
1

Dynamic Collective Choice: Social Optima

Rabih Salhab, Jerome Le Ny and Roland P. Malhamé

Abstract

We consider a dynamic collective choice problem where a large number of players are cooperatively

choosing between multiple destinations while being influenced by the behavior of the group. For

example, in a robotic swarm exploring a new environment, a robot might have to choose between

multiple sites to visit, but at the same time it should remain close to the group to achieve some

coordinated tasks. We show that to find a social optimum for our problem, one needs to solve a set

of Linear Quadratic Regulator problems, whose number increases exponentially with the size of the

population. Alternatively, we develop via the Mean Field Games methodology a set of decentralized

strategies that are independent of the size of the population. When the number of agents is sufficiently

large, these strategies qualify as approximately socially optimal. To compute the approximate social

optimum, each player needs to know its own state and the statistical distributions of the players’ initial

states and problem parameters. Finally, we give a numerical example where the cooperative and non-

cooperative cases have opposite behaviors. Whereas in the former the size of the majority increases

with the social effect, in the latter, the existence of a majority is disadvantaged.

Index Terms

Mean Field Games, Collective Choice, Multi-Agent Systems, Social Optimum.

I. INTRODUCTION

Discrete choice models were developed in economics to understand human choice behavior. A

concern of these models is predicting the decision of an individual in face of a set of alternatives,

for example, anticipating a traveler’s choice between different modes of transportation [1]. These

choices depend on some personal characteristics, such as the traveler’s financial situation, on
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some attributes of the alternatives, such as their prices, and on some unobservable attributes,

e.g., the traveler’s taste. The first static discrete choice model was proposed by McFadden in

[2].

In some situations, the individuals’ choices are socially influenced, that is, an individual’s

choice is affected by the others’ choices, for example entry or withdrawal from the labor market

in cooperative families [3]. The main goal of this paper is to model within the framework of

dynamic cooperative game theory situations where a large number of players/agents are making

socially influenced choices among a finite set of alternatives. The players involved in this game

are weakly coupled, that is, the individual choices are considerably influenced by a functional

of the others’ choice distribution (in this paper the mean), but for a sufficiently large population,

an isolated individual’s choice has a negligible influence on the others’ choices. Moreover, the

players’ states contributing to the social effect are assumed indistinguishable. In navigation

applications for example, a planner might want to deploy a swarm of robots cooperating to

explore an unknown terrain. A robot faces a situation where it should choose between multiple

sites to visit. At the same time, it should remain closed to the group to achieve some coordinated

tasks [4]–[6].

In non-cooperative games, perfectly rational players act selfishly by minimizing their individual

costs irrespective of making the other players better off or worse off. This “utilitarianist” aspect

of non-cooperative games neglects the social context where the social norms, social values, the

presence of a social planner or the social structures impose a kind of cooperation between the

players. An example of the influence of the social context on the behavior of players was given

in [7], where the author shows how at the Chicago Options Exchange the relations among the

traders, supposed to be noncooperative, affect their trades. In the robotic swarm example, the

cooperative behavior of the robots results from the intention of the planner to optimize a total

cost. Whereas in the non-cooperative case the agents search for a Nash equilibrium, the players

seek in the cooperative case a totally different type of solution, namely a social optimum.

The Mean Field Games (MFG) methodology, which we follow in this paper, is concerned with

dynamic games involving a large number of weakly coupled agents. It was originally developed

in a series of papers to study dynamic non-cooperative games [8]–[14]. The cooperative Linear

Quadratic Gaussian (LQG) MFG formulation was developed later in [15], where the authors

investigate the structure of the LQG costs to develop for a continuum of agents a set of

October 8, 2018 DRAFT



3

decentralized person-by-person optimal strategies (a weaker solution concept than the social

optimum that coincides under some conditions with the social optimum [16], [17]). Moreover,

they show that these strategies, when applied by a finite population, converge to an exact social

optimum as the number of players increases to infinity.

The main contribution of this paper is as follows. We consider a cooperative collective choice

model where the number of candidate optimal control laws increases exponentially with the size

of the population. Then, we develop a set of decentralized strategies of dimensions independent

of the size of the population and that converge to the social optimum as the size of the

population increases to infinity. Although the methodology used to solve the game follows [15],

the non-smoothness and non-convexity of our final costs, which involve a minimum function,

require different proofs for the convergence of the mean field based decentralized strategies to

the social optimum, see Lemmas 5, 8, Theorem 6 and Remark 3. In particular, our problem

formulation results in decentralized strategies that are discontinuous with respect to the agents’

initial conditions, capturing the issue of choosing between a finite set of alternatives, which

cannot be modeled using the standard LQG MFG setup considered in [15].

In [18], we studied the non-cooperative version of our model and developed via the MFG

methodology approximate Nash strategy profiles that converge to exact Nash equilibria as the

number of players increases to infinity. Since the person-by-person solutions are Nash-like

solutions, we rely in this note on some results established in [18] to establish the existence

of the person-by-person solutions and compute them. A static discrete choice model with social

interactions was also studied by Brock and Durlauf in [19], where the authors develop a non-

cooperative and a cooperative game involving a large number of players. Each player makes

a choice between two alternatives while being affected by the average of its peers’ decisions.

Inspired by the statistical mechanics approach, Brock and Durlauf propose a methodology to

solve the game that is similar to the MFG approach.

The cooperative dynamic discrete choice model is formulated in Section II. We show in

Section III that to find an exact social optimum, one can naively solve lN Linear Quadratic

Regulator (LQR) problems, each of dimensions Nn, where l is the number of choices, N the

number of players, and n the dimension of the individual state spaces. Alternatively, we develop

in Section IV via the MFG approach and within the so-called person to person optimization

setting a set of decentralized strategies that are asymptotically socially optimal. The dimensions
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of the decentralized strategies are independent of the size of the population. In Section V we

give some simulation results, while Section VI presents our conclusions.

II. MATHEMATICAL MODEL

We consider a cooperative game model involving N players with linear dynamics

ẋi = Aixi +Biui i = 1, . . . , N, (1)

where Ai ∈ Rn×n, Bi ∈ Rn×m, xi ∈ Rn is the state of agent i, ui ∈ U = L2([0, T ],Rm) its

control input and x0
i its initial state. The players cooperate to minimize a common social cost

Jsoc
(
u1, . . . , uN , x

(N)
)

=
N∑
i=1

Ji
(
ui, x

(N)
)
, (2)

where

Ji
(
ui, x

(N)
)

=

∫ T

0

{q
2

∥∥xi − Zx(N)
∥∥2

+
ri
2
‖ui‖2

}
dt + min

j=1,...,l

{
Mij

2
‖xi(T )− pj‖2

}
(3)

are the individual costs, q, ri,Mij > 0, Z ∈ Rn×n, and pj ∈ Rn, j = 1, . . . , l, are the destination

points. The individual cost functions penalize along the path the effort and the deviation from

the mean. Moreover, each agent must be close at time T to one of the destination points.

Otherwise, it is strongly penalized by the final cost. The agents are cost coupled via the average

x(N) = 1
N

∑N
i=1 xi. The coefficient ri depends on the agent i. In the robotic swarm example,

this reflects, for instance, the intention of the social planner to limit the mobility of some

robots. We assume that the coefficient Mij depends on the agent i and the destination point

pj to impose initial preferences towards the alternatives, as discussed later in Remark 1. When

considering the limiting population (N →∞), it is convenient to represent the limiting sequences

of (θi)i=1,...,N := {(Ai, Bi, ri,Mi1, . . . ,Mil)}i=1,...,N and {x0
i }i=1,...,N by two independent random

variables θ and x0 on some probability space (Ω,F ,P). We assume that θ is in a compact set Θ.

Let us denote the empirical measures of the sequences θi and x0
i , PNθ (A) = 1

N

∑N
i=1 1{θi∈A} and

PN0 (A) = 1
N

∑N
i=1 1{x0i∈A} for all (Borel) measurable sets A. We assume that PNθ and PN0 have

weak limits Pθ and P0. For further discussions about this assumption, one can refer to [15].

A social optimum is defined as the optimal control law (u∗1, . . . , u
∗
N) of (2). We start in the

following section by solving for such a social optimum in a centralized manner.
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III. CENTRALIZED SOCIAL OPTIMUM

In this section, we assume that each player can observe the states and the parameters of the

other players. We define x = (x1, . . . , xN)T the state of the population and u = (u1, . . . , uN)T

its strategy profile. The population’s dynamics is then

ẋ = Ãx+ B̃u, (4)

where Ã = diag(A1, . . . , AN) and B̃ = diag(B1, . . . , BN). The individual costs can be written

Ji
(
ui, x

(N)
)

= min
pj∈∆

J
pj
i

(
ui, x

(N)
)
, (5)

where ∆ = {p1, . . . , pl} and

J
pj
i

(
ui, x

(N)
)

=

∫ T

0

{q
2

∥∥xi − Zx(N)
∥∥2

+
ri
2
‖ui‖2

}
dt +

Mij

2
‖xi(T )− pj‖2.

Using the equality a+ min(b, c) = min(a+ b, a+ c), one can prove by induction that the social

cost (2) can be written

Jsoc
(
u, x(N)

)
= min

d=(d1,...,dN )∈∆N

N∑
i=1

Jdii
(
ui, x

(N)
)
.

Noting that

inf
u∈UN

Jsoc
(
u, x(N)

)
= min

d∈∆N
inf
u∈UN

N∑
i=1

Jdii
(
ui, x

(N)
)
,

one can optimize the lN costs Jd(u) =
∑N

i=1 J
di
i (ui, x

(N)) and choose the less costly combination

of destination points d∗ ∈ ∆N which corresponds to the minimum of the optima of Jd. The

costs Jd, for d ∈ ∆N , can be written

Jd(u) =

∫ T

0

{
1

2
xT Q̃x+

1

2
uT R̃u

}
dt +

1

2
(x(T )− d)TM̃d(x(T )− d), (6)

where Q̃ = In⊗IN+ 1
N

(11T )⊗L, R̃ = diag(r1Im, . . . , rNIm), M̃d = diag(M1d1In, . . . ,MNdN In),

and

L = ZTZ − Z − ZT , (7)

with ⊗ denoting the Kronecker product, 1 = [1, . . . , 1]T , diag(.) denoting a block diagonal

matrix.

The LQR problem defined by (6) and (4) has a unique optimal control law [20]

ud∗(t) = −R̃−1B̃T
(

Γ̃d(t)x+ β̃d(t)
)

(8)
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with the corresponding optimal cost

Jd∗ (x(0)) =
1

2
x(0)T Γ̃d(0)x(0) + β̃d(0)Tx(0) + δ̃d(0), (9)

where Γ̃d, β̃d and δ̃d are respectively matrix-, vector-, and real-valued functions satisfying the

following backward propagating differential equations:

˙̃Γd − Γ̃dB̃R̃−1B̃T Γ̃d + Γ̃dÃ+ ÃT Γ̃d + Q̃ = 0 (10a)

˙̃βd =
(

Γ̃dB̃R̃−1B̃T − ÃT
)
β̃d (10b)

˙̃δd =
1

2
(β̃d)T B̃R̃−1B̃T β̃d (10c)

with the final conditions Γ̃d(T ) = M̃d, β̃d(T ) = −M̃dd and δ̃d(T ) = 1
2
dTM̃dd.

We summarize the above analysis in the following theorem.

Theorem 1: The social planner problem (2) has an optimal control law uv∗ defined in (8) and

corresponding to

Jv∗ = min
d∈∆N

Jd∗ .

As discussed in Section II, to capture the discrete choice phenomenon, the final cost forces

the agents to be at time T in the vicinity of one of the destination points. Indeed, the following

theorem establishes that for sufficiently large Mij , each player reaches an arbitrarily small

neighborhood of a destination point. Moreover, it asserts that there is only one set of destination

points p∗ ∈ RNn that the agents can reach exactly under an optimal control law, namely, the

final state x0(T ) under the control law u0 optimizing

J0(u) =

∫ T

0

{
1

2
xT Q̃x+

1

2
uT R̃u

}
dt, (11)

i.e., (6) without the final cost.

Theorem 2: Suppose that (Ai, Bi), i = 1, . . . , N , are controllable and the agents are minimiz-

ing (2). Then,

i. for any ε > 0, there exists M0 > 0 such that for all Mij > M0, each agent is at time T

inside a ball of radius ε and centered at one of the destination points.

ii. the agents 1, . . . , N reach at time T the destination points d = (d1, . . . , dN) ∈ ∆N if and

only if d = p∗.
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Proof: Let ε > 0 and d ∈ ∆N . The pairs (Ai, Bi), for i = 1, . . . , N , are controllable.

Therefore, there exist N continuous control laws ũi, i = 1, . . . , N , such that the corresponding

final states satisfy x̃i(T ) = di, i = 1, . . . , N . Let ũ = (ũi, ũ−i). We have

Jd(ũ) =

∫ T

0

{
1

2
x̃T Q̃x̃+

1

2
ũT R̃ũ

}
dt.

By optimality, we have
N∑
i=1

Midi

2

∥∥xi(ud∗)(T )− di
∥∥2 ≤ Jd∗ ≤ Jd(ũ).

The cost Jd(ũ) is independent of Mij . Therefore, there exists M0
d > 0 such that for all Midi >

M0
d , ‖xi(ud∗)(T )− di‖2 < ε, for i = 1, . . . , N . By choosing M0 = max

d∈∆N
M0

d , we get i).

Next, suppose that d 6= p∗ for all d ∈ ∆N . The optimal social cost is Jd∗ , for some d and

some Midi , i = 1, . . . , N . We suppose that the players reach under their optimal strategies the

destination points d1, . . . , dN . Let M ′
idi

> Midi for i = 1, . . . , N . We have, for all u ∈ UN ,

J ′(u) ≥ Jd(u) where

J ′(u) =

∫ T

0

{
1

2
xT Q̃x+

1

2
uT R̃u

}
dt +

N∑
i=1

M ′
idi

2
‖xi(T )− di‖2.

Under ud∗, the players 1, . . . , N reach d1, . . . , dN . Therefore,

J ′
(
ud∗
)

= Jd
(
ud∗
)

= min
u
Jd(u) = Jd∗ .

Therefore, min
u
J ′(u) = min

u
Jd(u). This equality holds for all M ′

idi
> Midi , i = 1, . . . , N . The

solutions of (10a)-(10c) are analytic functions of M̃d (for a proof of the analyticity one can

refer to [21]). Therefore, the optimal cost minu J
′(u) defined in (9) is an analytic function of

M ′
idi

. But minu J
′(u) is constant for all M ′

idi
> Midi . Therefore, by analyticity, it is constant

for all M ′
idi
≥ 0, and more precisely for M ′

idi
= 0. This implies that ud∗ is the optimal control

law of J0(u) defined in (11). The definition of p∗ implies that x
(
ud∗
)

(T ) = p∗ 6= d. This is a

contradiction, so in fact some of the agents cannot reach their destination point.

Now suppose that there exists v ∈ ∆N such that v = p∗. We have Jv(u) ≥ J0(u) for all u.

Following the definition of p∗, we have

min
u
J0(u) = J0(u0) = Jv(u0).

Therefore, the optimal control of Jv is uv∗ = u0. Hence, the agents reach p∗ = v.
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Remark 1: We show in this remark that in the absence of a social effect (q = 0), the number of

agents that go towards a destination point pj decreases as Mij increases. To simplify things, we

consider the binary choice case l = 2. In the absence of a social effect, each agent i minimizes

its individual cost (5). In the following, we write Jpji
(
ui, x

(N)
)

as Jpji (ui,M) to emphasize that

the coefficient Mij in J
pj
i

(
ui, x

(N)
)

is equal to M , and that the cost does not depend on x(N)

(q = 0). Following Theorem 1 and the absence of a social effect, for Mi1 = M1 > 0 and Mi2 =

M2 > 0, an agent i goes towards p1 if and only if min Jp1i (ui,M1) < min Jp2i (ui,M2). For an

M ′
2 > M2, min Jp1i (ui,M1) < min Jp2i (ui,M2) ≤ min Jp2i (ui,M

′
2). Therefore, by increasing

M2, the number of agents that go towards p2 decreases.

A naive approach to find an exact social optimum would be to solve the lN LQR problems

corresponding to the different combinations of destinations. This is obviously computationally

expensive, and moreover, with this approach each player needs to observe the states and param-

eters of all the other players. Instead, we develop in the following sections a set of decentralized

strategies that are asymptotically optimal. These strategies are decentralized in the sense that an

agent i’s strategy depends only on its state xi and on the distributions P0 and Pθ of the initial

conditions and parameters respectively.

IV. DECENTRALIZED SOCIAL OPTIMUM

A weaker solution concept than the social optimum is the person-by-person optimal solution

[16], [17].

Definition 1: A strategy profile (u∗i , u
∗
−i) is said to be person-by-person optimal with respect to

the social cost Jsoc(ui, u−i) if for all i ∈ {1, . . . , N}, for all ui ∈ U , Jsoc(ui, u∗−i) ≥ Jsoc(u
∗
i , u
∗
−i).

A social optimum is necessarily a person-by-person optimal solution. Following the methodology

proposed in [15], we compute in the following section a set of decentralized approximate person-

by-person solutions. Moreover, we show under some technical assumptions that these solutions

become socially optimal as N →∞.

A. Person-by-Person Optimality

Assuming that the other players fixed their person-by-person optimal strategies u∗−i, an agent

i computes its person-by-person optimal strategy u∗i by minimizing the cost Jsoc(ui, u∗−i) over

October 8, 2018 DRAFT
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the strategies ui ∈ U . Similarly to [15], one can show that the social cost can be written

Jsoc(ui, u
∗
−i) = J1,i

(
ui, x

∗(N)
−i

)
+ J2,i(u

∗
−i),

where x∗(N)
−i = 1/N

∑N
j=1,j 6=i x

∗
j ,

J1,i

(
ui, x

∗(N)
−i

)
=

∫ T

0

{
xTi Q̂xi +

(
x
∗(N)
−i

)T
L̂xi +

ri
2
‖ui‖2

}
dt + min

j=1,...,l

Mij

2
‖xi(T )− pj‖2

Q̂ =
q

2

(
In −

Z

N

)T (
In −

Z

N

)
+
q(N − 1)

2N2
ZTZ

L̂ = −qZT

(
In −

Z

N

)
− qZ +

q(N − 1)

N
ZTZ.

The term J2,i(u
∗
−i) does not depend on the strategy ui of player i. Therefore, minimizing

Jsoc(ui, u
∗
−i) reduces to minimizing J1,i

(
ui, x

∗(N)
−i

)
.

The person-by-person optimal solutions (u∗i , u
∗
−i) are fixed points of the following system of

equations:

u∗i = argmin
ui∈U

J1,i

(
ui, x

∗
−i

(N)
)

i = 1, . . . , N.

Equivalently, these solutions are the Nash equilibria of a noncooperative game involving the N

players defined in (1) but associated with the individual costs

J1,i

(
ui, x−i

(N)
)

i = 1, . . . , N. (12)

The players are cost coupled through the average of the population. In the following we develop

via the MFG approach a decentralized approximate Nash strategy profile with respect to (12),

or equivalently a set of decentralized approximately person-by-person optimal strategies with

respect to (2).

B. Mean Field Equation System

According to the MFG approach, each agent assumes a continuum of agents and computes

its best response to an assumed given continuous path x̄. This path represents the mean path

of the infinite size population under a Nash strategy profile. Since the players must collectively

reproduce this assumed mean path when applying their best responses to it, this path can be

computed by a fixed point argument. Under the infinite size population assumption, the costs

(12) reduce to the cost of a generic agent with state x, control input u and parameters θ:

J(u, x̄, x0, θ) =

∫ T

0

{
q

2
‖x‖2 + qx̄TLx+

rθ
2
‖u‖2

}
dt + min

j=1,...,l

{
Mθj

2
‖x(T )− pj‖2

}
, (13)

October 8, 2018 DRAFT
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where x̄ = Ex is the mean trajectory of the infinite size population. The generic agent’s state x

satisfies (1) where (Ai, Bi, ui) is replaced by (Aθ, Bθ, u), with an initial state x0(ω) drawn from

P0 and parameters θ(ω) = (Aθ, Bθ, rθ,Mθ1, . . . ,Mθl)(ω) drawn from Pθ. In the following, we

omit ω from the notation.

1) The Generic Agent’s Best Response to x̄: We define Γθk ∈ C([0, T ],Rn×n), βθk ∈ C([0, T ],Rn)

and δθk ∈ C([0, T ],R) to be the unique solutions of the following backward propagating differ-

ential equations:

Γ̇θk −
1

rθ
ΓθkBθB

T
θ Γθk + ΓθkAθ + ATθ Γθk + qIn = 0 (14a)

β̇θk =

(
1

rθ
ΓθkBθB

T
θ − ATθ

)
βθk − qLx̄ (14b)

δ̇θk =
1

2rθ
(βθk)

TBθB
T
θ β

θ
k, (14c)

with the final conditions

Γθk(T ) = MθkIn, βθk(T ) = −Mθkpk, δθk(T ) =
1

2
Mθkp

T
k pk.

Lemma 3: Given the initial condition and the parameters, an agent’s best response to x̄ and

the corresponding optimal cost are

û
(
t, x0, θ

)
=

l∑
j=1

− 1

rθ
BT
θ

(
Γθj(t)x̂

(
t, x0, θ

)
+ βθj (t)

)
1Dθj (x̄)(x

0) (15)

J∗
(
x̄, x0, θ

)
=

l∑
j=1

(
1

2
(x0)TΓθj(0)x0 + (βθj )(0)Tx0 + δθj (0)

)
1Dθj (x̄)(x

0), (16)

where x̂ (t, x0, θ) is the generic agent’s state under the feedback law (15), Γθk, β
θ
k , δθk are the

unique solutions of (14a)-(14c), and

Dθ
j (x̄) =

{
x ∈ Rn

∣∣∣∣∀k = 1, . . . , l,
1

2
xT
(

Γθj(0)− Γθk(0)
)
x+(

βθj (0)− βθk(0)
)T
x+ δθj (0)− δθk(0) ≤ 0

}
. (17)

Proof: See [18, Lemma 1].

The cost function (13) can be written as the minimum of l LQR cost functions each corresponding

to a distinct possible destination point. When minimizing one of these LQR costs, an agent

October 8, 2018 DRAFT
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goes towards the corresponding destination point. The region Dθ
j (x̄) defined in (17) includes

the initial conditions for which the LQR problem corresponding to pj is the less costly LQR

problem. Therefore, there exist l basins of attraction Dθ
j (x̄), j = 1, . . . , l, where the players

initially present in Dθ
j (x̄) go towards pj .

We define Ψθ
j(η1, η2, η3, η4) = Φθ

j(η1, η2)TBθB
T
θ Φθ

j(η3, η4), where Πθ
j(t) = 1

rθ
Γθj(t)BθB

T
θ −ATθ

and Φθ
j is the unique solution of

dΦθ
j(t, η)

dt
= Πθ

j(t)Φ
θ
j(t, η), Φθ

j(η, η) = In. (18)

The state trajectory of the generic agent is then [18]

x̂
(
t, x0, θ

)
=

l∑
j=1

1Dθj (x̄)(x
0)
{

Φθ
j(0, t)

Tx0 +
Mθj

rθ

∫ t

0

Ψθ
j(σ, t, σ, T )pj dσ

+
q

rθ

∫ t

0

∫ σ

T

Ψθ
j(σ, t, σ, τ)Lx̄(τ) dτdσ

}
. (19)

2) Existence of a Solution for the Mean Field Fixed Point Equation System: The mean field

equation system is determined by (14a)-(14c) plus the infinite size population mean equation

x̄(t) =

∫
x̂
(
t, x0, θ

)
dP0 × Pθ. (20)

This equation system defines an operator G(.) from the Banach space (C([0, T ],Rn), ‖‖∞) into

itself. In fact, given a continuous path x̄, one can solve (14a)-(14c) and compute by (20) the

mean trajectory G(x̄) of the generic agent when it optimally tracks x̄. We define

k1 = E‖x0‖ ×

(
l∑

j=1

max
(θ,t)∈Θ×[0,T ]

‖Φθ
j(0, t)‖

)

k2 =
l∑

j=1

max
(θ,t)∈Θ×[0,T ]

∥∥∥∥Mθj

rθ

∫ t

0

Ψθ
j(σ, t, σ, T )pj dσ

∥∥∥∥
k3 =

l∑
j=1

max
(θ,t,σ,τ)∈Θ×[0,T ]3

q

rθ
‖Ψθ

j(σ, t, σ, τ)L‖.

(21)

Since Θ and [0, T ] are compact and Φθ
j is continuous with respect to time and parameter θ, then

k1, k2 and k3 are well defined.

Assumption 1: We assume that
√

max(k1 + k2, k3)T < π/2.

Noting that the left hand side of the inequality tends to zero as T goes to zero, Assumption 1

can be satisfied for short time horizon T for example.

October 8, 2018 DRAFT



12

Assumption 2: We assume that L � 0, where L is defined in (7).

Assumption 2 is satisfied, for example, when Z = −αIn, α > 0. In this case, the social effect

pushes the agents away from the mean of the population.

Assumption 3: We assume that P0 is such that the P0−measure of quadric surfaces is zero.

Assumption 4: We assume that E‖x0‖2 <∞.

Theorem 4: Under Assumptions 1, 3 and 4, G has a fixed point. If (Aθ, Bθ,Mθj, rθ) =

(A,B,Mj, r), i.e., the parameters are the same for all the agents, the result holds with Assumption

1 replaced by Assumption 2.

Proof: See [18, Theorems 6 and 8].

Theorem 4 provides conditions under which a solution of the mean field equations (14a)-(14c)

and (20) exists. In case of nonuniform parameters, i.e. (Aθ, Bθ,Mθj, rθ) are not the same for

all the agents, the existence of a fixed point is proved by Schauder’s fixed point theorem [18,

Theorem 8] , where Assumption 1 is used to construct a bounded set that is mapped by G into

itself. When the parameters are the same for all the agents, by similar techniques than those

used in [18, Theorem 6], one can show that a fixed point of G is the optimal state of an LQR

problem of running cost q
2
xT (L + In)x + r

2
‖u‖2. The existence and uniqueness of an optimal

solution of this LQR problem is a consequence of Assumption 2. In the following, (15) and (19)

are considered for a fixed point path x̄. We define

x̂(N)(t) =
1

N

N∑
i=1

x̂i(t) =

∫
x̂
(
t, x0

i , θi
)

dPN0 (x0
i )dPNθ (θi), (22)

and û(N) = (ûi, û−i), where ûi(t) = û(t, x0
i , θi) and x̂i(t) = x̂(t, x0

i , θi).

C. Asymptotic Social Optimum

In this section, we show that when the agents apply the strategy profile û defined below

Theorem 4 and in (15), the corresponding per agent social cost (2) converges to the optimal per

agent social cost as the size of the population increases to infinity. At the end of this section,

we also give an explicit form of the asymptotic per agent optimal social cost.

Assumption 5: We assume that 1
N

∑N
i=1 ‖x0

i ‖2 < C for all N > 0.

Remark 2: Assumption 5 implies Assumption 4. In fact, PN0 converges in distribution to P0.

Therefore, there exists on some probability space (Ω,F ,P) a sequence of random variables X0
N

of distribution PN0 and a random variable X0 of distribution P0 such that X0
N converges with
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probability one to X0. We may consider, without loss of generality, that (Ω,F ,P) is the same

as the one defined in Section II. By Fatou’s Lemma [22],

C ≥ lim inf
N

1

N

N∑
i=1

∥∥x0
i

∥∥2
= lim inf

N

∫ ∥∥X0
N

∥∥2
dP

≥
∫

lim inf
N

∥∥X0
N

∥∥2
dP =

∫ ∥∥X0
∥∥2

dP = E
∥∥x0
∥∥2
.

The functions defined by (14a), (14b) and (14c) are continuous with respect to θ, which belongs

to a compact set Θ. The random variables θ and x0 are assumed to be independent. Therefore,

under Assumption 4 and by Fubini-Tonelli’s theorem [22], the operator G defined in paragraph

IV-B2 by (14a)-(14c) and (20) has the following form:

Ex̂
(
t, x0, θ

)
= G(x̄)(t) =

∫
Θ

∫
Rn
x̂
(
t, x0, θ

)
dP0(x0)dPθ(θ). (23)

In the following lemma, we show that when applying the decentralized person-by-person

control laws, the finite population average path converges to the fixed point path x̄ that the

agents are optimally tracking. In the standard LQG MFG literature, the proof of this result

relies on the uniform boundedness and equicontinuity of the generic agent’s state trajectory with

respect to the initial conditions and parameters. In our case, this trajectory (19), considered as

a function of the time t, the initial condition x0 and the parameter θ, is discontinuous. In fact,

it has on each basin of attraction Dθ
j a different structure that depends on the corresponding pj .

Hence, the proof requires some additional constructions to deal with the discontinuity.

Lemma 5: Under Assumptions 3 and 5,

lim
N→∞

∫ T

0

∥∥x̂(N) − x̄
∥∥2

dt = 0. (24)

Proof: In view of (22) and (23), we have

x̂(N)(t)− x̄(t) =

∫
x̂
(
t, x0

i , θi
)

dPN0 (x0
i )dPNθ (θi)−

∫
x̂
(
t, x0, θ

)
dP0(x0)dPθ(θ).

If x̂(t, x0
i , θi) and x̂(t, x0, θ) were uniformly bounded and equicontinuous with respect to the

initial conditions and parameters, then one can show the convergence by [23, Corollary 1.1.5]. But

x̂(t, x0
i , θi) and x̂(t, x0, θ) are discontinuous. Alternatively, we show that the set of discontinuity

points has a measure zero under Assumption 3. We then we show that x̂(N) converges pointwise

to x̄. Finally, We prove the uniform convergence, from which the result follows.
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Pointwise convergence. PN0 and PNθ converge respectively in distribution to P0 and Pθ. There-

fore, there exist on some probability space (Ω,F ,P) a sequence of random variables X0
N of

distribution PN0 (resp. a sequence of random variables ξθN of distribution PNθ ), and a random

variable X0 of distribution P0 (resp. a random variable ξθ of distribution Pθ) such that X0
N

(resp. ξθN ) converges with probability one to X0 (resp. ξθ). Thus,

x̂(N)(t)− x̄(t) =

∫ (
x̂
(
t,X0

N , ξ
θ
N

)
− x̂

(
t,X0, ξθ

))
dP.

For a fixed t, the discontinuity points of x̂ (t, x0, θ) (considered now as a function of x0 and θ)

are included in the set D = {(x0, θ) ∈ Rn × Θ |x0 ∈ ∂Dθ
j (x̄)}. Under Assumption 3 and the

independence of x0 and θ, one can prove that P0 × Pθ(D) = 0. Hence, x̂
(
t,X0

N , ξ
θ
N

)
converges

with probability one to x̂
(
t,X0, ξθ

)
. The compactness of [0, T ] and Θ, and the continuity of Πθ

j

imply ∥∥x̂ (t,X0
N , ξ

θ
N

)
− x̂

(
t,X0, ξθ

)∥∥ ≤ K1‖X0
N‖+K2‖X0‖+K3,

for some finite K1, K2, K3 > 0. x̂(N)(t) converges pointwise to x̄(t) for all t ∈ [0, T ] as a

consequence of Assumption 5, Remark 2 and Lebesgue’s dominated convergence theorem.

Uniform convergence. As in the proof of Theorem 4, see [18, Theorem 8], one can show that

for all t1, t2,
∥∥x̂(N)(t1)− x̂(N)(t2)

∥∥ ≤ K|t1− t2| and ‖x̄(t1)− x̄(t2)‖ ≤ K|t1− t2|, where K > 0

is independent of N . We fix an ε > 0 and consider a partition 0 = t0 < t1 < · · · < tj = T of [0, T ]

such that for all t, t′ ∈ [tk, tk+1], for N ≥ 1, ‖x̂(N)(t) − x̂(N)(t′)‖ < ε and ‖x̄(t) − x̄(t′)‖ < ε

By the pointwise convergence, there exists N0 such that for all N > N0, for k = 1, . . . , j,

‖x̂(N)(tk) − x̄(tk)‖ < ε. We fix N > N0. For an arbitrary t ∈ [0, T ], there exists k such that

t ∈ [tk, tk+1]. We have

‖x̂(N)(t)− x̄(t)‖ ≤ ‖x̂(N)(t)− x̂(N)(tk)‖+ ‖x̂(N)(tk)− x̄(tk)‖+ ‖x̄(tk)− x̄(t)‖ ≤ 3ε.

This inequality holds for an arbitrary t ∈ [0, T ], therefore, lim
N→∞

sup
t∈[0,T ]

‖x̂(N)(t) − x̄(t)‖2 = 0.

This implies (24).

We now state the main result of this paper, which asserts that under appropriate conditions,

when the agents apply the mean field person to person optimization based decentralized strategies

(15), the per agent social cost converges to the per agent optimal social cost as the size of the

population increases to infinity. To compute its control strategy (15), each agent only needs to
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know its initial condition, current state, the distributions P0 and Pθ and a fixed point path x̄ of

the operator G defined in (23).

Theorem 6: Under Assumptions 2, 3, and 5,

lim
N→∞

∣∣∣∣ inf
u∈UN

1

N
Jsoc

(
u, x(N)

)
− 1

N
Jsoc

(
û(N), x̂(N)

)∣∣∣∣ = 0. (25)

Proof: Let u ∈ UN such that Jsoc
(
u, x(N)

)
≤ Jsoc

(
û(N), x̂(N)

)
. Noting (19), the compact-

ness of Θ, the continuity of Πθ
j(t) with respect to t and θ and Assumption 5, one can prove that

(1/N)Jsoc
(
û(N), x̂(N)

)
< c0, where c0 is independent of N . Therefore, (1/N)Jsoc

(
u, x(N)

)
< c0

and
1

N

N∑
i=1

∫ T

0

{
‖ui‖2 + ‖ûi‖2 + ‖xi‖2 + ‖x̂i‖2

}
dt < c1,

where c1 > 0 is independent of N . Let x̃i = xi − x̂i and ũi = ui − ûi. We have (26) below

1

N
Jsoc

(
u, x(N)

)
=

1

N
Jsoc

(
û(N), x̂(N)

)
+

1

N

N∑
i=1

∫ T

0

riũ
T
i ûidt

+
1

N

N∑
i=1

∫ T

0

{q
2

∥∥x̃i − Zx̃(N)
∥∥2

+
ri
2
‖ũi‖2 + q

(
x̃i − Zx̃(N)

)T (
x̂i − Zx̂(N)

)}
dt (26)

+
1

N

N∑
i=1

min
j=1,...,l

Mij

2
‖xi(T )− pj‖2 − 1

N

N∑
i=1

min
j=1,...,l

Mij

2
‖x̂i(T )− pj‖2.

For a fixed point x̄ of G, and recalling (13) we have

J(ui, x̄, x
0
i , θi) = J(ûi, x̄, x

0
i , θi) +

∫ T

0

{
q

2
‖x̃i‖2 +

ri
2
‖ũi‖2 + qx̄TLx̃i + qx̃Ti x̂i + riũ

T
i ûi

}
dt

+ min
j=1,...,l

Mij

2
‖xi(T )− pj‖2 − min

j=1,...,l

Mij

2
‖x̂i(T )− pj‖2, (27)

Now (26) and (27) yield

1

N
Jsoc

(
u, x(N)

)
=

1

N
Jsoc

(
û(N), x̂(N)

)
+

1

N

N∑
i=1

(
J(ui, x̄, x

0
i , θi)− J(ûi, x̄, x

0
i , θi)

)
(28)

+ q

∫ T

0

(
x̃(N)

)T
Lx̃(N)dt + q

∫ T

0

(
x̂(N) − x̄

)T
Lx̃(N)dt.

By the bounds c0 and c1, the Cauchy-Schwarz inequality and Lemma 5, we deduce that εN =

q
∫ T

0
(x̂(N)−x̄)TLx̃(N)dt converges to 0 as N goes to infinity. The optimization of ûi with respect

to J and Assumption 2 imply 1
N
Jsoc(u, x

(N)) ≥ 1
N
Jsoc(û

(N), x̂(N)) + εN .

Remark 3 (Need for Assumption 2): In static games, a sufficient condition of the person-by-

person solution to be a social optimum is the convexity and smoothness of the costs [17,
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Lemma 2.6.1]. Although not explicitly mentioned by the authors [15], this condition (which

is automatically satisfied in the LQG setting) guarantees also the convergence of the person-by-

person solution to the social optimum in case of dynamic LQG MFG problems [15, Theorem

4.2]. In fact, if we follow the techniques used in [15, Theorem 4.2], then by the convexity of

the running cost, (26) implies

1

N
Jsoc

(
u, x(N)

)
≥ 1

N
Jsoc

(
û(N), x̂(N)

)
+

1

N

N∑
i=1

∫ T

0

{
riũ

T
i ûi + q (x̃i)

T (x̂i + Lx̄)
}

dt + εN

+
1

N

N∑
i=1

min
j=1,...,l

Mij

2
‖xi(T )− pj‖2 − 1

N

N∑
i=1

min
j=1,...,l

Mij

2
‖x̂i(T )− pj‖2. (29)

We have

d

dt
x̃Ti (Γθik x̂i + βθik ) = −riũTi ûi − q (x̃i)

T (x̂i + Lx̄) .

Hence,

1

N
Jsoc

(
u, x(N)

)
≥ 1

N
Jsoc

(
û(N), x̂(N)

)
(30)

+
1

N

N∑
i=1

(
φi (xi(T ))− φi (x̂i(T ))− x̃Ti (T )

d

dx
φi (x̂i(T ))

)
+ εN ,

where φi is the final cost of agent i. If the final costs are convex (which is not the case), then

(30) implies (25). To deal with the non-convexity of the final costs, steps (29) and (30) are

replaced by (27), (28) and Assumption 2.

D. Asymptotic Optimal Social Cost

In this section, we give an explicit form of the asymptotic per agent optimal social cost

lim
N→∞

inf
u∈UN

1
N
Jsoc(u, x

(N)). In the following lemmas, we start by approximating this asymptotic

per agent social cost.

Lemma 7: Under Assumptions 2, 3 and 5,

lim
N→∞

∣∣∣∣ inf
u∈UN

1

N
Jsoc

(
u, x(N)

)
− 1

N
Jsoc

(
û(N), x̄

)∣∣∣∣ = 0

Proof: We have

1

N
Jsoc

(
û(N), x̂(N)

)
− 1

N
Jsoc

(
û(N), x̄

)
=

∫ T

0

q

2N

N∑
i=1

(∥∥x̂i − Zx̂(N)
∥∥2 − ‖x̂i − Zx̄‖2

)
dt

=
q

2

∫ T

0

∥∥Z (x̂(N) − x̄
)∥∥2

dt + q

∫ T

0

(
x̂(N) − Zx̄

)T
Z
(
x̄− x̂(N)

)
dt.
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The Cauchy-Schwarz inequality and Lemma 5 imply

lim
N→∞

∣∣∣∣ 1

N
Jsoc

(
û(N), x̂(N)

)
− 1

N
Jsoc

(
û(N), x̄

)∣∣∣∣ = 0.

Therefore, we deduce by Theorem 6 the result.

Lemma 8: Under Assumptions 2, 3 and 5,

lim
N→∞

∣∣∣∣ inf
u∈UN

1

N
Jsoc

(
u, x(N)

)
− J∞soc(x̄)

∣∣∣∣ = 0,

where

J∞soc(x̄) =

∫ [∫ T

0

{
q

2

∥∥x̂(t, x0, θ)− Zx̄
∥∥2

+

rθ
2
‖û(t, x0, θ)‖2

}
dt + min

j=1,...,l

Mθj

2
‖x̂(T, x0, θ)− pj‖2

]
dP0dPθ.

Proof: By Lemma 7, it suffices to prove that

lim
N→∞

∣∣∣∣J∞soc(x̄)− 1

N
Jsoc

(
û(N), x̄

)∣∣∣∣ = 0.

We use the same notation as in the proof of Lemma 5. We have

J∞soc(x̄)− 1

N
Jsoc

(
û(N), x̄

)
= ψ1 + ψ2 + ψ3

where

ψ1 =
q

2

∫ T

0

∫ {∥∥x̂ (t,X0, ξθ
)
− Zx̄

∥∥2 −
∥∥x̂ (t,X0

N , ξ
θ
N

)
− Zx̄

∥∥2
}

dPdt

ψ2 =

∫ T

0

∫ {
rξθ

2

∥∥û (t,X0, ξθ
)∥∥2 −

rξθN
2

∥∥û (t,X0
N , ξ

θ
N

)∥∥2
}

dPdt

ψ3 =

∫
min
j=1,...,l

Mξθj

2

∥∥x̂ (T,X0, ξθ
)
− pj

∥∥2
dP−

∫
min
j=1,...,l

MξθN j

2

∥∥x̂ (T,X0
N , ξ

θ
N

)
− pj

∥∥2
dP.

Noting that aTa − bT b = (a + b)T (a − b) and that the minimum of l continuous functions is

continuous, one can prove by the same techniques used in the proof of Lemma 5 that ψ1, ψ2

and ψ3 converge to zero as N goes to infinity.

In the following theorem, we give an explicit form of the asymptotic social cost. This expression

depends only on the distributions P0, Pθ and a fixed point path x̄.
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Theorem 9: Under Assumptions 2, 3 and 5,

lim
N→∞

inf
u∈UN

1

N
Jsoc

(
u, x(N)

)
= −1

2

∫ T

0

qx̄TLx̄dt+

l∑
j=1

∫
1Dθj (x̄)(x

0)
{1

2
(x0)TΓθj(0)x0 + (βθj (0))Tx0 + δθj (0)

}
dP0dPθ.

Proof: Following Lemma 8, the per agent asymptotic optimal social cost is equal to J∞soc(x̄).

Noting (20), one can write J∞soc(x̄) = ψ4 − 1
2

∫ T
0
qx̄TLx̄dt, where

ψ4 =

∫ [∫ T

0

{
q

2

∥∥x̂ (t, x0, θ
)∥∥2

+ qx̄TLx̂
(
t, x0, θ

)
+
rθ
2

∥∥x̂ (t, x0, θ
)∥∥2
}

dt

+ min
j=1,...,l

Mθj

2

∥∥x̂ (T, x0, θ
)
− pj

∥∥2

]
dP0dPθ =

l∑
j=1

∫
1Dθj (x̄)(x

0)
{

(x0)TΓθj(0)x0 + βθj (0)Tx0 + δθj (0)
}

dP0dPθ.

V. SIMULATION RESULTS

In this section, we compare numerically the cooperative and the non-cooperative behaviors of a

group of agents choosing between two alternatives under the social effect. We consider a uniform

group of 400 players initially drawn from the Gaussian distribution N
( [
−5 10

]T
, 15I2

)
and

moving in R2 according to the dynamics

Ai =

 0 1

0.02 −0.3

 Bi =

 0

0.3


towards the potential destination points p1 = (−10, 0) or p2 = (10, 0). Hence we have a binary

choice problem, and in this case one can characterize the way the population splits between

the alternatives, in both the cooperative and non-cooperative cases, by a number λ, which is

the fraction of players that go towards p1. This number λ is a fixed point of a well defined

function F and can be computed by dichotomy. Moreover, one can compute the fixed point path

x̄ that corresponds to λ. For more details one can refer to [18, Theorem 6] and [18, Section

5.A]. We set ri = 10, Mij = 1200, T = 2, Z = 3.5I2, and we vary the social effect coefficient

q. L = ZTZ − Z − ZT = 5.25I2 satisfies Assumption 2. For q = 0 (no social effect), Fig. 1
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and 2 show that the 82% of the players (green squares in Fig. 2) go towards p2 in both the

cooperative and non-cooperative cases. As the social effect increases (q increases from 0 to 45),

in the non-cooperative case, the majority influences the minority whose size reduces from 18%

to zero (Fig. 1 and 4). In the cooperative case however, the size of the majority decreases and

the population splits more evenly between the two choices (Fig. 1 and 3). Fig. 1 also illustrates

that the per agent social cost in the cooperative case is smaller than in the non-cooperative case.
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Fig. 1. Cooperative vs. non-cooperative behavior

VI. CONCLUSION

We consider in this paper a dynamic cooperative game model where a large number of players

are making a socially influenced choice between multiple alternatives. Finding an exact social

optimum can be done by solving a number of LQR problems that grows exponentially with the

number of players. Alternatively, we develop via the MFG methodology a set of decentralized

strategies that are asymptotically socially optimal. The computation of the decentralized strategies
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Fig. 2. Absence of social effect (q = 0). The majority goes towards p2.
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Fig. 3. Cooperative case with high social effect (q = 40). The population splits more evenly.
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Fig. 4. Non-cooperative case with high social effect (q = 40). The population reaches consensus on p2.

assumes that each agent knows the statistical distributions of the initial states and parameters.

For future work, it is of interest to consider situations where the cooperative players learn these

statistical distributions while moving towards the destination points, e.g., by sharing and updating

their current states and parameters through a random communication graph.
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