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Abstract: The outstanding performance recently reached by Neural Language Models (NLMs) across 1

many Natural Language Processing (NLP) tasks has fostered the debate towards understanding 2

whether NLMs implicitly learn linguistic competence. Probes, i.e. supervised models trained using 3

NLM representations to predict linguistic properties, are frequently adopted to investigate this issue. 4

However, it is still questioned if probing classification tasks really enable such investigation or if 5

they simply hint at surface patterns in the data. This work contributes to such debate by presenting 6

an approach to assess the effectiveness of a suite of probing tasks aimed at testing the linguistic 7

knowledge implicitly encoded by one of the most prominent NLMs, BERT. To this aim, we compared 8

the performance of probes when predicting gold and automatically altered values of a set of linguistic 9

features. Our experiments, performed on Italian, extend the work of Miaschi et al. [1] evaluating the 10

results across BERT layers and for sentences with different lengths. As a general result, we observed 11

higher performance in the prediction of gold values, thus suggesting that the probing model is 12

sensitive to the distortion of feature values. However, our experiments also showed that the length of 13

the sentence is a highly influential factor that is able to confound the probing model’s predictions. 14

Keywords: neural language models; bert; probing tasks; treebanks; italian language 15

1. Introduction 16

The rise of large pre-trained Neural Language Models (NLMs) has revolutionized 17

the field of Natural Language Processing (NLP) in the last five years. In particular, the 18

introduction of deep contextualized models based on the Transformer architecture [2], 19

able to learn word vectors that are sensitive to the context in which words appear, has 20

yielded significant improvements on many NLP tasks [3–5]. Even with some differences 21

concerning the size of their parameters, architectures, and training datasets [6–8], these 22

models are all pre-trained on large amounts of text and subsequently fine-tuned on task- 23

specific, supervised downstream tasks. Among the many Transformer-based models, BERT 24

(Bidirectional Encoder Representations from Transformers) has been the first one to push the 25

state of the art in many areas of NLP [9]. 26

However, it is well known in the literature that the remarkable ability of BERT, and 27

NLMs in general, to perform numerous language-understanding tasks goes with an opaque- 28

ness concerning the interpretation of their internal mechanisms. Particular interest has been 29

devoted in the last few years to the investigation of the linguistic abilities implicitly encoded 30

by the models [10]. Namely, several methods have been proposed to obtain meaningful 31

explanations of how NLMs are able to capture syntax- and semantic-sensitive phenomena 32

[11], also taking inspiration from human language experiments [12,13]. They range from 33

the analysis of attention mechanisms [14] and the definition of diagnostic tests [15] to the 34

implementation of explainability techniques via e.g. integrated gradients [16]. One of the 35

most explored methods is the definition of probing tasks which a model can solve only if it 36

has encoded a precise linguistic phenomenon within its representations [17]. 37
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However, despite the amount of work based on the diagnostic probing approach, as 38

outlined by Belinkov [18] there are still several open questions, such as: which probing 39

model should we use for assessing the linguistic competence of a NLM? Are probes the most 40

effective strategy to achieve such a goal? These questions fostered two complementary 41

lines of research. The first one is devoted to modifying the architecture of the current 42

probing models; the other one is focused on evaluating their effectiveness. Both are still 43

not well-investigated issues, although their importance for advancing the research on the 44

evaluation of NLMs linguistic competencies has been widely recognized. 45

This study would contribute to the debate on the effectiveness of the probing paradigm 46

as a diagnostic method to assess the linguistic knowledge implicitly encoded by BERT. To 47

achieve this goal, we define a multifaced approach that comprises a number of experiments 48

aimed at comparing the performance of a probing model trained using BERT representa- 49

tions to predict the values of a set of sentence-level properties extracted from the Italian 50

Universal Dependency Treebank [19] and from a suite of control datasets that we specifically 51

built for the purpose of this study. Starting with and extending the methodology intro- 52

duced by Miaschi et al. [1], we define as control dataset a set of linguistic features whose 53

values are automatically altered in order to be increasingly different from the values in 54

the treebank referred to as gold values. Our underlying hypothesis is the following: if the 55

probing model’s predictions of the variously altered values diverge from the predictions of 56

the gold values, this possibly suggests that the corresponding probing tasks are effective 57

strategies to test the linguistic knowledge embedded in BERT representations. We will 58

discuss the results of the experiments in light of this hypothesis. The remainder of the 59

paper is organised as follows. We present our background and related work in Section 60

2. Section 3 introduces our methodology, presenting the data, the monitored linguistic 61

features and the models used in the study. Section 4 presents the results and in Section 5 62

we will draw the conclusions. 63

Contributions 64

With respect to previous literature, the main contributions of our work lie in the 65

following points: 66

• We present a methodology to test the reliability of probing tasks by building control 67

datasets at diverse levels of complexity; 68

• We assess to which extent the linguistic knowledge encoded by BERT is influenced 69

by the length of the sentence and how the length can represent a confounding factor 70

that may bias the real estimate of BERT’s knowledge of a wide variety of (morpho)- 71

syntactic phenomena; 72

• We test the effectiveness of the diagnostic probing task approach on Italian, a language 73

frequently neglected by studies on probing. 74

2. The Diagnostic Probing Paradigm 75

In the last few years, the analysis of the inner workings of state-of-the-art Neural 76

Language Models (NLMs) has become one of the most popular lines of research in NLP. 77

In particular, great efforts have been devoted to obtaining meaningful explanations about 78

their linguistic competence in order to understand to what extent these models are able to 79

capture linguistic properties targeting a variety of domains [20]. These approaches range 80

from the definition of fill-the-gap probes [15] and probing tasks that a model can only solve 81

if it has encoded a precise linguistic phenomenon [17,21,22], to the analysis of attention 82

mechanism [23–25] and correlations between representations [26]. 83

Among the different strategies developed to study the implicit language competen- 84

cies encoded by NLMs, the diagnostic probing task approach has emerged as one of the 85

most commonly adopted ones. The idea behind the probing paradigm is actually quite 86

simple: using a diagnostic classifier, the probing model or probe, which takes the output 87

representations of a NLM as input, to perform a probing task, e.g. predict a given language 88
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property. If the probing model will predict the property correctly, then we can assume that 89

the representations somehow encode that property. 90

Studies relying on this approach reported that NLMs contextual representations are 91

able to encode a broad spectrum of linguistic properties, from information about Parts-of- 92

Speech (POS) and other morphological properties to syntactic and semantic information. In 93

particular, these works demonstrated that NLMs learn a variety of language properties in a 94

hierarchical manner [11,27,28] and that their representations also support the extraction 95

of dependency parse trees [29]. Training a simple probing classifier that has access only 96

to the per-token contextual embeddings of a BERT model, Tenney et al. [30] showed that 97

the order in which specific abstractions are encoded within the internal representations 98

reflects the traditional hierarchy of the NLP pipeline: POS tags are processed earliest, 99

followed by constituents, dependencies, semantic roles, and coreference. Liu et al. [31], 100

instead, quantified differences in the transferability of individual layers between different 101

NLMs, showing that higher layers of ELMo [32] are more task-specific (less general), while 102

transformer layers (BERT) do not exhibit this increase in task-specificity. 103

Despite this emerging body of work, there are still several open questions about 104

how probing tasks should be designed, how complex a probe should be allowed to be, or 105

whether probes are actually showing the linguistic generalization abilities of the NLMs 106

rather than learning the linguistic tasks [18]. Among the first line of research, which deals 107

with the design of probing classifiers, several works investigate which model should be 108

used as probe and which metric should be employed to measure their performance. With 109

this respect, it is still questioned if one should rely on simple models [29,31,33] or more 110

complex ones [34,35] in terms of model parametrization. For instance, Voita and Titov [35] 111

suggest designing alternative probes using a novel information-theoretic approach which 112

balances the probe’s inner complexity with its task performance. Although this line of 113

research raises many interesting questions, in this work we take the distance from it and 114

investigate the probing paradigm from a different viewpoint. 115

Our perspective is closer to the second line of research on the probing task approach, 116

which indeed is concerned with testing the evaluation of the effectiveness of probing 117

models. Embracing such a line, for example, Hewitt and Liang [21] suggested that probing 118

tasks might conceal the information about the NLM representation behind the ability of the 119

probe to learn surface patterns in the data. To test this intuition, they introduced the idea of 120

control tasks, a set of tasks that associate word types with random outputs that can be solved 121

by simply learning regularities. Measuring the difference between the accuracy on linguistic 122

tasks and on control tasks (a property defined as selectivity) they identified ‘good’ probes as 123

the ones for which the model achieves high linguistic task accuracy and low control task 124

accuracy, thus providing insights into the linguistic properties of a representation. Along 125

the same line, Ravichander et al. [36] test probing tasks by creating control datasets where a 126

property is always reported in a dataset with the same value, thus it is not discriminative for 127

testing the information contained in the representations. Their experiments highlight that 128

the probe may learn a property also incidentally, thus casting doubts on the effectiveness of 129

probing tasks. 130

While sharing the same goal as these previous works, our study differs in two main 131

respects. Firstly, we follow an approach similar to Hewitt and Liang [21] but we introduce a 132

methodology to progressively test the effectiveness of probing models, by devising diverse 133

control tasks differing at the level of increasing complexity and which intend to address a 134

larger set of linguistic phenomena. Secondly, we focus on the Italian language, which is 135

much less explored in the area of interpretability. In fact, the majority of research is focused 136

on English or, at most, multilingual models, with only a few exceptions [37–39]. 137

3. Methodology 138

The methodology we devised is aimed at testing whether a diagnostic probing model 139

really encodes the linguistic competencies of a NLM or simply learns the regularities 140

of one or more probing tasks. To this aim, we trained a probing model using BERT 141
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sentence representations, as described in Section 3.4, and then tested its performance in the 142

resolution of a set of linguistic tasks. These tasks consist in predicting the values of various 143

linguistic features (see Section 3.2) extracted from different sections of the Italian Universal 144

Dependency Treebank (IUDT). 145

The probing model was tested in two main scenarios. In the first one, the model has to 146

predict gold features, i.e. the real values of the features in IUDT sentences. In the second 147

scenario, gold values have been altered based on multiple strategies in order to obtain 148

alternative datasets at different control levels. As discussed in Section 3.3, this scenario, 149

which is articulated into multiple ones, is based on the rationale that if the predictions of 150

the probing model are more accurate and thus more similar to the gold values than to the 151

automatically altered ones, then we might assume that BERT’s representations do encode 152

the linguistic knowledge required to solve the task. Consequently, the intuition is that the 153

probing model has not simply learned some regularities possibly found in the dataset and 154

used them to solve the linguistic task. 155

3.1. Data 156

For our experiments, we relied on the Italian Universal Dependencies Treebank (IUDT), 157

version 2.5. IUDT contains a total of 35,480 sentences and 811,488 tokens, and it consists 158

of a combination of four sections, representative of the standard Italian language, i.e. the 159

Italian version of the multilingual Turin University Parallel Treebank (ParTUT) [40], the 160

Venice Italian Treebank (VIT) [41], the Italian Stanford Dependency Treebank (ISDT) [42], 161

PUD [43], and of two sections including examples of social media texts, i.e. PoSTWITA [44], 162

TWITTIRÒ [45]. 163

Considering the high variability in terms of sentence length in IUDT, which contains 164

sentences ranging from 1 to 310 tokens long, we decided to split the treebank into three 165

subsets, containing respectively the shortest, the standard and the longest sentences. The 166

larger subset is the Standard one: it contains 21,991 sentences having a length between 10 167

and 30 tokens. This is a quite typical length in Italian, a language in which the average 168

sentence length is equal to about 20 tokens, like in this example sentence acquired from 169

the Standard subset ‘Un rumore infernale, simile al passaggio di un treno, risuona nei corridoi 170

sotterranei che solcano Rochester’ (trad. ‘An infernal noise, similar to the passage of a train, 171

resounds in the underground corridors that run through Rochester’). 172

The other two subsets comprise sentences whose length is less standard. Within the 173

Shortest subset, we included 5,538 sentences whose length is up to 9 tokens. This set covers 174

many examples of nominal or elliptical sentences, including for instance news titles (e.g. 175

‘Battesimo per l’opera verdiana.’, trad. ‘Baptism for Verdi’s opera.’), short questions (e.g. ‘Come 176

si spiega un simile risultato?’, trad. ‘How can such a result be explained?’) and sentences 177

showing a quite simple syntactic structure (e.g. ‘Questa ricchezza è tutta apparenza.’, trad. 178

‘This wealth is all appearance’). Note that we excluded for this subset sentences having less 179

than 3 tokens (288 in the dataset) since they do not show a proper syntactic structure given 180

that they generally consist of a single token plus punctuation. The set of long sentences, on 181

the other hand, comprises sentences whose length ranges between 31 and 100 tokens and it 182

contains 7,585 sentences. The following 58 tokens-long sentence represents a quite typical 183

example of sentences belonging to the Longest subset: ‘Una giornata convulsa durante la quale 184

il presidente della Regione Lazio, Renata Polverini, è arrivata vicina alle dimissioni in seguito alla 185

crisi generata dall’abuso di fondi pubblici da parte del Pdl laziale per il quale è indagato, con l’accusa 186

di peculato, l’ex capogruppo Franco Fiorito.’, trad. ‘It was a convulsive day during which 187

the President of the Lazio Region, Renata Polverini, came close to resigning following the 188

crisis generated by the misuse of public funds by the Lazio PDL, for which former group 189

leader Franco Fiorito is under investigation on charges of embezzlement.’. IUDT reports 190

additional 78 sentences longer than 100 tokens, which we excluded from the experiments 191

since we noticed that they are characterized by a debatable annotation, possibly caused 192

by an erroneous sentence splitting. Note that, for the specific purpose of the experiments 193
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Table 1. Probing Features used in the experiments grouped into 7 main types of linguistic phenomena.

Linguistic Feature Label
Order of elements (Order)

Relative order of subject and object subj_pre, subj_post, obj_post
Morphosyntactic information (POS)

Distribution of UD and language-specific POS upos_dist_*, xpos_dist_*
Use of Subordination (Subord)

Distribution of subordinate clauses subordinate_prop_dist
Average length of subordination chains and distribution by depth avg_subord_chain_len, subordinate_dist_1
Relative order of subordinate clauses subordinate_post

Syntactic Relations (SyntacticDep)
Distribution of dependency relations dep_dist_*

Global and Local Parsed Tree Structures (TreeStructure)
Depth of the whole syntactic tree parse_depth
Average length of dependency links and of the longest link avg_links_len, max_links_len
Average length of prepositional chains and distribution by depth avg_prep_chain_len, prep_dist_1
Clause length avg_token_per_clause

Inflectional morphology (VerbInflection)
Inflectional morphology of lexical verbs and auxiliaries verbs_*, aux_*

Verbal Predicate Structure (VerbPredicate)
Distribution of verbal heads and verbal roots verbal_head_dist, verbal_root_perc
Verb arity and distribution of verbs by arity avg_verb_edges, verbal_arity_*

Figure 1. Linguistic annotation based on the UD scheme of the example sentence.

conducted in this study, we undersampled the Longest set to 5,538 sentences, which we 194

randomly selected, in order to balance it to the set of sentences in the Shortest subset. 195

3.2. Linguistic Features 196

In order to probe the linguistic competence encoded by the language model, we relied 197

on the approach for the first time proposed by Miaschi et al. [46] which consists in predicting 198

the value of multiple linguistic features of a sentence using the model’s representations. 199

The set of linguistic features is based on the one described in Brunato et al. [47] that includes 200

about 130 features representative of the linguistic structure underlying a sentence and 201

derived from raw, morpho-syntactic and syntactic levels of annotation. In this study, we 202

selected the 77 most frequent features occurring in the IUDT sections in order to prevent 203

data sparsity issues. As can be seen in Table 1, they are grouped into seven main types of 204

linguistic phenomena which range from morpho-syntactic and inflectional properties to 205

more complex aspects of sentence structure (e.g. the depth of the whole syntactic tree), to 206

features referring to the structure of specific sub-trees, such as the relative order of subjects 207

and objects with respect to the verb, to the use of subordination. 208

We chose to rely on these features for two main reasons. Firstly, they have been 209

shown to be highly predictive when leveraged by traditional learning models on various 210

classification problems where linguistic information plays a fundamental role [47]. In 211

addition, they are multilingual as they are based on the Universal Dependency formalism 212

for sentence representation [48]. In fact, they have been successfully used to profile the 213

knowledge encoded in the language representations of contextual NLMs for both the Italian 214

[38] and English language [22]. 215

Figure 1 exemplifies some of them extracted from the following sentence acquired 216

from the Standard subset: 217

(1) In Svizzera, alcuni militanti si sono arrampicati sul tetto dell’ambasciata. [trad. ‘In Switzer- 218

land, some militants climbed onto the roof of the embassy.’] 219
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Table 2. Average values and coefficient of variation of each macro-group of gold linguistic features,
extracted from the sentences in the Shortest, Standard and Longest subsets of IUDT.

Shortest Standard Longest
Feat. Group Mean CV Mean CV Mean CV
Order 19.83 1.04 40.45 0.55 52.96 0.34
POS 3.56 0.14 3.56 0.09 3.68 0.03
Subord 16.73 0.96 36.51 0.58 48.67 0.29
SyntacticDep 5.36 0.19 5.33 0.13 5.51 0.08
TreeStructure 4.62 1.17 11.66 0.56 17.37 0.29
VerbInflection 23.21 0.80 38.38 0.47 47.38 0.33
VerbPredicate 16.60 0.78 23.17 0.39 25.97 0.22

Relying on the morpho-syntactic level of IUDT annotation, we can observe for example 220

that the above sentence features 20% of prepositions (ADP), 6.66% of verbs (VERB), and 221

20% of nouns (NOUN) out of the total amount of Parts-Of-Speech. Considering the features 222

referring to the global syntactic structure, the depth of the whole syntactic tree of the 223

sentence is equal to 3, corresponding to the two intermediate dependency links that are 224

crossed in the path going from the root of the sentence (arrampicati, ‘climbed’) to each of the 225

more distant leaf nodes, represented by the words di (‘of’) and l’ (‘the’), which compose the 226

articulated preposition dell’ dependent of the word ambasciata (‘embassy’). Focusing on the 227

local tree structure, the longest dependency relation is 6-token long, which corresponds to 228

the number of tokens occurring linearly between the syntactic head arrampicati (‘climbed’) 229

and the oblique object (obl) Svizzera (’Switzerland’), and we can observe a 1-link long 230

prepositional complement chain (nmod) dell’ambasciata (‘of the embassy’) headed by the 231

noun tetto (‘roof’). Besides, the sentence is characterized by a canonical order of nuclear 232

elements since the nominal subject militanti (‘militants’) is in a pre-verbal position, which is 233

the preferred order in Italian. 234

In this study, the values of each feature acquired from IUDT represent the gold values. 235

Table 2 reports the average distribution (Mean) and coefficient of variation (CV) of each 236

group of linguistic features, computed as a mean of the values of every single feature 237

included in the group. As it can be noted, the Mean values vary consistently across the 238

three IUDT subsets since we account for many different linguistic phenomena characterized 239

by diverse ranges of values. As expected, most features are influenced by the length of the 240

sentences being considered. In fact, while the mean values increase along with sentence 241

length, the coefficients of variation, which capture the extent of values variability within 242

the same subset, tend to decrease as we approach the Longest subset. This suggests that, as 243

sentences get longer, linguistic features tend to show higher but more stable values, while 244

the opposite happens on sentences belonging to the Shortest subset. For the purposes of our 245

experiments, the gold values reported in the gold dataset (IUDT) have been automatically 246

altered to generate control datasets. 247

3.3. Control datasets 248

We created two main types of control datasets for each subset of IUDT, obtained by 249

automatically altering gold feature values according to different strategies. The first main 250

type, hereafter referred to as Swapped, is built by shuffling the original values of each 251

feature across sentences; the second type, Random, contains values randomly generated 252

within the maximum and the minimum value that each feature shows in the gold datasets. 253

To clarify, consider the following example involving the feature average link length, 254

which captures the average linear distance between dependents and their syntactic head 255

within a sentence. In the Swapped variant we simply exchanged the feature values between 256

sentences, thus a sentence of the Standard subset that originally showed an average 257

link length of, e.g., 2.86 could be changed to 8.83, a value originally associated with a 258

different sentence. Note, in fact, that both are real values extracted from our dataset with 259

respect to the considered feature, they have been simply randomly reassigned to a different 260
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Table 3. Average differences between the values of linguistic features in the Gold dataset and each
Control datasets for each of the 7 macro-groups.

Random Swapped
Group Random Bins Lengths Swapped Bins Lengths
Order 0.48 0.48 0.48 0.41 0.40 0.40
POS 0.40 0.31 0.25 0.12 0.12 0.12
Subord 0.43 0.41 0.41 0.38 0.35 0.35
SyntacticDep 0.40 0.31 0.25 0.15 0.13 0.12
TreeStructure 0.36 0.28 0.25 0.20 0.18 0.18
VerbInflection 0.47 0.47 0.47 0.44 0.43 0.44
VerbPredicate 0.42 0.41 0.40 0.26 0.25 0.25
Average 0.42 0.38 0.36 0.28 0.27 0.26

Table 4. Average differences between the values of linguistic features in the Gold dataset and each
Control datasets for each of the 7 macro-groups considering only the Shortest and Longest subsets.

Shortest Longest
Group Random Swapped Random Swapped
Order 0.50 0.32 0.46 0.35
POS 0.43 0.13 0.38 0.13
Subord 0.49 0.20 0.39 0.28
SyntacticDep 0.44 0.13 0.37 0.15
TreeStructure 0.37 0.22 0.37 0.14
VerbInflection 0.50 0.34 0.44 0.42
VerbPredicate 0.46 0.24 0.39 0.21
Average 0.46 0.23 0.40 0.24

sentence. When building the Random variant, the whole sentences here considered have 261

been associated with a feature value randomly generated between 1.33 and 9.78, which 262

are the reported minimum and maximum average link length values in the dataset 263

(Standard subset). 264

Since the value of many considered features is highly influenced by the length of the 265

sentence, we defined two additional alteration strategies to be combined with the main 266

ones that account for such a property. In the first sub-type, Bins, we grouped sentences 267

falling into the same predefined range of sentence lengths (i.e., 10-15, 15-20, 20-25 and 25-30 268

tokens). In a second sub-type, Lengths, we created groups of sentences having exactly the 269

same length. Note that we applied these strategies only to sentences from the Standard 270

subset since the other two subsets do not present a considerable number of sentences for a 271

given length. 272

Note that the different data-altering strategies are conceived to represent challenging 273

testbeds to assess the effectiveness of our probing tasks in different scenarios. The Swapped 274

control datasets are possibly the most challenging ones as the swapped feature values 275

might be quite similar to the gold ones, thus possibly predicted with high accuracy by the 276

probing model. Such intuition seems to be confirmed by the differences between the values 277

of the Gold and each control dataset, obtained by averaging the differences between the 278

gold and the altered values that each sentence had in the corresponding dataset. This holds 279

both in the Standard (Table 3) and the Shortest and Longest subsets (Table 4). As can be 280

noted, lower differences are reported for the Swapped control datasets, both on average 281

and for each features group, in all subsets. Indeed, while the Random strategy tends to 282

produce datasets where all possible values ranging between the maximum and minimum 283

of that feature are equally distributed along sentences, the Swapped option simply shuffles 284

gold values across sentences (namely, the mean value of a feature in the dataset does not 285

change), producing untruthful but more plausible datasets. 286
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3.4. Models 287

For all experiments, we relied on an Italian pre-trained version of the BERT model, 288

one of the most prominent NLMs. Specifically, we used the base cased BERT developed by 289

the MDZ Digital Library Team, available through the Huggingface’s Transformers library 290

[49]1. The model was trained using the Italian Wikipedia and the OPUS corpus [50]. For 291

obtaining the sentence-level representations for each of the 12 layers of BERT, we leveraged 292

the activation of the first input token [CLS]. 293

The probing model is a linear Support Vector Regression model (LinearSVR). The 294

model takes as input the above layer-wise sentence-level representations and it predicts 295

the value of each considered feature in the Gold and Control datasets. Specifically, we 296

trained and tested the probing model adopting a cross-validation process on each dataset 297

individually. To this aim, we split each dataset into five portions containing the same 298

amount of randomly selected sentences; then, we iteratively trained the probing model 299

on four portions and used the remaining fifth as a test set. This way, the model is trained 300

using a representative sample of the dataset at each iteration. 301

As an evaluation metric, we used the Spearman correlation coefficient between the 302

values of the linguistic features in gold and control datasets and their values when pre- 303

dicted by the probing model using BERT’s sentence-level representations as input. In the 304

remainder of the paper, we refer to the evaluation metric as probing score. 305

Since previous work already showed the ability of pre-trained NLMs to outperform 306

simple baselines (e.g. linear model trained using only sentence length as input feature) 307

in the resolution of probing tasks [51], in this current paper we did not perform a direct 308

comparison with a baseline. Nevertheless, since the focus of this work is on assessing the 309

sensitivity of BERT to distorted feature values, control datasets can be viewed as a baseline 310

themselves. 311

4. Results 312

Our first analysis was devoted to assessing BERT’s abilities in the prediction of the 313

authentic values of the Gold dataset. Such results represent the reference performance 314

against which we compared the performance obtained on the diverse control datasets we 315

built. To better appreciate the impact of sentence length as a possible confounder of the 316

probing approach we devised, we kept separated the discussion of the results obtained on 317

the Standard subset from the outcomes of the probing tasks performed on the Shortest and 318

Longest subsets. 319

4.1. Probing on the Standard subset 320

As a first analysis, we probed BERT’s linguistic competence with respect to the 7 groups 321

of probing features. Figure 2 shows how the model’s abilities to predict the considered 322

linguistic phenomena in the Gold dataset change across layers. As can be noted, regardless 323

of the group, BERT tends to lose knowledge as far as the output layer is approaching. 324

As suggested by Liu et al. [31], this could be due to the fact that the representations 325

that are better suited for language modeling are also those that exhibit worse probing 326

task performance, indicating that Transformer layers trade-off between encoding general 327

and probed features. However, in line with what was observed by Miaschi et al. [22,38] 328

for the Italian and English languages respectively, each group of features has different 329

behavior. Namely, the distributions of Parts-Of-Speech (POS) and dependency relations 330

(SyntacticDep) are the best-encoded types of information, especially in the first layers, then 331

decrease constantly. On the contrary, more complex linguistic knowledge about the order 332

of subjects and objects with respect to the verb (Order) is acquired only in the middle layers. 333

Notably, the model shows very scarce competencies about the number of dependents of a 334

verbal head (VerbPredicate) which are quite constant across layers. 335

1 https://huggingface.co/dbmdz/bert-base-italian-xxl-cased

https://huggingface.co/dbmdz/bert-base-italian-xxl-cased
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Figure 2. Layer-wise probing scores (Spearman correlations) obtained when predicting Gold feature
values of the Standard subset according to the 7 macro-groups of linguistic features. Average results
(Avg) are also reported.

To further investigate these trends across layers, for each feature we computed the 336

slopes of a linear regression line between BERT layers and the values of the probing scores 337

in the last and first layers. The Gold column of Figure 3 reports the slopes for the 7 groups of 338

features and for the total amount of 77 features (line Avg). As it can be noted, all the slope 339

values are negative thus indicating that the learning curve decreases across layers. The 340

only exception is represented by the trend of the features of the Order group which has a 341

positive value. It follows from the quite unique trend observed in Figure 2: the knowledge 342

about this type of linguistic phenomenon, albeit very low, starts increasing in the middle 343

layers, and decreases in the last ones even though it remains higher with respect to the 344

first ones. The features that BERT tends to know quite constantly across layers are those 345

belonging to VerbPredicate group. Accordingly, the slope value is the lowest one (-0.017). 346

Figure 3 also allows a first comparison between the performances of the probing model 347

tested on the Gold and control datasets. The majority of negative slope values reported here 348

show that BERT’s knowledge generally tends to decrease across layers also when tested 349

against the different typologies of control datasets2. Few exceptions are unevenly scattered 350

across layers and groups of features and they are not worth discussing. However, the most 351

striking result emerging from Figure 3 is that the slopes are quite flat both on average and 352

considering specific features. Contrary to what was seen for the Gold dataset, we observe 353

very small differences between the probing scores achieved using the representations 354

extracted from the last and first layers, indicating that the knowledge about linguistic 355

features on all control datasets is stable across layers. This result seems to suggest that 356

altering the values of the gold features has a generic impact on BERT’s linguistic knowledge. 357

The extent of such an impact is clear by inspecting Figure 4 which reports the gaps 358

between the probing scores obtained when predicting gold and altered linguistic features. 359

Here we focused on the scores achieved in the output layer since we previously observed 360

very small changes in probing performance across layers. Specifically, the gap was com- 361

puted as the difference between the probing score obtained at layer 12 on the Gold dataset 362

and on each control dataset. Note that in order to weigh the impact of the altered feature 363

values with respect to BERT’s competence about that linguistic phenomenon, we divided 364

the computed difference by the probing score obtained for each feature at layer 12 in the 365

2 Refer to A1 for the layer-wise probing scores obtained on each control dataset.
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Figure 3. Slopes of the regression lines across the 12 layers for the probing scores obtained with the
Gold and the corresponding Control datasets. Scores are multiplied by 100.

Figure 4. Differences between the probing scores obtained with the Gold dataset and each Control
dataset using BERT representations extracted from the output (12) layer.

Gold dataset 3. Differences higher than 1 are obtained when the probing scores achieved 366

on the control dataset are lower than 0. 367

The positive value of differences visualized in the heatmap shows that on average (Avg 368

row), and for all groups of features, the highest probing scores are obtained on the Gold 369

dataset even with some differences across the typologies of features and control datasets. 370

The greatest differences are obtained for the Random and Swapped datasets without any 371

constraints about the length of sentences. This seems to suggest that the probing model is 372

able to recognize that the feature values contained in the two main types of control datasets 373

3 The formula adopted for every single feature is the following one: (probing score at layer 12 in the Gold
dataset - probing score at layer 12 in the control dataset) / probing score at layer 12 in the Gold dataset
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Figure 5. Layer-wise probing scores (Spearman correlations) obtained when predicting Gold feature
values according to the 7 macro-groups of linguistic features for the Shortest and Longest subsets.
Average results (Avg) are also reported.

have been altered, even when they are not fully random but plausible, i.e. in the Swapped 374

datasets. As a consequence, we can hypothesize that the probing model is relying on some 375

implicit linguistic knowledge when it predicts the authentic feature values, rather than 376

learning some regularities possibly found in the dataset. 377

However, if we take a closer look at the gaps between the Gold and the altered datasets 378

when we constrain the length of the sentences, we can observe that on average (Avg row) 379

the differences with respect to the prediction of the authentic feature values are generally 380

lower. More specifically, the Swapped Bins (diff=0.781) and Lengths (diff=0.763) datasets 381

result to be more challenging for our probing approach than the corresponding Random 382

ones, against which we obtained higher differences equal to 0.845 and 0.852, respectively. 383

Namely, since the feature values artificially created simply by shuffling gold ones across 384

sentences constrained by sentence length are more similar to the gold values, as shown in 385

Table 3, the swapped values result to be more confounding for the probing model. In fact, 386

they are predicted with higher accuracy than randomly altered values. 387

In addition, stronger differences across groups of features emerge from this analysis. 388

BERT’s generalization abilities of features referring to the local and global syntactic structure 389

of the sentence (TreeStructure) seem the most similar to gold ones based on the relatively 390

small gap between predictions. Note that these sentence properties are the most sensitive 391

to the sentence length, which BERT encodes with very high accuracy [52]. This may 392

suggest that in the resolution of these tasks the probing model is possibly relying on some 393

regularities related to sentence length. The same holds for features related to Subordination, 394

which are similarly highly correlated to sentence length. On the contrary, in both Swapped 395

and Random control datasets, the probing model performances diverge with respect to the 396

prediction of the pre- or post-verbal order of subject and object (Order) in a sentence, and 397

in particular of the verbal morphology features (VerbInflection), as shown by their smaller 398

gaps. 399

4.2. Probing on the Shortest and Longest subsets 400

In this section, we take a closer look at how BERT performs when tested against the 401

Shortest and Longest subsets of IUDT sentences, which, as described in Section 3.1, gather 402

all sentences having a length up to 9 tokens and between 31 and 100 tokens, respectively. 403

As in the previous section, we start by reporting the layer-wise probing scores obtained 404

by the model when predicting the gold values of the linguistic features extracted from 405

sentences belonging to these two subsets. This is shown in Figure 5, where we can see 406

how BERT’s implicit knowledge changes across layers and groups of linguistic phenomena. 407

A first observation that we can draw from the figure is that the subset of long sentences 408

exhibits a higher variation across layers, and that this trend is more similar to the one 409

observed for the Standard subset (see Figure 2). This holds especially for some groups 410

of phenomena, such as the distributions of Parts-Of-Speech (POS) and of dependency 411
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Figure 6. Slopes of the regression lines across the 12 layers for the probing scores obtained with
the Gold and the corresponding Control datasets for the Shortest and Longest subsets. Scores are
multiplied by 100.

relations (SyntacticDep), for which BERT’s predictions are very similar to the gold value, 412

especially in the first layers, whereas this specific knowledge tends to decrease as the output 413

layer is approached. A further similarity can be observed with respect to the worst encoded 414

features, which are represented by sentence properties related to the complexity of verbal 415

predicates (VerbPredicate) and, although to a lesser extent, to syntactic ordering (Order). 416

Note that the latter group, as already observed for the Standard subset, is better encoded in 417

the middle layers rather than in the first ones. 418

On the contrary, BERT’s linguistic knowledge tested on the subset of short sentences is 419

on average more stable with few variations across layers and across the diverse groups of 420

linguistic phenomena. In addition, we can observe that BERT competencies are differently 421

ranked with respect to the ranking obtained in the Standard and Longest subsets. In fact, the 422

features that the language model masters with the highest accuracy are those modeling the 423

syntactic structure of the sentence (TreeStructure) with a layer-wise average probing score 424

equal to 0.68. Note that such a score is higher than the accuracy achieved in the Longest 425

(0.53) and Standard (0.65) subsets. This result may be a consequence of the fact that the 426

values of the features belonging to this group are highly sensitive to sentence length and 427

short sentences are typically characterized by quite flat, and simple, syntactic trees (as 428

shown in Table 2). Since, as we mentioned, sentence length is a feature that BERT masters 429

very well, BERT may rely on the knowledge of this shallow feature as a proxy to predict 430

more complex features related to the structure of the syntactic tree. Possibly related to the 431

same reason, it results that BERT masters the order of subject and object (Order), and the 432

number of dependents of verbal heads (VerbPredicate), much better in short than in long 433

sentences, with accuracies even higher than the ones achieved on the Standard subset4. 434

Differently from the other two datasets, the worst prediction is achieved by the features 435

modeling the subordination (Subord), even if with probing scores very similar to the ones 436

of the Longest subset. 437

4 Layer-wise average probing scores of the Order group are 0.55 in the Shortest subset, 0.37 in the Longest, and
0.51 in the Standard one. The scores achieved for the VerbPredicate group are 0.52, 0.29 and 0.40 in the three
datasets respectively.
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Figure 7. Differences between the probing scores obtained for the Gold dataset and each Control
dataset for the Longest and Shortest subsets. Differences are computed using BERT representations
extracted from the output (12) layer.

Despite these differences, Figure 6 shows that BERT’s knowledge tends to change 438

very little across layers with respect to what was observed for the sentences in the Standard 439

subset5. As previously noted, the average flattest slopes are obtained considering the 440

Shortest subset (Avg=-0.49), while more variations can be seen for the Longest one. It is also 441

worth highlighting that in the latter case we have several groups of features with positive 442

slope values. This is the case not only of the features belonging to the Order group, which 443

have the same trend in the Standard and Shortest subsets but also of the features modeling 444

the subordination, the syntactic structure of a sentence and the verbal arity. 445

In addition, the figure allows a first analysis of the impact of the corresponding control 446

datasets on the probing model performance. Specifically, we can see that the altered feature 447

values are predicted quite similarly across layers, while the prediction of the gold values 448

undergoes more variations. This trend is similar to the one reported for the Standard 449

subsets and it suggests that also in less standard sentences the probing model is sensitive 450

to the distortion of feature values. Further evidence in this direction can be acquired by 451

inspecting Figure 7 which reports the gap between the probing model accuracy on the Gold 452

and Control datasets for the two subsets. As noted in the previous section, the positive 453

values show that the gold values of the features are predicted with higher accuracies than 454

the altered ones6. As in the case of the Standard subset (see Figure 4), very few variations 455

across the groups of features emerge, thus showing that the probing model is scarcely 456

confused by the distortion of feature values regardless of the linguistic phenomenon tested. 457

We noticed for example that even if BERT’s knowledge concerning the use of subordination 458

is lower both in the Shortest and Longest subsets than in the Standard one. However, the gap 459

between the probing scores obtained for the corresponding Gold and Control datasets is 460

similarly high in the three subsets. However, differently from what we observed for the 461

Standard subset, the Swapped control datasets are slightly more challenging than the Random 462

ones. In fact, the differences are on average (Avg row) lower, especially when the probing 463

model is tested against the control datasets of the short sentences. 464

5 Refer to A2 for the layer-wise probing scores obtained on each control dataset.
6 Also in this case, the differences are weighted based on the probing scores obtained by each feature on the

gold Shortest and Longest subsets.
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5. Conclusion 465

In spite of the wide amount of studies that have relied on the diagnostic probing 466

paradigm to assess the linguistic knowledge implicitly encoded by NLM’s representations, 467

the validity of this method is still questionable from different perspectives. Our study 468

has presented a novel contribution to this debate by focusing specifically on one of the 469

still open questions, that is the effectiveness of probes to reflect the linguistic properties 470

encoded in a representation. To this aim, we analyzed the performance of a probing model 471

trained with layer-wise sentence-level BERT’s representations to predict the value of a large 472

set of linguistic features derived from the Italian Universal Dependency Treebank (IUDT) 473

and from a suite of control datasets specifically created to alter the original value of the 474

examined features. 475

As a general remark, we observed that the probing model has always a better per- 476

formance when tested against the IUDT datasets than against the corresponding control 477

datasets. Namely, the gold values of the considered set of linguistic features are predicted 478

with higher accuracy than the artificially altered ones, thus showing that the probing model 479

is sensitive to the distortion of feature values and it does not simply learn the regularities 480

of the probing task. Such a result corroborates the reliability of the probing task as an 481

interpretability approach to assess the level of linguistic knowledge implicitly encoded in 482

BERT’s sentence-level representations. 483

However, our experiments also highlighted that sentence length is a relevant con- 484

founding factor that may bias the real estimate of BERT’s linguistic knowledge. In fact, 485

when we focused on sentences of the same length (or same ranges of lengths) taken from the 486

Standard IUDT subset, we observed that the probing model is less sensitive to the artificially 487

generated values of features, especially when these values were obtained by shuffling the 488

original values across sentences of the same length (or ranges of lengths). This suggests that, 489

when the length is controlled, an alteration strategy that assigns incorrect but still plausible 490

values is more challenging for the probing model than one that simply generates random 491

values. Such a general trend concerns in particular the groups of linguistic phenomena 492

that are more influenced by the length of the sentence. This is the case for example of the 493

features modeling local and global characteristics of the syntactic structure of a sentence (i.e. 494

the TreeStructure group) which tend to have quite homogeneous values within sentences 495

of the same length. Accordingly, the output space of the probing model for these features 496

is smaller than in the whole dataset, thus making them more easily predictable without 497

relying on authentic linguistic competence. Despite this trend being particularly visible 498

when we consider the output layer, we showed that the probing model is sensitive to 499

the altered values also across the twelve BERT’s layers. Quite interestingly, contrary to 500

what was observed for the Gold dataset, the learning curve of the model tested on the 501

control datasets decreases quite slowly across layers, with no significant variations across 502

the typology of linguistic phenomena. 503

The main outcomes obtained for the group of sentences with a standard length in 504

Italian were also confirmed by the experiments conducted on the subsets of sentences hav- 505

ing less standard lengths. Although we highlighted that BERT masters specific linguistic 506

phenomena with different accuracy in Shortest, Longest and Standard subsets, we showed 507

that the probing model is similarly scarcely confused in the three subsets regardless of 508

the linguistic aspect considered. This seems to suggest that BERT’s representations ex- 509

tracted from less standard sentences implicitly encode the linguistic knowledge of therein 510

phenomena. 511

The present study can be extended from diverse perspectives. In the future, the effec- 512

tiveness of the diagnostic probing approach can be evaluated considering other languages, 513

possibly belonging to different language families and thus characterized by different feature 514

values. Indeed, it could be worth exploring whether confounding factors affecting the 515

performance of probing models are shared among languages or vary depending on their 516

family. In this respect, we can either reuse the same set of linguistic features or focus on 517

subsets of phenomena of particular interest for a typological study. In fact, the approach 518
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adopted to select the set of linguistic features is multilingual being based on the Universal 519

Dependencies formalism. In addition, as neural models continue to improve, a further 520

possible direction of research may consist in assessing the effectiveness of the probing 521

approach to test the linguistic knowledge encoded in models with different architectures. 522
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Appendix A 523

Figure A1. Layer-wise probing scores (Spearman correlations) obtained when predicting Control
feature values of the Standard subset according to the 7 macro-groups of linguistic features. Average
results (Avg) are also reported.
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Figure A2. Layer-wise probing scores (Spearman correlations) obtained when predicting Control
feature values according to the 7 macro-groups of linguistic features for the Shortest and Longest
subsets. Average results (Avg) are also reported.
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