
Alleviating the Knowledge-Language Inconsistency: A Study for
Deep Commonsense Knowledge

Yi Zhang†∗, Lei Li†∗, Yunfang Wu†, Qi Su†§, Xu Sun†
† MOE Key Laboratory of Computational Linguistics, School of EECS, Peking University

§ School of Foreign Languages, Peking University
{zhangyi16,wuyf,sukia,xusun}@pku.edu.cn

lilei@stu.pku.edu.cn

Abstract

Knowledge facts are typically represented by
relational triples, while we observe that some
commonsense facts are represented by the
triples whose forms are inconsistent with the
expression of language. This inconsistency
puts forward a challenge for pre-trained lan-
guage models to deal with these common-
sense knowledge facts. In this paper, we term
such knowledge as deep commonsense knowl-
edge and conduct extensive exploratory exper-
iments on it. We show that deep common-
sense knowledge occupies a significant part of
commonsense knowledge while conventional
methods fail to capture it effectively. We fur-
ther propose a novel method to mine the deep
commonsense knowledge distributed in sen-
tences, alleviating the reliance of conventional
methods on the triple representation form of
knowledge. Experiments demonstrate that
the proposal significantly improves the perfor-
mance in mining deep commonsense knowl-
edge.

1 Introduction

The typical representation of a commonsense
knowledge fact is a relational triple that consists
of a head term, a tail term, and a relation between
them, e.g., (patient, Desires, health). We notice
that some commonsense knowledge is represented
by triples whose forms are consistent with the ex-
pression of language, e.g., (apple, Is, red).1 We
categorize such commonsense as plain common-
sense knowledge. In contrast, there are some com-
monsense facts that are rarely expressed explicitly
in natural language (Gordon and Durme, 2013)
and their representation triples show inconsistency
with language expression like (whale, AtLocation,
ocean). To describe this phenomenon, we define

∗Equal contribution
1The concatenation of the triple “apple is red” is close to

the expression of language.

Plain Commonsense!
Triple: (apple, Is, fruit)
Text: The apple is a fruit which ripens in the fall.
Triple: (key, UsedFor, Encryption)
Text: The same key is used for both encryption and
decryption.
--

Deep Commonsense"
Triple: (magician, CapableOf, entertain audience)
Text: The magician performed many magic tricks to
entertain the audience.
Triple: (whale, AtLocation, ocean)
Text: Whales live in all the world’s oceans, commu-
nicating through beautiful sounds.

Figure 1: Typical examples of plain commonsense and
deep commonsense knowledge. “Text” denotes the cor-
responding language where the knowledge triple lies
behind.

the extent of the inconsistency between a knowl-
edge triple and language expression as the depth of
the triple. We call those triples with large depth as
deep commonsense triples and quantify this defini-
tion in this work. The knowledge facts implied by
reasonable deep commonsense triples are termed
as deep commonsense knowledge. Some typical
examples are shown in Figure 1 to give an intuitive
understanding.

Different knowledge triples are usually directly
fed into models for processing in commonsense
mining tasks. Prevailing methods adopt pre-trained
language models for commonsense mining due to
their impressive performance. The triples are fed
into and then adapted to language models during
the fine-tuning stage (Yao et al., 2019; Malaviya
et al., 2020). Since language models learn the ex-
pression of language, for the plain commonsense,
their triples can be easily adapted to language mod-
els owing to their consistency with language expres-
sion. However, the deep commonsense facts are
inherently inconsistent with language expression.
As shown in Figure 1, the knowledge fact (whale,

ar
X

iv
:2

10
5.

13
60

7v
2

 [
cs

.C
L

]
 3

1
M

ay
 2

02
1

AtLocation, ocean) tends to be expressed in a more
implicit way rather than directly saying “whale is
located at ocean”. We presume that it is hard to
adapt such triples to appropriate language expres-
sions and thus this inconsistency raises a challenge
for pre-trained language models to handle them.

However, little research has been done regarding
this inconsistency between the knowledge repre-
sentation and language models. In the prevailing
methods, the triples are usually directly fed into lan-
guage models ignoring the inconsistency between
the input triples and the language expression. To
better deal with the commonsense knowledge rep-
resented by the triples, it is essential to answer
whether relying on adapting triples to language
models during the fine-tuning stage can deal with
all kinds of commonsense knowledge, especially
the deep commonsense knowledge whose triple
forms are inconsistent with language expressions.
Moreover, our experiments show that deep com-
monsense knowledge occupies a notable part of
commonsense knowledge while prevailing meth-
ods have difficulty in handling them. In this paper,
we make the first study about deep commonsense
knowledge by probing the following problems.

How to identify the deep commonsense
triples? The core of this question is to quanti-
tatively define the depth of knowledge triples. A
straightforward way is to manually grade the depth
of triples. However, for one thing, manual annota-
tion is usually expensive, for another, the evaluation
standard varies for different individuals and thus
hinders generalization. Therefore, developing au-
tomatic measurements for the depth of knowledge
triple is indispensable. In our work, we develop two
metrics to explicitly measure the depth and give a
criterion to identify deep commonsense triples.

How to mine deep commonsense knowledge?
Deep commonsense knowledge is represented by
the reasonable deep commonsense triples. How-
ever, our probing experiments show that conven-
tional methods have difficulty in handling those
triples with large depth, hindering the development
of mining deep commonsense knowledge repre-
sented by them. To remedy this, we propose a
novel method that directly processes the sentences
that are indeed language expression in text form to
mine the commonsense knowledge. The proposal
encourages the model to discover the commonsense
knowledge behind these sentences rather than rely-
ing on adapting triples to language expressions.

In summary, our contributions are as follows:

• We introduce the knowledge-language incon-
sistency problem and make the first endeavor
to study the deep commonsense knowledge.

• We propose a novel method with sentences
as input to mine the knowledge distributed in
sentences.

• The proposed method significantly improves
performance in mining the deep common-
sense knowledge compared with baselines.

2 Probing into Deep Commonsense
Knowledge

Although we introduce the concepts of the
depth of knowledge triples and deep common-
sense knowledge, how to explicitly measure the
depth and quantitatively define the deep com-
monsense triples remain unexplored. In this sec-
tion, we investigate these essential problems and
study the effect of deep commonsense knowl-
edge through Commonsense Knowledge Base
Completion (CKBC) task since it is a classic task
for commonsense knowledge mining.

2.1 Preliminaries
CKBC aims to distinguish the reasonable knowl-
edge triples from the unreasonable ones. Following
previous work (Li et al., 2016), we treat this task as
a binary classification problem to label high-quality
triples as positive while labeling the unreasonable
ones as negative. In our probing experiments, we
also adopt the evaluation dataset introduced by Li
et al. (2016), where the reasonable triples are from
the crowd-sourced Open Mind Common Sense en-
tries and the unreasonable triples are generated
by negative sampling. We denote this evaluation
dataset as OMCS for short. In light of the impres-
sive performance of pre-trained language models,
we employ pre-trained language models to tackle
the CKBC task. A natural way is to directly feed
the concatenation of triples into language models
and then additionally learn a new classification
layer in the fine-tuning stage. In this paper, we
regard such a treatment as the conventional method
due to its simplicity and effectiveness, and study
its performance on the CKBC task.

2.2 Measurement of Depth
Since the depth reflects the extent of inconsistency
between a triple and the expression of language,

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000 5000
Depth Rank

A
nn

ot
at

ed
 D

ep
th

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800
Perplexity

A
nn

ot
at

ed
 D

ep
th

(a) Depth rank and perplexity given by GPT-2.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1000 2000 3000 4000 5000
Depth Rank

A
nn

ot
at

ed
 D

ep
th

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800
Perplexity

A
nn

ot
at

ed
 D

ep
th

(b) Depth rank and perplexity given by Transformer-XL.

Figure 2: The correlation between human annotated
knowledge depth and automatic measurements. The
blue line is the trend line of human annotated results.

and language models are designed to learn the ex-
pression of language, we attempt to use metrics
derived from the language model to measure the
depth. Before calculating these metrics, triples
are first converted to natural language with simple
templates. We do not excessively design these tem-
plates and are tolerant of some grammatical issues
of the converted sentences since simple templates
preserve the original form of a knowledge triple
and thus directly indicate the depth of the triples.
The two metrics are:

Depth rank: Given a sentence S =
{h1:m, r1:n, t1:k} converted from a triple, where
m, n and k denote the number of tokens in head
term, relation and tail term, respectively, all the
tokens in this sentence are auto-regressively fed
into language models and each token will obtain a
prediction rank. We define the depth rank as:

DepthRank(S) =

∑k
i=1 Index(ti|h1:m, r1:n, t<i)

k
(1)

where Index(·|·) is the rank index of the correct
tail token in the model prediction result given the
head and relation tokens. The depth rank reflects
the preference of language models for generating
words.

Perplexity: The second metric is the perplexity
of the sentence converted from a triple, obtained
from pre-trained language models.

We assume that the larger the depth rank and the
perplexity is, the deeper the knowledge triple is.

0
1000
2000
3000
4000

AtL
oca
tio
n IsA

Us
ed
For

Ca
pa
ble
Of

Ha
sPr
ere
qu
isit
e

Ha
sSu
be
ven

t Is Ha
s

D
e
p
th

R
a
n
k

Relation Type

Avg Std

Figure 3: Depth rank average and standard deviation
of different relation types in the OMCS dataset. While
relations close to language expressions tend to have a
low average depth rank, the variance is high since the
depth is also affected by head and tail terms.

To verify that the depth of knowledge fact is pro-
portional to the introduced metrics, we manually
annotate 600 reasonable knowledge triples from
Open Mind Common Sense regarding their depth.
We adopt a 4-point scale where 1 represents the
shallowest knowledge triple and 4 represents the
deepest one to encourage the annotators to take a
stand on whether the triple is declined to shallow or
deep. More annotation details can be found in Ap-
pendix A. We divide the triples into multiple groups
according to their depth rank and perplexity, and
calculate the human-annotated depth of each group.
To show the generality, we adopt two pre-trained
language models, i.e., GPT-2 (Radford et al., 2019)
and Transformer-XL (Dai et al., 2019). The corre-
lations of human-annotated results and automatic
criteria are shown in Figure 2. We observe that
both metrics demonstrate a strong correlation with
human-annotated results. It indicates that the depth
rank and perplexity can be utilized as proxies for
measuring the depth of a knowledge triple. Particu-
larly, the depth rank calculated by GPT-2 shows the
highest correlation coefficient of 0.67 with human
annotations. For convenience, we use this metric
as a standard criterion to assist the following study.

2.3 Effect of Relation Type on Depth

We also explore the correlation between depth rank
and relation type for a comprehensive understand-
ing of the deep commonsense knowledge. In more
detail, we group triples in OMCS dataset by rela-
tion type and compute the average and standard
deviation of depth rank for each group in Figure 3.
The average depth rank varies among different re-
lations, which suggests that the depth of a triple is
affected by the relation type to some extent, e.g.,
relations close to language expression like Is tend

Figure 4: Performance of typical pre-trained language
models on the entire OMCS test set. We observe a sig-
nificant performance drop around the rank of 2,000.

to have a low average depth rank. However, the
observed high variance in the depth reveals that
those commonsense triples with the same relation
can significantly differ in depth. Such difference
demonstrates that head and tail terms also have a
big impact on the depth of a triple, e.g., the triple
(whale, AtLocation, ocean) is deeper than (Eiffel
Tower, AtLocation, Paris).

2.4 Significance of Deep Commonsense
We then take a step further to investigate the ef-
fect of the depth through CKBC task regarding the
performance of using pre-trained language mod-
els. We adopt three pre-trained language models
widely used in classification tasks, i.e., ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019b). Detailed setup is in-
cluded in Appendix B. The performance curve on
different groups sorted by depth rank is shown in
Figure 4. We observe that the performance varies
on different depth of knowledge facts. In general,
the performance deteriorates as the depth increases.

As deep commonsense knowledge can be rep-
resented by the deep knowledge triples, the above
phenomenon discloses that the prevailing meth-
ods using pre-trained language models have diffi-
culty in dealing with deep commonsense knowl-
edge. Such methods take the concatenated triple as
the input of language model. During the fine-tuning
stage, the model actually learns to narrow the gap
between the triple and the corresponding language
expression. For the plain commonsense, the lan-
guage model can easily adapt them to language
form and handle them with facility. However, for
those triples with high depth rank, it is relatively
difficult to fit them to appropriate language form.

15%

20%

25%

40%

TaskDataset:
OMCS

0≤r<100 100≤r<500
500≤r<2000 r≥2000

(deep)

(a) Proportions of deep com-
monsense knowledge in the
OMCS dataset.

9%

11%

15%65%

KnowledgeBase:
ConceptNet

0≤r<100 100≤r<500
500≤r<2000 r≥2000

(deep)

(b) Proportion of deep com-
monsense in the knowledge
base ConceptNet.

Figure 5: The distribution of different depth rank in the
knowledge base ConceptNet and the OMCS dataset for
CKBC task. r denotes the depth rank.

These knowledge triples remain unfamiliar and in-
tractable form for language models to handle. As a
result, the model is confused in tackling the deep
commonsense triples, and accordingly the perfor-
mance declines significantly as the depth increases.

Particularly, we observe that the performance
significantly drops on the rank close to 2, 000.
Therefore we take the depth rank 2, 000 given by
GPT-2 as a boundary to quantitatively identify the
deep commonsense triples. That is, the knowledge
triples with depth rank larger than 2, 000 are cate-
gorized as deep commonsense triples in our work.

Along with the challenge posed by deep com-
monsense knowledge, another question arises: does
deep commonsense knowledge really occupy a no-
table part of the commonsense knowledge? We
then investigate the depth of triples in the CKBC
task dataset and the commonsense knowledge base
ConceptNet (Speer et al., 2017). The statistical
result for task dataset reveals the occurrence fre-
quency of deep commonsense knowledge in down-
stream tasks, and the result for knowledge base re-
flects the proportion of deep commonsense knowl-
edge in real commonsense knowledge. We first
sample 2, 000 entries in OMCS evaluation dataset
and compute their depth ranks. The proportions of
different depth ranges are shown in Figure 5(a).
Deep commonsense knowledge occupies about
40% of the samples, which is a significant part.
We further randomly sample 10k knowledge triples
in the ConceptNet and measure their depth. Ac-
cording to Figure 5(b), the plain commonsense oc-
cupies a small part of knowledge while about 65%
knowledge is actually deep commonsense knowl-

edge. These results suggest that deep common-
sense plays a role that can not be overlooked in the
research of commonsense knowledge.

3 Mining the Commonsense Knowledge
Distributed in Sentences

The analysis in Section 2 demonstrates that con-
ventional methods heavily rely on adapting triples
to language expression, leading to sub-optimal per-
formance when dealing with deep commonsense
knowledge. Therefore we attempt to provide sen-
tences that are exactly language expression as the
input of language models, which helps elude the in-
consistency problem exposed in conventional meth-
ods. We speculate that deep commonsense can be
implicitly inferred from sentences rather than learn-
ing from the artificial triples. For instance, given a
reasonable triple (take a bath, HasSubevent, wash
hair), the sentences "He went to bath to take a bath
only to find the shampoo was used up" and "Finally
rinse hair completely, then wash hair with some
shampoo" provide potential evidence for correctly
identifying the above triple. Therefore we propose
a novel method which identifies reasonable triples
through mining the knowledge distributed in sen-
tences related to triples.

Concretely, we select two sentences that con-
tain head term and tail term respectively and also
have the most word overlaps. They serve as the
contexts of the corresponding triple to provide po-
tential clues and enrich the semantic meanings of
head and tail terms. A special case is that the head
and tail terms appear in one sentence. In such a
situation, the two input sentences are identical. We
discuss the more general case in this work. Instead
of forcefully adapting the deep knowledge triple
to the corresponding language expression, which
has been demonstrated ineffective in our previous
analysis, our proposal makes classification on the
sentences that are exactly language expressions and
are readily processed by language models. Thus,
the model can discover the implicit deep knowledge
behind these sentences with facility. An overview
of our model is shown in Figure 6.

Formally, given a triple x = (h, r, t), we denote
the sentence containing the head h as sh and the
sentence containing the tail t as st. Intuitively,
the sentence pairs with the most relevant contexts
will provide more beneficial information about the
relation between head and tail. Therefore, we select
the sentence pair (sh, st) with most word overlap

<cls>… to take a bath only … <sep> Has subevent <sep> … then wash hair with …

Transformer Encoder

Prediction

Head Sentence Relation Tail Sentence

… … …

……… …

Multi-Head Attention

Figure 6: The overview of the our model architecture.
The head sentence and tail sentence denote the sen-
tences containing head term and tail term, respectively.

after removing stop words from raw texts. Here we
use the raw texts from BOOKCORPUS (Zhu et al.,
2015). Meanwhile, we convert the relation to a
phrase, e.g., “CapableOf” is rephrased as “capable
of”. Each sentence pair and the rephrased relation
R form a new triple (sh, R, st). We additionally
add a <sep> token between the relation phrase
and sentences to distinguish their boundaries and a
<cls> token is appended to the beginning of the
sequence. The resulting sequence is denoted as X
and serves as the input of our model.

We feed the input sequence X into a pre-trained
language model which in our case is RoBERTa (Liu
et al., 2019b) for encoding. We extract the token
representations of <cls>, h, R, and t in the last
layer and denote them as E<cls>, Eh, Er and Et,
respectively. With the interactions provided by
multi-layer encoder, we assume that these repre-
sentations incorporate rich semantic information
from two context sentences with respect to the orig-
inal triple (h, r, t). We concatenate them as Ê and
perform the standard multi-head self-attention op-
eration (Vaswani et al., 2017) on Ê, resulting in the
final hidden state H of input Ê. The hidden state
corresponding to <cls> is denoted asH<cls> and
is followed by a feed forward layer to produce an
output distribution over target labels. This proce-
dure can be formulated as:

E0 = Emb_Layer(X) (2)
El = Transformer_Layer(El−1),∀l ∈ [1, n] (3)

Ê = E<cls>
n ⊕ Eh

n ⊕ Er
n ⊕ Et

n (4)

H = Self_Attn(Ê) (5)

P = Softmax(WH<cls>) (6)

where n is the number of encoder layers, W ∈
R2×dv is a matrix parameter and P ∈ R2 is the
binary probability distribution.

Since there are different available sentences con-
taining the head h or the tail t, we select multi-
ple sentence pairs to make a comprehensive pre-
diction. Specifically, we retrieve a sentence set
SH = {shi }

|SH |
i=1 for head h and a sentence set

ST = {stj}
|ST |
j=1 for tail t. We then select top K

sentence pairs Spair = {(shk , stk)}Kk=1 with most
word overlap, establishing an evidence set D with
size K for assessing the triple x:

D = {(shk , R, stk)|(shk , stk) ∈ Spair}Kk=1 (7)

For each triple x = (h, r, t), the evidence set D
contains K pairs (sh, R, st), resulting in K predic-
tion results which is denoted as {pk}Kk=1 in the
following description. The model is optimized
via minimizing the average of the negative log-
likelihood over the K sequences:

L = − 1

K

K∑
k=1

Y log(pk) (8)

where Y is he gold label of the original triple.
During the inference stage, we ensemble these

K prediction results to make a final prediction. We
denote pk0 and pk1 as the k-th probability being fic-
titious and true, respectively. We develop three
strategies to assemble temporary prediction results:

• Avg-Prediction The average probability re-
flects the comprehensive reasonability of the
triple.

Ŷ = argmax(
1

K

K∑
k=1

pk0 ,
1

K

K∑
k=1

pk1) (9)

• Max-Prediction The max probability repre-
sents the most confident prediction of the
triple.

Ŷ = argmax(max({pk0}Kk=1),max({pk1}Kk=1))
(10)

• Vote-Prediction The vote result reflects the
validity of a triple in most cases.

N0 =

K∑
k=1

(1(argmax(pk0 , p
k
1) = 0) (11)

N1 =

K∑
k=1

(1(argmax(pk0 , p
k
1) = 1) (12)

Ŷ = argmax(N0, N1) (13)

where 1(δ) is an indicator function giving
result 1 if δ is true, otherwise 0.

4 Experiments

4.1 Datasets

We use a total of 500k triples from ConceptNet as
positive examples of training data. Among them,
100k are from the Open Mind Common Sense en-
tries. The total 500k positive triples along with the
500k negative triples generated by negative sam-
pling serve as our training set. The first evaluation
dataset is established by Li et al. (2016) from Open
Mind Common Sense and is denoted as OMCS
in this work. It has 2,400 examples in the devel-
opment set and the test set respectively. Since the
OMCS evaluation dataset has no distinction of the
depth of triples, and to enlighten the research of
deep commonsense knowledge, we construct a new
evaluation dataset that consists of only deep com-
monsense triples and human-annotated labels. It
has 2,000 examples in the development set and the
test set respectively. The construction details are
included in Appendix C. We denote this dataset
that contains Deep CommonSense Knowledge as
DCSK for short. We conduct experiments on these
two datasets.

4.2 Experimental Settings

We implement our proposed model based on the
architecture of RoBERTa. In detail, we use the
transformer architecture with 24 layers. It con-
tains 16 self-attention heads and the hidden dimen-
sion is 1,024. For our self-attention block stacked
on the transformer blocks, we use 8 self-attention
heads. The hidden dimension is bounded with that
of transformer blocks thus it is 1,024. We use
the pre-trained parameters of RoBERTalarge to ini-
tialize this part of our model. The parameters of
the upper part of our architecture, namely the self-
attention block and the classifier are randomly ini-
tialized. The learning rate is set to 1e−5. We train
the model for a total of 24k steps with Adam op-
timizer (Kingma and Ba, 2015). Additionally, we
set the number of context pairs K as 3 and employ
the inference strategy of Avg-Prediction since we
empirically find it works best on the development
set. Detailed discussion about the hyper-parameter
K and different inference strategies are included in
Appendix D and Appendix E, respectively.

4.3 Baselines

We implement several commonly-used baseline
methods for CKBC:

OMCS (deep) Precision Recall F1-score

DNN-Avg 77.13 94.16 84.80
DNN-LSTM 77.01 93.51 84.46

ELMo 77.78 88.64 82.85
BERT 75.73 92.21 83.16

RoBERTa 75.52 93.18 83.43
Our Model 80.06 96.42 87.48

Table 1: Performance on the deep commonsense triples
of OMCS test set. Best results are shown in bold.

• DNN-Avg, DNN-LSTM: DNN-Avg (Li et al.,
2016) averages the token embeddings of the
triple for representation; DNN-LSTM (Li
et al., 2016) utilizes a bi-directional LSTM for
representing tokens. The representations are
followed by a multi-layer perceptron (MLP)
classifier for both models.

• ELMo, RoBERTa, BERT: ELMo (Peters et al.,
2018) takes the representation of the sentence
converted from triples to make classification.
RoBERTa and BERT (Devlin et al., 2019) are
fine-tuned on our task with triples as input.

4.4 Overall Performance
To verify the effectiveness of mining deep com-
monsense knowledge, we select the deep common-
sense triples of OMCS test set according to the
definition of deep commonsense triples (see Sec-
tion 2.4) to form a sub-test set. The performance
of models on this test set is shown in Table 1. We
notice that DNN-based methods perform well on
this dataset. We conjecture that some triples in the
test set are rewordings of triples in the training set,
which is consistent with the observation in previous
work (Jastrzebski et al., 2018), thus simple meth-
ods based on word embedding similarity can also
achieve good performance. Although pre-trained
language models are considered to contain com-
monsense knowledge to some extent (Petroni et al.,
2019), the conventional methods with pre-trained
language models heavily rely on narrowing the gap
between triple form to language expression during
the fine-tuning stage and show weakness in han-
dling deep commonsense knowledge. In contrast,
the proposed method significantly outperforms the
baselines, which validates its advantage over con-
ventional methods.

The performance on the DCSK dataset is shown
in Table 2. Compared to Table 1, we observe a sig-

DCSK Precision Recall F1-score

DNN-Avg 53.75 11.88 19.46
DNN-LSTM 39.79 20.72 27.25

ELMo 48.10 43.65 45.76
BERT 47.59 62.85 54.17

RoBERTa 46.67 65.05 54.35
Our Model 51.40 68.09 58.58

Table 2: Performance on our proposed DCSK test set
consisting of only deep commonsense triples. Best re-
sults are shown in bold.

nificant performance drop on all the methods. The
main reason is that the depth of the triples in the
DCSK dataset is substantially larger than that in
the OMCS dataset, which means the DCSK dataset
is more challenging. We observe that simple neural
networks perform poorly with very low F1-score.
These methods largely depend on embedding simi-
larity and thus cannot recognize the valid deep com-
monsense triples which are novel items, leading to
a low recall and further yielding poor performance.
The approaches using pre-trained models including
our model achieve significant improvement com-
pared with DNN-based models, indicating that it
is advantageous to employ pre-trained models that
obsess commonsense knowledge background.

Our proposal achieves the best performance in
these two datasets and we speculate the improve-
ment is two-fold. First, we alter the conventional
input to sentences whose forms are consistent with
language expression. Thus it is more beneficial and
effective for language models to process the input,
alleviating the reliance of conventional methods on
the representation form of knowledge. Second, the
sentences also serve as the contexts for both head
term and tail term. The contexts enrich their se-
mantic meanings and provide potentially valuable
clues to capture the deep commonsense knowledge.
In addition to the experiments on pure deep com-
monsense triples, we also perform experiments on
the entire OMCS test set. The test set is divided
into multiple groups according to their depth ranks
to see the performance of different groups. The
results of conventional methods and our method
are shown in Figure 7. The proposal shows a clear
advantage over baselines when dealing with deep
commonsense knowledge and also slightly outper-
forms RoBERTa when the depth rank is relatively
low. It reveals that the proposal will not hurt perfor-

Figure 7: Performance of conventional methods using
pre-trained language models and our method on the en-
tire OMCS test set.

mance when handling plain commonsense knowl-
edge.

4.5 Case Study

In Figure 8 we show some reasonable common-
sense knowledge triples that RoBERTa fails to rec-
ognize while the proposed method correctly labels
them as positive. Since the final representation of
the token <cls> is used for classification, we trace
its attention weights back to the tokens of the two
input sentences and highlight the words with large
attention weights. Regarding the first case, "words"
can not be directly learned, and actually it is the
process of reading the words that helps people learn
something. We hypothesize that the token "words"
in the second sentence provides a strong indication
to build the connection to the head term "reading"
in the first sentence, and we also find that it at-
tracts more attention. These two sentences together
hint at the validity of the corresponding knowledge
triple. The second example shows the special case
when the head term and tail term appear in one
sentence, resulting in two identical input sentences.
Our model can attend to different useful parts and
then makes classification on two same contexts.

5 Related Work

Commonsense mining is an active research area. A
typical task is knowledge base completion (Socher
et al., 2013; Yang et al., 2015; Wang et al., 2015;
Nguyen et al., 2018), which distinguishes the valid
knowledge facts from the fictitious ones. Li et al.
(2016) employ DNN-based methods for this task,
but Jastrzebski et al. (2018) prove such meth-
ods have difficulty in mining novel commonsense

Head Sentence

ĚŝĚ ƚŚĞ ďƌŝĚĞ ĂŶĚ ŐƌŽŽŵ ŐĞƚ ůŽĂĚĞĚ Ăƚ ƚŚĞ ǁĞĚĚŝŶŐ ͍Tail Sentence

ĚŝĚ ƚŚĞ ďƌŝĚĞ ĂŶĚ ŐƌŽŽŵ ŐĞƚ ůŽĂĚĞĚ Ăƚ ƚŚĞ ǁĞĚĚŝŶŐ ͍

(bride and groom, AtLocation, wedding)

(reading, Causes, learning)

Head Sentence
ƚŚŝƐ ŝƐ ũƵƐƚ ƐŽŵĞƚŚŝŶŐ ŝ ƌĞĂĚ ƚŚĂƚ ŝ ƚŚŝŶŬ ǇŽƵ ŵĂǇ ďĞ ŝŶƚĞƌĞƐƚĞĚ ŝŶ ƌĞĂĚŝŶŐ ͘

ƚŚŝƐ ŝƐ ũƵƐƚ ƐŽŵĞƚŚŝŶŐ ŝ ƌĞĂĚ ƚŚĂƚ ŝ ƚŚŝŶŬ ǇŽƵ ŵĂǇ ďĞ ŝŶƚĞƌĞƐƚĞĚ ŝŶ ƌĞĂĚŝŶŐ ͘

Tail Sentence ďƵƚ ƚŚĞ ǁŽƌĚƐ ͕ ŝƐ ƚŚĂƚ ƐŽŵĞƚŚŝŶŐ ŝ ŶĞĞĚ ƚŽ ůĞĂƌŶ ͍

Figure 8: Attention heatmap visualizations of the pro-
posal mining commonsense knowledge distributed in
sentences. Note that RoBERTa fails to predict correctly
in both cases, while the proposal succeeds.

knowledge. Davison et al. (2019) attempt to use
unsupervised method and they convert the triples
into sentences via hand-crafted templates and feed
them into pre-trained language models to evaluate
the validity. However, such a method heavily relies
on the coherence of the sentences. Apart from the
classification-based methods, recent researchers
also explore generative models to mine common-
sense knowledge. Saito et al. (2018) and Sap
et al. (2019) train encoder-decoder models to gen-
erate commonsense knowledge by using Concept-
Net (Speer et al., 2017) and ATOMIC (Sap et al.,
2019) as underlying KBs, respectively. Bosselut
et al. (2019) take advantage of pre-trained language
models to generate the tail term given a fixed head
term and a specific relation, contributing to produc-
ing more new knowledge triplets. Nonetheless, all
the previous methods employing pre-trained lan-
guage models take the relational triples as input and
thus heavily rely on the triple form of knowledge
facts.

Our work also relates to the work exploring the
knowledge implied in pre-trained language mod-
els (Liu et al., 2019a; Tenney et al., 2019). Petroni
et al. (2019) make a comprehensive study to seek
to what extent pre-trained language models store
world sense and commonsense knowledge. Partic-
ularly, Trinh and Le (2018) and Zhou et al. (2020)
focus on evaluating the commonsense revealed by
pre-trained language models, indicating that pre-
trained language models include plenty of com-
monsense knowledge. However, they treat all the
commonsense knowledge on an equal basis ignor-
ing their inherent types. In this paper, we first
make distinctions in plain commonsense and deep
commonsense and further demonstrate that mining
deep commonsense knowledge with pre-trained
language models need more elaborate techniques.

6 Conclusion

In this paper, we introduce a phenomenon that the
triple forms of some commonsense facts are incon-
sistent with language expressions and put forward
the issue of deep commonsense knowledge. We
conduct extensive experiments to understand deep
commonsense knowledge and show that deep com-
monsense knowledge occupies a notable part of
knowledge while conventional usage of pre-trained
language models fails to capture it effectively. We
then propose a novel method to directly mine com-
monsense knowledge from sentences, alleviating
the inconsistency problem. Experiments demon-
strate that our proposal significantly outperforms
baseline methods in mining deep commonsense
knowledge.

References
Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-

tanya Malaviya, Asli Çelikyilmaz, and Yejin Choi.
2019. COMET: commonsense transformers for
automatic knowledge graph construction. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 4762–4779. Association for Computa-
tional Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-xl: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, ACL, pages 2978–2988.

Joe Davison, Joshua Feldman, and Alexander M Rush.
2019. Commonsense knowledge mining from pre-
trained models. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, EMNLP-
IJCNLP, pages 1173–1178.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT, pages 4171–4186.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 workshop on Automated knowledge
base construction, AKBC@CIKM 13, San Fran-
cisco, California, USA, October 27-28, 2013, pages
25–30. ACM.

Stanislaw Jastrzebski, Dzmitry Bahdanau, Seyedarian
Hosseini, Michael Noukhovitch, Yoshua Bengio,
and Jackie Cheung. 2018. Commonsense mining as
knowledge base completion? a study on the impact
of novelty. In Proceedings of the Workshop on Gen-
eralization in the Age of Deep Learning, pages 8–16.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL, pages
1445–1455.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, NAACL-HLT, pages 1073–
1094.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pages 2925–2933. AAAI Press.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Q. Phung. 2018. A novel embed-
ding model for knowledge base completion based on
convolutional neural network. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT, pages
327–333.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2227–2237.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the

2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP, pages 2463–2473.

Alec Radford, Jeffrey Wu, Dario Amodei, Daniela
Amodei, Jack Clark, Miles Brundage, and Ilya
Sutskever. 2019. Better language models and
their implications. OpenAI Blog https://openai.
com/blog/better-language-models.

Itsumi Saito, Kyosuke Nishida, Hisako Asano, and
Junji Tomita. 2018. Commonsense knowledge base
completion and generation. In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning, COLING, pages 141–150.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3027–3035.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in neural information processing systems,
pages 926–934.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pages
4444–4451.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019. What do you
learn from context? probing for sentence structure
in contextualized word representations. In 7th Inter-
national Conference on Learning Representations,
ICLR.

Trieu H. Trinh and Quoc V. Le. 2018. A sim-
ple method for commonsense reasoning. CoRR,
abs/1806.02847.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Quan Wang, Bin Wang, and Li Guo. 2015. Knowl-
edge base completion using embeddings and rules.
In Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI,
pages 1859–1866.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In 3rd International Conference on Learning
Representations, ICLR.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for knowledge graph completion.
CoRR, abs/1909.03193.

Xuhui Zhou, Y. Zhang, Leyang Cui, and Dandan
Huang. 2020. Evaluating commonsense in pre-
trained language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages
9733–9740.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

A Human Annotation of Depth

We hire two annotators who major in Linguistics
and have received Bachelor degree to grade the
depth of sampled triples. The triples are graded
on a discrete scale of 1 to 4 where 1 represents the
shallowest knowledge triple and 4 represents the
deepest one. For inter-annotator agreement, we cal-
culate the Pearson correlation coefficient of the two
annotators over the depth rank and the perplexity
given by GPT-2 and Transformer-XL. The Pearson
correlation over these two metrics given by two
models are 0.67, 0.62, 0.58, and 0.61 respectively.

B Experimental Settings for CKBC Task

We adopt the same experimental settings for the re-
sults in Figure 4 and Table 1 in the main paper with
ELMo, BERT and RoBERTa as backbones. Specif-
ically, for experiments with BERT and RoBERTa,
we employ BERTlarge and the RoBERTalarge
which have 24 layers, 16 self-attention heads and
1,024 hidden units. During training, the learning
rate is set to 1e-5 with warmup over the first 8,000
steps and then decreases proportionally to the in-
verse square root of the number of steps, and the
dropout rate is set to 0.1. For the ELMo model,
we use the original two-layer bi-directional LSTM
with 4,096 hidden units and obtain the final 512-
dim contextualized representation of each word.
All models are trained with 4,096 tokens per GPU
and optimized with the Adam optimizer.

C Construction of the DCSK Dataset

We first use the pre-trained language models to gen-
erate candidate commonsense knowledge triples.
However, such a method can only obtain limited
knowledge triples. To further increase the quantity

and the diversity of the candidate knowledge triples,
we design simple strategies to propagate them to
form new triple candidates. The propagated candi-
date triples are not directly derived from pre-trained
language models and thus have a high chance to
be deep commonsense triples. Finally, we use the
depth rank given by GPT-2 introduced in the main
paper to filter the deep commonsense triples from
these candidates.

C.1 Retrieving triples from Pre-trained LMs
To encourage the language model to generate com-
monsense knowledge triples, we adapt language
model to knowledge generation by fine-tuning the
pre-trained language model on knowledge triples.
The adapted task is formulated as follows: given a
tuple (h, r) representing head term h and relation
r as input, our goal is to generate an appropriate
tail term t by a language model.

We employ GPT-2 as our language model due
to its impressive performance in text generation
tasks. We denote the tokens in head term as
Xh = {xh0 , . . . , xh|h|}, the tokens in tail term as
Xt = {xt0, . . . , xt|t|}, and the tokens that make up
the relation as Xr = {xr0, . . . , xr|r|}. |x| denotes
the number of tokens of x. For a triple (h, r, t), the
corresponding input X of the model is the concate-
nated sequence of the tokens in the triple:

X = Xh ⊕Xr ⊕Xt (14)

where ⊕ denotes the concatenation operation. The
sum of the word embeddings and the position em-
beddings of tokens in X results in the initial rep-
resentation h0 of input. GPT-2 stacks n identical
transformer blocks and applies the following trans-
formations to encode hidden representations:

hl = transformer_block(hl−1),∀i ∈ [1, n]
(15)

During training, we train the model to minimize
the negative log-likelihood derived from the tail
tokens:

L = −
|h|+|r|+|t|∑
l=|h|+|r|

logP (xl|x<l) (16)

where x<l denotes the preceding tokens of the l-
th token xl. During inference stage, the model is
supposed to auto-regressively generate Xt.

Considering the fact that there are multiple rea-
sonable tail terms, we employ beam search in in-
ference phase to generate multiple t′ for a (h, r)

food

fruit vegetable

apple banana strawberry

apple peelHasA

make
juice

Us
ed
Fo
r

banana
tree

CapableOf

banana

AtLocation

fall from
trees

fruit
UsedFor

At
Lo
cat
ion strawberry

C
apableO

fk=1

k=1

k=1

taxonomy tree of heads: knowledge graph:

Figure 9: The overview of our knowledge propagation
based on the taxonomy tree. The blue dotted line rep-
resents the propagation path. k denotes the propaga-
tion distance. The knowledge graph contains generated
(black) and expanded (blue) relations.

pair. Then we obtain a triple set S1 consisting of
commonsense knowledge triples (h, r, t′).

C.2 Knowledge Triple Propagation
Due to the limited size of S1, we further use simple
strategies to propagate these triples to form new
candidate triples. Motivated by the observation that
human can learn new knowledge by analogy, we
develop simple yet effective strategies to perform
triple propagation.

Specifically, we define the hypernym-hyponym
relation of the head terms with the help of WordNet.
We regard the hypernym as the parent node of the
corresponding hyponym head term, and the head
terms sharing the same hypernym are regarded as
the sibling nodes. We consider the relation and tail
pair (r, t) in a triple (h, r, t) as the attribute of the
head h. Knowledge propagation can be treated as
transferring attributes of a node to its neighboring
nodes according to the hypernym-hyponym rela-
tion. In more detail, we develop two propagation
paradigms:

• horizontal propagation Intuitively, sibling
nodes may share the same attributes. For in-
stance, if head term apple and orange have
the same hypernym and are sibling nodes, the
attribute (AtLocation, tree) of apple can be
propagated to orange to form a new candidate
triple (orange, AtLocation, tree).

• vertical propagation Hypernym terms usu-
ally have more general semantic meanings
than hyponym terms, thus the attribute owned
by the parent node can be propagated to its
child nodes. For example, head term fruit is
the parent node of apple in the taxonomy tree,
then the attribute (AtLocation, tree) can be
propagated to form a new triple (apple, AtLo-
cation, tree).

55

56

57

58

59

60

k=1 k=3 k=5 k=7 k=10

Effect of Hyperparameter k

MAX AVG VOTE

F1-Score

Figure 10: Performance under different settings of
hyper-parameter k which represents the context pair
number.

An overview of horizontal and vertical propagation
is illustrated in Figure 9.

After applying the above strategies to the triple
set S1, we obtain a large amount of triple candi-
dates which is denoted as S2. Since all these triple
candidates are not directly derived from language
model, which means these triples are inclined to be
not consistent with the expression of language, we
speculate that they are likely to be deep common-
sense triples.

C.3 Selection of Deep Commonsense Triples

Given the triple candidate set S2, we remove the
triples contained in the S1 and keep the left triples
as the candidates of deep commonsense triples. We
then use the depth rank introduced in the main
paper to filter the candidates and obtain the deep
commonsense triple candidates. We further hire
two annotators majoring in Linguistics to check
the validity of each triple. We discard the triples
with conflict labels given by two annotators and
only keep the triples that have the same human
annotated labels. Finally, we select 2,000 examples
for development set and test set respectively to
form our DCSK evaluation dataset.

D Effect of Context Pair Number

Since our proposed method takes advantages of
different context pairs, here we also explore the
effect of context pair number K. We show the
performance under different settings of K in Fig-
ure 10. It first shows an increasing trend and then
the performance declines. Although we select the
sentence pairs with the most overlap words as input
contexts, with only one sentence pair for a triple,
the prediction seems to have more occasional noise.
Therefore, at the beginning the performance is not

Methods Precision Recall F1-score

Avg-Pred 51.40 68.09 58.58
Max-Pred 51.25 67.95 58.48
Vote-Pred 50.97 66.85 55.98

Table 3: Comparison of different inference methods on
the DCSK dataset.

the highest. When K increases to 3, we find a con-
sistent performance improvements with all three
inference methods, which suggests that including
more context pairs is beneficial in making more
accurate predictions. It is expected because more
context pairs weaken the influence of occasional
noisy pairs and make the final prediction based on
different pairs more reliable than that based on sin-
gle pair. However, as the K further increases, we
observe a performance drop with these inference
methods. We hypothesize that more context pairs
introduce more irrelevant and noisy information
for prediction and lead to the performance drop. In
practice, K is recommended to set to 3, 4 or 5.

E Comparison of Inference Methods

We compare different inference methods on the
DCSK dataset and demonstrate the results in Ta-
ble 3. These inference methods correspond to the
sentence pair number K = 3 since we empirically
find it works best on the development set. We
take F1-score as the main metric since it reflects
a comprehensive result for recognizing valid en-
tries. Avg-Prediction and Max-Prediction achieve
comparable results. Max-Prediction takes the most
confident prediction as the final result and Avg-
Prediction method represents the average level of
all prediction results. Both inference methods are
relatively reliable. Although Vote-Prediction also
takes all context pairs into account, the useful con-
texts and the noisy contexts have equal importance
and thus this strategy is less robust than the other
two methods.

