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On 1-D PDE-Based Cardiovascular Flow Bottleneck Modeling and
Analysis: A Vehicular Traffic Flow-Inspired Approach

Nikolaos Bekiaris-Liberis

Abstract—We illustrate the potential of PDE-based traffic flow
control in cardiovascular flow analysis, monitoring, and control,
presenting a PDE-based control-oriented formulation, for 1-D
blood flow dynamics in the presence of stenosis. This is achieved
adopting an approach for modeling and analysis that relies on
the potential correspondence of 1-D blood flow dynamics in
the presence of stenosis, with 1-D traffic flow dynamics in the
presence of bottleneck. We reveal such correspondence in relation
to the respective (for the two flow types), speed dynamics and
a (consistent with them) fundamental diagram-based reduction;
bottleneck dynamic effects description and resulting boundary
conditions; and free-flow/congested regimes characterization.

I. INTRODUCTION

Arterial stenosis, due to, for example, atherosclerotic plaque
building up in arteries or in-stent restenosis, is a primary
cause of human losses worldwide [11]. A great number of
deceases, attributed to congested blood flow, currently ac-
counting for about 50% of deaths within the European Union
[33], could be avoided with accurate/timely detection and
action implementation. This is true particularly in view of the
practical feasibility that is supported by existing technologies,
such as, for example, smart, stents and bypass grafts, and
other implantable devices, where actuation and sensing may
be performed wirelessly, via communication with a central
computer; see, for example, [11], [10], [24], [38], [47].

Despite the technological advancement and urgent need for
availability of respective advanced methodologies, illustrated
by their potential in congested blood flow detection/treatment,
there exists no control-theoretic approach tackling the formu-
lation, analysis, monitoring, and feedback control problems of
congested blood flow, in its natural, continuous in time/space,
domain, in the presence of stenosis. However (and despite the
domain and dimensional complexity of cardiovascular flow),
there exist 1-D, second-order, hyperbolic Partial Differential
Equation (PDE) systems that may effectively describe (on
average) blood flow dynamics; see, e.g., [9], [17], [19], [29],
[34], [44]. Thus, such models may be utilized as basis for
control-theoretic modeling, analysis, and design purposes.

In this paper we launch an effort in this direction formu-
lating and analyzing, from a PDE-based traffic flow control
(see, e.g., [8], [13], [15], [20], [22], [32], [42], [43], [53],
[55]) perspective, the dynamics of 1-D blood flow in the
presence of stenosis. The stenosis is considered to be located
at the boundary of the arterial segment considered. We present
two alternative formulations in which the stenosis dynamics
are characterized via a static or dynamic description for the
pressure drop through the stenosis. Together with utilization
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of a baseline dynamic model for blood flow, capturing the
main transport phenomena and respective mass/momentum
conservation principles, such formulation gives rise to a 2× 2
(heterodirectional; see, e.g., [2], [21]) hyperbolic PDE system,
with a static or dynamic boundary condition, at the outlet of
the artery segment considered, respectively. As the location,
geometry, and length of the potential stenosis are considered
to be unknown, the derived model may incorporate unknown
PDE domain length and boundary conditions parameters.

For the derived dynamic descriptions of 1-D blood flow in
the presence of stenosis, we then illustrate the correspondence,
of certain features, with traffic flow dynamics in the pres-
ence of bottleneck. We explore correspondence with Payne-
Whitham- and Aw-Rascle-Zhang-type models, in particular,
in relation to speed dynamics and a consistent (with respect
to reduction to conservation law equation, for instance, of
Lighthill-Whitham-Richards-type) fundamental diagram. Fur-
thermore, we illustrate the connection to respective, dynamic
models of traffic flow bottlenecks. In particular, boundary
blood flow stenosis may be characterized via the pressure drop
at the stenosis location, while boundary traffic flow bottleneck
may be described via the capacity drop at the bottleneck
area. Moreover, for each type of stenosis description, we
provide a consistent boundary condition at the outlet, which
could either be static or dynamic, also illustrating the cor-
respondence with the respective boundary conditions, in the
case of traffic flow bottleneck. We also discuss the analogy
between characterization of free-flow/congested traffic regimes
and supercritical/subcritical blood flow regimes.

We start in Section II presenting a control-oriented model
for blood flow in which arterial stenosis is described either
as static or dynamic, boundary bottleneck. In Section III we
analyze the obtained hyperbolic system, revealing the dynamic
correspondence with traffic flow dynamics in the presence
of bottlenecks. In Section IV we discuss potential research
directions that may emerge from the results presented.

II. CONTROL-THEORETIC MODELING OF STENOSIS

A. Baseline 1-D cardiovascular flow model

We consider the following 2× 2 hyperbolic system, which
constitutes an 1-D approximation of cardiovascular flow dy-
namis (see, e.g., [17], [19], [34])

At(x, t)=−Ax(x, t)V (x, t)−A(x, t)Vx(x, t) (1)

Vt(x, t)=−V (x, t)Vx(x, t)− 1

ρ

∂P (A(x, t))

∂x

−Kr
V (x, t)

A(x, t)
(2)

A(0, t)V (0, t)=Qin(t), (3)

ar
X

iv
:2

11
2.

11
92

4v
1 

 [
m

at
h.

O
C

] 
 2

2 
D

ec
 2

02
1



SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL ON OCTOBER 22, 2021 2

where A > 0 is section area of artery, V > 0 is average blood
speed, ρ > 0 is blood density, Kr > 0 is friction parameter
related to blood viscosity, t ≥ 0 is time, x ∈ [0, D] is spatial
variable, D > 0 is length of artery segment considered, P ∈ R
is pressure, which accounts for vessel wall displacement, and
Qin > 0 is flow at the inlet of the artery segment considered
(it could, for example, be described by a periodic signal, with
period equal to the cardiac cycle, see, e.g., [34]). A possible
expression for the pressure function is (see, e.g., [19], [34])

P (A) =
β

A0

(√
A−

√
A0

)
(4)

β = hE
√
πb, (5)

where A0 is reference arterial section area at rest, h > 0
is artery wall thickness, E > 0 is Young’s modulus, and b
is a positive parameter. One boundary condition, associated
with (1), (2), is provided in (3), describing the blood flow
entering the arterial segment considered. The second boundary
condition is specified in the following sections since it depends
both on the sign of the eigenvalues of hyperbolic system (1),
(2) as well as the stenosis dynamic description adopted.

In the present setup, in which the case of a boundary bottle-
neck is considered, it is assumed that parameters β and A0, in
the pressure equation (4), are known and constant throughout
the domain, which may be a reasonable requirement given that
variations in geometry and mechanical properties of the artery,
imposed by the stenosis, are considered to be located at the
boundary x = D. Although most of modeling and analysis de-
velopments could be performed considering spatially-varying
coefficients β, A0, for presentation and formulation simplicity,
as well as to not distracting the reader from the main scope
of the paper, which is presentation and analysis of a control-
theoretic, stenosis model and its correspondence with traffic
flow bottleneck model, we do not consider this case here.

B. Formulation of available measurements output equation

In the present paper we consider the case in which the
pressure and flow at the inlet of the artery segment considered
are measured in real time. Although such a setup may appear,
at first sight, as unrealistic, current technological advancements
enable the availability of these measurements. In particular,
such measurements could be wirelessly transmitted to a central
computer, utilizing smart stent (or bypass graft) devices, see,
for example, [11], [24], [38], [47]. Thus, besides having
available Qin, a measured output is available, given by

y(t) = P (A(0, t)) . (6)

Since location, geometry, and material properties of the stent,
in realistic scenarios, could be considered as known, it follows
that β and A0 at x = 0 are known (even in the case in which β,
A0 may take different values, as compared with their values for
x ∈ (0, D)). Thus, using (4), measurements of A(0, t) could
be obtained, and hence, using (3), measurements of V (0, t).

C. Stenosis model as static boundary bottleneck

This potential formulation of a bottleneck is derived as-
suming that the stenosis (e.g., due to atherosclerotic plaque

building up at arterial wall [33] or in-stent restenosis [11]) is
located downstream of the inlet (i.e., the known location of
a, for instance, stent device). In particular, we treat the right
boundary of the arterial segment considered as the point at
which the potential stenosis is located. Therefore, the spatial
variable x belongs to [0, D], where D may be unknown as
the stenosis location may be unknown. The right boundary
condition is derived such that it incorporates the effect of
stenosis in the outlet. A schematic view of the setup considered
is shown in Fig. 1.

Fig. 1. Simplified schematic of an 1-D approximation of an arterial segment
at rest with boundary stenosis. At the inlet of the segment considered (i.e.,
for x = 0) an implantable smart stent device measures pressure and flow
(i.e., Pin and Qin, respectively). The bottleneck location D, stenosis cross-
sectional area As, and stenosis length Ls may be unknown.

a) Modeling assumptions: In the present setup, the do-
main length D and the effective section area at the stenosis
location As may be unknown1. In particular, the stenosis
section area is assumed to be constant, which may be a
reasonable assumption given the material and elastic properties
of atherosclerotic plaque (see, for example, [39]). It is further
assumed that (for constant As) flow is conserved through
the stenosis. Moreover, the least complex formulation of the
stenosis effect (at least in terms of the number of potentially
unknown model parameters) could be obtained assuming (ini-
tially) zero (or, effectively, very small) length for the stenosis.

b) Boundary condition formulation: Consequently, at the
stenosis location the following relation may be satisfied ([35],
[49], [50]; see also [12], [25], [37] for relevant expressions)

∆P (A(D, t), V (D, t))=V (D, t)2
Ksρ

2

(
A(D, t)

As
− 1

)2

,(7)

where ∆P (A(D), V (D)) denotes the pressure drop due to
the stenosis, while parameter Ks > 0 is known (obtained,
for example, from experimental data, see, e.g., [35]). The
pressure drop denotes the pressure difference between the
locations before and after the stenosis. For the former we
may assume that it is given by (4), while for the latter, we
may assume that it is described such that a terminal boundary
condition, modeling the effect of blood flow dynamics in
arteries downstream of the stenosis (see, for example, [18],
[37]), is imposed. Therefore, we may define

∆P (A(D, t), V (D, t))=P (A(D, t))−RTA(D, t)V (D, t),(8)

with Qs = A(D)V (D) denoting the flow at the inlet of the
stenosis, where RT ≥ 0 denotes a total, terminal resistance.
Parameter RT may be chosen depending on the blood flow

1The stenosis may be assumed to be axisymmetric (see, for example,
[50]; see also, for instance, [28], [31], for more complex, potential stenosis
geometries).
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conditions modeled for a considered arterial network, and thus,
it may be considered as known. Using (4), (7), (8) we obtain

β

A0

(√
A(D, t)−

√
A0

)
−RTA(D, t)V (D, t)

−V (D, t)2
Ksρ

2

(
A(D, t)

As
− 1

)2

= 0. (9)

Equation (9) prescribes a boundary condition at x = D,
associated with system (1)–(3), with As and D being unknown.

Although, as starting point and under the assumption of
zero stenosis length, formulation (9) may appear to be ade-
quately realistic, a more accurate, nevertheless more complex,
formulation for the right boundary condition (at the inlet of
the stenosis) may be obtained utilizing the following relation
for the pressure drop (see, for example, [35], [49], [50])

∆P (A(D, t), V (D, t))=
8πµLs

A2
s

A(D, t)V (D, t) + V (D, t)2

×Ksρ

2

(
A(D, t)

As
− 1

)2

, (10)

where Ls > 0 is unknown stenosis length and µ is known
blood viscosity coefficient. Thus, using (4), (8), (10) we obtain

β

A0

(√
A(D, t)−

√
A0

)
−
(
RT +

8πµLs

A2
s

)
A(D, t)

×V (D, t)− V (D, t)2
Ksρ

2

(
A(D, t)

As
− 1

)2

= 0. (11)

In the case of boundary condition (11), in addition to As and
D, the stenosis length Ls may also be an unknown parameter.

D. Stenosis model as dynamic boundary bottleneck
Boundary condition formulations (9), (11) may be accurate

for zero or, effectively, very small, stenosis length. A poten-
tially more realistic, nevertheless more complex, model of the
pressure drop dynamics, accounting for larger stenosis length
(yet, much smaller than the length D of the arterial segment
considered), may be written as (see, for example, [37], [50])

Vt(D, t)=
1

ρLs
∆P (A(D, t), V (D, t))− V (D, t)2

Ks

2Ls

×
(
A(D, t)

As
− 1

)2

− 8πµ

ρA2
s

A(D, t)V (D, t). (12)

Employing (4), (8), relation (12) may be written as

Vt(D, t)=
β

ρA0Ls

(√
A(D, t)−

√
A0

)
−
(
A(D, t)

As
− 1

)2

× Ks

2Ls
V (D, t)2 −

(
8πµ

ρA2
s

+
RT

ρLs

)
A(D, t)V (D, t).(13)

The complete model (1)–(3), (13) consists of a nonlinear
hyperbolic PDE - nonlinear Ordinary Differential Equation
(ODE) coupled system.

We note here that, similarly to considering an ODE for
describing the dynamics at the right boundary, due to the
presence of stenosis, one could consider an ODE for the
dynamics of the pressure downstream of the stenosis (instead
of the static relation given by the term RTAV in (8); see, for
example, [37]). For formulation and presentation simplicity,
we do not consider the dynamics of the stenosis pressure here.

III. ANALYSIS OF THE CARDIOVASCULAR FLOW MODEL
AND ITS RELATION TO TRAFFIC FLOW DYNAMICS

A. Analysis of the hyperbolic system
a) Blood flow information propagation: In physiological

conditions blood flow is reported to lie in congested (or,
subcritical) regime (see, e.g., [19], [34]). In particular, the
eigenvalues of the hyperbolic system (1), (2) are given by

λ̄1 (A, V ) = V +

√
β

2ρA0
A

1
4 (14)

λ̄2 (A, V ) = V −

√
β

2ρA0
A

1
4 . (15)

Since we are concerned with the case of subcritical regime
we restrict our attention in a nonempty, connected open subset
Ω of the set Ω̄ =

{
(A, V ) ∈ R2 : 0 < A, 0 < V

}
, such that

V <
√

β
2ρA0

A
1
4 , and hence, λ̄1 > 0 and λ̄2 < 0, in the

region of interest. System (1)–(3) is then strictly hyperbolic
with distinct, real nonzero eigenvalues, as long as (A, V ) ∈ Ω,
which implies that information propagates both forward (with
blood flow) and backward (at a lower speed).

b) Transformation to Riemann variables: The Riemann
invariants that correspond to the hyperbolic system (1), (2)
with eigenvalues (14), (15) are defined as

u (A, V ) = V + 2

√
2β

ρA0
A

1
4 (16)

v (A, V ) = V − 2

√
2β

ρA0
A

1
4 . (17)

The inverse transformations that correspond to (16), (17) are

V (u, v) =
1

2
(u+ v) (18)

A (u, v) =
ρ2A2

0

45β2
(u− v)

4
. (19)

In the new variables, system (1), (2) is written as

ut(x, t) = −λ1 (u(x, t), v(x, t))ux(x, t)

+f1 (u(x, t), v(x, t)) (20)
vt(x, t) = −λ2 (u(x, t), v(x, t)) vx(x, t)

+f1 (u(x, t), v(x, t)) , (21)

where

λ1 (u, v)=
5u+ 3v

8
(22)

λ2 (u, v)=
3u+ 5v

8
(23)

f1 (u, v)=−4
9
2Krβ

2

ρ2A2
0

u+ v

(u− v)
4 . (24)

Boundary condition (3) at the inlet is expressed in terms of
the Reimann variables as

g (u(0, t), v(0, t)) = Qin(t) (25)

g (u, v) =
ρ2A2

0

4
11
2 β2

(u+ v) (u− v)
4
. (26)

Together with (20)–(26) we associate a boundary condition at
x = D, which may be specified as follows.
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c) Boundary condition at the outlet: Since the 2 × 2
hyperbolic system (20), (21) is heterodirectional, together with
the boundary condition (25) at x = 0, one should specify a
boundary condition at x = D. There are different options for
specifying a boundary condition at x = D, also depending
on the coupling type, of the arterial segment considered, with
different arteries (also considering different types of arteries;
see, e.g., [18], [25], [34]).

Since in the present paper we are concentrated on the
modeling of bottleneck effects, the boundary condition is spec-
ified in order to describe the pressure difference between the
locations before and after the bottleneck, also accounting for a
cumulative effect of arteries downstream of the stenosis area.
This could be achieved employing a static (see Section II-C)
or dynamic (see Section II-D) description for the effect of the
stenosis. For completeness we also discuss the case in which
there is no stenosis and arteries downstream of the arterial
segment considered do not affect its dynamics. In such a case,
we explore a non-reflecting (see, e.g., [17], [40]) boundary
condition at x = D, such that there is no incoming wave at
the right boundary. We summarize below these three cases.

1) In the case of static boundary bottleneck, the boundary
condition at x = D is specified in order to describe the
pressure drop at the outlet of the arterial segment considered,
where a stenosis is located, as described in Section II-C.
Specifically, using (11), the right boundary condition is ex-
pressed in Riemann variables as

G (u(D, t), v(D, t)) = 0, (27)

where

G (u, v)=ρ (u− v)
2 − 32β√

A0

− d1 (u− v)
4

(u+ v)

−4Ksρ (u+ v)
2
(
d2 (u− v)

4 − 1
)2

(28)

d1=

(
RT +

8πµLs

A2
s

)
ρ2A2

0

β243
, d2 =

ρ2A2
0

45β2As
. (29)

2) Similarly, in the case of a dynamic boundary bottle-
neck, the right boundary condition is expressed in Riemann
variables using (13), (18) as

v(D, t) = 2X(t)− u(D, t) (30)

Ẋ(t) =
1

32ρLs
G (u(D, t), 2X(t)− u(D, t)) . (31)

3) In the case in which there is no stenosis, we explore
the option of a non-reflecting, right boundary condition (see,
e.g., [17], [40]), such that no incoming wave enters at the right
boundary of the arterial segment considered. Such a boundary
condition could be compared with a “free” right boundary
condition (imposed, for example, in specific traffic networks,
see, e.g., [4], [22]; see also Section III-B). Such a boundary
condition could be described as

vt(D, t) = f1 (u(D, t), v(D, t)) . (32)

In fact, one could observe that, boundary condition (32)
implies (for classical solutions) that the Riemann variable

corresponding to the negative eigenvalue has zero spatial
derivative at the right boundary.

Well-posedness of the 2× 2 hyperbolic PDE system (20)–
(26) with the dynamic boundary condition (32) (with (24))
or (30), (31) (with (28)), or the static boundary condition
(27) (with (28)) may be guaranteed utilizing, for example,
the results in [3], [30]. To be able to employ such results,
certain assumptions are required to be imposed on regularity,
size, and compatibility (with boundary conditions) of initial
conditions, on size and regularity of flow Qin at the inlet, and
on the values of parameters β, A0, Ks, ρ, Ls, µ, RT, As. Well-
posedness of the hyperbolic system considered, for realistic
values of the various parameters involved, is also consistent
with the dynamic behavior of the actual, physical system (see,
for example, [9], [34]). Although important, we do not belabor
this issue as it is beyond the present paper’s primary scope.

B. Properties of the model from a traffic flow perspective

1) The first correspondence with second-order traffic flow
models originates in the speed equation (2). Such relation (for
Kr = 0) may be compared to the speed dynamics of Payne-
Whitham traffic flow model (see, e.g., [41]) with pressure
given by (4). Equation (1), which expresses the conservation
of blood volume entering and exiting an artery segment
considered, corresponds to the conservation of the number of
vehicles entering and exiting a given highway segment.

2) The correspondence of model (1), (2) to traffic flow
models of Payne-Whitham (and Aw-Rascle-Zhang, see, e.g.,
[16], [27], [41]) type could be also viewed via a fundamen-
tal diagram definition, considering the pressure function (4),
which could be explained as follows. Adopting the procedure
in [54] for derivation of a fundamental diagram relation
from the speed equation (2), we define V = F (A) and
substitute this relation into (2) in order to obtain only one,
conservation law equation of the form (1), i.e., of the form
At + (F (A)A)x = 0, where F is to be determined. With
Kr = 0 we get that

F ′(A)

(
At + F (A)Ax +

β

2ρA0

√
AF ′(A)

Ax

)
=0. (33)

Imposing the reasonable requirement that F ′(A) < 0, for all
A > 0, relation (33) holds if the following equation is satisfied

At + F (A)Ax +
β

2ρA0

√
AF ′(A)

Ax = 0. (34)

Therefore, in order for equation (34) to reduce to the conser-
vation law equation (1), imposing V = F (A), for any A, the
following should hold

F ′(A)2 =
β

2ρA0
A−

3
2 . (35)

Therefore, since F ′(A) < 0, for any A > 0, we get that

F (A) = F (0)− 2

√
2β

ρA0
A

1
4 . (36)

The constant F (0) may be viewed as the speed at a limiting
case in which the section area tends to zero. Thus, in practice,
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it may be defined, for example, through considering a maxi-
mum possible, blood transport speed, which could be obtained
empirically. Relation (36) defines a fundamental diagram (see,
e.g., [41]), satisfying the required conditions. In particular,
function Q̄(A) = AF (A) = A

(
F (0)− 2

√
2β
ρA0

A
1
4

)
, for A ∈

[0, A1], where A1 =
F (0)4ρ2A2

0

β243 , satisfies Q̄(0) = Q̄ (A1) = 0,
while being strictly concave.

We note here that the limiting case in which V = F (A),
constitutes a considerable simplification, which may appear,
at first sight, as not realistic for cardiovascular systems.
However, such a reduction may be useful in, for example,
studying the dynamic effect of a bottleneck in blood flow,
at a vicinity upstream of the stenosis, employing only the
respective conservation law equation.

3) The two different bottleneck descriptions also bear
a resemblance to traffic flow bottleneck descriptions. For
example, boundary bottlenecks may appear due to lane-drops
or, in general, due to the presence of locations of reduced
capacity, at the end of a controlled area of interest, such
as, for example, where a tunnel or an area of high curva-
ture begins (see, e.g., [45]). A boundary bottleneck could
be described through properly modeling the traffic capacity
drop at the bottleneck location (potentially also employing
different fundamental diagram relations for the traffic speed
immediately before and after the bottleneck location; see, e.g.,
[41], [52]); corresponding to the static equation (7) (or (10)),
which describes the pressure drop at the area of the stenosis
(that may also be viewed as defining a pressure fundamental
diagram at the stenosis, depending on the pressure immediately

before, as Ps (A, V ) = P (A) − V 2Ksρ
2

(
A
As
− 1
)2

, which
becomes a function of only A when V = F (A)).

In the case of a dynamic bottleneck description, speed (or
flow) dynamics at the area of the stenosis are described by an
ODE (as in (13), (31); see also, e.g., [37], [50]), dictated by
the pressure difference between the areas at the inlet and outlet
of the stenosis. This may be viewed as corresponding to the
case of dynamic description of traffic density at a bottleneck
area through an ODE, dictated by the flow difference between
the flow arriving and exiting the bottleneck area (see, e.g., [5],
[45]). In both cases the resulting dynamic description consists
of a nonlinear, hyperbolic PDE-ODE coupled system.

4) The non-reflecting boundary condition (see, e.g., [17],
[40]), considered in the case of no bottleneck, at the outlet of
the arterial segment considered, could be compared with a free
boundary condition in traffic flow, at the outlet of a highway
segment (see, e.g., [4], [22]). In the case of traffic flow, a free
boundary condition indicates that, at the right boundary, there
is no influence from the downstream traffic. Respectively, a
non-reflecting boundary condition, in the case of blood flow,
indicates that no incoming wave enters the domain at the right
boundary. It could be verified that, in both cases, the respective
dynamic boundary conditions imply a zero spatial derivative
(for classical solutions) of the leftward transporting Riemann
variable, at the right boundary.

5) For cardiovascular flow, subcritical regime is character-
ized by the sign of λ̄2 in (15). Analogously, traffic congestion
may be characterized by negative sign of a respective eigen-

value that corresponds to the Reimann invariant transporting
opposite to traffic flow direction (see, e.g., [6]). One difference
lies in that physiological conditions for cardiovascular flow
correspond to the subcritical (congested) regime (where λ̄2 <
0; see, e.g., [19], [34]), whereas for traffic flow, physiological
conditions may be considered as corresponding to the free-
flow (supercritical) regime (where λ̄2 > 0; see also, e.g., [6]).

IV. FUTURE PERSPECTIVES

The arterial stenosis models presented and the correspon-
dence with vehicular traffic flow bottleneck models, may
constitute the starting point for PDE-based, control-theoretic
developments for cardiovascular flow stenosis analysis, estima-
tion, and control, inspired by respective traffic flow techniques.

A first research direction, of practical and theoretical sig-
nificance, would be to develop algorithms for real-time identi-
fication of potential stenosis location and characteristics (such
as, e.g., length and thickness). Towards this end, a possible
approach would be to design adaptive observers, utilizing the
2 × 2 hyperbolic system (20), (21), (25) with either (27)
or (30), (31), aiming at simultaneous state estimation and
parameters identification, employing the derived model and the
available boundary measurements. Related methods for traffic
flow models and general hyperbolic systems could be found,
for example, in [1], [7], [36], [46], [51].

Another potential research direction would be to consider
the feedback control problem of blood flow at areas with
stenosis. Towards this end, perhaps a crucial issue would be
to specify how, in practice, the required actuation could be
performed. One possibility would be to consider boundary
actuation, manipulating the inflow in (25) through certain
micro-electromechanical systems (for example, smart stent
devices, actuated wirelessly; see, e.g., [10], [47]), thus re-
sulting in a boundary control problem for system (20), (21),
(25) with either (27) or (30), (31). An alternative possibility
would be to consider in-domain actuation enabled through
automated drug delivery systems (see, e.g., [10], [26]). Such an
approach could build upon an extension of the presented model
to incorporate in-domain actuation, in correspondence with
automated vehicles-based actuation incorporation in vehicular
traffic (see, for example, [4], [14], [23], [32], [48]).
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