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Estimation of Glottal Closing and Opening Instants in
Voiced Speech Using the YAGA Algorithm

Mark R. P. Thomas, Member, IEEE, Jon Gudnason, Member, IEEE, and Patrick A. Naylor, Senior Member, IEEE

Abstract—Accurate estimation of glottal closing instants (GCIs)
and opening instants (GOIs) is important for speech processing
applications that benefit from glottal-synchronous processing in-
cluding pitch tracking, prosodic speech modification, speech dere-
verberation, synthesis and study of pathological voice. We pro-
pose the Yet Another GCI/GOI Algorithm (YAGA) to detect GCIs
from speech signals by employing multiscale analysis, the group
delay function, and -best dynamic programming. A novel GOI
detector based upon the consistency of the candidates’ closed quo-
tients relative to the estimated GCIs is also presented. Particular
attention is paid to the precise definition of the glottal closed phase,
which we define as the analysis interval that produces minimum
deviation from an all-pole model of the speech signal with closed-
phase linear prediction (LP). A reference algorithm analyzing both
electroglottograph (EGG) and speech signals is described for eval-
uation of the proposed speech-based algorithm. In addition to the
development of a GCI/GOI detector, an important outcome of this
work is in demonstrating that GOIs derived from the EGG signal
are not necessarily well-suited to closed-phase LP analysis. Eval-
uation of YAGA against the APLAWD and SAM databases show
that GCI identification rates of up to 99.3% can be achieved with
an accuracy of 0.3 ms and GOI detection can be achieved equally
reliably with an accuracy of 0.5 ms.

Index Terms—Dynamic programming, electroglottograph
(EGG), glottal closing instants (GCIs), glottal opening in-
stants (GOIs), group delay function, multiscale analysis, speech
processing.

I. INTRODUCTION

V OICED speech is produced when the vocal tract is excited
by the vocal folds, which consists of opposing ligaments

that form a constriction as it joins the lower vocal tract. When
air is expelled from the lungs at sufficient velocity through this
orifice—usually referred to as the glottis—the vocal folds ex-
perience a separating force. The instant of time at which the
glottal folds begin to separate is termed the glottal opening in-
stant (GOI). The vocal folds continue to open until equilib-
rium is reached between the separating force and the tension
in the vocal folds, at which point the potential energy stored in
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the vocal folds causes them to begin to close. When the vocal
folds become sufficiently close, the Bernoulli force results in
an abrupt closure at the glottal closure instant (GCI). Elastic
restoring forces during closure cause the cycle to repeat, pro-
ducing a series of periodic pulses. The glottal cycle is defined
as the period between successive GCIs.

The detection of GCIs in voiced speech is important for
glottal-synchronous speech processing algorithms such as pitch
tracking, prosodic speech modification [1], speech dereverber-
ation [2], data-driven voice source modeling [3] and areas of
speech synthesis [4]. Identification of GOIs is necessary for
closed-phase linear predictive coding (LPC) [5] and the anal-
ysis of pathological speech that relies upon knowledge of the
open quotient (OQ) [6]. Whereas many methods existing in the
literature aim to estimate GCIs from the voiced speech signal,
very few exist for the more challenging task of GOI detection.
The broad applications of glottal-synchronous processing have
given rise to a corresponding demand for increasingly reliable
and automatic identification of GCIs and GOIs. There exists,
however, no universally agreed definition of the GOI [7]. In
this work, we aim to find an analysis interval that is best-suited
to closed-phase LPC analysis [5] that is shown not to always
correspond to the closed phase estimated from the EGG signal.
An automatic reference is proposed that builds upon earlier
works in [5] and [8] by iteratively refining electroglottograph
(EGG)-based estimates based upon the variance of the esti-
mated voice source signal in the closed phase.

Most existing techniques assume that the speech is stationary
throughout an analysis window of 20–30 ms. During this time,
a widely used approach is the detection of discontinuities in an
estimation of the voice source signal with LPC that correspond
closely to the GCIs and GOIs. An early example of practical
applications of LPC in GCI/GOI detection can be found in [5]
and has been applied to many more recent algorithms, notably
[9]–[12]. Additional model-based approaches that estimate the
voice source include homomorphic processing [13], in which
the excitation signal is estimated as the signal components that
contribute to fast changes in the speech spectrum. Model-based
processing is advantageous because it exploits knowledge of the
voice to provide a signal that is more straightforward to analyze
than the speech signal alone, providing the model is sufficiently
well-suited to the speech signal under test. The identification
GCIs/GOIs by discontinuities or changes in signal energy in-
clude the Hilbert Envelope [14] and Frobenius Norm [15].

The wavelet transform can be viewed as an analysis filterbank
that decomposes a signal into multiple wavelet scales. This has
been used in the field of detection in speech signals [16],
but much attention has been paid to the observation that discon-
tinuities in a signal, such as those caused by GCIs and GOIs,
are manifest as local maxima across multiple scales. The Lines
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of Maximum Amplitudes (LOMA) algorithm identifies local
maxima that align across multiple wavelet scales [17]. The mul-
tiscale product [18] of the decomposed signal has been shown to
be particularly effective for GCI/GOI detection in EGG signals
[19], [20] and speech signals [21], [22]. The multiscale product
is a key element in the technique proposed in this paper. Detec-
tion of periodicity in the speech has also been explored through
analysis of the autocovariance matrix of the speech signal [23],
zero-frequency resonator [24] and empirical mode decomposi-
tion (EMD) [25]. These non model-based approaches are ad-
vantageous because they are well-rooted in signal processing
and are not constrained by any particular speech model.

Many algorithms emphasize GCIs and GOIs by transforming
them into either an impulsive event (e.g., LPC residual), a local
maxima or minima of a smoothly varying waveform (e.g.,
LOMA), or a zero crossing (e.g., zero-frequency resonator).
The latter two are relatively straightforward to detect but im-
pulsive events can often be masked by noise and neighboring
events that can render them difficult to detect. A technique for
the detection of impulsive events is a fixed threshold based
upon a long-term measure of speech amplitude, sometimes
used for GCI/GOI detection in EGG signals [26] but with
limited application to speech signals due to the large dynamic
range of natural conversational speech. Dynamic thresholds
based on short-term averages [11] yield better results but can
sit on a knife-edge between missing events or detecting false
events if the threshold is too high or too low, respectively [20].
The method based upon group delay functions [27] uses a
weighted average group delay calculated on a sliding window.
The negative-going zero crossings of this function have been
shown to reliably detect impulsive events in the LP residual
[28]. Different approaches are reviewed in [27]. Phase slope
projection [12] further improves estimates by detecting missed
zero crossings and inserting them at the most likely time
instant. In some cases the heuristics of the speech signal are
used to improve quality of the estimates or suppress erroneous
detections during unvoiced speech. Techniques such as -best
dynamic programming [29] have therefore been applied to
minimize a cost function derived from features such as pitch
consistency, waveform similarity, energy, multichannel corre-
lation or goodness of fit to voice source models. Most existing
approaches work well on sustained voiced phonemes but can
fail on more challenging conversational speech if the heuristics
of the signal are not considered [12].

In this paper, we present Yet Another GCI/GOI Algorithm
(YAGA) that reliably estimates both GCIs and GOIs from
speech signals. The algorithm is a combination of existing
techniques including multiscale analysis, group delay functions
and -best dynamic programming [29]. A new technique for
the detection of GOIs using the consistency of candidates’
closed quotient relative to the estimated GCIs is proposed.
YAGA, DYPSA [12], and the EGG-based SIGMA algorithm
[20] are evaluated against the two-channel reference algorithm
proposed in this paper.

The remainder of this paper is organized as follows. Section II
describes the voice source signal in the context of GCI/GOI
detection. A two-channel reference algorithm is described in
Section III. Section IV describes the YAGA algorithm. Evalua-
tion results of the GCI and GOI detection against the reference

algorithm is presented in Section V and conclusions are drawn
in Section VI.

II. ESTIMATION OF THE VOICE SOURCE SIGNAL

We denote the GCIs and GOIs
, where is the th GCI, is the

th GOI and is the total number of GCIs in a speech utterance.
Glottal closed and open phases are defined by pairs of instants

and , respec-
tively, where and .

A. The Source-Filter Model

GCIs, and especially GOIs, are difficult to locate in the
speech signal [12] due to the spectral shaping by the vocal
tract transfer function . It is common to blindly estimate
and equalize from the observed speech signal, so as to
estimate the voice source signal from which GCIs and GOIs
are more straightforward to detect [12]. Let be a frame of
voiced speech with -transform such that

(1)

where represents glottal volume velocity, is an all-
pole vocal tract filter, and models lip radiation.
The term and the differential effect of are usually
combined into the glottal flow derivative , often termed
voice source signal with time-domain waveform . If
is known, can be estimated from :

(2)

with time-domain waveform . A whitened voice source
signal (or LP residual) can be found by
with time-domain waveform , where is
preemphasized speech as discussed in the following section.

B. Estimation by Linear Prediction

Various short-term LPC techniques have been developed that
estimate from the speech signal [10], [15]. Estimation
of using (2) is then straightforward. Other techniques
jointly estimate and [30] that are not considered
here. Re-writing (1) in the time domain

(3)

where are the prediction coefficients, is an estimate
of , and is the prediction order. The vocal tract transfer
function can be approximated as

(4)

The prediction order for an adult male of vocal tract length
17 cm is approximately , where is the sampling fre-
quency. The aim is to find the that minimize a cost function
formed from (3):

(5)
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where denotes expectation. Minimizing on each analysis
frame by setting the derivative of to zero with respect to the
LPC coefficients results in

where (6)

which can be represented in matrix form as

(7)

We consider here two methods for estimating : pitch-asyn-
chronous autocorrelation LPC and closed-phase covariance
LPC.

C. Pitch-Asynchronous Autocorrelation LPC

Pitch-asynchronous autocorrelation LPC calculates
without knowledge of the temporal structure of the speech:

(8)

where and is a windowing function of typ-
ically 20–30 ms. The infinite sum leads to a Toeplitz matrix
that can be inverted with the Levinson–Durbin algorithm whose
computational complexity scales . The fixed window in-
cludes the samples outside the glottal closed phase, which tilts
the spectrum of the speech signal [31]. This has the effect of
both introducing a spectral tilt into the estimated vocal tract filter

and to spoil the conditioning of the matrix . With refer-
ence to the two-pole model of [10], one pole is cancelled
by the lip radiation filter . A common approach is to cancel
the remaining pole with a first-order preemphasis filter of the
form

(9)

with . Using the estimate of the vocal tract filter, the
voice source signal or linear prediction
residual can be estimated. The linear pre-
diction residual, though not having any physical significance, is
often used in the detection of GCIs [12] and coding [32]. It is
of limited use in studying glottal waveforms due to the level of
high-frequency noise resulting from the preemphasis that masks
some finer detail in the open phase; greater interest has therefore
been shown in modeling [9], [33], [34].

The validity of the two-pole model of can be ques-
tioned when phase characteristics are considered. Alternative
approaches have therefore been devised to estimate and remove
the spectral contribution of the voice source. The Iterative Adap-
tive Inverse Filtering (IAIF) method [35] imposes an additional
model on , assuming an all-pass nature with spectral peaks
caused by the formants. An iterative process first estimates a
first-order AR model of the speech signal to form an initial esti-
mate of the glottal pulse; this is removed from the speech signal
by inverse-filtering. Subsequent stages estimate the glottal pulse
and vocal tract filter at increasing orders. By adapting to the
voice source in this way, IAIF is capable of producing superior
estimation of the voice source than can be achieved with a fixed
first-order model.

D. Closed-Phase Covariance LPC

Pitch-synchronous autocorrelation LPC is a practical ap-
proach if knowledge of closed phase is unavailable. If, however,
the closed phase is known, closed-phase covariance LPC can
be beneficial by restricting its analysis window to the region in
which the glottis is closed, i.e., . This circumvents the
need for preemphasis and provides more accurate estimate of

and therefore [5], [8], [10]. Consider the covariance
of a finite segment of speech

(10)

in which no windowing function is applied to the speech signal.
The spectral resolution is therefore limited only by the number
of samples in the analysis interval, and allows analysis intervals
of as low as 2 ms. The resulting AR coefficients are however
not guaranteed stable [10]. In some voices, particularly female,
the closed phase may be less than 2 ms, rendering this approach
ineffective. The problem can be addressed by multi-cycle closed
phase analysis [36] that includes adjacent glottal closed phases
in the calculation of the covariance matrix . The covariance
equation in (10) can be rewritten as

(11)
where the sum is often limited to include 2–3 adjacent cycles.

E. Defining the Glottal Closed Phase

Glottal closing and opening are not truly instantaneous but
phases of finite duration [37], although in general the closing
phase is sufficiently short for it to be considered instantaneous.
However, there is no universally agreed definition of the precise
instants of GOIs [7].

There are three main definitions of the GOI in common
use. Fig. 1 shows (a) an estimated voice source signal with
pitch-asynchronous autocorrelation LPC, (b) the multiscale
product [18] of (a), (c) the corresponding time-aligned EGG
signal, and (d) the multiscale product of (c). The multiscale
product is an estimate of the derivative of a signal over multiple
dyadic scales and is discussed in detail in Section IV-A. The
first GOI definition, defined in [5], corresponds to the instant
at end of the closed phase when increased residual error is
observed in the linear model of the speech signal, indicating
nonstationarity caused by excitation of the vocal tract by glottal
airflow. This is shown by the line in Fig. 1 and is used to
define analysis intervals for closed-phase covariance LPC but
may not necessarily correspond to the definition of opening in
the physiological sense. Fig. 1 shows a discontinuity at this
instant in plots (a) and (b) but there is little evidence in the EGG
signal of plots (c) and (d). The second definition of the GOI,
defined in [8] and [37], is the maximum derivative of the EGG
signal as marked with the line in Fig. 1. This definition
is used extensively to assess open quotients in pathological
speech, although it corresponds solely to the maximum rate
of change of glottal conductivity and not airflow. This can be
seen as a discontinuity in both the estimated voice source (a),
(b) and EGG signal (c), (d). The third type of GOI is the point
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Fig. 1. Two definitions of GOI overlaid on (a) estimated voice source, (b) mul-
tiscale product of (a), (c) EGG and (d) multiscale product of (c). In the first case
(red �), the GOI marks the beginning of the opening phase, in the second (green
�), the GOI marks the end of the opening phase.

at which the amplitude of the EGG waveform is equal to a
percentage of its maximum value within a cycle [38]. Each of
the above definitions is limited to specific fields of interest. In
this paper the aim is to find an analysis interval suitable for
minimizing the modeling error in closed-phase LPC, hence
the first definition is used. Put more precisely, we define the
optimum closed-phase interval as that for which the residual
error of a fixed-order all-pole model of the speech signal is
minimal. The following section describes a reference algorithm
that finds this interval.

III. EVALUATION REFERENCE

Algorithms for speech-based GCI detection have been
widely evaluated using EGG-based references [12], [22], [24].
It is known that the synchronization of EGG and speech signals
is affected by the propagation time from the talker’s lips to the
recording microphone that may be estimated and subtracted to
synchronize the two signals. Any residual synchronization error
is expected to produce a constant bias in the GCI estimates
throughout the utterance. However, with regard to GOIs, the
difference between definitions is not guaranteed to be a con-
stant bias alone; defining a suitable reference therefore requires
careful consideration. Various approaches for finding optimal
intervals for closed-phase LPC analysis have been proposed in
[5], [8], and [9]. The following is a two-channel algorithm that
is based upon the approaches in [5], and [8], operating upon
both the EGG and speech signal.

A. Proposed Reference Algorithm

As defined in Section II-E, the optimum closed-phase interval
is defined as that for which the residual error of a fixed-order
all-pole model of the speech signal is minimal. As a baseline
approach, initial GCI and GOI estimates and are provided
by analysis of the EGG signal with the SIGMA algorithm [20].
As there is no guarantee that this result represents an optimal

Fig. 2. Voice source estimated with closed-phase LPC. Analysis intervals from
(a) EGG (green �) and (b) the proposed reference algorithm (red �).

analysis interval for closed-phase LPC, an exhaustive search is
conducted over a range of intervals, centered around and .
It is assumed that the error in the GCI is significantly less than
the error in the GOI so the search intervals are set accordingly
at and , where .
The quality of each estimate is evaluated with the following cost
function

(12)

where and denote the estimated voice source
waveform from closed-phase analysis in the closed and open
phases for each iteration at cycles , respectively, and
denotes variance. The optimum window is defined as

(13)

Optimum closed phase intervals are found for sets of three
neighboring cycles according to (11) to improve robustness.
The voice source signal is estimated according to (2) from the
middle of each of the three cycle sets. Iteration through all
analysis intervals for all voice source cycles produces
and , respectively. It has been observed that the algorithm
favors longer analysis intervals within the closed phase as it
improves the conditioning of the covariance matrix . The
technique is not particularly practical due to the requirement of
an EGG signal and high computational demand; it is therefore
best suited as an offline reference.

The result of the optimization scheme is exemplified in Fig. 2,
which shows the voice source estimated with closed-phase LP
analysis using intervals defined by (a) EGG and (b) the pro-
posed reference algorithm on the same signal used in Fig. 1. The
EGG GOIs are marked green and the optimized GOIs marked
red . The result of this experiment demonstrates the sensitivity
of closed-phase LP analysis to framing errors: the inclusion of
glottal excitation in the opening phase in (a) does not give zero
airflow during the closed phase, whereas in (b) the refined anal-
ysis interval gives a very flat closed phase in the estimated voice
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Fig. 3. System diagram. Voice source �� ��� is estimated, discontinuities reinforced with the multiscale product, � ��� and impulsive features located with the
group delay function. Candidates denoted �� . The algorithm sequentially extracts GCIs, � and GOIs, � with optional voicing detection.

source signal. The latter is deemed to be derived from a better
estimate of .

Closed-phase LP analysis will generally fail if incomplete
vocal fold closure occurs, such as in the case of weakly voiced
speech or vocal fry. It is expected that this will cause the opti-
mization routine in (13) to produce random closed phases, in-
creasing the local variance of the closed quotients. In order to
suppress erroneous GOIs in these regions, a sliding variance is
calculated on five neighboring CQ values and those cycles in
which the standard deviation exceeds 0.02 are flagged as unre-
liable and excluded.

IV. THE YAGA ALGORITHM

The Yet Another GCI Algorithm is a culmination of new
and existing GCI/GOI detection techniques using a framework
based upon the DYPSA algorithm. The aim is to find closed
phase intervals that are suitable for closed phase LPC. The
algorithm is split into two parts: candidate detection in which
potential GCIs and GOIs are extracted from the speech signal
and candidate selection in which GCIs and GOIs are selected
from the candidate set. A system diagram is shown in Fig. 3.

A. Candidate Detection

The voice source signal is first estimated from the
speech signal using the IAIF method described in Section II-B
with an analysis interval of 32 ms, a frame increment of 16 ms,
and a prediction order of . The multiscale product of the
stationary wavelet transform (SWT) reinforces discontinuities
in a signal by calculating its derivative at multiple dyadic scales
and locating converging maxima [18] as previously applied
to speech [22] and EGG [20] signals. A biorthogonal spline
wavelet with one vanishing moment is used in this paper, with
corresponding detail and approximation filters and ,
respectively.

The SWT of signal , at scale is

(14)

where is bounded by and . The
approximation coefficients are given by

(15)

where . Detail and approximation filters are up-
sampled by two on each iteration to effect a change of scale. The
multiscale product is formed by

(16)

where it is assumed that the lowest scale to include is always 1.
The de-noising effect of the at each scale in conjunction
with the multiscale product means that is near-zero except
at discontinuities across the first scales of where it be-
comes impulse-like. The value of is bounded by , but in
practice gives good localization of discontinuities [39].
Experimentation with this algorithm has shown that the per-
formance of the subsequent group delay function-based event
detector is improved by first taking the root of and
half-wave rectifying to give . This technique is further
confirmed by [20].

The signal contains sparse impulse-like features of the
same sign at the location of GCIs and GOIs. In order to locate
these features, the following group delay function [27] is used.
Consider an -sample windowed segment of beginning
at sample

(17)

The group delay of is given by [27]

(18)

where is the discrete Fourier transform of and
is the discrete Fourier transform of . If

, where is a unit impulse function, it follows from
(18) that . For noise robustness, an averaging pro-
cedure is performed over all frequency bins as reviewed in [27].
An energy-based weighting was deemed the most appropriate
[12], defined as

(19)

which is an efficient time-domain formulation and can be
viewed as the center of energy of , bounded in the range

. This time-domain signal is called the
group delay function of a signal,1 differing from group delay

1Some authors use phase slope function which differs only by sign.
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Fig. 4. (a) Estimated voice source, �� ���, (b) Group Delay Function, ����,
(c) Multiscale Product, ����, with overlaid candidate set (black �) and estimated
GCIs (green�) and GOIs (red�) following the dynamic programming stage.

which is a function of frequency. The location of the nega-
tive-going zero crossings of give an accurate estimation of
the location of impulsive features that form a set of candidate
GCIs and GOIs as shown in Fig. 4(b). Additionally, if an im-
pulsive feature is spread in time then the group delay function
method will find its center of energy, which is particularly
useful in the case of the “redoubled” GCI discussed in [40].
A similar approach has been applied directly to speech signals
[41] in which is not expected to take a constant value,
nor whose mean is zero when the GCI lies in the center of the
window. A suitable correction is applied that is not necessary
in the case of impulsive signals [41]. The length of the group
delay window is set at 2 ms, which lies within the bounds
suggested in [20] and [41].

In the presence of noise, an impulsive feature may produce a
local minimum that follows a local maximum without a nega-
tive-going zero crossing. The phase slope projection technique
[12] identifies the midpoint of the local maximum and minimum
and projects it onto the time axis with unit slope. The point of
intersection with the time axis is added to the candidate set. The
complete set of candidates for both GCIs and GOIs is denoted

.

B. Candidate Selection

The candidate selection applies -best Dynamic Program-
ming [29] to find a path that minimizes a set of costs in order
to detect GCIs, , only. A similar methodology is employed
in [12]. A second stage detects GOIs from the remaining can-
didates by considering the consistency of the closed quotient of
the remaining candidates relative to estimated GCIs. This se-
quential approach is required because both GCI and GOI can-
didates arise from positive-going discontinuities in the voice
source signal.2 Voicing detection removes erroneous detections
during unvoiced speech. The output of the candidate selection
is depicted in Fig. 4, showing candidates (black) and detected
GCIs (green), GOIs (red) overlaid on (a) estimated voice source

2This is dissimilar to the EGG signal in which GCI and GOI candidates cor-
respond to discontinuities of opposite sign in the EGG waveform [37].

signal, , (b) the group delay function, , and (c) the
multiscale product of the voice source signal, .

1) -Best Dynamic Programming: The GCI dynamic pro-
gramming minimizes the following function over a finite subset
of candidates, , of size

(20)

where is a vector of weighting
factors, and is
a vector of cost elements evaluated at the th GCI of the subset,
normalized in the range , as defined in [12].
The cost vector elements are as follows.

• Waveform similarity, , between in neighboring
candidates, where candidates not correlated with the pre-
vious candidate are penalized.

• Pitch deviation, , between the current and the pre-
vious two candidates, where candidates with large devia-
tion are penalized.

• Projected candidate cost, , for the candidates from
the phase-slope projection, which are sometimes erro-
neous. for projected candidates and 0.5
otherwise.

• Normalized energy, , which penalizes candidates that
do not correspond to high energy in the speech signal.

• Ideal phase-slope function deviation, , where candi-
dates arising from zero-crossings with gradients close to
unity are favored.

• Closed phase energy, . The energy contained in
between successive candidates. Glottal closure

causes to be low.
The first five costs are calculated with mappings defined in

[12]. The closed phase energy cost is defined as

(21)

where .
2) GCI Refinement: The zero crossings of the group delay

function correspond to local centers of energy in the voice
source signal that lie in the vicinity of the maximum disconti-
nuity in the voice source. In order to reduce small errors caused
by nonideal impulsive behavior, the maximum positive-going
derivatives of the voice source signal lying within 0.5 ms of the
zero crossing are identified. In [41], in which the group delay
function is applied to the speech signal directly, the minimum
phase component of the speech signal is considered as men-
tioned in Section IV-A. Such an explicit model of the phase
behavior of is not applied in this case as the proposed
correction has been found to be sufficient here.

3) Voicing Detection: The waveform similarity measure
is useful not only for eliminating unlikely candidates but it
also serves as a reliable measure of voicing. This is required
to suppress erroneous GCI/GOIs during unvoiced and silent
segments. The duration of voiced segments is relatively long
compared with the fundamental period of voicing, . This
permits smoothing of the waveform similarity cost
to help suppress sudden changes which could result in an
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Fig. 5. Segment of �� ��� showing silence-unvoiced-voiced transitions,
waveform similarity cost � ��� smoothed waveform similarity cost �� ��� and
threshold � . �� ��� provides a good voicing detector; when less than � , GCIs
are kept ���, else they are rejected ���. GOIs not displayed for clarity.

erroneous voicing decision. Let be a
smoothed waveform similarity cost, where is a Hamming
window of length 1 ms. A fixed threshold is used to make a
voiced/unvoiced decision

if
otherwise.

(22)

The parameter is set empirically to 0.3. An example of a
voiced/unvoiced decision is shown in Fig. 5, showing ,

and the GCIs that are accepted or rejected. During pe-
riods of weakly voiced speech, vocal fry or registers that do not
produce a discontinuity in the voice source signal, no suitable
candidates will be found. The output of the voicing detector is
therefore nonzero during modal voiced speech only.

4) GOI Detection: It was stated that the aim is to find GOIs
that are best-suited to closed phase LPC analysis. It was shown
in Section IV that too long an analysis interval can impair the
quality of the estimated vocal tract filter; in the example of
Figs. 1 and 2, there exist in the estimated voice source signal two
close discontinuities of similar amplitude within each cycle, the
earlier of which is shown to be best-suited to closed-phase LPC.
It has been found that these discontinuities produce candidates
that have similar costs , and as such an alternative approach to
that described in Section IV-B is required. It is proposed that a
set of GOI candidates is defined as

(23)

where and denotes the sym-
metric difference (union minus intersection) of the two sets. The
closed quotients (CQ) of relative to , termed , are cal-
culated for all candidates . The best path is deemed to be the
lowest path of consistent CQ values. A dynamic programming
algorithm finds the best path by searching for sets of three can-
didates with CQ within of one another. A state variable saves
the previous good CQ, empirically initialized to 0.2, so that ar-
tificial GOIs may be inserted when no suitable candidates are
found. Fig. 6 shows (a) a speech signal and (b) the candidates’

Fig. 6. (a) Speech signal and (b) CQ of GOI candidates ��� with best path.

Fig. 7. Characterization of GCI Estimates showing four larynx cycles with ex-
amples of each possible outcome from GCI estimation.

CQ and with the best path overlaid. The examples in Figs. 1
and 2 correspond to time 0.2 s in this figure. Visual inspec-
tion reveals multiple tracks when excitation is present at both
the beginning and ending of the opening phase as discussed in
Section II-E. By initializing to different values and using al-
ternative search criteria different paths may be found. The esti-
mated GOIs are denoted .

V. PERFORMANCE ASSESSMENT

The YAGA algorithm was configured with cost weights
and CQ

tolerance . The first five elements of were optimized
in [12] and and were trained on 10% of the APLAWD
database which was omitted for the following tests.

A. Evaluation Methodology

The APLAWD database [42] contains speech and contempo-
raneous EGG recordings of five short sentences, repeated ten
times by five male and five female talkers. A subset of the SAM
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TABLE I
GCI/GOI PERFORMANCE ON THE APLAWD DATABASE

Fig. 8. Performance results on the APLAWD database for (a) SIGMA (EGG)
GCI, (b) SIGMA (EGG) GOI, (c) DYPSA GCI, (d) DYPSA GOI, (e) YAGA
GCI, and (f) YAGA GOI. The bin interval is 0.1 ms.

database [43] contains EGG and speech signals of duration ap-
proximately 150 seconds by two male and two female speakers.
Estimated GCIs and GOIs were derived from the EGG signals
with SIGMA and from the speech signals with DYPSA and
YAGA. Using the algorithm described in Section III as a refer-
ence, the performance of these algorithms was evaluated using
the strategy defined in [12] as depicted in Fig. 7. Detection rate
is the percentage of all reference GCI periods for which exactly
one GCI is estimated. Accuracy, , and bias, , are respectively
the standard deviation and mean of the error, , between esti-
mated and reference GCIs. In the case of GOIs, accuracy and
bias are measured only on those closed phases for which the
reference was flagged as accurate. False alarm rate is the per-
centage of all reference GCI periods for which more than one
GCI is estimated and Miss rate is the percentage of all reference

TABLE II
GCI/GOI PERFORMANCE ON THE SAM DATABASE

Fig. 9. Performance results on the SAM database for (a) SIGMA (EGG) GCI,
(b) SIGMA (EGG) GOI, (c) DYPSA GCI, (d) DYPSA GOI, (e) YAGA GCI,
and (f) YAGA GOI. The bin interval is 0.1 ms.

GCI periods for which no GCIs were estimated. False alarms
are not counted if they occur between voiced segments sepa-
rated by more than 3 ms. False Alarm Total (FAT), measures all
false alarms as a proportion of total candidates, including those
between voiced segments. This helps to assess the quality of
voicing detection and the suppression of multiple false alarms
within one reference cycle.

B. Results and Discussion

Results are recorded in Tables I and II with corresponding
error histograms in Figs. 8 and 9. GCI and GOI hit rates are
necessarily equal and so are stated once in each case for clarity.
The initial estimates given to the proposed reference algorithm
were derived from EGG signal by the SIGMA algorithm. Only
the positions of the GCIs and GOIs were altered so ID, miss,
false alarm and FAT rate are perfect by definition.
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With regard to GCI detection, the EGG-based SIGMA algo-
rithm exhibits the lowest error standard deviation of all methods
under test. There exists a small bias that can be attributed to
synchronization error between speech and EGG signals. The
YAGA algorithm delivers an identification rate in excess of
99.3% on APLAWD and 98.8% on SAM with negligible bias
and an identification error of within 0.3–0.4 ms. The DYPSA
algorithm, whose candidate generation relies upon the LPC
residual as opposed to the multiscale product of the voice
source signal, fairs worst with ID rate at 3% below YAGA.
YAGA’s high GCI accuracy can be attributed to the GCI re-
finement following candidate selection that is not performed in
DYPSA, although both candidate selection routines have much
in common. The YAGA voicing detector heavily suppresses
FAT by 40%–55% at the expense of increasing misses by
5%–10%; this has little effect upon bias and accuracy. Future
improvements are expected to use through dynamic, rather than
static, voicing decision thresholds.

The GOI performance of SIGMA’s EGG-based estimates
shows a positive bias of around 1 ms on both databases, as
predicted by the examples in Section III. SIGMA’s relatively
high error standard deviation is not necessarily indicative
that SIGMA contains error in its estimates but that the dif-
ference between GOIs in the EGG signal and GOIs for the
ideal closed-phase analysis interval is not a constant bias. The
histogram (b) shows that the EGG GOI rarely occurs before
the closed-phase GOI; the relationship between these two
definitions is most likely to be related to the duration of the
closed phase. DYPSA, which estimates GOIs from a fixed CQ
of 0.3, shows identification accuracy of 0.4–0.5 ms, seemingly
the best of all three methods under test. YAGA shows slightly
worse accuracy than DYPSA; however, this statistic does not
represent the results of inverse-filtering by visual inspection
that are similar to the results in Fig. 2. Further refinement of
the estimated GOIs, possibly by exhaustive search as in the
proposed reference algorithm but over a smaller interval, may
be necessary to further improve the GOI estimation.

The results indicate that the proposed method is reliable
when applied to natural conversational speech signals. Informal
testing with additive noise sources has shown that similar iden-
tification rates can be achieved with white Gaussian and babble
noise down to about 15-dB signal-to-noise ratio. In the presence
of reverberation, a significant reduction in identification rate is
seen with reverberation times of greater than 100 ms. It was
further observed that the accuracy of the identified GCIs/GOIs
is less sensitive to such distortions than identification rate.

VI. CONCLUSION

The YAGA algorithm was proposed for the detection of GCIs
and GOIs from speech signals. The approach is a culmination
of existing methods that estimates a set of candidate GCIs and
GOIs, from which the best path through the GCI candidates
is found. A new approach for detecting GOIs was proposed
that finds the lowest consistent track of the candidates’ closed
quotients relative to the estimated GCIs. Optional voicing
detection suppresses detections during unvoiced speech and
silence. The precise definition of the closed phase was related

to the analysis interval for closed-phase LPC analysis, for
which a reference algorithm estimates optimal closed phases
jointly from EGG and speech signals. An important outcome
was demonstrating that closed-phase intervals from the EGG
signal are not always suitable for closed-phase LPC analysis
as the GOIs tend to be positively biased towards the end of the
opening phase, whereas speech and EGG GCIs are highly co-
herent. The proposed YAGA algorithm, the DYPSA algorithm
and the EGG-based SIGMA algorithm were evaluated against
the reference algorithm on the APLAWD and SAM databases.
YAGA achieved a GCI hit rate of 99% on both databases
with GCI and GOI hit accuracy of 0.3–0.4 ms and 0.5–0.6 ms
respectively.

REFERENCES

[1] E. Moulines and F. Charpentier, “Pitch-synchronous waveform
processing techniques for text-to-speech synthesis using diphones,”
Speech Commun., vol. 9, no. 5–6, pp. 453–467, Dec. 1990.

[2] N. D. Gaubitch, E. A. P. Habets, and P. A. Naylor, “Multi-microphone
speech dereverberation using spatio-temporal and spectral processing,”
in Proc. Int. Symp. Circuits Syst., Seattle, WA, May 2008.

[3] M. R. P. Thomas, J. Gudnason, and P. A. Naylor, “Data-driven voice
source waveform modeling,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), Taipei, Taiwan, Apr. 2009, pp. 3965–3968.

[4] T. Drugman, G. Wilfart, A. Moinet, and T. Dutoit, “Using a pitch-syn-
chronous residual codebook for hybrid HMM/frame selection speech
synthesis,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Taipei, Taiwan, Apr. 2009, pp. 3793–3796.

[5] D. Y. Wong, J. D. Markel, and J. A. H. Gray, “Least squares glottal
inverse filtering from the acoustic speech waveform,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-27, no. 4, pp. 350–355,
Aug. 1979.

[6] P. Davies, G. A. Lindsey, H. Fuller, and A. J. Fourcin, “Variation of
glottal open and closed phases for speakers of English,” Proc. Inst.
Acoust., vol. 8, no. 7, pp. 539–546, 1986.

[7] R. C. Scherer, V. J. Vail, and B. Rockwell, “Examination of the laryn-
geal adduction measure EGGW,” in Producing Speech: Contemporary
Issues: For Katherine Safford Harris, F. Bell-Berti and L. J. Raphael,
Eds. Melville, NY: Amer. Inst. of Phys., 1995, pp. 269–290.

[8] A. K. Krishnamurthy and D. G. Childers, “Two-channel speech anal-
ysis,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, no.
4, pp. 730–743, Aug. 1986.

[9] M. D. Plumpe, T. F. Quatieri, and D. A. Reynolds, “Modeling of the
glottal flow derivative waveform with application to speaker identifica-
tion,” IEEE Trans. Speech Audio Process., vol. 7, no. 5, pp. 569–576,
Sep. 1999.

[10] J. D. Markel and A. H. Gray, Jr., Linear Prediction of Speech. New
York: Springer-Verlag, 1976.

[11] J. G. McKenna, “Automatic glottal closed-phase location and analyis
by Kalman filtering,” in Proc. 4th ISCA Tutorial Res. Workshop Speech
Synth., Aug. 2001.

[12] P. A. Naylor, A. Kounoudes, J. Gudnason, and M. Brookes, “Estima-
tion of glottal closure instants in voiced speech using the DYPSA algo-
rithm,” IEEE Trans. Speech Audio Process., vol. 15, no. 1, pp. 34–43,
Jan. 2007.

[13] P. Chytil and M. Pavel, “Variability of glottal pulse estimation using
cepstral method,” in Proc. 7th Nordic Signal Process. Symp. (NORSIG),
2006, pp. 314–317.

[14] K. S. Rao, S. R. M. Prasanna, and B. Yegnanarayana, “Determination
of instants of significant excitation in speech using Hilbert envelope
and group delay function,” IEEE Signal Process. Lett., vol. 14, no. 10,
pp. 762–765, Oct. 2007.

[15] C. Ma, Y. Kamp, and L. F. Willems, “A Frobenius norm approach to
glottal closure detection from the speech signal,” IEEE Trans. Speech
Audio Process., vol. 2, no. 2, pp. 258–265, Apr. 1994.

[16] S. K. Kadambe and G. F. Boudreaux-Bartels, “Application of the
wavelet transform for pitch detection of speech signals,” IEEE Trans.
Inf. Theory, vol. 38, no. 2, pp. 917–924, Mar. 1992.

[17] N. Sturmel, C. d’Alessandro, and F. Rigaud, “Glottal closure instant
detection using lines of maximum amplitudes (LOMA) of the wavelet
transform,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), Taipei, Taiwan, Apr. 2009, pp. 4517–4520.



THOMAS et al.: ESTIMATION OF GLOTTAL CLOSING AND OPENING INSTANTS IN VOICED SPEECH USING THE YAGA ALGORITHM 91

[18] S. Mallat and W. L. Hwang, “Singularity detection and processing with
wavelets,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 617–643, Mar.
1992.

[19] A. Bouzid and N. Ellouze, “Electroglottographic measures based on gci
and goi detection using multiscale product,” Int. J. Comput., Commun.,
Control, vol. III, pp. 21–32, 2008.

[20] M. R. P. Thomas and P. A. Naylor, “The SIGMA algorithm: A glottal
activity detector for electroglottographic signals,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 17, no. 8, pp. 1557–1566, Nov. 2009.

[21] A. Bouzid and N. Ellouze, “Open quotient measurements based on
multiscale product of speech signal wavelet transform,” Res. Lett.
Signal Process., 2007.

[22] W. Saidi, A. Bouzid, and N. Ellouze, “Evaluation of multi-scale
product method and DYPSA algorithm for glottal closure instant de-
tection,” in Proc. 3rd Int. Conf. Inf. Commun. Technol.: From Theory
to Applicat. (ICTTA), Apr. 2010, pp. 1–5.

[23] H. W. Strube, “Determination of the instant of glottal closure from the
speech wave,” J. Acoust. Soc. Amer., vol. 56, no. 5, pp. 1625–1629,
1974.

[24] B. Yegnanarayana and K. S. R. Murty, “Event-based instantaneous
fundamental frequency estimation from speech signals,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 17, no. 4, pp. 614–624, May 2009.

[25] A. Bouzid and N. Ellouze, “Empirical mode decomposition of voiced
speech signal,” in Proc. Int. Symp. Control, Commmun., Signal
Process., Hammamet, Tunisia, Mar. 2004, pp. 603–606.

[26] M. A. Huckvale, Speech Filing System: Tools for Speech Univ. Col-
lege London, 2004 [Online]. Available: http://www.phon.ucl.ac.uk/re-
source/sfs, Tech. Rep.

[27] M. Brookes, P. A. Naylor, and J. Gudnason, “A quantitative as-
sessment of group delay methods for identifying glottal closures in
voiced speech,” IEEE Trans. Speech Audio Process., vol. 14, no. 2,
pp. 456–466, Mar. 2006.

[28] B. Yegnanarayana and R. Smits, “A robust method for determining in-
stants of major excitations in voiced speech,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), May 1995, pp. 776–779.

[29] R. Schwartz and Y.-L. Chow, “The N-best algorithm: An efficient and
exact procedure for finding the N most likely sentence hypotheses,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
1990, pp. 81–84.

[30] H. Fujisaki and M. Ljungqvist, “Estimation of voice source and vocal
tract parameters based on ARMA analysis and a model for the glottal
source waveform,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), 1987, vol. 12, pp. 637–640.

[31] A. H. Gray and J. D. Markel, “A spectral flatness measure for studying
the autocorrelation method of linear prediction of speech analysis,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-22, no. 3, pp.
207–217, Jun. 1974.

[32] M. Schroeder and B. Atal, “Code-excited linear prediction(CELP):
High-quality speech at very low bit rates,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), 1985, vol. 10, pp. 937–940.

[33] G. Fant, J. Liljencrants, and Q. Lin, “A four-parameter model of glottal
flow,” STL-QPSR, vol. 26, no. 4, pp. 1–13, 1985.

[34] A. E. Rosenberg, “Effect of glottal pulse shape on the quality of natural
vowels,” J. Acoust. Soc. Amer., vol. 49, pp. 583–590, Feb. 1971.

[35] P. Alku, “Glottal wave analysis with pitch synchronous iterative adap-
tive filtering,” Speech Commun., vol. 11, pp. 109–118, 1992.

[36] D. S. F. Chan and D. M. Brookes, “Variability of excitation parameters
derived from robust closed phase glottal inverse filtering,” in Proc. Eur.
Conf. Speech Commun. Technol., Sep. 1989, vol. 33, no. 1.

[37] E. R. M. Abberton, D. M. Howard, and A. J. Fourcin, “Laryngographic
assessment of normal voice: A tutorial,” Clinical Linguist. Phon., vol.
3, pp. 281–296, 1989.

[38] M. Rothenberg and J. J. Mahshie, “Monitoring vocal fold abduction
through vocal fold contact area,” J. Speech. Hear. Res., vol. 31, no. 3,
pp. 338–351, Sep. 1988.

[39] B. M. Sadler and A. Swami, “Analysis of multiscale products for step
detection and estimation,” IEEE Trans. Inf. Theory, vol. 45, no. 3, pp.
1043–1051, Apr. 1999.

[40] N. Henrich, C. d’Alessandro, M. Castellengo, and B. Doval, “On the
use of the derivative of electroglottographic signals for characterization
of nonpathological voice phonation,” J. Acoust. Soc. Amer., vol. 115,
no. 3, pp. 1321–1332, Mar. 2004.

[41] H. Kawahara, Y. Atake, and P. Zolfaghari, “Accurate vocal event de-
tection method based on a fixed-point analysis of mapping from time
to weighted average group delay,” in Proc. Int. Conf. Spoken Lang.
Process. (ICSLP), Beijing, China, Oct. 2000, vol. 4, pp. 664–667.

[42] G. Lindsey, A. Breen, and S. Nevard, “SPAR’s archivable actual-word
databases,” Univ. College London, Jun. 1987, Tech. Rep..

[43] D. Chan, A. Fourcin, D. Gibbon, B. Granstrom, M. Huckvale,
G. Kokkinakis, K. Kvale, L. Lamel, B. Lindberg, A. Moreno,
J. Mouropoulos, F. Senia, I. Trancoso, C. Veld, and J. Zeiliger,
“EUROM—A spoken language resource for the EU,” in Proc. Eur.
Conf. Speech Commun. Technol., Sep. 1995, pp. 867–870.

Mark R. P. Thomas (S’06–M’09) received the
M.Eng. degree in electrical and electronic en-
gineering and the Ph.D. degree from Imperial
College London, London, U.K., in 2006 and 2010,
respectively.

His research interests include glottal-synchronous
speech processing and multichannel acoustic signal
processing. He has industrial experience with audio,
video, and RF in the field of broadcast engineering.
He is currently a Research Associate with the
Communications and Signal Processing Group at

Imperial College London.
Dr. Thomas has been a member of the IEEE Signal Processing Society since

2006.

Jon Gudnason (M’96) received the B.Sc. and M.Sc.
degrees in electrical engineering from the University
of Iceland, Reykjavik, in 1999 and 2000, respectively,
and the Ph.D. degree with the Communications and
Signal Processing Group, Imperial College London,
London, U.K., in 2007.

In 1999, he was a Research Assistant for the In-
formation and Signal Processing Laboratory, Univer-
sity of Iceland, working on remote sensing applica-
tions and from 2001 to 2009 he was a Research Assis-
tant with the Communications and Signal Processing

Group, Imperial College London, where his research focused on speaker recog-
nition and automatic target recognition using radar. From 2008 to 2009, he was
a Visiting Scholar at LabROSA, Columbia University, New York. Since 2009,
he has been a Member of the Academic Staff at the School of Science and En-
gineering, Reykjavik University.

Dr. Gudnason has been a member of the IEEE Signal Processing Society since
1996. He was the president of the IEEE Iceland Student Branch in 1998.

Patrick A. Naylor (M’89–SM’07) received the
B.Eng. degree in electronic and electrical engi-
neering from the University of Sheffield, Sheffield,
U.K., in 1986 and the Ph.D. degree from Imperial
College London, London, U.K., in 1990.

Since 1990, he has been a Member of Academic
Staff in the Department of Electrical and Electronic
Engineering, Imperial College London, where
he is also Director of Postgraduate Studies. His
research interests are in the areas of speech, audio,
and acoustic signal processing. He has worked in

particular on adaptive signal processing for dereverberation, blind multichannel
system identification and equalization, acoustic echo control, speaker identifi-
cation, single and multi-channel speech enhancement, and speech production
modeling with particular focus on the analysis of the voice source signal. In
addition to his academic research, he enjoys several fruitful links with industry
in the U.K., USA, and in mainland Europe.

Dr. Naylor is an Associate Editor of the IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING and an Associate Member of the IEEE
Signal Processing Society Technical Committee on Audio and Acoustic Signal
Processing.


