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Abstract
Drastic reductions in the typical data requirements for produc-
ing confident decisions in an automatic speaker verification sys-
tem are demonstrated through the application of a novel ap-
proach of score confidence interval estimation. The confidence
estimation procedure is also extended to produce robust re-
sults with very limited and highly correlated frame scores. The
early verification decision method evaluated on the 2005 NIST
SRE protocol demonstrates that an average of 2–10 seconds of
speech is sufficient to produce verification results approaching
those achieved previously using an average of over 100 seconds
of speech.

Index Terms: automatic speaker verification, confidence mea-
sures, verification decision confidence.

1 Introduction
Deploying a speaker verification system is a difficult task for
several reasons. Typically these difficulties involve determin-
ing system parameters such as the required amount of speech
for sufficiently accurate enrolment and for sufficiently accurate
verification trials. Additionally, there is always the problem
of estimating a threshold for acceptance and rejection and the
eventual error rate to expect from such a threshold. This is
particularly difficult in the presence of a significant mismatch
between the development database and the anticipated deploy-
ment conditions. This set of related issues is also notably absent
from published research in speaker recognition.

Ideally, a verification system would produce a verification
confidence from a trial, as this is the most useful and usable re-
sult from a system designer perspective: Knowing that there is
a 96% probability that an utterance was produced by speaker s
makes it easy for a designer to employ Bayesian logic to pro-
duce the best possible system. There are two distinct impedi-
ments to this: Firstly it is essentially impossible to accurately
estimate the prior probability of a true trial due to the difficul-
ties in identifying the non-target class1, and secondly, scores
produced by verification systems would need to be represen-
tational of true likelihoods, which is rarely the case given the
rudimentary statistical models, the difficulty in modelling the
non-target class and score normalisation processes.

Work addressing the production of accurate likelihood ra-
tios [1, 2] and the interpretation of scores that are not consid-
ered likelihood ratios [3] has been prompted by the importance
of presenting confident and meaningful results in forensic ap-
plications. The analysis and evaluation of speaker verification
systems based on the accuracy of output likelihood ratios is also
an emerging topic of recent interest [4], but speaker verification

1In a forensic situation, deductive logic and other evidence may help
in this regard.

systems do not in general produce scores that should be inter-
preted as likelihood ratios.

Given these difficulties with determining an accurate verifi-
cation confidence, an alternative approach pursued in this work
is to determine a method by which one can state that the “true”
verification score for a trial lies within the range ΛS = a ± b
at, for example, the 99% confidence level. Here the “true” veri-
fication score is defined as the score that the verification system
would produce given an infinite quantity of testing speech.

Using this approach, this work presents an initial attempt
to address the issue of the quantity of speech required for suf-
ficiently accurate verification results, by employing confidence
measures on the verification score to determine the minimum
speech required to make a confident verification decision at a
specific threshold.

The following section describes the assumptions made on
the nature of the score produced by current speaker verification
systems and the effect of reducing the available test data has on
the performance of such a system.

Section 3 presents the concept and applications of confi-
dence measures for the speaker verification score. To account
for the specific issues encountered in speaker verification sev-
eral methods of estimating the verification score variance are
then developed. This variance statistic provides the fundamen-
tal tools required to estimate the confidence of a verification de-
cision. Experimental evaluation of these estimates are presented
in Section 4 for the application of making confident verification
decisions with as little data as possible.

2 Background
2.1 Baseline System and Experimental Setup

The verification system used in this study is a GMM-UBM sys-
tem with inter-session variability modelling, as described in [5].
The verification score used for this system is the expected log-
likelihood ratio of the target speaker to the UBM. The expec-
tation is taken over the individual frame-based log-likelihood
ratios for the test utterance,

ΛS =
1

T

TX
t=1

�S(t) =
1

T

TX
t=1

log

„
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p(xt|λubm)

«
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where, p(x|λ) is the standard GMM density.

This system uses explicit inter-session variability mod-
elling [5] in the training procedure to mitigate the effects of
mismatch, however session variability was not considered dur-
ing testing. This configuration was chosen to have performance
representative of the current state-of-the-art but avoiding the
complication of estimating the session conditions of the testing
utterance.
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Table 1: The effect of shortened test utterances on speaker verification
performance.

System EER Min. DCF Act. DCF
Reference 6.34% .0293 –
20 sec 8.87% .0391 .0422
10 sec 12.15% .0489 .0601
5 sec 16.99% .0616 .0976
2 sec 23.89% .0794 .1770

Experiments were conducted on the 2005 NIST SRE pro-
tocol using conversational telephony speech drawn from the
Mixer corpus [6]. The focus of these results is on the 1-side
training, common evaluation condition of this corpus.

2.2 The Effect of Short Verification Utterances

From a researcher’s perspective it is preferable to have as much
speech as possible available for each verification to make the
most accurate decision. This is the exact opposite of a system
designer’s preference to put the least possible demand on the
end user. Compromise is usually necessary. To this end, it is
important to have an understanding of the impact of limiting the
verification utterance length. The impact of restricted test utter-
ance length for a GMM-UBM system is presented in Table 1.
These results demonstrate that utterance length, predictably, has
a significant effect on overall system performance in the range
that is typically of interest for a system designer, as previously
observed [7].

3 Confidence Measures
Having recast the desire to estimate decision confidence as the
desire to determine the confidence that a score produced lies
within a given bound from the “true” score, there are a number
of ways which such information could be used. Of specific in-
terest in this work is the ability to use such information in order
to shortcut a verification trial when we are confident that the
“true” verification score is above or below a particular thresh-
old. Other useful applications of this information come in the
ability to; estimate the upper and lower bounds or errors for
verification, estimate the level of confidence for which the veri-
fication score is above or below a threshold or shortcut a verifi-
cation trial when we are confident the “true” score lies within a
particular interval of the current score.

Assuming a verification score is a random variable drawn
from a Gaussian distribution with a mean of the “true” veri-
fication score, the main difficulty arises because the variance
is unknown and must be estimated. The variance of a trial
score distribution is usually dependent on many factors includ-
ing whether a trial is a genuine or impostor trial (which we ob-
viously do not know a priori), the length of a particular veri-
fication utterance and the noise levels and other environmental
conditions of the recording. These factors lead to the conclusion
that the variance must be estimated for each trial individually.
The observed frame scores of a trial are used as the fundamental
statistics for estimating this variance. This estimation forms the
basis of the presented techniques and is addressed in the next
section.

3.1 Early Verification Decision Method

The aim of early verification decision methods is to minimise
the amount of speech required to make a verification decision.
This is achieved by making a verification decision as soon as
we are confident the “true” verification score is above or below
the specified threshold based on the confidence interval of the
current estimated score.

The crux of confidence-based methods for verification is
therefore the ability to estimate confidence intervals based on

the observed sequence of frame scores. This ability in turn re-
lies on estimating the variance of the mean estimate distribution
from the sequence of frame scores. To do this, it is assumed that
the observed verification score is a random process that evolves
over time. It is assumed that this random process is Gaussian at
time t, has a fixed mean (the “true” score) and a time-dependent
variance, that is

ΛS(t) ∼ N `
μS , σ2

S(t)
´
. (2)

Presented below are several methods for estimating σ2
S(t).

Naı̈ve Variance Estimate: As can be seen from (1), the ver-
ification score is the sum of the log-likelihood ratios of indi-
vidual frames. The central limit theorem states that a sum of
random variables will exhibit a Gaussian distribution. Further-
more, it is assumed for now that the feature vectors xt and, by
consequence, the frame log-likelihood ratios �S(t) are indepen-
dent and identically distributed (iid) random variables. Thus, if
�S(t) has sample mean m� and variance s2

� , the ELLR verifica-
tion score will have a mean and variance approximated by

μS = m� σ2
S =

s2
�

T − 1
(3)

Thus, for any sequence of frames X it is possible estimate the
mean and variance of the ELLR score.

Using these estimates of the ELLR score statistics, a con-
fidence interval for the “true” score can be calculated using a
confidence level and the Gaussian cumulative density function.

Estimate with Correlation Compensation: Acoustic features
commonly used for speaker verification, such as MFCC fea-
tures, exhibit high levels of correlation between consecutive
observation frames. This is due to the short-term spectra and
cepstra calculated for consecutive frames sharing typically two-
thirds of their waveform samples and the delta cepstra explic-
itly averaging over a number of frames. The mechanics of
speech production also limits the rate at which vocal tract shape
can change which causes correlations, a fact exploited by tech-
niques such as RASTA filtering [8]. This correlation obviously
voids the commonly cited assumption of statistically iid feature
vectors.

Given the invalidity of the iid assumption, the estimated
ELLR variance is invalid and empirical evidence shows that it
is often underestimated, particularly with short sequences. For
this reason, it is necessary to develop an alternative estimate to
reduce the effect of this correlation.

In this research a transformation approach was adopted to
reduce the correlation by producing a series of ELLR estimates
yS from short, fixed-length, non-overlapping frame sequences,

yS(i) =
1

N

N(i+1)−1X
t=Ni

�S(t) (4)

where N is the length of the short frame sequences. If N is suf-
ficiently large, the correlation between successive yS(i) drops
to a negligible level.

From yS , it is then possible to estimate the overall ELLR
mean and variance as

μS = my σ2
S =

s2
y

T/N − 1
(5)

where my and s2
y are the sample mean and sample variance of

yS respectively.
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Figure 1: DET plot using the naı̈ve method at the EER operating point.

Robustly Estimating the Sample Variance: For these tech-
niques to be effective, it is important to robustly estimate the
variance of the frame log-likelihood ratios with a very limited
number of samples. This issue is also exacerbated by the cor-
related nature of these scores. One possible method to produce
a more robust estimate of this variance is to introduce a priori
information to the estimation, with the resulting estimate given
by

ŝ2 =
τκ2 + (M − 1)s2

τ + (M − 1)
, (6)

where s2 is unbiased sample variance from M samples and κ2

and τ are hyperparameters of the prior distribution, which takes
the form of a Dirichlet distribution [9].

This estimate can then be used to produce more robust esti-
mates of the ELLR variance, as estimated in (3) and (5) above.

4 Results
Fig. 1 shows the performance of a system employing early de-
cision scoring using the naı̈ve frame-based estimate in (3) with
the threshold set for the equal error rate operating point at three
confidence levels, 90%, 99% and 99.9%. These confidence lev-
els are the minimum confidence with which the “true” verifi-
cation score must be above or below the EER threshold for the
system to make an early verification decision. Also shown is the
DET curve for the baseline reference system using all available
speech and a system using a fixed 2-second utterance length
(dotted curve) as a “worst case” system as a 2 sec minimum
length is also imposed on the early decision method.

As can be seen in Fig. 1 there is a significant drop in per-
formance compared to the reference system due to the shortcut
stopping criterion however there are some interesting aspects
to this plot. First, the degradation in performance is actually
quite modest as the reference system typically used at least 6
times the amount of speech to make a verification decision, as
described in Table 2. This point will be addressed further below.

Second, a higher confidence level provides a better EER;
Table 2 supports this with the Naı̈ve 99.9% system showing an
EER 8.9% lower than at the 90% confidence level.

Third, and more interestingly, the DET curves for these sys-
tems veer away from the reference system the farther they are
from the EER operating point, both in the low false alarm and
low miss regions. This characteristic is a direct consequence of
the shortcut method as the system is only interested in the per-

Table 2: Verification results at the EER operating point for the early
verification decision method.

System EER Trial Length Shortcut Errors
Med. Mean Imp. Target

Reference 6.34% 103.4 103.4 – –
Naı̈ve

90% Conf. 17.64% 2 3.4 15.8% 14.4%
99% Conf. 11.26% 4 8.9 7.5% 7.6%
99.9% Conf. 8.73% 6 15.6 3.6% 4.3%

Decorrelated N = 10
90% Conf. 12.62% 3 6.8 9.7% 9.1%
99% Conf. 7.74% 9 21.4 1.9% 2.6%
99.9% Conf. 6.66% 18 33.3 0.6% 1.0%

With Prior τ = 100, κ2 = 0.25
90% Conf. 10.89% 4 8.6 7.2% 7.5%
99% Conf. 7.04% 12 24.5 1.0% 1.6%
99.9% Conf. 6.48% 21 36.0 0.2% 0.5%
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Figure 2: Histogram of the test utterance length using the naı̈ve vari-
ance estimate method with the EER operating point.

formance at the specified threshold and essentially trades per-
formance in other areas for shorter test utterances.

In the ideal case the system would only provide perfor-
mance at the specified threshold and trade all other performance
for shorter trials (the curve labelled “Ideal” in Fig. 1). Using the
equal error rate as the criterion, an ideal system would provide
identical performance to the reference system.

By comparing the Tables 1 and 2 it can be seen that the
shortcut method is effective in trading performance at a specific
operating point for shorter trials. Comparing the results of the
fixed 5 sec system to the 99% confidence level—with a median
utterance length of 4 seconds—the EER improves from 16.99%
to 11.26%, halving the gap to the reference with a shorter test
utterance length on average.

Additionally, the mean test utterance lengths are dominated
by a relatively small number of long trials with the majority of
trials providing a result within 2, 4 or 6 seconds respectively for
the systems in Table 2, as indicated by the median trial lengths
for the Naı̈ve system.

This last point has an astonishing implication: For the ma-
jority of trials a text-independent speaker verification system
will produce the same decision with only 2 seconds of speech
that it will with almost 2 minutes of speech. A better under-
standing of the distribution of trials lengths can be taken from
the histogram in Fig. 2.

Presented in the two rightmost columns of Table 2 are the
rates of errors introduced by the early decision criteria for im-
postor and target trials, respectively. These represent the trials
for which the reference system and the early decision system
have produced differing decisions. This is the loss introduced
by the early decision methods and, if the distribution assump-
tions and estimates are accurate, should closely match the con-
fidence levels specified.

It can be seen from these results that the error rates for the
naı̈ve system do not match the specified confidence levels well,
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particularly as the confidence is increased. The fact that the
error rates don’t reflect the desired confidence levels suggests
two possible issues. Firstly, the naı̈ve variance estimates are not
sufficiently accurate particularly when based on a small number
of frames. Secondly, the assumption of a Gaussian frame score
distribution is invalid. Observations of frame score distributions
show that this is in fact a valid assertion as they exhibit signif-
icant third and fourth order statistics. This could particularly
have an effect with very short utterances where there is not a
sufficient number of observations for the central limit theorem
to be valid.

Table 2 also presents the performance of the early decision
method using the decorrelated distribution estimates from (5).
This method is assessed with a short frame sequence length of
N = 10 for it’s ability to reduce the degree of correlation in the
samples used to estimate the ELLR score distribution. With a
typical frame rate of 100 frames per second, a value of N = 10
averages the frame scores over the period of a tenth of a second
of active speech.

It can be seen from these results that decorrelating the sam-
ples used to estimate the ELLR score distribution does in fact
reduce the proportion of errors introduced by the early decision
scoring method (the two rightmost columns of Table 2), produc-
ing performance closer to that of the reference system. The best
performing configuration drops only 0.32% at the EER operat-
ing point.

The errors introduced by the decorrelated early decision ap-
proach also produces errors at a rate much closer to the speci-
fied confidence level. While the rate at 99.9% confidence is
still almost an order of magnitude too high, this result at least
demonstrates that the variance estimated is more accurate with
the data correlations diminished.

There is unfortunately an increase in both the mean and
median utterance length associated with the decorrelated esti-
mation method, however, despite this increase the median utter-
ance lengths required are still very short at 3–18 seconds.

By incorporating a priori information in the variance esti-
mate it is possible to reduce the performance discrepancy be-
tween the reference system and the early decision version to be
insignificant. This improved performance unfortunately comes
at the cost of longer verification utterances both in terms of the
mean and median length statistics, as presented in last three
rows of Table 2. Prior information was incorporated into the
decorrelated variance estimate system with N = 10. The hy-
perparameter τ was fixed at the equivalent of 1 sec while a value
of κ2 = 0.25 was determined empirically.

Particularly noticeable for these results is the consistency
between the specified confidence level and the rate of shortcut
errors introduced by making early verification decisions at that
confidence level.

Fig. 3 graphically summarises the performance of the early
verification decision approach by comparing the EER to the me-
dian utterance length. Also presented are the fixed utterance-
length systems as a reference. It is evident that the early veri-
fication decision method demonstrates consistently and signifi-
cantly superior performance compared to specifying a fixed ut-
terance length.

5 Summary
This paper introduced a novel method for estimating the con-
fidence interval for the expected log-likelihood ratio scoring
method used in speaker verification based on estimating the
variance of individual frame scores. Several enhancements to
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Figure 3: Median utterance length versus EER for the fixed short utter-
ance and early verification decision systems.

this estimate were proposed to increase its robustness and accu-
racy for the peculiarities of GMM-based speaker verification.

One particular application for this information was ex-
plored to determine the minimum quantity of speech required
to confidently make a verification decision based on a given
threshold. This early verification decision method demonstrated
that as little as 2–10 seconds of active speech on average was
able to produce verification results approaching that of using an
average of over 100 seconds of speech. Moreover, the perfor-
mance loss incurred by making an early decision can be con-
trolled by adjusting the confidence required in the resultant de-
cision.
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[4] N. Brümmer and J. du Preez, “Application-independent evaluation
of speaker detection,” Computer Speech & Language, vol. 20, no.
2-3, pp. 230–275, 2006.

[5] R. Vogt and S. Sridharan, “Explicit modelling of session variability
for speaker verification,” Computer Speech & Language, vol. 22,
no. 1, pp. 17–38, 2008.

[6] A. Martin, D. Miller, M. Przybocki, J. Campbell, and H. Nakasone,
“Conversational telephone speech corpus collection for the NIST
speaker recognition evaluation 2004,” in International Conference
on Language Resources and Evaluation, 2004, pp. 587–590.

[7] A. Martin and M. Przybocki, “The NIST 1999 speaker recognition
evaluation—an overview,” Digital Signal Processing, vol. 10, no.
1-3, pp. 1–18, 2000.

[8] H. Hermansky and N. Morgan, “RASTA processing of speech,”
IEEE Transactions on Speech and Audio Processing, vol. 2, no. 4,
pp. 578–589, 1994.

[9] J.-L. Gauvain and C.-H. Lee, “Bayesian adaptive learning and
MAP estimation of HMM,” in Automatic Speech and Speaker
Recognition: Advanced Topics, C.-H. Lee, F. Soong, and K. Pali-
wal, Eds. Boston, Mass: Kluwer Academic, 1996, pp. 83–107.

1408


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstract Book
	Abstract Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Robbie Vogt
	Also by Sridha Sridharan
	------------------------------

