder (described in Section 

4.2), is extracted for each scalable layer of the SHVC  stream. 

We assumed that, these new SEI message will not be 

encrypted and that only the payload of packets containing 

other video coding layer (VCL) data is encrypted. Encoder 

parameters, maximum and average bitrates (for variable 

bitrate streams) and scene change information is gathered, 

associated with the unique flow identifiers for each scalable 

layer of the video stream and stored to the monitoring 

database.  

3) Resource Sensor 

The SELFNET 5G resource sensor monitors and acquires 

metrics from both the physical and virtualised infrastructures 

of the SELFNET 5G mobile edge network. In the context of 

the QoE system, metrics include configured bandwidth, 

current throughput and identity of data flows passing through 

all network interfaces within the 5G mobile edge 

infrastructure.  

B.    Data Aggregator 

The data aggregation layer interrogates the monitoring 

database to provide aggregated performance metrics for the 

5G mobile edge network. With respect to the QoE system, the 

first ‘health of network’ metric provided by the aggregator is 

the video flow Congestion Index (CI). CI is measures the 

maximum level of congestion, across all of the network 

interfaces a flow traverses(foreach uniquely identified layer of 

a scalable video stream. Both the composite SHVC video 

stream level CI and the CI of each individual scalable layer is 

calculatedusing the method explained in section 5. Outputs 

from the aggregator, (triggered by detection of a new video 

flow and on a configurable periodic basis) provide the initial 

warning of a potential reduction in QoE of users.  

C. QoE Modelling 

   We aim to providesimple, robust and scalable QoE 

estimation model.The video QoE modelling agent in 

SELFNET provides an event driven or  periodic prediction of 

the perceptual quality of all RTP based video streams 

traversing the network by combining the initial video 

congestion metric for each video stream with other metrics in 

the monitoring database. It uses inputs from the flow sensor to 

determine the current state of each layer in the scalable flow 

(e.g. active or retired), from the video sensor on layer 

encoding parameters such as required bitrate, spatial 

resolution and scene change information and available 

bandwidth information from the resource sensor to estimate 

the perceptual quality of the video stream. The prediction, 

known as the video Quality Index, directly maps to the Mean 

Opinion Score (MOS) provided by subjective evaluation 

experiments. The video Quality Index is SELFNET’s primary 

‘health of network’ metric for RTP based video streaming 

services. The amount of data required by the model is small, 

the QoE calculation requires the data contained in the new SEI 

message (typically <100 bytes), flow identifiers and the 

aggregated bitrates at the various interfaces that the flow 

traverses. 

D. QoE Analysis  

QoE analysis firstly establishes user tolerance of video 

impairments found under specific network conditions, the 5G-

QoE can then analyse the ‘health’ of video streams crossing 

the network and provide appropriate QoE alerts that can be 

used to trigger interventions such as dropping of one or more 

layers from a scalable video stream to reduce network load 

while minimising the impact on the user’s QoE. 

IV. METHODOLOGY & SUBJECTIVE TESTING 

A. Methodology 

This section describes the methodology employed to firstly 

determine and subsequently validate the proposed QoE 

system. Firstly a set of 4k resolution video clips, with varying 

content types, were obtained and encoded in a scalable H.265 

format, these video clips were then used in an extensive series 

of subjective evaluations,with a large sample size of 64, 

during which subjects viewed and compared both reference 

videos and live streamed videos where a network impairment 

(bandwidth limitation) had been introduced. The videos (and 

subjective tests) were split into two sets a training set and a 

validation set. 

The results of the first set of subjective evaluations (training 

set) were used in a statistical modelling approach to derive a 

candidate QoE prediction formula. This formula was initially 

analytically validated against the subjective scores for the 

validation set and then subsequently implemented and 

empirically evaluated in the SELFNET 5G mobile edge 

networks testbed where all of the QoE system components 

described in Section 3 were used to provide empirical 

evidence of the effectiveness of the QoE modelling system. 

Fig. 3 provides a diagrammatic representation of the 

methodology and workflow. 
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Fig.3. Diagrammatic representation of methodology and 

workflow. 

 

1) Terminology used when describing experiments 

To assist the reader, the terminology used in the following 

sections is briefly described here. Full explanations of metrics 

and terms are provided in the relevant sections. 

 Measured CI: The Congestion Index reported by 

the 5G-QoE platform during empirical evaluations. 

 Expected CI: The theoretical Congestion Index 

value expected for a given video stream/bandwidth 

combination. This does not take account of 

practical implementation issues such as network 

overheads or differences in reporting windows of 

the various 5G-QoE platform sensors in this 

prototype. 

 Measured QoE: The quality of experience index 

calculated and reported by the 5G-QoE platform 

during empirical evaluations. 

 Predicted QoE: The theoretical quality of 

experience index (Quality Index or Q) for a video 

stream/bandwidth combination provided by the 

QoE model. 

 Actual MOS: The actual mean opinion score 

provided by human subjects through subjective 

testing. 

B. Sequence Selection and Preparation 

Firstly, nine short video sequences were encoded using a 

modified version of the scalable HEVC reference software 

(version SHM 6.1 [4]) which inserts additional NAL units 

containing supplemental enhancement (SEI) messages into the 

encoded SHVC bitstream. These messages follow guidelines 

for custom SEI messages in the H.265 standard and will be 

ignored by decoders and other network entities that do not 

know how to process them. The new custom SEI messages 

carry additional metadata to describe the maximum and 

average bitrate of the stream, the spatio-temporal 

characteristics of the stream and the frame number where a 

scene change occurs.  

The encoder configuration employed random access 

encoding and spatial scalability with two scalable layers. The 

standard configuration files for these encoder types were used, 

apart from as described below. The base layer had a spatial 

resolution of 1920x1080 (FHD) and a single enhancement 

layer with a spatial resolution of 3840x2160 (4K UHD). The 

clips were organised into two sets, the first set consisted of 4 

clips, all with a frame rate of 30 frames per second, obtained 

from Ultra Video Group [48] and a second set of 5 sequences 

each with a frame rate of 24 fps obtained from Mitch Martinez 

[49]. Fig. 4 shows the spatio-temporal characteristics of the 

employed sequences in terms of the well-known Spatial Index 

(SI) and Temporal Index (TI). Fig. 4 highlights the 

heterogeneous nature of the sequences chosen for this study.  

The sequences (including maximum and average bitrates 

when both scalable layers are present )are described in Table 1 

and Table 2 for the 30 fps and 24 fps sequences respectively. 

A comparison of bitrates for each of the 9 test sequences is 

provided in Fig. 5, the bitrates shown are those of the SHVC 

encoded bitstreams (the H.265 standard compliant annex B 

bitstream) prior to the addition of any packet overheads 

required for encapsulation and transmission. 

The encoded scalable bitstreams were encapsulated (in MP4 

file format) and prepared for playback/transmission using 

version 6.1 of the GPAC framework [52], which had been 

compiled with the OpenHEVC decoder [53]. 

 

 
Fig. 4. Heterogeneity of test sequences. 

 
Fig. 5. Comparison of maximum and average bitrates for each 

sequence when both scalable layers are present. 

C. Subjective Testing Platform 

A bespoke testing platform (Fig. 6)facilitates subjective 

testing experiments where subjects compare a video sample 
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streamed, in real time, over an impaired network connection 

with a reference sample of the same video clip played locally 

at the client device. The platform consists of three nodes 

(computers) including a server node, an intermediate routing 

node and a client node connected to a 55-inch Samsung 4K 

resolution UHD television. At the server side, a console-based 

application manages the testing process with identical copies 

of the encoded video test sequences placed on both the server 

and the client device. The application, driven by a 

configuration file, synchronised the presentation of video clips 

to the viewers through a messaging protocol (shown in Fig. 6). 

 

 
  Fig. 6. Overview of the subjective testing platform. 

 

 

TABLE 1.  

30 FPS TEST SEQUENCES 

Seq. 

# 

Max  

Bitrate 

(Average 

Bitrate) 

(kbps) 

Used For Description & Thumbnail 

1 2710 

(2089) 

Modelling 

 

 2  19445 

(14125) 

Modelling 

  

 3 17086 

(10079) 

Validation 

  

 4  25087 

(21604) 

Modelling 

  

 

D. Subjective Evaluation 

Subjective evaluations took place over a period of two 

weeks in the summer of 2017. At each testing session viewers 

sat, in small groups of between five and seven, at the distance 

recommended in ITU Recommendation BT-500 [20] for the 

screen size. Each session lasted approximately 45 minutes 

with subjects able to take a break if required. 

Subjects were asked to view a series of video clips, each of 

no more than 10 seconds duration. The clips were presented in 

pairs, the first of which was the reference video played locally 

at the client using a Scalable H.265 enabled media player [52] 

after a 5 second pause (during which a grey screen – as per 

[20] was shown), the user was then shown another copy of the 

same video streamed in real time from the server device to the 

client device and played back using the same media player.  

 

TABLE 2.  

24 FPS TEST SEQUENCES 

Seq.

# 

Max  

Bitrate 

(Average 

Bitrate) 

(kbps) 

Used For Description & Thumbnail 

5  6670  

(5049) 

Modelling 

  

6  23318 

(13669) 

Modelling 

  

7  9833 

(6187) 

Validation 

  

8  2334 

(1925) 

Validation 

  

9  2508 

(2070) 

Validation 

  

 

All video streams were transmitted using the GPAC 

framework from server to client over the RTP protocol. Each 

video clip was presented to the viewers with bandwidth 

limited to the maximum required by the bitstream, the average 

required by the bitstream, 95% of the average required and 

90% of the average required. 
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Users were then asked to record their subjective opinion of 

the perceptual quality of the second video with the respect to 

the first using the absolute category rating scale shown in 

Table 3. Viewers had the opportunity to repeat any individual 

comparison before providing their opinion. 

Initially the bandwidth between server and client devices is 

unrestricted (and completely sufficient to meet the 

requirements of the encoded bitstreams). The local reference 

file is played at the client, an appropriate pause (with grey 

screen) is given, the bandwidth on the link between client and 

server is applied at the egress interface of the streamer and 

then the same video is streamed from to the client and played 

back in real time. The human subjects record their opinions of 

the difference in quality between original and degraded videos 

after which the person conducting the experiments advances 

the platform to the next sequence to be displayed with the 

bandwidth restriction on the link firstly removed and then the 

cycle repeated for the next test sequence. 

 

TABLE 3. ACR SCALE 

Opinion Score Meaning 

5 No difference 

4 Difference perceptible but not annoying 

3 Slightly Annoying 

2 Annoying 

1 Very Annoying 

 

The Mean Opinion Score derived from subjective 

evaluations was defined as the arithmetic mean of the scores 

provided by individual human subjects, as expressed in (1), 

where R is the rating provided by an individual user and N is 

the number of users: 

 

𝑀𝑂𝑆 =
∑ 𝑅𝑛

𝑁
𝑛=0   

𝑁
 .            (1) 

 

E.  Subjects 

A total of 64 human subjects took part in the subjective 

evaluations, they were drawn from both University staff 

(lecturers and research staff) and the student body (from 

applied computing disciplines). 64 is a relatively large sample 

size in comparison to the majority of subjective evaluations 

presented in literature which tend to have subject numbers in 

the high teens or low twenties reflecting the minimum 

statistical values required to prove their hypothesis.  

This study provides a much larger sample of both human 

subjects and test sequences than many other studies (which 

typically use four or five test sequences) aiming to provide a 

predictive QoE model. 

The breakdown of age, sex, student to staff ratio and 

number of those wearing glasses is shown in Fig. 7. Of those 

who took part, three were excluded from the evaluation. Two 

were excluded as significant outliers and the third was 

excluded as his/her test was only partially completed. Due to 

the large sample sizes of human subjects (64), video test 

sequences (9) and bitrate testing points (4) over 2300 

individual data points were collected. 

 

 
 

 Fig.7. Breakdown of human subjects by age, sex, 

occupation (university staff, postgraduate students (PG) and 

undergraduate students (UG)) and corrected eyesight. 

 

V. QOE MODELLING & PREDICTION 

This section describes the way in which the QoE model was 

derived and validated. Firstly, the derivation of the video 

Congestion Index introduced in Section 3.2 is explained and 

then the statistical methods used to derive the candidate QoE 

index formula are discussed. After which the two validation 

regimes are presented together with analytical and empirical 

results. 

The first step taken was to identify a simple network metric, 

with low computational overhead, which would represent the 

current state of the network path between sender and receiver. 

The Congestion Index (CI), shown in (2), is a measure of the 

ability of the network to successfully deliver a real time video 

stream based on the minimum available bandwidth on the path 

from sender to receiver. The Congestion Index is calculated as 

the ratio of the maximum required bandwidth for the stream 

divided by the available bandwidth for the stream:  

 

 

𝐶𝐼 =  
𝑀

𝐴
 .               (2) 

 

In the subjective testing platform, the maximum bandwidth 

for a stream was taken to be the maximum bandwidth 

requirement reported by the encoder for variable bitrate videos 

and the available bandwidth taken to be the bandwidth 

limitation set on the streamer egress interface (see Fig. 6). It is 

worth noting  

Statistical analysis of the data using one way ANOVA, 

regression and curve fitting produced the following function 
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as shown in (3) providing the best fit within the limits of the 

range of CI examined: 

        

𝑄 = −0.891 + (
5.082

√𝑀
𝐴⁄

) .           (3) 

 

The subjective tests were conducted within a range of 

bandwidths between maximum required bandwidth and 90% 

of the average required bandwidth. This resulted in a range of 

scores where, at the higher end, their opinions indicate that the 

quality of video (based on the ACR scale) is either very good 

with little or no perceptual difference or, at the lower end, at 

the point where differences in quality start to become slightly 

annoying to the user. With this observation in mind, upper and 

lower bounds have been set for the values used to predict the 

Quality Index (i.e., predicted QoE).  

 

 

 
 

Fig. 8 Pseudo-code for QoE prediction and alert. 

 

As can be seen in the code example shown in Fig. 8, the 

upper boundary at a Congestion Index of 0.8, meaning that the 

bandwidth available for the video stream is at least 20% 

higher than the maximum bitrate of the stream. The lower 

boundary is set at 1.8; this figure was chosen since over 90% 

of subjective MOS score indicated a MOS of 3 or less at this 

CI level indicating a need for some form of network 

intervention, by for example dropping a scalable layer, to 

maintain user satisfaction levels. Therefore, in the code used 

to implement the prototype, CI values above 1.8 automatically 

assume the quality will fall below the acceptable threshold. 

  

 
 

Fig. 9 Comparison of the predicted QoE with the actual MOS 

in the training set. 

 

Comparisons between the predicted QoE of training set and 

the actual MOS perceived by the human subjects are shown in 

Table 4, which highlights the correlation, 0.01 significance 

level, and Fig. 9, which provides a graphical comparison of 

the same data set. 
 

TABLE 4 

 CORRELATION BETWEEN THE PREDICTED QOE AND ACTUAL 

MOS FOR THE TRAINING SET 
Correlations 

(Training Set) Predicted QoE Actual MOS 

Predicted 

QoE 

Pearson 

Correlation 

1 .998** 

Sig. (2-

tailed) 

  .000 

Sum of 
Squares and 

Cross-

products 

195.827 198.416 

Covariance .152 .154 

N 1287 1287 

Actual 
MOS 

Pearson 
Correlation 

.998** 1 

Sig. (2-

tailed) 

.000   

Sum of 

Squares and 
Cross-

products 

198.416 202.031 

Covariance .154 .157 
N 1287 1287 

**. Correlation is significant at the 0.01 level (2-tailed). 

00    import math 
01    # Set the values of the constants 
02    b = -0.891 
03    a = 5.082 
10    # Set the boundaries and triggers 
11    upper_boundary = 0.8 
12    lower_boundary = 1.8 
13    quality_alert_trigger = 3.0 
14    # calculate the Quality Index 
21    congestion_index, flow_id = db_query_ci() 
22    if congestion_index < upper_boundary: 
23      quality_index = 5  # sufficient bandwidth to 
guarantee delivery 
24    elif congestion_index > lower_boundary: 
25       quality_index = 1  # no prospect of delivery at 
this bandwidth 
26    else: 
27      quality_index = b + 
(a/math.sqrt(congestion_index)) 
30    #Limit the range of values 
31    if quality_index > 5: 
32        quality_index = 5 
33    elif quality_index < 1: 
34        quality_index = 1 
40    #Raise alert when quality falls below acceptable 
levels 
41    if quality_index < quality_alert_trigger: 
42        raise_quality_alert(flow_id, quality_index) 
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VI. QOE MODEL VALIDATION 

A. Analytical Validation 

Having derived the QoE prediction formula using the 

subjective evaluation data of the five training set video 

sequences, the formula was then analytically validated by 

comparing the predicted output of the QoE formula for each of 

the four validation sequences with the actual Mean Opinion 

Scores provided by human subjects during the subjective tests. 

The Congestion Index was calculated as shown in (2). The 

available bandwidth used in this equation was the bandwidth 

restriction applied at the client to server link of the subjective 

testing platform. The same bandwidth restriction ratios, as 

used in the subjective testing, were employed to ensure a fair 

and accurate comparison.  

The results of this analytical comparison are shown in the 

following two subsections: one describes the results of the 

analytical validation when both layers of the scalable 

bitstream were present, and the other presents validation 

results for the H.265 base layer only. 

When both layers were present in the bitstream the 

analytical validation shows a close correlation between the 

predicted QoE by the formula (3) and the actual MOS from 

subjective testing. In Fig. 10, the average MOS scores of all 

testing points for the validation set of video sequences are 

compared with the predicted QoE for each testing point. 

 

 

Fig. 10 Analytical validation by comparing the predicted QoE 

with the actual MOS in the validation set. 

 

From Fig.10, it can clearly be seen that the predicted QoE 

results closely track the average subjective MOS scores 

provided by human subjects. Furthermore, it can also be seen 

from Fig. 11 that the variance between the actual subjective 

test MOS scores and the predicted QoE is in the range ±0.06 

for both the training set and the validation set. It can also be 

seen from Table 5 that the correlation between the predicted 

QoE and actual MOS is very high.  

 

 

Fig. 11 Analytical validation by comparing the predicted 

QoE with the actual MOS in the training and validation sets – 

variance. 

Another interesting result from the subjective testing, shown 

in Table 6 is that there is very little difference in perception of 

quality between 4K and FHD versions of a video when 

streamed with sufficient bandwidth. In fact, some viewers 

found the FHD version to be of better quality than the 4K 

version. This supports our assertion that dropping a scalable 

layer will have little impact on the user’s perception of quality. 

 

TABLE 5 

 CORRELATION BETWEEN PREDICTED QOE AND ACTUAL 

MOS FOR THE VALIDATION SET 

Correlations 

(Validation Set)  Predicted QoE Actual MOS 

Predicted 
QoE 

Pearson 
Correlation 

1 .996** 

Sig. (2-tailed)   .000 

Sum of Squares 
and Cross-

products 

104.330 110.583 

Covariance .095 .101 

N 1100 1100 

Actual 

MOS 

Pearson 

Correlation 

.996** 1 

Sig. (2-tailed) .000   

Sum of Squares 

and Cross-
products 

110.583 118.232 

Covariance .101 .108 

N 1100 1100 
**. Correlation is significant at the 0.01 level (2-tailed). 

 

TABLE 6 

 COMPARISON OF 4K AND FHD WHEN CI =1 FOR THE 

VALIDATION SET 

Resolution Mean MOS StdDev 

4K 4.24 0.23 
FHD 4.21 0.26 
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B. Empirical Validation 

After analytically establishing that the proposed QoE 

prediction model provided a close approximation of the actual 

Mean Opinion Scores of human subjects, the QoE model was 

further evaluated and validated by implementing it on an 

experimental 5G-QoE testbed. This took the form of a two-

stage process where video test sequences were firstly prepared 

to generate 5G video traffic, before being evaluated on a 

dedicated 5G-QoE testing platform. 
 

1) Preparing sequences for empirical evaluation  

As part of the SELFNET project, a 5G Infrastructure 

Testbed has been established to represent a realistic end-to-

end 5G mobile network infrastructure comprising a Radio 

Access Network (RAN) and a core network. This 5G 

Infrastructure Testbed, together with the positioning of the 

5G-QoE system, is illustrated in Fig. 12.  

This testbed was implemented using the open source 

OpenAirInterface implementation [50], and the 5G 

infrastructure has been achieved through introducing the 

Cloud-RAN model and core network virtualization following 

the LTE (Long Term Evolution) evolution based 5G 

realization approach. In the RAN and core networks, the key 

LTE components have been virtualized accordingly, including 

BBU (BaseBand Unit), MME (Mobility Management Entity), 

HSS (Home Subscriber Server), PGW (Packet Data Network 

Gateway), and SGW (Serving Gateway). PCRF (Policy and 

Charging Rules Function) is not implemented yet as it does 

not affect the studies; however, it is illustrated in Fig. 12 for 

completeness. Further details on this platform can be found at 

[55]. This testbed enables studies of the 5G infrastructure side 

but has a low capacity of the air interface, not suitable for 

rigorous UHD video testing. To circumvent this limitation, a 

dedicated 5G-QoE Testbed has been created in this research to 

compensate for the low capacity of the air interface in the first 

testbed’s RAN.  

To this end, in this preparation stage, the video test 

sequences were firstly streamed across the 5G Infrastructure 

Testbed to obtain realistic 5G network traces  (in the form of 

PCAP files) containing all of the encapsulation layers found in 

a multi-tenant 5G mobile network infrastructure. The 

encapsulation layers are illustrated in Fig. 2. This approach 

facilitates the later on emulation of the full end-to-end mobile 

infrastructure including 5G air interface on the standalone 5G-

QoE Testbed.  

 

 
  

Fig. 12. 5G Infrastructure Testbed with the positioning of 

the 5G-QoE system to create and capture realistic 5G traffic. 

 

 

2) Empirical 5G-QoE Testbed  

Fig. 13 illustrates the overview of the 5G-QoE Testbed 

deployed to conduct empirical validation of the proposed 

system. Two physical machines are used including one laptop 

to act as the UHD video streamer, and one high-end PC to host 

the rest of the system (the various software sensors, and the 

monitoring, aggregation, QoE modelling and prediction and 

analysis software modules), as described in Section 3.    

The Streamer machine is installed with Ubuntu 16.04 LTS 

64-bit operating system, and equipped with 8 GiB RAM, a 10 

core (4 x compute, 6 x graphics) AMD A10-7300 Radeon R6 

processor, and a 1.0 TB hard disk. The PC runs Ubuntu 14.04 

LTS 64-bit OS and  features 32 GiB RAM, a  16 core Intel 

Xeon(R) CPU-E5-2630 v4 @ 2.20GHz processor, and a 2.0 

TB hard disk. 

The testbed is configured in such a way that it can either 

stream and playback 4K UHD video encoded with the 

Scalable HEVC (or standard HEVC) encoder over a standard 

IPv4 network connection or it can use tcpreplay [54] to 

transmit the previously captured 5G PCAP files from the 

streamer to generate realistic 5G video flows.  

The ten testing points shown in Fig 15 and Fig 16 were 

averages values obtained by using validation sequences in the 

live testbed. A range of CI values from 1.0 to 1.60 (1, 

1.11,1.16,1.22,1.23,1.25,1.34,1.39,1.55,1.59,) corresponding 

to the letters A to J. 

 

 
 

Fig. 13 5G-QoE testbed for empirical experiments. 

 

3) Empirical Validation Results 

The purpose of the empirical validation was firstly to 

demonstrate that the QoE prediction model could be 

successfully implemented as part of a prototype 5G QoE 

system, in which all of the components described in section 3 

work in unison. Secondly, to deliver a system that is 

sufficiently lightweight to inform real time network 

management decisions, yet accurate enough to provide a 

realistic approximation of the QoE level that a user can expect 
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under the prevailing network conditions. 

Fig. 14 provides an example of the output from a periodic 

health of video network report from the analysis component of 

the 5G-QoE system shows the estimates of both Congestion 

Index (CI) and Quality Index (MOS) for an H.265 scalable 

video stream containing 2 scalable layers.  

The upper line of the output estimates the CI and Quality 

Index when both layers are present and the lower line those if 

only the base layer is present. It can be observed that, in this 

example, the Quality Index when both layers are present 

suggests that users would typically find the video quality 

slightly annoying, whilst if only the base layer were present 

they would find the quality to be acceptable (perceptible but 

not annoying). It is also worth noting that, in practical terms, 

the variability in user perceptions of quality mean that an 

average MOS score of 4.3 from our subjective testing 

indicates a high level of satisfaction with the quality of video. 

 
Fig. 14 Sample of measured consumed bandwidth, CI and 

QoE values at different layers in the empirical tests. 

 

Given that the proposed QoE prediction model is in fact a 

relatively simple function of the video flow Congestion Index 

(CI) presented in (2), the first step was to validate the accuracy 

of the empirically reported CI from the testbed against the 

expected CI, which had been analytically derived from the 

maximum and average bitrates required by the encoded 

bitstreams (as reported by the scalable H.265 video encoder 

SHVC). This initial validation step, which may in itself appear 

to be no more than a trivial comparison, in fact validated the 

accuracy and effectiveness of each of the complex set of 

interacting components of the 5G-QoE system. These 

components (network sensor, video sensor, data aggregator, 

messaging bus used for data collection and the database 

acquired metrics and flow statistics) all need to work in unison 

to provide the data input (CI) to the QoE prediction model.  

Fig. 15 provides a graphical comparison between the 

expected CI (analytically derived) and the measured CI 

obtained during empirical validation. Each of the testing 

points (indicated by the test number) was created by varying 

the available bandwidth and video sequences (having various 

maximum required bandwidth conditions), and was evaluated 

three times with the mean CI for each testing point reported in 

the graph. It can be seen that the empirically obtained CI, 

whilst not identical, closely tracks the expected CI. These 

results show that the monitoring and aggregation components 

of the 5G-QoE system performed as expected.  

The modest difference in CI can be explained by several 

factors. Firstly, the sensors and aggregator each have tuneable 

reporting frequency parameters (set to 1 second during this 

evaluation) which, when combined with the variable nature of 

the encoded bitstream, could lead to some discrepancy in the 

reporting of the currently consumed bandwidth of the video 

stream. Secondly, the subjective evaluation platform and 

analytical evaluation were based on the pure IPv4 

transmissions used in the subjective testing platform, whereas 

in the empirical evaluation the full 5G/LTE PCAP files 

containing all of the encapsulation layers were used. Although 

this was compensated for by counting the average number of 

packets per reporting period and increasing the maximum 

required bitrate of the stream used in the CI calculation to take 

account of all encapsulation overheads, again the variable 

nature of the bitstream meant that some small margin of error 

could be expected in this calculation.  

Taken as an average across all of the empirical evaluations, 

the empirically observed CI varied from the expected CI 

within the range of ±6%, and we consider this an acceptable 

margin of error for a prototype implementation.  

Turning to the comparison between actual (subjective) 

MOS, predicted QoE and empirically measured QoE, the 

results again show a strong correlation between each set of 

results. A comparison of MOS/QoE scores is provided in Fig. 

16, which shows that scores for empirically measured QoE 

closely track those for both predicted QoE (from the QoE 

prediction model) and the actual MOS scores from subjective 

testing. The X-axis values in this figure align with those in 

Fig. 15.  

 

 

Fig. 15 Empirical validation by comparing expected CI with 

measured CI (vs. test number). 

Fig. 17, which allows easy comparison with Fig. 10, 

provides a plot of mean opinion score (Y-axis) against 

Congestion Index (X-axis) for predicted QoE and empirically 

measured QoE. Again the differences shown are modest, with 

the largest variation between predicted and measured QoE 

recorded as a 0.06 difference in average scores (of the three 

tests at each testing point).  
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Fig. 16 Empirical validation by comparing predicted QoE 

with measured QoE and actual MOS (vs. test number). 

 

 

 
Fig. 17 Empirical validation by comparing predicted QoE 

with measured QoE (vs. CI). 

 

 

Fig.18 Empirical validation by comparing measured QoE 

with actual MOS (vs. CI). 

  

VII. CONCLUSION 

This paper has presented a fast and scalable method of 

estimating the perceived quality of experience of users of 

UHD video flows in the emerging 5G networks as part of a 

comprehensive 5G-QoE framework. The model has been 

analytically and empirically evaluated against the results of 

subjective testing with results showing an accuracy of up to 

94%. The 5G-QoE framework has been implemented on the 

EU 5G PPP SELFNET platform, where the model has been 

demonstrated to work as part of the SELFNET mobile edge 

infrastructure, taking account of all tunnelling overheads 

introduced to the video flows by 5G infrastructure to achieve 

multi-tenancy and mobility, and providing empirical QoE 

scores that closely match both those predicted by the model 

and actual MOS scores of the test subject, with the maximum 

variance only 0.06 and 0.17 respectively. 

Future work will concentrate on building a QoE-aware 

video adaptation system that leverages the 5G-QoE framework 

to analyse and optimize likely user perception of quality for 

scalable H.265 encoded UHD video streams. This system will 

act as a first line of defence and will inform decisions for 

smart traffic engineering, for example, when and which layers 

of a scalable video stream should be dropped in the concerned 

network congestion situations in order to maximise benefit to 

network operations while minimising the impact on perceived 

QoE. 
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