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Perceptual Confusions Among Consonants,
Revisited—Cross-Spectral Integration
of Phonetic-Feature Information and

Consonant Recognition
Thomas U. Christiansen and Steven Greenberg, Senior Member, IEEE

Abstract—The perceptual basis of consonant recognition was
experimentally investigated through a study of how information
associated with phonetic features (Voicing, Manner, and Place of
Articulation) combines across the acoustic-frequency spectrum.
The speech signals, 11 Danish consonants embedded in Consonant
� Vowel � Liquid syllables, were partitioned into 3/4-octave
bands (“slits”) centered at 750 Hz, 1500 Hz, and 3000 Hz, and
presented individually and in two- or three-slit combinations. The
amount of information transmitted (IT) was calculated from con-
sonant-confusion matrices for each feature and slit combination.
The growth of IT was measured as a function of the number of
slits presented and their center frequency for the phonetic features
and consonants. The IT associated with Voicing, Manner, and
Consonants sums nearly linearly for two-band stimuli irrespective
of their center frequency. Adding a third band increases the IT by
an amount somewhat less than predicted by linear cross-spectral
integration (i.e., a compressive function). In contrast, for Place of
Articulation, the IT gained through addition of a second or third
slit is far more than predicted by linear, cross-spectral summa-
tion. This difference is mirrored in a measure of error-pattern
similarity across bands—Symmetric Redundancy. Consonants, as
well as Voicing and Manner, share a moderate degree of redun-
dancy between bands. In contrast, the cross-spectral redundancy
associated with Place is close to zero, which means the bands
are essentially independent in terms of decoding this feature.
Because consonant recognition and Place decoding are highly
correlated (correlation coefficient �� � � ��), these results imply
that the auditory processes underlying consonant recognition
are not strictly linear. This may account for why conventional
cross-spectral integration speech models, such as the Articulation
Index, Speech Intelligibility Index, and the Speech Transmission
Index do not predict intelligibility and segment recognition well
under certain conditions (e.g., discontiguous frequency bands,
audio-visual speech).

Index Terms—Consonant recognition, cross-spectral integra-
tion, information theory, phonetic features, speech perception.
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LIST OF ABBREVIATIONS

AI Articulation index.

CV Consonant vowel.

CVC Consonant vowel consonant.

F2 Second formant.

IT Information transmitted.

IT Relative amount of information transmitted.

MN55 Miller and Nicely (1955) [24].

PoC Principle of complementarity.

PoE Product of errors.

PF Phonetic feature.

STFFT Short-time fast Fourier transform.

SIQ Spectral integration quotient.

SII Speech intelligibility index.

SIM Spectral integration metric.

SNR Signal-to-noise ratio.

STI Speech transmission index.

SyR Symmetric redundancy.

VOT Voice onset time.

I. INTRODUCTION

H OW speech information is processed and combined
across the frequency spectrum has been the focus of

numerous studies—so much so that it can be fairly stated that
spectral integration forms a pervasive theme in modern-day
speech research. The Articulation Index (AI; [1], [2]), SII [3],
and STI [4] are functional models upon which much of our
current understanding of human speech recognition is based.

Using low- and high-pass filtered speech, Fletcher and col-
leagues developed the AI as a principled framework for quanti-
fying listeners’ ability to process and decode the speech signal
(e.g., [5]). The AI attempts to predict phonetic-segment recog-
nition based on a weighted sum of the signal-to-noise ratios
(SNRs) associated with the long-term average speech spectrum
and the long-term average noise spectrum across acoustic-fre-
quency channels. The AI was later extended to include cor-
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rections for elevated hearing thresholds, vocal effort, and dif-
ferent linguistic materials, and renamed the Speech Intelligi-
bility Index (SII; [3]). Another extension to the AI was devel-
oped by Steeneken and Houtgast [4] to predict intelligibility
in room environments. The Speech Transmission Index (STI)
computes the low-frequency (2 to 12 Hz) modulation spectrum
in a number of frequency channels rather than the SNR per se. It
assumes that intelligibility depends on specific properties of the
low-frequency modulation spectrum. However, the modulation
spectrum is also an indirect measure of SNR. This is because
the magnitude of the modulation spectrum, whose peak lies be-
tween 3 and 6 Hz for pristine, undistorted speech, is highly cor-
related with conventional SNR estimates. The higher the SNR,
the higher the peak-to-valley ratio of the waveform modula-
tion; in turn, this translates into a higher peak magnitude in the
modulation spectrum. In this sense, the modulation spectrum re-
flects something akin to what the AI and SII were designed to
measure.

All three spectral integration metrics (SIMs)—AI, SII, and
STI—assume that the acoustic signal is decomposed by the au-
ditory system into a series of frequency channels and that each
is processed independently of the others. Information extracted
from each channel is subsequently integrated across auditory
frequency channels, which are assumed to be independent (the
STI’s most recent version [6] includes a redundancy-correction
factor—see below). This classical framework has been the pre-
vailing one for quantifying phoneme recognition and intelligi-
bility for many decades.

As useful as the AI, SII, and STI SIMs are, several unresolved
issues remain. In order to explain the logic and motivation of
our own study, which uses signals and analyses quite different
from the traditional approaches, we first discuss the three most
important unresolved issues.

First, the approach used by these classical SIMs relies on
the long-term spectra of the signals. The speech studies con-
ducted by Fletcher and his colleagues [5] used analog filters
through which a signal was either high-pass or low-pass filtered
or band-limited (i.e., both high- and low-pass filtering). As a
consequence, the AI (and other models with comparable SIMs,
such as the SII and STI) models articulation (and by extension,
intelligibility—see below) as a function of signal bandwidth
and frequency-weighted “importance.” This approach does not
accurately predict recognition performance for non-contiguous
frequency spectrum signals, as was shown by Kryter [7] and
others over the intervening years [8]–[12]. In his study, three
500-Hz-wide bands centered at 500 Hz, 1500 Hz, and 2500 Hz,
provided much higher intelligibility than predicted by the AI,
based on a single 1500-Hz-wide band with appropriate spectral
weighting.

Second, the band-independence assumption (see [13]) does
not hold under all conditions. Steeneken and Houtgast deter-
mined that to adequately model intelligibility [4] and phoneme-
specific recognition [14] it is necessary to assume that a spec-
tral region much broader than the classical critical band is in-
volved in spectral integration of speech. Their estimate for this
speech-specific bandwidth is 3/4 to 1 octave [4], [14], an esti-
mate close to the integration bandwidth proposed by [15] for
vocalic material and similar to that used in the current STI stan-

dard [6]. A “redundancy-correction factor” was used in [14] to
model the recognition of CVC syllables presented over a range
of SNRs. This correction factor—proportional to the amount
that pairs of neighboring spectral bands contribute to overall
speech transmission—significantly improved their model pre-
dictions and roughly approximated Kryter’s [7] data. These au-
thors suggested that the spectral resolution around 2 kHz should
be modeled as finer-grained than in other frequency regions be-
cause of the relatively low degree of cross-spectral redundancy
in this part of the spectrum and its greater “importance” relative
to other frequencies.

Several models beside the AI, SII, and STI also assume
channel independence in speech processing. Ronan and col-
leagues [16] evaluated several of these with respect to their
ability to predict consonant-recognition accuracy, (i.e., per-
cent correct). These models—known as “Pre-labeling” [17],
“Post-labeling” [17], and Fuzzy-logic [18]—were originally
designed to account for cross-modal integration in audio-visual
speech recognition (e.g., [19]). Given subjects’ responses to
audio- or visual presentation alone, the models try to predict
the responses to concurrent audio-visual presentation. The
Pre-labeling model assumes responses are optimally selected
prior to integration of the sensory streams (i.e., independent
of the other modality). The Post-labeling model assumes this
optimization occurs after integration of the signal modalities.
The Fuzzy-logic model assumes optimal integration is based on
a Euclidean centroid in a Fuzzy-logic response space. In [16],
subjects were asked to identify consonants passed through ei-
ther single, band-pass filters (whose center frequencies ranged
between 700 and 2400 Hz) or through a combination of these
pass-bands. The three models’ predictions for the combined
band-pass conditions were based on subjects’ responses to the
single, band-pass-filtered consonants. Although the models
were able to satisfactorily account for subsets of the data,
consonant-recognition accuracy associated with conditions
that included high-frequency bands were not well predicted,
suggesting that the band-independence assumption does not
entirely hold for non-adjacent frequency bands. Other studies
(e.g., [7] and [20]) have reached similar conclusions.

Third, one of the cornerstones of the AI, SII, and STI is
their reliance on a frequency-weighting factor to model the
differential “importance” of various parts of the acoustic spec-
trum (although the AI, as described in [2], does not explicitly
include weighting functions for different linguistic materials,
several subsequent publications describe such functions (e.g.,
[21]–[23]). The theoretical basis of this weighting has never
been adequately explained, nor has the variation in frequency
weighting required to adequately model different types of
linguistic material.

Miller and Nicely [24] (henceforth, MN55) approached
cross-spectral integration of speech information from a
different perspective. They computed consonant-confusion ma-
trices for high- and low-pass filtered CV syllables presented in a
background of Gaussian noise and analyzed the errors in terms
of distinctive, articulatory-acoustic (henceforth, “phonetic”)
features (PFs) [25]. Their study showed that the associated
information is not distributed across the acoustic-frequency
spectrum in the same way for all features. For example, the
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amount of information transmitted (IT) for “Place of Articu-
lation” (henceforth, “Place”) increased almost linearly as the
speech bandwidth widened (their Fig. 3). In contrast, the cor-
responding information functions for “Voicing” (MN55—their
Fig. 3) and “Manner of Articulation” (henceforth “Manner”)
(MN55’s Fig. 4) reached asymptote at relatively narrow band-
widths (ca. 1 octave). MN55’s study is important because it
focused on three aspects of speech processing that previously
had been ignored—1) decomposition of consonants into struc-
tural primitives (i.e., PFs), 2) detailed error analyses derived
from confusion matrices, and 3) the use of an information-the-
oretic analysis based on 1) and 2) that provided insight into the
perceptual processes underlying consonant recognition.

Moreover, MN55’s data point to some interesting properties
of cross-spectral speech processing that have not received as
much attention as they deserve. Their data imply that the infor-
mation associated with Place is organized very differently than
Manner and Voicing, and this difference may have significant
implications for consonant recognition and speech perception
in general, as discussed in Section IV.

One of the missing elements in MN55’s study is that what
they measured was probably not cross-spectral integration per
se, but rather the distribution of phonetically relevant informa-
tion across frequency channels. Although related, distribution
of information and integration of information are not the same.

We illustrate this distinction through an analogy with loud-
ness models. Intensity is a physical measure, which can be
represented in terms of auditory-nerve (and higher-level)
neural-firing patterns. Loudness is intensity’s perceptual corre-
late. Most models of loudness (see [26]) compute an excitation
pattern, correlated with nerve-fiber firing patterns, grouped
by frequency band. The widths and center frequencies of
these bands are derived from psychophysical experiments
and designed so that they contribute equally to loudness. The
contribution from each frequency band can simply be summed
across the frequency spectrum to yield the overall loudness (but
cf. [27]).

The spectral distribution of information in such loudness
models is implicitly given by the arrangement of frequency
bands, which relates to peripheral processing. In contrast, the
spectral integration of speech information ultimately depends
on higher-level interpretation of this information by more
central processes. For loudness, this process is often modeled
by a simple summation across frequency channels. The aim of
this paper is to show that a simple summation is not sufficient
to model spectral integration of information for consonant
recognition.

So, why were perceptual integration and information distri-
bution conflated in MN55’s study? It is because the low- and
high-pass filtering employed in their study does not allow the
two to be dissociated as readily as narrow, bandpass filtered sig-
nals would.

Most perceptual studies have investigated cross-spectral
integration by degrading intelligibility via acoustic interfer-
ence, usually white- or speech-spectrum-shaped noise (e.g.,
[24], [28], and [29]). Although noise-masking studies serve as

the foundation of much of our current knowledge of human
speech recognition, even this approach has certain drawbacks.
For example, broadband, background noise may evoke certain
nonlinear processes in the auditory pathway (e.g., [30]–[32])
that complicate the modeling of auditory speech processing.
Moreover, the efferent system, providing feedback from
the auditory cortex and brainstem into the cochlea via the
olivo-cochlear bundle, is known to be active in the presence of
broadband noise [33] and thereby modifies the speech signal’s
sensory representation. Additionally, under certain conditions
background noise may actually enhance rather than degrade
recognition (e.g., [34]). Another consideration in using noise
masking is auditory scene analysis, wherein the listener tries
to perceptually separate the foreground speech signal from the
acoustic, interfering background [35]–[37]. Background noise
may impede the listener’s ability to fully attend to the speech
signal independent of the background’s energetic masking im-
pact, thereby reducing recognition performance due to factors
other than auditory processing and integration.

Using narrowband, spectral slits avoids most of these prob-
lems by eliminating background noise as part of the stimulus.
The spectral limits of the signal are predefined and hence the
portion of the spectrum used by the listener is known in advance.

A key innovation of MN55, one adopted in the current study,
was to report results in terms of information transmitted rather
than recognition accuracy in percent correct. IT takes both the
correct and incorrect responses into account, providing a con-
cise way of quantifying the ability of listeners to reliably dis-
tinguish each consonant from all others in the response set. The
way in which MN55 used the IT metric went further because
they also computed IT for the component PFs. This allowed
them to determine which consonant properties were robust to
distortion and which are not. One of the conclusions they drew
was that Voicing and Manner cues are relatively robust to all
but the highest amounts of background noise, and that Place
cues are often fragile even in the presence of low-level inter-
ference. However, their study left several issues unaddressed,
foremost of which is precisely why Place cues are so vulnerable
to noise while Manner and Voicing are not. The most likely an-
swer is that Place cues are more broadly distributed across the
acoustic-frequency spectrum than the other features, but this is
probably not the whole story; this explanation is inconsistent
with studies showing that the second formant (F2) onset spec-
trum [38] and/or F2-transition pattern [39], [40] play an im-
portant role in consonant place-of-articulation decoding. Yet, if
these acoustic cues were the sole source of Place information,
the feature would not be so sensitive to speech and noise-masker
bandwidth, given they are mainly confined to the F2 region
(1200 to 2500 Hz). It is for such reasons that factors other than
mere spectral distribution of phonetic cues are likely to play an
important role in consonant recognition.

Since the publication of MN55, PFs have been used to inves-
tigate central processes underlying consonant recognition (e.g.,
[41]–[43], but see [13]). However, these studies did not directly
investigate the cross-spectral perceptual integration of PFs, the
focus of our paper.
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II. METHODS

A. Design

The contribution of three non-overlapping spectral regions
(“low,” “mid,” and “high”) to Danish consonant recognition and
PF decoding was quantified. Roughly speaking, the low-fre-
quency band, centered at 750 Hz, is close to, but not centered
on, the first formant, the mid-frequency band (1500 Hz) within
the range of the second formant, and the high-frequency band
(3000 Hz) is close to the third formant. The bands (“slits”)
were presented individually and in combination with other slits,
as described below. These slit patterns were used to generate
consonant-confusion matrices from which the amount of rela-
tive information transmitted IT associated with Consonant
recognition and PF decoding could be computed. The IT pat-
terns were used to compute a measure of cross-spectral inte-
gration and were also used to evaluate several previously pub-
lished sensory-integration models. In addition, the confusion
matrices were used to compute a measure of perceptual redun-
dancy across spectral regions, and the results evaluated in con-
junction with the spectral-integration measure.

B. Stimuli

Stimuli were Danish syllables recorded in a sound-insulated
chamber [44]. Each stimulus presentation was a concatenation
of a short, unfiltered carrier phrase “På pladsen mellem hytten
og ” (English translation: “On the square between the cottage
and ”) and a test syllable. Each test syllable contained one of
eleven consonants, [p], [t], [k], [b], [d], [g], [m], [n], [f], [s,]
[v], followed by one of three vowels, [i], [a], [u]. Each token
concluded with the unstressed liquid neutral vowel syllable
[l ] (e.g., [til ] [tal , [tul ]). Recordings of a female talker and
a male talker, each enunciating the carrier sentence and the test
syllables, were used.

A carrier phrase was used in order to: 1) focus the attention
of the test subjects on a delimited point in time, 2) provide a
relatively natural context in terms of sound level and talker, and
3) improve the listener’s concentration.

The audio sample rate was 20 kHz. The signals were sub-
sequently up-sampled to 44.1 kHz for stimulus presentation.
The acoustic-frequency spectrum was partitioned into slits. The
lowest-frequency slit was centered at 750 Hz, the middle slit
at 1500 Hz, and the highest at 3000 Hz. All slit combinations
were tested, yielding a total of 3 single slits 3 two-slit com-
binations 1 with all three slits 7 slit configurations. An
STFFT of the signal was performed using a cosine window com-
prising 256 sample points with 3/4-overlap. Bandpass filtering
was achieved by zeroing frequency bins outside the nominal
pass bands and then performing an inverse FFT with an iden-
tical cosine window. The resulting bandpass filters had a 3-dB
bandwidth of 3/4-octave and nominal slopes of 120 dB/octave
outside the passband.

The center frequency and bandwidth of the slits were chosen
through extensive pilot experiments. In designing the signal’s
spectral properties, five criteria were met: 1) consonant-recogni-
tion accuracy with all spectral regions present were close to, but
clearly below 100% to avoid ceiling effects; 2) consonant-recog-
nition accuracy with two slits were clearly lower than with all

three slits present but significantly higher than with only one slit
present; 3) consonant-recognition accuracy for individual spec-
tral bands presented alone were clearly above chance level in
order to avoid floor effects; 4) consonant-recognition accuracy
was roughly comparable across single-slit conditions, making
it more straightforward to measure cross-spectral integration
without significant disparities in baseline recognition perfor-
mance; and 5) the slit bandwidths were the same in terms of
geometric (i.e., octave) units.

In order to prevent listeners from using information out-
side the slit, many studies (e.g., [14] and [16]) add noise
surrounding the pass-band. Background noise is often used in
psychoacoustic studies to preclude “off-frequency” listening in
signal-detection tasks. However, the task in the current study
is not detection of a narrowband signal, where background
noise that masks off-frequency listening is a valid method,
but rather recognition and decoding of a speech signal. These
speech-processing tasks rely on a large number of tonotopically
distributed auditory neurons. Moreover, and as mentioned in
Section I, it has recently been demonstrated that noise in the
spectral gaps can actually enhance consonant recognition by
means of “spectral restoration” [34]. For these and the reasons
mentioned in Section I, background noise was not added to the
speech signals in our study.

The seven conditions are listed, along with their consonant-
recognition scores, in the front row of Fig. 1. They were pre-
sented once for each combination of consonant vowel con-
text and talker— test presentations for
each listener. Control conditions consisted of unfiltered combi-
nations of all consonants, vowels and talkers—
conditions, and were interleaved with the test conditions (details
below).

MN55 used 16 English consonants [p t k f s b d g v ð
z m n], of which we excluded [ ð z ], because [ z
] do not have Danish counterparts and [ð] does not occur syl-

lable-initially in Danish. The remaining 11 consonants are sim-
ilar to their English counterparts. It is worth noting that because
Danish [v] has no explicit frication it should be transcribed with
the IPA-symbol for the approximant [ ]. Nevertheless, it still
functions as a Danish consonant alongside the other Danish con-
sonant phonemes /p t k b d g f s h m n l r j/, and is conventionally
classified as a fricative [45].

The term “voicing” is conventionally used for distinguishing
certain English stop consonants (e.g., [p] versus [b], [t] versus
[d]). The term “aspiration” is the conventional phonetic term
for distinguishing between their Danish counterparts. The single
most important physical property distinguishing voiced stops
from voiceless stops in English and aspirated stops from unaspi-
rated stops in Danish is voice onset time (VOT); hence, the Eng-
lish convention, i.e., “voicing,” is retained for the purpose of the
present analysis and discussion.

C. Procedure and Subjects

The data associated with the seven different slit configura-
tions were collected as part of a larger study comprising 83
slit configurations, where the presentations were divided into
nine sessions, each lasting less than 2 hours, during which sub-
jects were allowed to take short breaks. The data presented in
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Fig. 1. Consonant-recognition accuracy and feature-decoding precision for each stimulus condition averaged across the six subjects. The coefficient of variation
(i.e., standard deviation divided by the mean) was always less than 0.08 and usually below 0.03. 99.0% of the consonants were correctly recognized in the absence
of band-pass filtering (i.e., the original, unprocessed signals).

this paper were collected during three sessions for each sub-
ject. The total number of presentations for each subject was
3 66 control conditions for the three sessions

test conditions . The test conditions were ran-
domly distributed across the three sessions. The 66 control con-
ditions were randomly distributed across each session. Their
average consonant-recognition accuracy was 99.0%, and was
always greater than 96.7%. The stimulus conditions excluded
from this paper are associated with spectro-temporal manipula-
tions that lie outside the scope of the present study.

The subject was seated in a double-walled sound booth.
His/her task was to identify the initial consonant of the test
signal by mouse-selecting it from the 11 consonant candidates
displayed on a computer display. No response feedback was
provided. Six native speakers of Danish (three males, three
females) between the ages of 21 and 28 were paid for their
participation. All reported normal hearing and no history of
auditory pathology. The experiment protocol was approved
by the Science-Ethics Committee for the Capital Region of
Denmark; reference H-KA-04149-g. All subjects signed an
informed consent form.

Stimuli were presented diotically over Sennheiser HD-580
headphones at a sound pressure level of 65 dB SPL using a com-
puter running Matlab version R2006 under Windows XP with a
RME Digipad 96 soundcard. The sound pressure level was cal-
culated as the RMS-value of the given nonsense syllable after
processing.

D. Analysis—Confusion Matrices, PFs, IT , and Symmetric
Redundancy

When a consonant is identified correctly, all of its distinctive
PFs are, by definition, decoded accurately. However, when a
consonant is incorrectly identified, it is rare that all of its PFs

TABLE I
DEFINITION OF PHONETIC FEATURES

are incorrectly decoded; one or two of the features are usually
decoded correctly. The data were analyzed in this fashion for
the features Voicing, Manner, and Place. Voicing is a binary
feature, whereas Manner and Place encompass three classes for
the Danish consonants used in this study, as shown in Table I.

Consonant-confusion matrices provide a straightforward
means of analyzing error patterns associated with the conso-
nant-recognition task in terms of constituent phonetic features.
Table II shows an example of one such consonant-confusion
matrix in Panel (a), where row values refer to the stimulus pre-
sented, while column values denote listener responses. Correct
response counts are indicated in bold along the diagonal. The
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TABLE II
(a) CONFUSION MATRICES, (b) DERIVED CONFUSION MATRIX FOR VOICING, (c) DERIVED CONFUSION MATRIX FOR MANNER,

AND (d) DERIVED CONFUSION MATRIX FOR PLACE

corresponding PF confusion matrices for Voicing, Manner and
Place are shown in Panels (b)–(d) of Table II.

The PF-confusion matrix is derived from the consonant-con-
fusion matrix by first grouping the consonant-by-PF associa-
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tions (see Table I). In Panel (c) of Table II, the groups are the
Manner classes “stop” ([p], [t], [k], [b], [d], [g]), “fricative” ([s],
[f], [v]) and “nasal” ([n], [m]). The sum of the consonants with
“stop” as the manner of articulation identified correctly (179) is
placed in the upper left-hand cell of the matrix [see Table II,
Panels (a–c)]. The sum of the stop consonants with Manner
wrongly identified as “fricative” (23) is placed in the cell im-
mediately to the right, and so on.

The proportion of correctly identified elements in a confu-
sion matrix (recognition score) can be calculated as the sum of
the diagonal elements divided by the sum of all the elements,
as shown in Table II(a)—where the sum of the elements along
the diagonal is 159 and the total number of presentations is 396,
resulting in a consonant-recognition score of 40.2%. Because
the focus of this study is cross-spectral integration not the spe-
cific pattern of perceptual confusions, full confusion matrices
are omitted. They are available from the authors upon request.

MN55 used IT as a bias-neutral way of quantifying patterns
in confusion matrices. In their study, as in ours, IT was calcu-
lated not only for consonants, but also for PFs. In our view, IT
provides a more transparent method of understanding the pat-
tern of confusions than the conventional percent-correct metric.
IT is particularly useful in the context of the present study in
view of the 11-alternative-forced-choiced paradigm used.

Calculation of IT in bits for any given confusion matrix is
shown as

(1)

where refers to the mutual information (or IT) between
(stimulus) and (response; i.e., the number of bits trans-

mitted), is the probability of stimulus, , co-occurring with
response , is the probability of stimulus occurring, and
is the probability of response occurring.

Equation (1) can be applied to confusion matrices reflecting
both consonant recognition and PF decoding. This measure of
information transmitted provides useful insights about the dis-
tribution of errors (i.e., confusions).

In order to compare IT associated with Voicing, Manner and
Place, as well as Consonant recognition, we (as do MN55) nor-
malize the absolute IT values by a factor equal to the maximum
observed information transmitted (i.e., the results are scaled to
a normalized proportion of unity). The maximum information
transmitted for a given probability distribution is equal to the
entropy of the probability distribution as described as

(2)

where is the feature variable, is the probability mass func-
tion and are the events (feature values or consonant-segment
labels). For example, Voicing has the normalized value of

because,
out of the eleven consonants, there are five with the value
“Unvoiced” and six marked as “Voiced.” Thus, the normalized
indices are 0.9904, 1.43, and 1.45 for decoding of Voicing,
Manner, and Place, respectively, and 3.46 for Consonant recog-
nition. Normalized in this way, the scores designate relative IT

IT , which is not to be confused with relative entropy values,
also known as Kullback–Leibler divergence.

We illustrate the advantage of using a PF-based, IT-metric
analysis through the following example. Consider the conso-
nant-recognition scores in terms of percent correct for the three
single-slit conditions (Fig. 1). They are very similar. Compare
these recognition scores with the IT for the same conditions
(Fig. 3). In contrast to the consonant-recognition scores, the con-
sonant IT for the 750-Hz slit is higher than the IT associated
with the 1500-Hz and 3000-Hz conditions. This disparity be-
tween accuracy in percent correct and information-based met-
rics reflects the fact that the pattern of errors differs significantly
across the three stimulus conditions, which is not reflected in the
consonant recognition scores shown in Fig. 1. Hence, the ability
to distinguish a consonant relative to others cannot truly be
measured with percent-correct accuracy alone. A finer-grained
analysis is required to quantify how well consonants are distin-
guished relative to each other. The use of PFs and an informa-
tion-theoretic metric provides the capability of doing so.

The cross-spectral integration of phonetic information can
be quantified using the “Spectral Integration Quotient” (SIQ)
metric. The SIQ is defined as

(3)

where is the spectral integration quotient for the multi-slit
condition IT is the observed IT for multi-slit condition

, and IT is the IT for a given slit included in the multiple-slit
condition . If the cross-spectral integration were linear, the
SIQ would be 1. SIQs less than 1 imply compression of spectral
integration, whereas those much higher than 1 reflect expansion.
The SIQ can be defined for consonants as well as for PFs.

In order to quantify the amount of information redundancy
contained in each band, conditions were pair-wise compared
and the mutual information shared between the responses asso-
ciated with each condition was computed. The resulting values
were then normalized, with the average entropy of the responses
calculated as

(4)

where is the Symmetric Redundancy (SyR) [46] of
variables and is the mutual information shared
between the responses and is the entropy of and

is entropy of . The SyR can range between 0, signifying
complete independence (i.e., no correlation among responses),
and 1, denoting complete dependence (i.e., ).

III. RESULTS

We first discuss consonant recognition in terms of accuracy
(i.e., percent correct), and also consider how this metric applies
to PF-decoding. We then discuss how consonant recognition
“translates” into the relative IT and SIQ metrics. These mea-
sures are used to evaluate five sensory-integration models as
discussed below. Finally, we consider how the SyR metric (4)
applies to cross-spectral integration of phonetic information.
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A. Recognition Scores

Consonant-recognition accuracy is shown in Fig. 1. It is pos-
itively correlated with the number of concurrent slits and is
roughly equivalent for single slits presented alone (38 to 40%
correct), which is well above chance level % . Although
the interpolated, SII-frequency weights [3; Table B.2 NNS] pre-
dict lower recognition scores for the 750-Hz slit, it is unclear
whether this inconsistency is due to differences in language (the
SII was developed originally for English; Danish has a different
consonant inventory), bandwidth (1/3-octave versus 3/4-octave)
or some other factors.

In the two-slit conditions, consonants are more accurately
recognized when the mid- and high-frequency slits are pre-
sented. For example, the Hz Hz recognition scores
are higher than those associated with the Hz Hz
condition. These, in turn, are higher than the Hz Hz
condition. Such a pattern of recognition performance is
consistent with the interpolated SII-frequency weights. Con-
sonant recognition is 88% percent correct for the three-slit
( Hz Hz Hz) condition. This high, but
not-quite-perfect level of performance allows the contribution
of each slit to be quantified without confounding “ceiling
effects,” while maintaining a large dynamic range between the
highest and lowest performance level.

Decoding scores were calculated for the features Voicing,
Manner and Place, as described in Section II-D. The scores
are included in Fig. 1. As for consonant recognition, decoding
improves with the number of slits presented concurrently.
There are frequency- and phonetic-feature-specific effects for
spectral integration. The high-frequency slit improves Place
decoding more than Voicing and Manner. In contrast, the
low-frequency slit is associated with better decoding of Manner
and Voicing. For Voicing, and to a lesser extent, Manner, the
best decoding performance is associated with the low-fre-
quency band for single-slit stimuli. These observations imply
that consonant-recognition qualitatively resembles the general
pattern observed for decoding Place. The correlation between
PF decoding and consonant-recognition is illustrated in Fig. 2,
where Voicing, Manner and Place decoding are plotted as a
function of Consonant recognition.

The correlation between accuracy of Place decoding and Con-
sonant recognition is nearly perfect . This nearly
perfect correlation means that Place is rarely decoded correctly
when the consonant itself is incorrectly recognized. In contrast,
Voicing and Manner are often decoded correctly when the con-
sonant is incorrectly recognized. This pattern is consistent with
the lower correlation between Voicing- and Manner decoding
and Consonant recognition, as shown in Fig. 2. These results
are also consistent with [47] in which a perceptual hierarchy for
PF-decoding was proposed.

B. IT and Spectral Integration

Confusion matrices were computed for Voicing, Manner, and
Place, and the amount of information transmitted calculated
from these confusion matrices, as described in Section II-D.
The results are shown in Fig. 3.

The specific pattern of information transmitted observed
in Fig. 3 shows how phonetic cues are integrated across the

Fig. 2. Voicing, Manner, and Place decoding precision as a function of con-
sonant-recognition accuracy for the same conditions and listeners as in Fig. 1.
With each phonetic feature a best-fit linear regression and a correlation coeffi-
cient �� � are shown.

acoustic-frequency spectrum. For consonants, the IT associated
with each slit sums almost linearly. For example, the IT
associated with the two-slit condition Hz Hz is
0.67, close to the sum of the IT associated with single slits
presented alone (0.61). However, the integration of phonetic
information is not quite linear when considered from the per-
spective of the three slits. The addition of the 3000-Hz slit
predicts an IT of . However, the IT observed for the

Hz condition is 0.83. Within the context
of the AI and SII, such deviation from linearity would be
expressed in terms of frequency-weighting or “importance”
functions, where the contribution of a given frequency band is
weighted differentially across the acoustic spectrum (e.g., [2],
[5]). We discuss this issue in more detail below.

When cross-spectral integration of IT is computed for each
of the three PFs, an interesting pattern emerges. The cross-spec-
tral integration of IT associated with Voicing appears linear for
two slits (i.e., the IT nearly doubles for the two-slit conditions),
but becomes highly compressive when a third slit is added, (i.e.,
the growth function saturates)—the IT increases only slightly
over that associated with the two-slit conditions. The cross-
spectral integration of Voicing is compressive for more than
two concurrently presented slits. Manner behaves similarly to
Voicing in that the IT for the two-slit conditions is approx-
imately double that of single-slit stimuli. However, adding a
third slit increases the IT only slightly more than for Voicing.
In other words, cross-spectral integration is only slightly less
compressive for Manner than it is for Voicing. In contrast, the
cross-spectral integration function for Place is expansive rather
than compressive. For Place, the two-slit IT increases by up to a
factor of four relative to the single-slit IT . Adding a third slit in-
creases the IT by a factor of six to eight relative to the single-slit
IT . Hence, the pattern of cross-spectral IT integration is very
different for Place. In multi-sensory perception, this form of in-
tegration is known as the “principle of inverse effectiveness,” in
which performance improvement is greater for individual sig-
nals that are poorly decoded when presented alone [48].
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Fig. 3. Relative information transmitted for each stimulus condition across six subjects. The amount of information is calculated from the confusion matrices
(see Section II-D for method). The analyses are based on the same confusion matrices as those used for Fig. 1. For multi-slit conditions crosses indicate the
sum of relative information transmission from the corresponding single slits. White crosses indicate that the sum is less than the measured relative information
transmission; black crosses indicate that the sum is more than the measured relative information transmission. Crosses are replaced by circles where the sums of
single slit values fractionally exceed 1.

Fig. 4. Spectral integration quotients for the multi-slit conditions. The quotient is defined as the ratio between the observed IT for a given multi-band condition
and the sum of IT from the contributing single bands when presented alone. For example, given the observed IT associated with Place for the ���� � ����Hz
two-slit condition is 0.48, and that the observed information transmission for the single bands centered at 1500 and 3000 Hz is 0.07 and 0.06, respectively, the
cross-spectral integration quotient � �����	���
 � ����� � ���.

The cross-spectral integration of phonetic information can
further be quantified using the SIQ as shown in Fig. 4 and de-
scribed in (3). We revisit these differing patterns of cross-spec-
tral IT integration and SIQ in Section IV.

C. Comparison to Model Data

In this section, we analyze how well five stimulus-integration
models (Flet1, Flet2, Pre-labeling, Post-labeling, and Fuzzy-
logic, as described in [16]), account for the cross-spectral inte-
gration data presented above. By doing so, we show that the con-
ventional methods for modeling cross-spectral integration fail
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Fig. 5. Comparisons of consonant-recognition and feature-decoding performance predicted by the five integration models discussed in the text (Pre- and Post
labeling, Fuzzy logic, Fletcher1 and Fletcher 2). Results are grouped on the x-axis corresponding to the four slit configurations 1) ���� ���� Hz�����Hz	,
2) ��
� ����Hz�����Hz	, 3) ��
� �����Hz�����Hz	, and 4) ����
� ����Hz�����Hz�����Hz	 and by phonetic feature (see legend).
The �-axes show the disparity between the model prediction and the empirical data (expressed in standard-deviation units associated with the empirical data). For
example, a datum of�1.2 means that the model under-predicts the empirical data by 1.2 standard deviations. Absolute values greater than 3 are truncated to��.

to predict the pattern of phonetic-feature decoding errors ob-
served in the current study. We discuss these models’ deficien-
cies below as the first step in proposing a more robust framework
for understanding the role played by cross-spectral integration
in consonant recognition.

The Flet1 model refers to Harvey Fletcher’s “Product of
Errors” (PoE) formulation, which predicts that the probability
of committing an error in condition AB is equal to the prob-
ability of erring in condition A, multiplied by the probability
of erring in condition B (i.e., that the errors are independent
of each other). In the present context, condition A refers to a
condition in which pass-band A (i.e., Slit 1), is presented alone,
while condition B refers to a condition where pass-band B (Slit
2) is presented alone, and condition AB refers to the condition
where pass-bands A and B are presented concurrently. The
Flet2 model is a variant of Flet1, in which error probabilities
are determined separately for each consonant rather than being
averaged across all consonants. The Flet1 and Flet2 models are
described in more detail in [16].

In the Pre-labeling model [17], single-band data are repre-
sented in continuously valued form, which is combined prior
(hence, “Pre-labeling”) to category labels, i.e., consonant iden-
tity, being assigned. The statistical properties of the information
are inferred from multi-dimensional scaling of single-band con-
fusion matrices [49].

In the Post-labeling integration model [17], it is assumed the
listener makes separate judgments, by means of labels for each
data stream (i.e., slit), and subsequently combines these to ar-

rive at a single judgment for the multi-stream signal (hence
“Post-labeling”). For example, in the AB condition, presenta-
tion of stimulus S generates a pair of labels (LA, LB) associ-
ated with bands A and B, respectively. These labels correspond
to the responses that would be given in single-band conditions.
In order to arrive at multi-band judgments, labels are combined
using maximum likelihood [17].

In the Fuzzy-logic model [18], the response to each stimulus
is determined in a probabilistic way by the “feature value” of
that stimulus for each of the possible responses. In single-band
presentations, the feature value is estimated as a conditional
probability. In multi-band conditions, the feature value is as-
sumed to be proportional to the product of the feature values for
the corresponding single-band conditions [50].

Fig. 5 shows the consonant-recognition scores predicted
for each of the five stimulus-integration models. None of the
models predict consonant recognition with great precision (i.e.,
within one standard deviation of the average measures). The
Flet1 and Flet2 models underestimate consonant-recognition
performance by slightly less than two standard deviations in
Conditions and . The decoding of Voicing
is seriously underestimated by both the Pre- and Post-labeling
models for most conditions, while the Fuzzy-logic, Flet1, and
Flet2 Models predict the integration of Voicing information
within one standard deviation of the observed data.

For Manner, the Pre- and Post-labeling models significantly
underestimate the consonant recognition scores for the three-
slit and most of the two-slit conditions, the exception being
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Condition . In contrast, the Fuzzy-logic model gener-
ally overestimates the precision of Manner decoding, the ex-
ception being, once again, for Condition . Both the Flet1
and Flet2 models predict Manner decoding based on cross-spec-
tral integration within one standard deviation of the observed
performance.

Place decoding based on spectral integration is underesti-
mated for all conditions by the Pre- and-, Post-labeling models,
as well as by the Fuzzy-logic model, except for condition
by the Post-labeling model. In about half the conditions, the de-
viation is substantial (i.e., more than 1 standard deviation); in
these, consonant recognition performance is underestimated. In
contrast, both the Flet1 and Flet2 models predict Place decoding
within one standard deviation for most conditions, the two ex-
ceptions being Flet1 for Condition and Flet 2 for
Condition .

Although the Flet1 and Flet2 are the most accurate of the five
in estimating consonant-recognition scores across slit condi-
tions, their ability to predict the details of PF decoding and con-
sonant recognition is imperfect. For example, the Flet1 model
underestimates consonant-recognition scores in Conditions

and by approximately the same amount in standard
deviation units. In Condition M H, the decoding of Voicing is
overestimated, but not for Condition . Such incon-
sistencies suggest that the specific relation (reflected in the cor-
relation) between consonant recognition and PF decoding is in-
adequately modeled.

Fig. 6 shows the predictions of IT made by the Pre-labeling-,
Post-labeling- and Fuzzy-logic models. Flet1 and Flet2 models
only predict correct identification, (i.e., elements in the confu-
sion-matrix diagonal). Calculating the amount of information
transmitted would require predictions of the off-diagonal ele-
ments. Consonant and PF IT are underestimated by the Pre- and
Post-labeling models for virtually all stimuli in Condition L M.
This underestimation of IT is more than one standard deviation
for consonants. The Fuzzy-logic model is better at predicting
Consonant recognition. However, it underestimates IT by more
than one standard deviation for Conditions and

.
The models’ ability to predict consonant-recognition perfor-

mance is generally mediocre (Fig. 5), as discussed above. Their
ability to predict specific patterns of consonant confusion is even
worse. This is reflected in the systematic under-prediction of
PF decoding (Figs. 5 and 6). None of the models examined
predict the specific error patterns well, either quantitatively or
even qualitatively, which underlines the fact that a principled
understanding of how speech (consonants) is decoded is cur-
rently lacking. This is where the current study may contribute
to better understanding the mechanisms underlying consonant
recognition.

D. Measuring Redundancy

Table III shows a SyR matrix associated with consonant
recognition and PF decoding for single- and two-slit signals.
SyR is a measure of response similarity formulated in terms
of consonant-confusion patterns. The more similar the slit-re-
sponse patterns, the greater the redundancy between them. In a

sense SyR is for IT what PoE is for recognition accuracy; only
PoE presumes band-independence whereas SyR does not.

For example, the Consonant SyR of single-slit signals
(shaded cells) is approximately 0.40. SyR of this magnitude
is associated with an intermediate degree of overlap in the re-
sponse patterns; they are not randomly distributed among the 11
consonants. Were they, the SyR would be ca. 0.02 (as computed
by a Monte-Carlo simulation) even if consonant-recognition
accuracy was comparable across slits (ca. 40%). This is one
reason why recognition accuracy alone cannot provide the sort
of performance details required to understand how listeners
recognize consonants.

When SyR is computed for the individual PFs, an interesting
pattern emerges. The SyR computed for Voicing and Manner
across single-slit stimuli is somewhat lower than for Consonants
(0.21 to 0.30), but roughly comparable to each other. In contrast,
the SyR for single-slit Place information is much lower (0.035
to 0.055)—so low that it approaches orthogonality. This means
there is virtually no overlap in the Place errors across the spectral
bands. These are precisely the sort of response patterns deemed
optimal for combining in machine learning [51] and account,
at least partially, for why Place information is integrated across
the frequency spectrum so differently than Manner and Voicing.
Moreover, a very low SyR implies virtual independence of infor-
mation in each band, a condition consistent with the product of
errors formulation of the Flet1 and Flet2 models. The low SyR
associated with Place is also consistent with this feature’s high
SIQ. Adding sources of quasi-orthogonal data streams results in
a disproportionate gain in information. We return to these key
points in Section IV.

SyR can also be computed for multi-slit conditions. Calcu-
lating SyR for conditions where two slits have the same center
frequency, may appear counter-intuitive; SyR simply computes
the amount of response overlap between conditions irrespective
of their spectral content and is hence “blind” to overlap in fre-
quency content.

There are three cases that do not contain slits with identical
center frequencies—(1) 750 Hz 1500 Hz versus 3000 Hz, (2)
750 Hz 3000 Hz versus 1500 Hz), and (3) 1500 Hz 3000 Hz
versus 750 Hz. For Consonants, the SyR associated with these
multi-slit conditions is only slightly higher (0.45 to 0.52) than
for the single-slit conditions (0.39–0.42). In contrast, the SyR
for the corresponding multi-slit conditions associated with PFs
is higher than the single-slit conditions (Voicing: 0.33 to 0.55
versus 0.24 to 0.30; Manner: 0.33 to 0.42 versus 0.21 to 0.25;
Place: 0.07 to 0.11 versus 0.04 to 0.06). Such comparisons imply
that the amount of information gained by adding a third slit is
rather less than adding a second slit to what was originally a
single-slit signal; this is the case for both PF decoding and con-
sonant recognition. Such leveling off of information growth is
reflected in the SyR for non-overlapping, multi-slit conditions.

When SyR is computed for two conditions with slits pos-
sessing identical center frequencies, there is a general tendency
for the associated indices to increase substantially relative to
other conditions. This is hardly surprising. However, there is
one pattern of particular interest—it is the SyR associated with
the 750 Hz 3000 Hz versus 1500 Hz 3000 Hz signals,
which is generally the highest (or almost so in the case of
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Fig. 6. Comparisons of relative information transmitted predicted by the three
of integration models (Pre- and Post labeling, Fuzzy logic). The Flet1 and Flet2
models are excluded because they are generally not used to predict IT . Other
parameters and designations are the same as in Fig. 5.

Voicing and Manner) of any SyR computed. This result implies
that the 3000-Hz band may be slightly more redundant than the
lower-frequency slits. Analogously, for the 750 Hz 1500 Hz
versus 750 1500 Hz conditions, the SyR is high for Voicing
and Manner, suggesting that the lowest-frequency channel may
carry somewhat more redundant information for these features.
The 1500-Hz slit appears to be the least redundant channel
except for Place, where the SyR is marginally higher than for
the 750-Hz slit.

In summary, the SyR in Table III are consistent with MN55’s
finding that the amount of Place IT increases as the bandwidth
of the masking noise decreases. This decorrelation of phonetic
information across the frequency spectrum is precisely what one
would expect for a feature (i.e., Place) whose decoding depends
on cues broadly distributed across the frequency spectrum and
where no single region contains sufficient information for highly
accurate feature decoding to distinguish among consonants.

IV. DISCUSSION

MN55 is one of the most frequently cited papers in speech
research. Its merits rest largely on elegantly melding two
perspectives—distinctive-feature theory [25] and information
theory [52]—into a single framework for understanding how
human listeners distinguish speech sounds. By focusing on
consonants, MN55 cut to the core of what is important for
decoding spoken language, given their central role in recog-
nizing words and higher-level linguistic units. MN55 made two
specific contributions: 1) it was the first formal application of
information theory to the study of speech perception; and 2) it
showed that Place information is considerably more vulnerable
to background noise than other PFs. However, the issue of
precisely how information is distributed and integrated across
the spectrum was left largely unexplored given the difficulty of
doing so using only high- and low-pass filtered signals.

By using narrowband, filtered speech, it is possible to ascer-
tain how band-limited phonetic information is combined in a
way that is rather independent of its spectral distribution. This
is because the relative gain in information transmitted is mea-
sured irrespective of its magnitude in any single band. The SIQs

associated with Place decoding are much higher than those as-
sociated with Manner and Voicing; this implies that Place infor-
mation combines more effectively across channels than Voicing
and Manner—this despite, and potentially because of, the fact
that the amount of Voicing and Manner information in single
slits is much higher than Place. Such disparities illustrate the
utility of distinguishing between the spectral distribution and
perceptual integration of phonetic information.

For Place, perceptually combining information from separate
frequency channels results in a dramatic gain in decoding, much
greater than would be predicted from just the distribution of in-
formation in the individual channels (cf. Fig. 4). This synergistic
integration may be why background noise has such a devastating
effect on Place decoding; it interferes with the listener’s ability
to combine information across spectral channels. Voicing and
Manner information is distributed quite differently. Voicing can
be decoded accurately from many different parts of the spec-
trum, and combining such information from two regions results
in a relatively linear gain in decoding. Adding a third slit pro-
duces little, if any, improvement. A similar integration pattern
is observed for Manner.

One important clue to understanding this differential pattern
of integration is provided by the SyR metric. Physically sim-
ilar subsets of a pattern, when combined, offer little gain in
recognition compared to highly dissimilar subsets—we refer to
this as the Principle of Complementarity (PoC). SyR is essen-
tially a behavioral measure of pattern similarity based on conso-
nant-confusion patterns. The SyR associated with Voicing and
Manner is comparatively high; there is relatively small poten-
tial for decoding benefit from combining patterns or fragments.
The sub-patterns would need to differ far more for their com-
bination to produce a significant gain in decoding. PoC is used
in machine-learning to optimize recognition performance by se-
lecting only those data streams whose information complements
others (e.g., [51]). In the current study, Place is associated with
the most complementary spectral fragments. Its SyR is so low
(ca. 0.05) that information in single slits is virtually independent
of others. For this reason, the potential for information gain is
high when such fragments are combined. However, combining
quasi-orthogonal fragments is fragile. Disrupting any significant
part of the pattern jeopardizes the recognition of the whole given
the interconnected nature of the features and consonant recogni-
tion. In everyday speech communication, high-level, semantic,
and contextual factors, as well as visual cues, may compensate
for this decoding fragility.

The SIQ and SyR are related metrics. Although they mea-
sure different properties of feature-decoding performance, they
are highly inversely correlated. A low degree of SyR is gen-
erally associated with a high SIQ, and vice versa. In our view,
information redundancy/complementarity and cross-spectral in-
tegration are crucial for robust speech recognition by human
listeners. The principle of inverse effectiveness, used to model
cross-modal sensory integration (e.g., [48]), yields similar re-
sults to the PoC in many circumstances.

MN55 has been criticized in three principal ways. First,
their application of PFs is controversial. Apart from articula-
tory-acoustic-phonetic studies of the speech signal (e.g., [25]),
there is little independent evidence for their objective, (i.e.,
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TABLE III
SYR

neurological) existence. Despite this, the PF-based framework
has been productive as a working hypothesis for speech re-
search over the intervening period (e.g., [41]–[43] and [53],
[54]). Another criticism is that MN55 used an unconventional
feature representation. Particularly controversial is how they
dealt with Manner. Because MN55 were following the binary
classification scheme of [25], Manner was divided into the
binary features of Nasality and Affrication (where the class
“Stop” is designated by a nil value for both explicitly marked
classes). Since the 1970s, Manner has generally been repre-
sented as an -ary feature, where ranges between 3 and 5
[55]. This change has simplified the modeling of consonant fea-
tures, which are generally reduced to three—Voicing (binary),
Manner (3 to 5 classes) and Place (usually 3 classes). However,
the use of an obsolete feature structure does not invalidate
MN55’s analyses, it only requires additional interpretation. A

third criticism is that the features are assumed to be statistically
independent. In fact, MN55’s own data show that PFs are not
entirely independent of each other. MN55 were aware of this
but argued that their general conclusions—Place is far more
vulnerable to background interference and its information more
broadly distributed across the frequency spectrum—do not
depend on absolute feature independence, a conclusion with
which we concur.

Some (e.g., Allen and associates [28], [29]) have argued that
using a priori perceptual features, based on labels originating
from speech production, is fundamentally wrong. In their
view, perceptual features should be derived only through a
“data-driven” approach in which patterns of consonant con-
fusions are used to determine the identity of the underlying
features. Although appealing in principle, this approach is
subject to its own set of limitations. In the case of [29], the
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consonant-confusion patterns reflect the interaction between
the spectral properties of the masking noise and the consonants
(i.e., energetic masking) rather than some more fundamental,
central, linguistic representation that generalizes to a large
variety of contexts and applications. As shown in the current
study, PFs do provide a means of identifying some important
characteristics of the spectral integration process for conso-
nants. This, in turn, may be important for understanding the
fundamental linguistic representation of speech. These obser-
vations do not depend on the precise perceptual status of PFs
nor whether they are entirely independent of each other. Rather,
PFs can be used to specify a formal structure that is effective in
distinguishing among consonants.

Although the current study does not allow us to specify
precisely how phonetic-feature information is combined across
the frequency spectrum, it shows that the spectral integration
process plays an important role for recognition of linguistic en-
tities. In the current study, these entities have been consonants,
but the framework could be applied to other levels of linguistic
analysis utilizing different representational units than phonetic
features.

V. SUMMARY AND CONCLUSION

In this study, an information-theoretic based analysis was
used to characterize the spectral integration of phonetic infor-
mation in Danish consonants.

Two information-theoretic metrics were used. One, the SIQ,
quantifies the way in which information associated with con-
sonants and distinctive PFs combines across the acoustic-fre-
quency spectrum. The second, SyR, quantifies response simi-
larity across separate spectral regions. These two measures are
closely related, reflecting the potential gain in pattern decoding/
recognition when two or more data streams are combined.

Consonant decomposition into PFs provides a principled and
structured representation of consonants for analyzing patterns
of perceptual confusions essential for quantifying how well the
decoding and recognition processes are performed in and across
different spectral regions. From such analyses we conclude
that Voicing and Manner are decoded very differently from
Place. Manner and Voicing error patterns are largely similar,
and their SyR indices are relatively high , indicating
that Voicing and Manner information is rather redundantly
distributed across the frequency spectrum. This may be why
these features are relatively resilient to background noise and
acoustic interference—comparable phonetic information can
be decoded from different regions of the spectrum. For Voicing
and Manner, distortion/interference has relatively little impact
on decoding. In contrast, Place confusion patterns differ sig-
nificantly across spectral regions; their SyR indices are low

0.05, which means there is virtually no redundancy in
Place information distributed across frequency channels. Such
low cross-spectral redundancy is why combining information
from different spectral regions improves feature decoding and
by implication, consonant recognition. The consequence of
this highly distributed encoding is a potential vulnerability of
feature decoding and pattern recognition dependent on such
decoding.

The way in which information combines across the spectrum
differs among PFs. For Manner and Voicing, the integration is
approximately linear when two slits are combined. The amount
of information contained in two slits is roughly double that of
one. In contrast, Place information combines across frequency
channels very differently. Two slits often provide four or more
times the information contained in one. Information integra-
tion is expansive and continues to be so when a third slit is
added. In contrast, integration of Voicing and Manner informa-
tion often exhibits a compressive function with the addition of a
third slit—there is little or no information gain. However, Con-
sonant recognition depends on correctly decoding all three PFs.
When the information-integration functions of the features are
combined for the two- and three-slit conditions, the composite
integration functions appear to be approximately linear, similar
to the IT growth function associated with consonant recogni-
tion. In this sense, consonant recognition may only appear to be
linear. In actuality, consonant recognition may be the composite
of three separate cross-spectral-integration functions none of
which is strictly linear over its full dynamic range.

One interpretation of the data and analyses reported in this
study is that the PFs obscure and consequently complicate in-
terpretation of the perceptual data. In this perspective, the results
could serve as an argument against using PFs as a means of un-
derstanding the speech decoding process.

In our view, this argument is contradicted by the fact that the
confusion patterns observed are clearly accounted for in terms
of PFs, particularly place of articulation. Without some princi-
pled structural framework with which to relate consonants to
each other the error patterns seem arbitrary and without a co-
herent perceptual basis.

We believe that the SIQ and SyR analyses call into question
some of the assumptions underlying the AI, SII, and STI, and
imply that these theoretical perspectives are not entirely in ac-
cord with how human listeners decode and recognize conso-
nants. By using PFs as well as the SIQ and SyR metrics, it may
be possible to more accurately model human speech processing
and use this knowledge for improving a variety of technologies,
including automatic speech recognition and speech enhance-
ment.

APPENDIX

A. Appendix

The following example illustrates how information
transmitted is calculated based on the confusion ma-
trix given in Table II(b) (voicing). The derived proba-
bilities of the four cells in the confusion matrices are

respectively. Applying (1) the number of bits transmitted
is:

.
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