
Titre:
Title:

A dynamic game model of collective choice in multi-agent systems

Auteurs:
Authors:

Rabih Salhab, Roland P. Malhamé, & Jérôme Le Ny 

Date: 2018

Type: Article de revue / Article

Référence:
Citation:

Salhab, R., Malhamé, R. P., & Le Ny, J. (2018). A dynamic game model of collective
choice in multi-agent systems. IEEE Transactions on Automatic Control, 63(3), 
768-782. https://doi.org/10.1109/tac.2017.2723956

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2865/

Version: Version finale avant publication / Accepted version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

IEEE Transactions on Automatic Control (vol. 63, no. 3) 

Maison d’édition:
Publisher:

IEEE

URL officiel:
Official URL:

https://doi.org/10.1109/tac.2017.2723956

Mention légale:
Legal notice:

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1109/tac.2017.2723956
https://publications.polymtl.ca/2865/
https://doi.org/10.1109/tac.2017.2723956


0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2723956, IEEE

Transactions on Automatic Control

1

A Dynamic Game Model of Collective Choice

in Multi-Agent Systems
Rabih Salhab, Roland P. Malhamé and Jerome Le Ny

Abstract—Inspired by successful biological collective decision
mechanisms such as honey bees searching for a new colony or
the collective navigation of fish schools, we consider a scenario
where a large number of agents engaged in a dynamic game have
to make a choice among a finite set of different potential target
destinations. Each individual both influences and is influenced
by the group’s decision, as represented by the mean trajectory
of all agents. The model can be interpreted as a stylized version
of opinion crystallization in an election for example. In the most
general formulation, agents’ biases are dictated by a combination
of initial position, individual dynamics parameters and a priori
individual preference. Agents are assumed linear and coupled
through a modified form of quadratic cost, whereby the terminal
cost captures the discrete choice component of the problem. Fol-
lowing the mean field games methodology, we identify sufficient
conditions under which allocations of destination choices over
agents lead to self replication of the overall mean trajectory
under the best response by the agents. Importantly, we establish
that when the number of agents increases sufficiently, (i) the
best response strategies to the self replicating mean trajectories
qualify as epsilon-Nash equilibria of the population game; (ii)
these epsilon-Nash strategies can be computed solely based on
the knowledge of the joint probability distribution of the initial
conditions, dynamics parameters and destination preferences,
now viewed as random variables. Our results are illustrated
through numerical simulations.

Index Terms—Mean Field Games, Collective Choice, Discrete
Choice Models, Multi-Agent Systems, Optimal Control.

I. INTRODUCTION

Collective decision making is a common phenomenon in

social structures ranging from animal populations [3], [4] to

human societies [5]. Examples include honey bees searching

for a new colony [6], [7], the navigation of fish schools [8], [9],

or quorum sensing [10]. Collective decisions involve dynamic

“microscopic-macroscopic” or “individual-social” interactions.

On the one hand, individual choices are socially influenced,

that is, influenced by the behavior of the group. On the other

hand, the collective behavior itself results from aggregating

individual choices.

In elections for example, an interplay between individual

interests and collective opinion swings leads to the crystal-

lization of final decisions [5], [11]. Our model may be an

abstract representation of this process where: i) individual

opinion dynamics are described in a state-space form [11];

This work was supported by NSERC under Grants 6820-2011
and 435905-13. The authors are with the department of Electri-
cal Engineering, Polytechnique Montreal and with GERAD, Mon-
treal, QC H3T-1J4, Canada {rabih.salhab, roland.malhame,
jerome.le-ny}@polymtl.ca.

Preliminary versions of this paper appeared at CDC 2014 and CDC 2015
[1], [2].

ii) changing one’s opinion requires an effort but deviation

from the majority’s opinion involves a discomfort; and iii)

a choice must be made before a finite deadline. The classical

voter model [12] describes the evolution of opinions in an

election. It considers a group of agents choosing between two

alternatives. At each instant, the probability that an individual

switches from one alternative to the other depends on its

current choice, the others’ states, as well as the communication

graph. In this paper, we consider a game theoretic approach to

a limited randomness version of this problem, whereby agents,

given enough deterministic or probabilistic information on

the initial spatial distribution and preferences of other agents,

crystallize at the outset what their final choices will be, through

anticipation of the group behavior over the control horizon.

Movement in opinion space towards a final choice requires

costly efforts from voters. At the same time, they experience

discomfort whenever their individual state differs from the

mean population state.

“Homing” optimal control problems, first introduced by

Whittle and Gait in [13] and studied later in [14]–[17] for

example, are concerned with a single agent trying to reach one

of multiple predefined final states. Here we consider a similar

fundamental issue but in a multi-agent setting. A large number

of agents initially spread out in R
n need to move within a

finite time horizon to one of multiple possible home or target

destinations. They must do so while trying to remain tightly

grouped and expending as little control effort as possible. Our

goal is to model situations in which the choice made by each

agent regarding which destination to reach both influences and

depends on the behavior of the population. For example, when

honey bees determine their next site to establish a colony they

must make a choice between different alternatives based on

the information provided by scouts, who are themselves part

of the group. Even though certain colonies can be easier to

reach and are more attractive for some bees, following the

majority is still a priority to enhance the foraging ability [6],

[7]. In animal collective navigation [18], [19] , discrete choices

must be made regarding the route to take, but at the same

time, staying with the group offers better protection against

predators [8].

Similarly, consider a situation as in [20]–[22] where a

collection of robots is exploring an unknown terrain and

should choose between multiple potential sites of interest

to visit. The robots can possibly split, but each subgroup

should remain sufficiently large to carry out collective tasks

of interest [23]–[26]. Our framework allows modeling such a

situation and provides parameters indicating for each robot the

attractiveness of the sites and the cost of deviating from the
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population’s centroid. Moreover, we look for a coordination

strategy that requires a limited amount of communication, thus

increasing the robustness of our solution against intermittent

loss of connectivity within the group for example. We do so

by relying on the law of large numbers and the Mean-Field

Games (MFG) methodology, where the agents only need to

learn the initial distribution of the group [27] (for example,

through a consensus-like algorithm), in order to compute an

optimal decentralized control strategy. In practice in a finite

group the agents would also have to communicate their states

periodically in order to compensate for the prediction error

due to the fact that the MFG methodology assumes an infinite

population.

A related topic in economics is discrete choice models

where an agent makes a choice between multiple alternatives

such as mode of transportation [28], entry and withdrawal

from the labor market, residential location [29], or a physician

[30]. In many circumstances, these individual choices are

influenced by the so called “Peer Effect”, “Neighborhood

Effect” or “Social Effect”. In particular, Brock and Durlauf

[31] use an approach similar to Mean Fied Games (MFG)

[32], [33] and inspired by statistical mechanics to study a

static binary discrete choice model with a large number of

agents, which takes into account the effect of the agents’

interdependence on the individual choices. In their model,

the individual choices are influenced by the mean of the

other agents’ choices, while for an infinite size population,

the impact of an isolated individual choice on this mean is

negligible. The authors show that in an infinite size rational

population, each agent can predict this mean as the result of a

fixed point calculation, and makes a decentralized choice based

upon its prediction. Moreover, multiple anticipated means may

exist. Our analysis leads to similar insights for a dynamic non-

cooperative multiple choice game including situations where

the agents have limited information about the dynamics of

other agents.

II. PROBLEM STATEMENT AND CONTRIBUTIONS

In this section, we formulate our problem, state our main

contributions and provide an outline for the rest of the paper.

A. Deterministic Initial Conditions

We consider a dynamic non-cooperative game involving N
players with identical linear dynamics

ẋi = Axi +Bui ∀i ∈ {1, . . . , N}, (1)

where xi ∈ R
n is the state of agent i and ui ∈ R

m its control

input. Player i is associated with an individual cost functional

Ji(ui, x̄, x
0
i ) =

∫ T

0

{q

2
‖xi − x̄‖2 + r

2
‖ui‖2

}

dt

+
M

2
min

j∈{1,...,l}

(

‖xi(T )− pj‖2
)

, (2)

where x̄(t) , 1/N
∑N

i=1 xi(t), pj ∈ R
n (for j ∈ {1, . . . , l})

are the destination points, q, r are positive constants and M
is a large positive number. The running cost requires the

agents to develop as little effort as possible while moving

and to stay grouped around the mean of the population x̄.

Moreover, each agent should reach before final time T one

of the destinations pj , j ∈ {1, . . . , l}. Otherwise, it is strongly

penalized by the terminal cost. Hence, the overall individual

cost captures the problem faced by each agent of deciding

between a finite set of alternatives, while trying to remain close

to the mean population trajectory. It is sometimes convenient

to write the costs in a game theoretic form, i.e. Ji(ui, u−i),
where u−i = (u1, . . . , ui−1, ui+1, . . . , uN ). We seek ǫ-Nash

strategies, i.e. such that an agent can benefit at most ǫ through

unilateral deviant behavior, with ǫ going to zero as N goes to

infinity [34]. We assume that each agent can observe only its

own state and the initial states of the other agents.

Definition 1: Consider N players, a set of strategy profiles

S = S1 × · · · × SN and for each player i, a payoff function

Ji(ui, u−i), ∀(ui, u−i) ∈ S. A strategy profile (u∗
i , u

∗
−i) ∈ S

is called an ǫ−Nash equilibrium with respect to the costs Ji
if there exists an ǫ > 0 such that for any fixed i ∈ {1, . . . , N}
and for all ui ∈ Si, we have Ji(ui, u

∗
−i) ≥ Ji(u

∗
i , u

∗
−i)− ǫ.

Inspired by the framework of MFG theory [23], [32]–[36]

discussed in Section II-C below, we develop in this paper

a class of decentralized strategies satisfying a certain fixed

point requirement. In particular, under the assumption of a

continuum of agents, the problem of computing an agent’s best

response to a given macroscopic behavior of the population

turns out to be an optimal control problem. Hence, the terms

“best response” and “optimal control law / strategy” of the

agents are used interchangeably in the paper. The fixed point

requirement originates from the fact that collectively, the

agents’ best responses must reproduce the assumed macro-

scopic behavior. Identification of the strategies requires only

that an agent knows its own state and the initial states of the

other agents. As we later show, when the number of agents N
is sufficiently large, these fixed point based strategies achieve

their meaning as ǫ−Nash equilibria.

B. Random Initial Conditions

As N goes to infinity, it is also convenient to think of the

initial states as realizations of random variables resulting from

a common probability distribution function in a collection of

independent experiments. Agent i is then associated with the

following adequately modified cost:

Ji(ui, x̄, x
0
i ) = E

(∫ T

0

{q

2
‖xi − x̄‖2 + r

2
‖ui‖2

}

dt

+
M

2
min

j∈{1,...,l}

(

‖xi(T )− pj‖2
)∣

∣

∣
x0
i

)

. (3)

We establish that an agent needs only to know its own state

and the common probability distribution of initial states to

construct one of the decentralized fixed point based strategies

alluded to earlier. In this case, the only randomness lies in

the agents’ initial conditions, and the control strategies, while

expressed as state feedback laws, correspond in effect to open

loop policies [37].
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C. The MFG Approach and our Contributions

The MFG approach is concerned with a class of dynamic

non-cooperative games involving a large number of players

where the individual strategies are considerably affected by

the mass behavior, while the influence of isolated individual

actions on the group is negligible. Linear Quadratic Gaussian

(LQG) MFG formulations were developed in [32], [34], [35],

while the general nonlinear stochastic framework was con-

sidered in [33], [38]–[40]. To compute a Nash equilibrium,

one has to produce in general N fixed point trajectories
1
N

∑

i 6=j xi, j ∈ {1, . . . , N} (the average of the population

without player j). As the size N of the population increases to

infinity, these trajectories become indistinguishable. The MFG

approach posits at the outset an infinite population to which

one can ascribe a deterministic although initially unknown

macroscopic behavior. Hence, one starts by assuming that

the mean field contributed term x̄ in the cost (2) or (3)

is given, denoted x̂. The cost functions being now decou-

pled, each agent optimally tracks x̂ (i.e. computes its best

response to x̂). The resulting control laws (best responses)

are decentralized. This analysis of the tracking problem is

presented in Section III. With the agents implementing the

resulting decentralized strategies, a new candidate average path

is obtained by computing the corresponding mean population

trajectory. Indeed, and it is a fundamental argument in MFG

analysis, asymptotically as the population grows, the posited

tracked path is an acceptable candidate only if it is reproduced

as the mean of the agents when they optimally respond to it.

Thus, we look for candidate trajectories that are fixed points of

the tracked path to tracked path map defined above. In Section

IV, these fixed points are studied for the deterministic initial

conditions with a finite population, and an explicit expression

is obtained by assuming that each agent knows the exact

initial states of all other agents. The alternative probabilistic

description of the agents’ initial states is explored in Section V.

In Section VI, we further generalize the problem formulation

to include initial preferences towards the target destinations.

Moreover, we consider that the agents have nonuniform dy-

namics and that each agent has limited information about the

other agents dynamic parameters in the form of a statistical

distribution over the matrices A and B. Section VII shows

that the decentralized strategies developed when tracking the

fixed point mean trajectories constitute ǫ−Nash equilibria in

all the cases considered above, with ǫ going to zero as N
goes to infinity. In Section VIII, we provide some numerical

simulation results, while Section IX presents our conclusions.

The main contributions of the paper include the following:

i. We introduce a novel class of linear quadratic non-convex

games aimed at characterizing solutions of collective

discrete choice problems in a variety of applications.

ii. We show that an agent with knowledge about the dynamic

parameters and initial preferences of the other agents can

make its choice by observing only the initial conditions of

the players (in the case of deterministic initial conditions),

or by knowing their initial probability distribution (in the

case of random initial conditions).

iii. In the uniform dynamics case, we characterize the way the

population splits between the destination points. In fact,

we construct a finite dimensional map, which we call the

“Choice Distribution Map” (CDM), such that the probabil-

ity distribution of the choices between the alternatives is a

fixed point of this map. In the probabilistic version of the

problem, this corresponds to a fixed point vector equation

of dimension l (total number of available destinations).

Thus the computation of the corresponding strategies can

be considerably simplified relative to that of the finite N
case, which requires comparing the performance of lN

possible deployments of the N agents over l destinations.

iv. We prove the existence of a decentralized ǫ−Nash equi-

librium, and in the uniform dynamics case, we develop

a method to compute it. In essence, this indicates that

our simplified and decentralized infinite population based

control policies induce Nash equilibria asymptotically as

N tends to infinity.

We further detail here some more technical aspects of our

contribution. Although we rely on the MFG methodology in

order to analyze the behavior of many agents choosing one

of the available destinations, our model is not standard with

respect to the LQG MFG literature. Specifically, our cost is

non-convex and non-smooth (the final cost is a minimum of

l quadratic functions), in order to capture the combinatorial

aspect of the discrete decision-making problem. Hence, the

existence proofs for a fixed point rely here on topological fixed

point theorems rather than a contraction argument as in [32].

One of the main contributions of this paper is also to show

that in case of a uniform population, the infinite dimensional

MFG fixed point problem [33], [38] has a finite dimensional

version that can be characterized via Brouwer’s fixed point

theorem [41]. For a nonuniform population, the existence of

a fixed point mean trajectory relies on an abstract fixed point

theorem, namely Schauder’s fixed point theorem [41]. In both

cases, to solve the MFG equation system, one needs to know

the initial probability distribution of the players, whereas in

the standard LQG MFG problems, it is sufficient to know the

initial mean to anticipate the macroscopic behavior. Thus, in

a nutshell, the theoretical tools needed to address this new

formulation are thoroughly different. Further highlighting the

differences between the two problems, the control laws when

extending the current formulation to the stochastic dynamics

case are entirely different from the LQG case [42].

Preliminary versions of our results appeared in the confer-

ence papers [1], [2]. Here we provide a unified discussion of

our collective choice model for the deterministic and stochastic

scenarios, as well as more extensive results. Many of the

proofs were omitted from the conference papers due to space

limitations and can be found here. The simulation section is

also expanded with respect to [1], [2] and provides additional

insight on the role of the different parameters in the model.

D. Notation

The following notation is used throughout the paper. We

denote by C(X,Y ) the set of continuous functions from

a normed vector space X to Y ⊂ R
k with the standard

supremum norm ‖.‖∞. We fix a generic probability space
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(Ω,F ,P) and denote by P(A) the probability of an event

A, and by E(X) the expectation of a random variable X . The

indicator function of a subset X is denoted by 1X and its

interior by
◦

X . We denote by |X| the size of a finite set X .

The transpose of a matrix M is denoted by MT . We denote

by Ik the identity k × k matrix. The subscript i is used to

index entities related to the agents, while the subscripts j and

k are used to index entities related to the home destinations.

We denote by [x]m the m-th component of a vector x.

III. TRACKING PROBLEM AND BASINS OF ATTRACTION

In this section, we compute the agents’ best responses

(tracking problem) to the mean field contributed term x̄. We

establish the existence of an x̄ dependent partition of the state

space into l basins of attraction, each associated with a distinct

destination for all agents initially situated in it.

A. Tracking Problem

Following the MFG approach, we assume the trajectory x̄(t)
in (2) and (3) to be given for now and call it x̂(t). The cost

functions (2) and (3) can be written as the minimum of l
linear quadratic tracking cost functions, each corresponding

to a destination point:

Ji(ui, x̂, x
0
i ) = min

j∈{1,...,l}
Jij(ui, x̂, x

0
i ), (4)

where

Jij(ui, x̂, x
0
i ) =

∫ T

0

{q

2
‖xi − x̂‖2 + r

2
‖ui‖2

}

dt

+
M

2
‖xi(T )− pj‖2. (5)

Moreover, inf
ui(.)

Ji(ui, x̂, x
0
i ) = min

j∈{1,...,l}

(

inf
ui(.)

Jij(ui, x̂, x
0
i )
)

.

Assuming a full (local) state feedback, the optimal con-

trol law for (4) u∗
i is the optimal control law of the less

costly linear quadratic tracking problem, that is u∗
i = u∗

ij

if Jij(u
∗
ij , x̂, x

0
i ) = min

k∈{1,...,l}
Jik(u

∗
ik, x̂, x

0
i ), where u∗

ik is

the optimal solution of the simple linear quadratic tracking

problem with cost function Jik.

In the following, we partition the space R
n into l regions

(basins of attraction), each corresponding to a distinct desti-

nation point, such that if an agent is initially in one of these

basins, the linear tracking problem associated with the corre-

sponding destination point is the least costly. We recall the

optimal control laws [43], u∗
ik(t) = − 1

r
BT

(

Γ(t)xi + βk(t)
)

,

∀k ∈ {1, . . . , l}, with the corresponding optimal costs

J∗
ik(x̂, x

0
i ) =

1

2
(x0

i )
TΓ(0)x0

i + βk(0)
Tx0

i + δk(0),

where Γ, βk and δk are respectively matrix-, vector-, and real-

valued functions satisfying the following backward propagat-

ing differential equations:

Γ̇− 1

r
ΓBBTΓ + ΓA+ATΓ + qIn = 0 (6a)

β̇k =

(

1

r
ΓBBT −AT

)

βk + qx̂ (6b)

δ̇k =
1

2r
(βk)

TBBTβk − 1

2
qx̂T x̂, (6c)

with the final conditions Γ(T ) = MIn, βk(T ) =
−Mpk, δk(T ) = 1

2MpTk pk. We define the basins of

attraction

Dj(x̂) = {x ∈ R
n|J∗

ij(x̂, x) ≤ J∗
ik(x̂, x), ∀k ∈ {1, . . . , l}}

(7)

for j ∈ {1, . . . , l}. If an agent i is initially in Dj(x̂), then

the smallest optimal (simple) cost is J∗
ij , and player i goes

towards the corresponding destination point pj .

Assumption 1: Conventionally, we assume that if x0
i ∈

∩k
m=1Djm(x̂), for some j1 < · · · < jk, then the player i

goes towards pj1 . Under Assumptions 2 and 5 (defined below

in Sections V and VI), this convention does not affect the

analysis in case of random initial conditions.

We summarize the above analysis in the following lemma.

Lemma 1: Under Assumption 1, the tracking problem (4)

has a unique optimal control law

u∗
i (t) = −1

r
BT

(

Γ(t)xi + βj(t)
)

if x0
i ∈ Dj(x̂), (8)

where Γ, βj , δj are the unique solutions of (6a)-(6c).

The optimal control laws (8) depend on the local state xi and

on the tracked path x̂(t) via Dj and βj . As mentioned above,

each agent should reach one of the predefined destinations. We

show in the next lemma that for any horizon length T , M can

be made large enough that each agent reaches an arbitrarily

small neighborhood of some destination point by applying the

control law (8). The result is proved for tracked paths x̂(t) that

are uniformly bounded with respect to M , a property that is

shown to hold later in Lemma 9 for the desired tracked paths

(fixed point tracked paths).

Lemma 2: Suppose that the pair (A,B) is controllable

and for each M > 0, the agents are optimally tracking a

path x̂M (t). We suppose that the family x̂M (t) is uniformly

bounded with respect to M for the norm
(

∫ T

0
‖.‖2dt

)
1

2

. Then,

for any ǫ > 0, there exists M0 > 0 such that for all M > M0,

each agent is at time T in a ball of radius ǫ and centered at

one of the pj’s, for j ∈ {1, . . . , l}.

Proof: See Appendix A.

Given any continuous path x̂(t), there exist l basins of

attraction where all the agents initially in Dj(x̂) prefer going

towards pj . Therefore, the mean of the population is highly

dependent on the structure of Dj(x̂). In the next paragraph,

we provide an explicit form of these basins.

B. Basins of Attraction

We start by giving an explicit solution of (6b) and (6c). Let

Π(t) = 1
r
Γ(t)BBT −AT and Φ(., η), for η ∈ R, be the unique

solution of

dΦ(t, η)

dt
= Π(t)Φ(t, η) Φ(η, η) = In, (9)

and Ψ(η1, η2, η3, η4) = Φ(η1, η2)
TBBTΦ(η3, η4). Two main

properties of the state transition matrix Φ are used in this

paper, namely the matrix Φ(η1, η2) has an inverse Φ(η2, η1)
and the state transition matrix Φ̃(η1, η2) of −ΠT (i.e. solution
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of (9), where Π in the right hand side of (9) is replaced

by −ΠT ) is equal to Φ(η2, η1)
T . For more details about the

properties of the state transition matrix, one can refer to [44].

The unique solution of of (6b)-(6c) is

βk(t) = −MΦ(t, T )pk + q

∫ t

T

Φ(t, σ)x̂(σ) dσ

δk(t) =
1

2
MpTk pk − q

2

∫ t

T

x̂(σ)T x̂(σ) dσ

+
M2

2r
pTk

∫ t

T

Ψ(η, T, η, T ) dη pk

− Mq

r
pTk

∫ t

T

∫ η

T

Ψ(η, T, η, σ)x̂(σ) dσdη

+
q2

2r

∫ t

T

∫ η

T

∫ η

T

x̂(σ)TΨ(η, σ, η, τ)x̂(τ) dτdσdη.

(10)

By replacing (10) in the expression of Dj(x̂), (7) can be

written

Dj(x̂) =
{

x ∈ R
n|βT

jkx ≤ δjk + αjk(x̂), ∀k ∈ {1, . . . , l}
}

,
(11)

where

βjk = MΦ(0, T )(pk − pj)

δjk =
1

2
MpTk pk − 1

2
MpTj pj

+
M2

2r
pTk

∫ 0

T

Ψ(η, T, η, T ) dη pk (12)

− M2

2r
pTj

∫ 0

T

Ψ(η, T, η, T ) dη pj

αjk(x̂) =
Mq

r
(pj − pk)

T

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)x̂(σ) dσdη.

Hence, we see from (11) that the regions Dj(x̂) for a given

x̂ are separated by hyperplanes.

IV. FIXED POINT - DETERMINISTIC INITIAL CONDITIONS

Having computed the best responses to an arbitrary x̂, we

now seek a continuous path x̂(t) that is sustainable, in the

sense that it can be replicated by the average of the agents

under their best responses to it. We start by analyzing a

finite size population where the initial state of each agent is

known to all agents. We exhibit a one to one map between

the sustainable paths and the fixed points of a CDM (Choice

distribution map), itself a finite dimensional operator, the fixed

points of which characterize the set of fractions of agents

going to each one of the possible destinations. An algorithm

is proposed to compute these fixed points and the associated

agent trajectories.

We start our search for the desired path x̂(t) by computing

the mean x̄(t) when tracking any continuous path x̂(t). The

dynamics of the mean when tracking x̂ ∈ C([0, T ],Rn)
satisfies

˙̄x = −ΠT x̄− q

r
BBT

∫ t

T

Φ(t, σ)x̂(σ) dσ

+
M

r
BBTΦ(t, T )pλ(x̂), (13)

where Φ is defined in (9), x̄(0) = 1
N

∑N
i=1 x

0
i , x̄0, pλ(x̂) =

∑l
j=1

λj(x̂)
N

pj and λj(x̂) is the number of agents initially in

Dj(x̂), which therefore pick pj as a destination. We obtain

(13) by substituting (10) in (8) and the resulting control law

in (1) to subsequently compute x̄ = 1/N
∑N

i=1 xi and its

derivative. Thus, the mean of the population x̄ when tracking

any continuous path x̂ is the image of x̂ by a composite map

G = G2 ◦G1, where

G1 : C([0, T ],Rn) −→C([0, T ],Rn)× N
l (14)

x̂ −→
(

x̂,
(

λ1(x̂), . . . , λl(x̂)
)

)

G2 : C([0, T ],Rn)× N
l −→C([0, T ],Rn) (15)

such that x̄ = G2

(

x̂,
(

λ1, . . . , λl

)

)

is the unique solution of

(13) in which λj(x̂) is equal to an arbitrary λj , j ∈ {1, . . . , l}.

The desired path describing the mean trajectory is a fixed

point of G. In the following, we construct a one to one map

between the fixed points of G and the fixed points of a finite

dimensional operator F describing the way the population

splits between the destination points. We define the following

quantities:

R1(t) = ΦP (t, 0) (16)

R2(t) =
M

r

∫ t

0

ΦP (t, σ)BBTΦP (T, σ)
Tdσ (17)

θjk =
Mq

r
(pTj − pTk )

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)R1(σ) dσdη (18)

ξjk =
Mq

r
(pTj − pTk )

∫ 0

T

∫ η

T

Ψ(η, T, η, σ)R2(σ) dσdη (19)

where P and ΦP (t, η) are the unique solutions of

Ṗ = −PA−ATP +
1

r
PBBTP, P (T ) = MIn

Φ̇P (t, η) = (A− 1

r
BBTP )ΦP (t, η), ΦP (η, η) = In.

(20)

We define the CDM F from {0, ..., N}l into itself, such that

for all λ ∈ {0, ..., N}l,
F (λ) = (

∣

∣

{

x0
i |x0

i ∈ Hλ
1 }

∣

∣, . . . ,
∣

∣

{

x0
i |x0

i ∈ Hλ
l }

∣

∣), (21)

where Hλ
j = Dj(R1x̄0 + R2pλ) = {x ∈ R

n|βT
jkx ≤

δjk + θjkx̄0 + ξjkpλ ∀k ∈ {1, . . . , l}
}

. The functions (16)-

(17) are defined to compute the family of paths in which

lies the set of fixed points. The regions Hλ
j are the basins

of attraction associated with this family and the function F
counts the number of initial conditions in each Hλ

j . We now

state the main result of this section.

Theorem 3: The path x̂ is a fixed point of G, defined in

(13), if and only if it has the following form

x̂(t) = R1(t)x̄0 +R2(t)pλ, (22)

where λ is a fixed point of F .

Proof: See Appendix A.

Theorem 3 states that there exists a one to one map between

the fixed points of G (sustainable macroscopic behaviors) and

the fixed points of the CDM F . As a result, one can compute

all the sustainable macroscopic behaviors and anticipate the
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corresponding distributions of the choices between the alterna-

tives. More precisely, for each λ = (λ1, . . . , λl) ∈ {0, . . . , N}l
satisfying

∑l
i=1 λ = N , one can define the l regions Hλ

j and

count the numbers ηj of initial positions inside each region.

If ηj = λj , for all j ∈ {1, . . . , l}, then λ is a fixed point of

F . The map F may have multiple fixed points. Hence, an a

priori agreement on how to choose λ should exist. For exam-

ple, although non-cooperative, the agents may anticipate that

their majority will look for the most socially favorable Nash

equilibrium if many exist and N is large. This λ corresponds

to minimizing the total cost 1
N

∑N
i=1 Ji

(

u∗
i (xi, x̂), x̂, x

0
i

)

=

1
N

∑N
i=1 min

k∈{1,...,l}

{

1
2 (x

0
i )

TΓ(0)x0
i + βk(0)

Tx0
i + δk(0)

}

,

which is also computable by just knowing the exact initial

conditions of all the agents. Once the agents agree on a λ, they

start tracking the corresponding fixed point defined by (22).

The fixed point vector λ describes the way the population splits

between the destination points. In fact, λj , j ∈ {1, . . . , l},

is the number of agents that go towards pj . When N is

large however, this algorithm is costly in terms of number of

counting and verification operations. In the next section, we

consider the limiting case of a large population with random

initial conditions.

In the binary choice case, the quantities βT
12x

0
i , i ∈

{1, . . . , N}, can be used to compare the “attractiveness” of

p2 w.r.t. p1 for the different players. In fact, if going to p1 has

lower cost than going to p2 for player i and βT
12x

0
j ≤ βT

12x
0
i ,

then p1 is also more attractive than p2 for player j. Hence,

the agents’ indices can be reordered in such a way that the

agents that go towards p1 have indices lower than those going

towards p2, as follows

βT
12x

0
1 ≤ βT

12x
0
2 ≤ · · · ≤ βT

12x
0
N . (23)

We then derive in the following theorem a necessary and

sufficient condition for the existence of a fixed point path.

Theorem 4: For l = 2, the following statements hold:

1) x̂ is a fixed point of G if and only if there exists a

separating α ∈ {0, ..., N} such that:

βT
12x

0
α − δ12 − θ12x̄0 − ξ12p2 ≤ α

N
ξ12(p1 − p2)

< βT
12x

0
α+1 − δ12 − θ12x̄0 − ξ12p2. (24)

For α = 0, 0 < βT
12x

0
1 − δ12 − θ12x̄0 − ξ12p2, (25)

For α = N , βT
12x

0
N − δ12 − θ12x̄0 − ξ12p2 ≤ 0, (26)

where β12, δ12, θ12 and ξ12 are defined in (12), (18)

and (19). In this case, α is the number of agents that go

towards p1.

2) For ξ12(p1 − p2) ≥ 0, there exists α ∈ {0, ..., N}
satisfying (24), (25) or (26).

3) For ξ12(p1 − p2) < 0, there exists at most one α ∈
{0, ..., N} satisfying (24), (25) or (26). Moreover, there

exist some initial distributions for which no such α exists.

Proof: See Appendix A.

If the agents are indexed in ascending order of attractiveness

of p2 with respect to p1 as in (23), then an α satisfying (24)-

(26) separates the population into two groups, the agents that

go towards p1 (with indices less or equal to α), and those that

go towards p2 (with indices greater than α).

Remark 1: For the scalar case (n = 1), Φ and ΦP are real

exponential functions, which implies ξ12(p1 − p2) ≥ 0.

V. FIXED POINT - RANDOM INITIAL CONDITIONS

In this section, we assume that the agents’ initial conditions

x0
i are random and i.i.d. on some probability space (Ω,F ,P)

with distribution P0 on R
n. We assume an infinite size

population. As in the deterministic case, we construct a one

to one map between the fixed point paths and the fixed points

of a finite dimensional CDM. The latter characterizes the

distribution of the choices between the alternatives. Moreover,

we prove the existence of a fixed point and propose several

methods to compute it.

We start our search for a fixed point path by considering x̄
in (3) given and call it x̂. By Lemma 1, there exist l regions

Dj(x̂) such that the agents initially in Dj(x̂) select the control

law (8) when tracking x̂. By substituting (10) in (8) and the

resulting control law in (1), we show that the mean trajectory

E(xi) of a generic agent satisfies:

E(xi) = Gs(x̂) , Φ(0, t)Tµ0 +
M

r

∫ t

0

Ψ(σ, t, σ, T )pλ(x̂) dσ

− q

r

∫ t

0

∫ σ

T

Ψ(σ, t, σ, τ)x̂(τ) dτdσ, (27)

where Ψ was defined below (9), Ex0
i , µ0, pλ(x̂) =

∑l
j=1 λj(x̂)pj and λj(x̂) = P0(Dj(x̂)). Gs and its fixed

points, if any, depend only on the initial statistical distribution

of the agents.

We define the set ∆l = {(λ1, . . . , λl) ∈ [0, 1]l|∑l
j=1 λj =

1} and the CDM Fs from ∆l into itself such that

Fs(λ1, . . . , λl) = [P0(H̄
λ
1 ), . . . , P0(H̄

λ
l )], (28)

with

H̄λ
i = {x ∈ R

n|βT
ijx ≤ δij + θijµ0 + ξijpλ, ∀j ∈ {1, . . . , l}}

(29)

and pλ =
∑l

k=1 λkpk, where βkj , δkj , θkj and ξkj are defined

in (12), (18) and (19).

Theorem 5 below, proved in Appendix B, shows the exis-

tence of a fixed point of Fs using Brouwer’s fixed point theo-

rem. The latter requires continuity of Fs, which is guaranteed

by the following assumption.

Assumption 2: We assume that P0 is such that the P0-

measure of hyperplanes is zero.

Assumption 2 is satisfied when P0 is absolutely continuous

with respect to the Lebesgue measure for example. We now

state the main result of this section.

Theorem 5: Under Assumption 2, the following statements

hold:

(i) x̂ is a fixed point of Gs if and only if there exists λ =
(λ1, . . . , λl) in ∆l such that

Fs(λ) = λ, (30)

for x̂(t) = R1(t)µ0 + R2(t)pλ, where R1 and R2 are

defined in (16) and (17).
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(ii) Fs has at least one fixed point (equivalently Gs has at

least one fixed point).

(iii) For l = 2, if ξ12(p1 − p2) ≤ 0, then Gs has a unique

fixed point.

In Theorem 5, (i) shows that computing the anticipated macro-

scopic behaviors is equivalent to computing all the vectors

λ satisfying (30) under the corresponding constraint on x̂.

To compute a λ satisfying (30), each agent is assumed to

know the initial statistical distribution of the agents. As in

the deterministic case, multiple λ’s may exist. Hence, an a

priori agreement on how to choose λ should exist. In that

respect, the agents may implicitly assume that collectively

they will opt for the λ (assuming it is unique!) that minimizes

the total expected population cost EJi

(

u∗
i (xi, x̂), x̂, x

0
i

)

=

E min
k∈{1,...,l}

{

1
2 (x

0
i )

TΓ(0)x0
i + βk(0)

Tx0
i + δk(0)

}

(Γ, βk and

δk are defined in (6a)-(6c)), which can be evaluated if the

agents know the initial statistical distribution of the population.

While in the deterministic case a fixed point of the CDM F
determines the number of players that go to each destination

point, in the stochastic case a fixed point of Fs is the vector

of probabilities that an agent chooses each of the alternatives.

The CDM F and Fs defined respectively in the deterministic

and stochastic cases have similar structures. In fact, in the de-

terministic case, if the sequence {x0
i }Ni=1 of initial conditions

is interpreted as a random variable on some probability space

(Ω,F ,P) with distribution P0(A) = 1/N
∑N

i=1 1{x0

i
∈A}, for

all (Borel) measurable sets A, then F (λ) = NFs(λ/N).
The fixed points of the CDM Fs characterize the game in

terms of the number of what will be characterized in Section

VII as ǫ−Nash equilibria, whether there is a consensus or

disagreement and the distribution of the choices between the

alternatives. In Subsection V-A, we investigate the question of

computing these fixed points, while Subsection V-B treats the

problem of uniqueness and multiplicity of these fixed points

in the Gaussian binary choice case.

A. Computation of The Fixed Points

The map Fs is not necessarily a contraction. Hence, it is

sometimes impossible to compute its fixed points by the simple

iterative method λk+1 = Fs(λk).
1) Binary Choice Case: We give two simple methods to

compute a fixed point of Fs in the binary choice case. The

first method is applicable if ξ12(p1 − p2) > 0. We define in

[0, 1] a sequence αk such that α0 is an arbitrary number in

[0, 1] and

λk+1 = (αk+1, 1−αk+1) = Fs(αk, 1−αk) = Fs(λk). (31)

The sequence λk converges to a fixed point of Fs. In fact,

given that ξ12(p1 − p2) > 0,
[

Fs(t, 1− t)
]

1
increases with t.

We show by induction that αk is monotone. But αk ∈ [0, 1],
therefore, αk converges to some limit α. By the continuity

of Fs, (α, 1 − α) satisfies (30). Since in this case Fs may

have multiple fixed points, the λ = (α, 1− α) obtained using

this approach depends on the initial value λ0 = (α0, 1− α0).
Moreover, the sequence x̄k = R1(t)µ0 +R2(t)pλk

converges

to a fixed point of Gs. The second method is applicable if

ξ12(p1 − p2) ≤ 0. In this case
[

Fs(α, 1− α)
]

1
− α decreases

with α. Hence, one can compute the unique zero of this

function by the bisection method.

2) General Case: In general (l ≥ 2), Fs is a vector

of probabilities of some regions delimited by hyperplanes.

Although a fixed point could be computed using Newton’s

method, this is computationally expensive as it requires the

values of the inverse of the Jacobian matrix at the root

estimates. Alternatively, one can compute a fixed point of

Fs using a quasi Newton method such as Broyden’s method

[45] (see Section VIII). Using this method, the inverse of

the Jacobian can be estimated recursively provided that Fs is

continuously differentiable; this will be the case if the initial

probability distribution has a continuous probability density

function.

B. Gaussian Binary Choice Case

We have shown in Theorem 5 that for the binary choice

case (l = 2), if ξ12(p1 − p2) < 0, then Gs defined in

(27) has a unique fixed point. We now prove that for the

binary choice case and Gaussian initial distribution N (µ0,Σ0),
irrespective of the sign of ξ12(p1 − p2), Gs has a unique

fixed point provided that the initial spread of the agents is

“sufficient”. For any n×n matrix Σ such that (β12)
TΣβ12 <

(

ξ12(p1 − p2)
)2
/2π, we define

a(Σ) = δ12 + ξ12p2 − c(Σ)
√

2(β12)TΣβ12

b(Σ) = δ12 + ξ12p1 + c(Σ)
√

2(β12)TΣβ12

c(Σ) =

√

log ξ12(p1 − p2)−
1

2
log 2π(β12)TΣβ12

S(Σ) = {µ ∈ R
n,

(

βT
12 − θ12

)

µ ∈ (a(Σ), b(Σ))},

(32)

where β12, δ12, θ12 and ξ12 are defined in (12), (18) and (19).

Theorem 6: Gs has a unique fixed point if one of the

following conditions is satisfied

1) βT
12Σ0β12 ≥

(

ξ12(p1 − p2)
)2
/2π.

2) βT
12Σ0β12 <

(

ξ12(p1 − p2)
)2
/2π and µ0 /∈ S(Σ0).

Proof: See Appendix B.

Theorem 6 states that in the Gaussian binary choice case, if

the initial distribution of the agents has enough spread, then the

agents make their choices in a unique way. On the other hand,

if the uncertainty in their initial positions is low enough and

the mean of population is inside the region S(Σ0) (a region

delimited by two parallel hyperplanes), then the agents can

anticipate the collective behavior in multiple ways.

VI. NONUNIFORM POPULATION WITH INITIAL

PREFERENCES

Hitherto, the agents’ initial affinities towards different po-

tential targets are dictated only by their initial positions in

space. In this section, the model is further generalized by

considering that in addition to their initial positions, the

agents are affected by their a priori opinion. When modeling

smoking decision in schools for example [46], this could

represent a teenager’s tendency towards “Smoking” or “Not
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Smoking”, which is the result of some endogenous factors such

as parental pressure, financial condition, health, etc. When

modeling elections, this would reflect personal preferences that

transcend party lines. Moreover, we assume in this section that

the agents have nonuniform dynamics.

We consider N agents with nonuniform dynamics

ẋi = Aixi +Biui i ∈ {1, . . . , N}, (33)

with random initial states as in Section V. Player i is associated

with the following individual cost:

Ji(ui, x̄, x
0
i ) = E

(∫ T

0

{q

2
‖xi − x̄‖2 + r

2
‖ui‖2

}

dt

+ min
j∈{1,...,l}

(Mij

2
‖xi(T )− pj‖2

)∣

∣

∣x0
i

)

. (34)

In the costs (34), a small Mij relative to Mik, k 6= j, reflects

an a priori affinity of agent i towards the destination pj .

As N tends to infinity, it is convenient to

represent the limiting sequence of (θi)i∈{1,...,N} =
((Ai, Bi,Mi1, . . . ,Mil))i∈{1,...,N} by a random vector

θ. We assume that θ is in a compact set Θ. Let us

denote the empirical measure of the sequence θi as

PN
θ (A) = 1/N

∑N
i=1 1{θi∈A} for all (Borel) measurable sets

A. We assume that PN
θ has a weak limit Pθ, that is, for all

φ continuous, limN→∞

∫

Θ
φ(x)dPN

θ (x) =
∫

Θ
φ(x)dPθ(x).

For further discussions about this assumption, one can refer

to [47]. We assume that the initial states x0
i and θ are

independent, and that an agent i knows its initial position

x0
i , its parameters θi, as well as the distributions P0 and

Pθ. We develop the following analysis for a generic agent

with an initial position x0 and parameters θ. Assuming an

infinite size population, we start by tracking x̂(t), a posited

deterministic although initially unknown continuous path. We

can then show that, under the convention in Assumption 1,

this tracking problem is associated with a unique optimal

control law

u∗(t) = −1

r
(Bθ)T

(

Γθ
j (t)x+ βθ

j (t)
)

if x0 ∈ Dθ
j (x̂), (35)

where Γθ
j , βθ

j , δθj are the unique solutions of

Γ̇θ
j −

1

r
Γθ
jB

θ(Bθ)TΓθ
j + Γθ

jA
θ + (Aθ)TΓθ

j + qIn = 0 (36a)

β̇θ
j =

(

1

r
Γθ
jB

θ(Bθ)T − (Aθ)T
)

βθ
j + qx̂ (36b)

δ̇θj =
1

2r
(βθ

j )
TBθ(Bθ)Tβθ

j − 1

2
qx̂T x̂, (36c)

with the final conditions Γθ
j (T ) = Mθ

j In, βθ
j (T ) =

−Mθ
j pj , δ

θ
j (T ) =

1
2M

θ
j p

T
j pj . The definition of the basins of

attraction becomes

Dθ
j (x̂) =

{

x ∈ R
n such that

1

2
xTΓθ

jkx+ xTβθ
jk(x̂) + δθjk(x̂) ≤ 0, ∀k ∈ {1, . . . , l}

}

,

(37)

where Γθ
jk = Γθ

j (0) − Γθ
k(0), βθ

jk(x̂) = βθ
j (0) − βθ

k(0)

and δθjk(x̂) = δθj (0) − δθk(0). In this case, the solutions

of the Riccati equations (36a) depend on both the initial

preference vector Mθ and the destination points. Hence, the

basins of attraction are now regions delimited by quadric

surfaces in R
n instead of hyperplanes. This fact complicates

the structure of the operator that maps the tracked path to

the mean. The existence proof for a fixed point relies now on

an abstract Banach space version of Brouwer’s fixed point

theorem, namely Schauder’s fixed point theorem [41]. We

define Ψθ
j (η1, η2, η3, η4) = Φθ

j (η1, η2)
TBθ(Bθ)TΦθ

j (η3, η4),
where Πθ

j (t) =
1
r
Γθ
j (t)B

θ(Bθ)T − (Aθ)T , and Φθ
j is defined

as in (9), where Π is replaced by Πθ
j . The state trajectory of

the generic agent, on {x0 ∈ Dθ
j (x̂)}, is then equal to

x0θ(t) = Φθ
j (0, t)

Tx0 +
Mθ

j

r

∫ t

0

Ψθ
j (σ, t, σ, T )pj dσ

− q

r

∫ t

0

∫ σ

T

Ψθ
j (σ, t, σ, τ)x̂(τ) dτdσ, (38)

Assumption 3: We assume that E‖x0‖2 < ∞.

The functions defined by (36a), (36b) and (36c) are con-

tinuous with respect to θ, which belongs to a compact set.

Moreover, θ and x0 are assumed to be independent. Thus, un-

der Assumption 3, the mean of the infinite size population can

be computed using Fubini-Tonelli’s theorem [48] as follows:

E(x0θ(t)) = Gp(x̂) ,
l

∑

j=1

∫

Θ

∫

Rn

1Dθ
j
(x̂)(x

0)
{

Φθ
j (0, t)

Tx0

+
Mθ

j

r

∫ t

0

Ψθ
j (σ, t, σ, T )pj dσ (39)

− q

r

∫ t

0

∫ σ

T

Ψθ
j (σ, t, σ, τ)x̂(τ) dτdσ

}

dP0dPθ.

In the next theorem, we show that Gp has a fixed point. We

define

k1 = E‖x0‖ ×





l
∑

j=1

max
(θ,t)∈Θ×[0,T ]

‖Φθ
j (0, t)‖





k2 =
l

∑

j=1

max
(θ,t)∈Θ×[0,T ]

∥

∥

∥

∥

Mθ
j

r

∫ t

0

Ψθ
j (σ, t, σ, T )pj dσ

∥

∥

∥

∥

k3 =
q

r

l
∑

j=1

max
(θ,t,σ,τ)∈Θ×[0,T ]3

‖Ψθ
j (σ, t, σ, τ)‖.

(40)

Since Θ and [0, T ] are compact and Φθ
j is continuous with

respect to time and parameter θ, then k1, k2 and k3 are well

defined. Theorem 7 below, proved in Appendix B, establishes

the existence of a fixed point of Gp using Schauder’s fixed

point theorem. The latter requires boundedness of Gp on

bounded subsets of its domain and continuity of Gp, which

are guaranteed by the following two assumptions respectively.

Assumption 4: We assume that
√

max(k1 + k2, k3)T <
π/2.

Noting that the left hand side of the inequality tends to zero

as T goes to zero, Assumption 4 can be satisfied for a short

time horizon T for example.

Assumption 5: We assume that P0 is such that the P0-

measure of quadric surfaces is zero.
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Assumption 5, similar to Assumption 2, is satisfied when P0

is absolutely continuous with respect to the Lebesgue measure

for example.

Theorem 7: Under Assumptions 3, 4 and 5, Gp has a fixed

point.

Note that if T goes to zero, the costs become decoupled,

and each agent will choose the “closest” destination in the

minimum energy sense. It is then expected that a Nash

equilibrium exists in this case. Assumption 4 gives an upper

bound on the time horizon T under which we can prove that

such an equilibrium continues to exist.

VII. APPROXIMATE NASH EQUILIBRIUM

In the three cases above, deterministic, random initial

conditions and random initial conditions with non-uniform

dynamics and initial preferences, we defined three maps G, Gs

and Gp respectively (equations (13), (27) and (39)). Depending

on the structure of the game, each player can anticipate the

macroscopic behavior of the limiting population by computing

a fixed point x̂ of G, Gs or Gp, and compute its best response

u∗
i (xi, x̂) to x̂ as defined in (8), (35). When considering the

finite population, the next theorem establishes the importance

of such decentralized strategies in that they lead to an ǫ-Nash

equilibrium with respect to the costs (2), (3) and (34). This

equilibrium makes the group’s behavior robust in the face of

potential selfish behaviors as unilateral deviations from the

associated control policies are guaranteed to yield negligible

cost reductions when N increases sufficiently.

Theorem 8: Under Assumption 3, the decentralized strate-

gies u∗
i , i ∈ {1, . . . , N}, defined in (8) and (35) for a fixed

point path x̂, constitute an ǫN -Nash equilibrium with respect

to the costs Ji(ui, u−i), where ǫN goes to zero as N increases

to infinity.

Proof: See Appendix B.

VIII. SIMULATION RESULTS

To illustrate the collective decision-making mechanism, we

consider a group of agents (robots) moving on the real line

according to a second order system, ẍi = −3xi − ẋi + ui,

where xi is the position of robot i. They should move from

their initial conditions towards the position 10, and arrive at

the speed of 1, 4 or 10. Thus, in the state space (position,

speed), the potential destination points are p1 = (10, 10),
p2 = (10, 4) or p3 = (10, 1). We draw N = 300 initial

conditions from the Gaussian distribution P0 , N (0, I2).
We simulate two cases. In the first one, each agent knows the

exact initial states of the other agents and anticipates the mean

of the population accordingly. Following the counting and

verification operations described at the end of Section IV, we

find that F defined in (21) has a fixed point λ = (91, 209, 0).
By implementing the control laws corresponding to this λ, 91
agents (30.33% of the agents) go towards p1 and 209 (69.67%
of the agents) towards p2 (see Fig.1). Moreover, the actual

average replicates the anticipated mean as shown in this figure.
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Final Positions
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Initial Positions

Fig. 1. Collective choice (deterministic initial conditions) with λ =
(91, 209, 0). Red Crosses = agents that go towards p1. Blue diamonds =
agents that go towards p2.

In the second case, the agents know only the initial distri-

bution P0 of the agents. Then, Broyden’s method converges

to λ = (0.3066, 0.6921, 0.0013) satisfying (30). Accordingly,

30.66% of the agents go towards p1, 69.21% towards p2 and

the rest towards p3 (see Fig.2). The actual average and the

anticipated mean are approximately the same.
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Fig. 2. Collective choice (random initial conditions) with λ =
(0.3066, 0.6921, 0.0013). Red Crosses = agents that go towards p1. Blue
diamonds = agents that go towards p2.

To illustrate the social effect on the individual choices

(see Fig. 3), we consider the same initial conditions. Without

social effect (q = 0), (0.4146, 0.5843, 0.0011) satisfies (30).

In this case, the majority goes towards p2. As the social effect

increases to q = 5, some of the agents that went towards p1
in the absence of a social effect change their decisions and

follow the majority towards p2 (see yellow balls in Fig. 3). In

this case, (0.1775, 0.8216, 0.0009) satisfies (30). If the social

impact increases more to q = 30, then a consensus to follow

the majority occurs. Figure 4 shows that as the social effect

increases, the basin of attraction of p2 (blue area) increases at

the expenses of the two other basins.
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Fig. 3. Influence of the social effect q. Red Crosses = agents that go towards
p1. Blue diamonds = agents that go towards p2. Yellow balls = agents that
change their decisions when the social effect increases and follow the majority
towards p2.
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Fig. 4. Influence of the social effect q on the Basins of attraction. Region
hatched with: red crosses = basin of attraction of p1, blue diamonds = basin
of attraction of p2 and green circles = basin of attraction of p3.

To illustrate the impact of the individual efforts on the

behavior of the population (see Fig. 5), we start with the

case where the control effort is inexpensive (r = 1). In this

case, λ = (0.3066, 0.6921, 0.0013) is a fixed point of Fs,

defined in (28). As the effort coefficient increases (r = 5),

the majority of the agents that went to p1 in the previous

case (r = 1) choose a closer alternative, namely p2 (yellow

balls). Moreover, some of the agents that chose p2 move now

towards a less expensive choice p3 (yellow balls). In this case

λ = (0.0097, 0.9085, 0.0819). As r increases to 10, more

players change their choices from p2 to p1 (yellow balls), and

λ is equal to (0.0004, 0.6664, 0.3332) in this case.

Fig. 5. Influence of r.

To illustrate the Gaussian Binary Choice Case, we consider

a group of agents initially drawn from the normal distribu-

tion N (µ0, I2) and moving according to the same dynamics

towards the destination points p1 = (−10, 0) or p2 = (10, 0).
Now the robots are moving on the real line towards −10 or 10,

where they must arrive at a speed 0. For the covariance matrix

Σ0 = I2, S(Σ0) defined in (32) is the region delimited by the

lines y = −3.8203 − 0.9164x and y = 3.8203 − 0.9164x. If

µ0 = (5, 0), i.e., outside S(Σ0), only one ǫ−Nash equilibrium

corresponding to λ = (0, 1) exists. If µ0 = (0, 0), i.e. inside

S(Σ0), three ǫ-Nash equilibria exist. The first corresponds to

λ1 = (0.06, 1− 0.06), the second to λ2 = (0.5, 1− 0.5), and

the third to λ3 = (0.94, 1− 0.94) (see Fig. 6).
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Fig. 6. Gaussian binary choice case. Fixed points of Fs defined in (28).

IX. CONCLUSION

We consider in this paper a dynamic collective choice

model where a large number of agents are choosing between

multiple destination points while taking into account the social

effect as represented by the mean of the population. The

analysis is carried using the MFG methodology. We show that

under this social effect, the population may split between the

destination points in different ways. For a uniform population,

we show that there exists a one to one map between the self-

replicating mean trajectories and the fixed points of a function

defined on R
l. The latter describe the way the agents split

between the l destination points. Finally, we prove that the

decentralized strategies optimally tracking the self-replicating

mean trajectories are approximate Nash equilibria. We suspect

that in the uniform case the linear dynamics and the quadratic

running costs are necessary to reduce the infinite dimensional
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fixed point problem to a finite dimensional one. It is of interest

for future work to extend our analysis to a model where

players have stochastic dynamics as well. In that case, the

optimal choices (feedback strategies) change along the path

according to the occurring events (noise). This is in contrast

to the current formulation where the agents can choose without

loss of optimality their destination before they start moving.

Also, we would like to extend the current formulation to

certain nonlinear models, where the basins of attraction are

delimited by more complex manifolds, and the fixed-point

computations would require numerical methods for backward-

forward systems of partial differential equations [49].

APPENDIX A

This appendix includes the proofs of lemmas and theorems

related to the tracking and fixed point problems in case of

deterministic initial conditions.

A. Proof of Lemma 2

In this proof, the subscript M indicates the dependence on

the final cost’s coefficient M . For any M > 0, the agents are

optimally tracking a path x̂M . The agent i optimal state is

denoted by x∗
iM (t). We have

M

2
min

j∈{1,...,l}

(

‖x∗
iM (T )− pj‖2

)

≤ JiM (u∗
iM , x̂M , x0

i ),

where JiM (u∗
iM , x̂M , x0

i ) is the cost defined by (2) with the

final cost’s coefficient equal M . It suffices to find an upper

bound for JiM (u∗
iM , x̂M , x0

i ) which is uniformly bounded

with M . Since (A,B) is controllable, then there exists for

each agent i a continuous control law ux0

i
,p1

(t) on [0, T ]

which transfers this agent from the state x0
i to p1 in a

finite time T . By optimality, we have JiM (u∗
iM , x̂M , x0

i ) ≤
JiM

(

ux0

i
,p1

, x̂M , x0
i

)

. But,

JiM

(

ux0

i
,p1

, x̂M , x0
i

)

=
∫ T

0

{q

2
‖xi(ux0

i
,p1

)− x̂M‖2 + r

2
‖ux0

i
,p1

‖2
}

dt,

which is uniformly bounded with M , since x̂M is uniformly

bounded with M . Thus, for all ǫ > 0, there exists an M0 > 0

such that for all M > M0, min
j∈{1,...,l}

(

‖x∗
iM (T )− pj‖2

)

< ǫ.

B. Fixed points of G2(·, λ)
For any λ = (λ1, . . . , λl) ∈ {0, ..., N}l, we define the map

Tλ from C([0, T ],Rn) to C([0, T ],Rn) by Tλ(x̂) = G2(x̂, λ),
with G2 defined in (15).

Lemma 9: For any λ = (λ1, . . . , λl) ∈ {0, ..., N}l, Tλ has

a unique fixed point equal to

yλ = R1(t)x̄0 +R2(t)pλ, (41)

where R1 and R2 are defined in (16)-(17) and x̄0 is the agents’

initial average. Moreover, if (A,B) is controllable, then the

paths yλ are uniformly bounded with respect to (M,λ) ∈
[0,∞)× [0, N ]l for the norm

(

∫ T

0
‖.‖2dt

)
1

2

.

Proof: Consider y a fixed point of Tλ. We define

n(t) = Γ(t)y(t) + q

∫ t

T

Φ(t, σ)y(σ)dσ −MΦ(t, T )pλ,

where Γ and Φ are defined in (6a) and (9). One can easily

check that (y, n) satisfies

ẏ = Ay − 1

r
BBTn y(0) = x̄0 (42)

ṅ = −ATn n(T ) = M(y(T )− pλ).

Therefore, y and n are respectively the optimal state and co-

state of the following LQR problem:

min
u

∫ T

0

r

2
‖u‖2dt + M

2
‖x(T )− pλ‖2 (43)

Subject to ẋ = Ax+Bu x(0) = x̄0.

Hence, n has the representation n(t) = P (t)y(t)+g(t), where

P is the unique solution of the Riccati equation (20) and g
satisfies ġ = −(A− 1

r
BBTP (t))T g, with g(T ) = −Mpλ. By

solving g and implementing its expression in n = Py+g, and

by implementing the new expression of n in the dynamics of

y, one can show that y(t) = R1(t)x̄0 +R2(t)pλ. Conversely,

let (n, y) be the unique solution of (42). We define m(t) =
Γ(t)y(t)+ q

∫ t

T
Φ(t, σ)y(σ)dσ−MΦ(t, T )pλ. One can easily

check that d(m − n)/dt = ( 1
r
ΓBBT − AT )(m − n), with

m(T ) = n(T ). Therefore, n = m and from (42) y is a fixed

point of Tλ.

We now prove the uniform boundedness of the fixed point

paths yλ with respect to (M,λ). The paths yλ are the optimal

states of the control problem (43). Since (A,B) is controllable,

the corresponding optimal control law uλ satisfies

∫ T

0

r

2
‖uλ‖2dt ≤

∫ T

0

r

2
‖uλ

0‖2dt,

where uλ
0 is a continuous control law that transfers the state y

from y(0) to pλ. But uλ
0 is independent of M and continuous

with respect to λ. Hence,

sup
λ∈[0,N ]l

∫ T

0

r

2
‖uλ‖2dt ≤ max

λ∈[0,N ]l

∫ T

0

r

2
‖uλ

0‖2dt.

We have

yλ(t) = exp(At)x̄0 +

∫ t

0

exp(A(t− σ))Buλ(σ)dσ.

Therefore,
∫ T

0

‖yλ‖2dt ≤ K1+K2

∫ T

0

‖uλ‖2dt+K3

(

∫ T

0

‖uλ‖2dt
)

1

2

,

for some positive constants K1,K2,K3 which are independent

of (M,λ). Hence, yλ is uniformly bounded with (M,λ).

C. Proof of Theorem 3

If x̂ is a fixed point of G, then x̂ is a fixed point of the map

Tλ(x̂), with Tλ defined in the previous subsection. By Lemma

9, x̂ is of the form (22). To show that λ(x̂) is a fixed point

of F , we replace the new expression of the fixed point x̂ (22)
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in the expressions of the basins of attraction, which will then

have the following form

H
λ(x̂)
j = Dj(R1(t)x̄0 +R2(t)pλ(x̂)) =

{x ∈ R
n|βT

jkx ≤ δjk + θjkx̄0 + ξjkpλ(x̂) ∀k ∈ {1, . . . , l}
}

.

Therefore,

λ(x̂) = (
∣

∣

{

x0
i |x0

i ∈ D1(x̂)}
∣

∣, . . . ,
∣

∣

{

x0
i |x0

i ∈ Dl(x̂)}
∣

∣)

= (
∣

∣

{

x0
i |x0

i ∈ H
λ(x̂)
1 }

∣

∣, . . . ,
∣

∣

{

x0
i |x0

i ∈ H
λ(x̂)
l }

∣

∣) , F (λ(x̂)).

Thus, we proved that if x̂ is a fixed point of G, then x̂ is of

the form (22), where λ = λ(x̂) is a fixed point of the finite

dimensional operator F defined in (21).

To prove the converse, we consider a fixed point λ of F
and the path x̂ = R1(t)x̄0 +R2(t)pλ. We have

λ = F (λ) = (
∣

∣

{

x0
i |x0

i ∈ Hλ
1 }

∣

∣, . . . ,
∣

∣

{

x0
i |x0

i ∈ Hλ
l }

∣

∣)

= (
∣

∣

{

x0
i |x0

i ∈ D1(x̂)}
∣

∣, . . . ,
∣

∣

{

x0
i |x0

i ∈ Dl(x̂)}
∣

∣) = λ(x̂),

where the third equality is a consequence of the form of x̂.

By Lemma 9, the path x̂ is the unique fixed point of Tλ. But

then x̂ = Tλ(x̂) = Tλ(x̂)(x̂) = G(x̂). Therefore, x̂ is a fixed

point of G.

D. Proof of Theorem 4

The first point follows from Theorem 3 and (23). For 2)

and 3), we define

aN (α) =
N

ξ12(p1 − p2)

(

βT
12x

0
α − δ12 − θ12x̄0 − ξ12p2

)

.

We start by proving 2). Suppose that there does not exist any

α in {0, ..., N} satisfying (24), (25) or (26). Zero does not

satisfy (25), hence aN (1) ≤ 0 < 1. One does not satisfy

(24) and aN (1) < 1, hence aN (2) ≤ 1. By induction, we

have aN (N) ≤ N − 1. Therefore, N satisfies (26). Thus, by

contradiction, there exists α in {0, ..., N} satisfying (24), (25)

or (26). We now prove the third point. Suppose that there exist

multiple α’s satisfying (24), (25) or (26). Let α0 be the least

of these α’s. If α0 < N , then in view of ξ12(p1 − p2) < 0,

aN (α0 + 1) < α0 ≤ aN (α0). aN (j) is decreasing. Hence,

for all α > α0, aN (α) ≤ aN (α0 + 1) < α0 < α. Therefore,

α0 is the unique α satisfying (24), (25) or (26). Finally, if

ξ12(p1−p2) < 0, then an initial distribution for which aN (α)
is in (0, 1), for all α in {0, ..., N}, does not have any α in

{0, ..., N} satisfying (24), (25) or (26).

APPENDIX B

In this appendix, we provide the proofs of theorems related

to the fixed point problems in the random initial conditions

and non-uniform population cases, as well as the proof of

Theorem 8, which characterizes the decentralized control laws

developed in Sections III to VI as ǫ−Nash strategies.

A. Proof of Theorem 5

We start by proving (i). Let x̂ be a fixed point of Gs

and λj = P0(Dj(x̂)). By replacing the probabilities in the

expression of Gs by λj , j ∈ {1, . . . , l}, we get x̂ = Gs(x̂) =
Tλ(x̂), where λ = (λ1, . . . , λl) and Tλ is defined above

Lemma 9. Hence, x̂ is a fixed point of Tλ. By Lemma 9,

x̂(t) = R1(t)µ0 + R2(t)pλ. By replacing this expression of

x̂ in Dj(x̂) (11), we get λ = Fs(λ). Conversely, consider

λ = (λ1, . . . , λl) in ∆l such that λ = Fs(λ) and let

x̂(t) = R1(t)µ0 + R2(t)pλ. The path x̂ is the unique fixed

point of Tλ and
(

P0(D1(x̂)), . . . , P0(Dl(x̂))

)

= Fs(λ) = λ.

Hence, x̂ = Tλ(x̂) = Gs(x̂). We now prove the second point.

Noting that the set ∆l is convex and compact in R
l, we just

need to show that Fs is continuous. Then, Brouwer’s fixed

point theorem [41] ensures the existence of a fixed point. Let

λr be a sequence in ∆l converging to λ. We have

∣

∣

∣

[

Fs(λr)
]

k
−
[

Fs(λ)
]

k

∣

∣

∣ =

∣

∣

∣

∣

∫

Rn

(1
H̄

λr
k

(x)− 1H̄λ
k
(x)) dP0(x)

∣

∣

∣

∣

≤
∫

Rn

∣

∣

∣1H̄λr
k

(x)− 1H̄λ
k
(x)

∣

∣

∣ dP0(x).

But, H̄λr

k and H̄λ
k , defined in (29), are regions delimited by

hyperplanes. Hence, under Assumption 2,

∫

Rn

∣

∣

∣1H̄λr
k

(x)− 1H̄λ
k
(x)

∣

∣

∣ dP0(x) =
∫

Rn

∣

∣

∣1 ◦

H̄
λr
k

(x)− 1 ◦

H̄λ
k

(x)
∣

∣

∣ dP0(x).

But,

∣

∣

∣1 ◦

H̄
λr
k

(x)−1 ◦

H̄λ
k

(x)
∣

∣

∣ ≤ 2 and converges to zero for all x in

R
n. Thus, by Lebesgue dominated convergence theorem [48],

the integral of this function converges to zero. This proves

that Fs is continuous. Finally, we prove (iii). For l = 2, the

fixed points of Fs are of the form (α, 1−α). The set of fixed

points of Fs is compact. Thus, the set of the first components

of these fixed points is compact. Let α0 be the minimum of

those first components. Consider α > α0. Hence,

{

(β12)
Tx0

i − δ12 − θ12µ0 − ξ12p2 ≤ αξ12(p1 − p2)
}

⊂ {(β12)
Tx0

i − δ12 − θ12µ0 − ξ12p2 ≤ α0ξ12(p1 − p2)
}

,

which implies
[

Fs(α, 1− α)
]

1
≤

[

Fs(α0, 1− α0)
]

1
= α0 <

α. Thus, (α0, 1 − α0) is the unique fixed point of Fs, and

x̂(t) = R1(t)µ0 + R2(t)p(α0,1−α0) is the unique fixed point

of Gs.

B. Proof of Theorem 6

We show in Theorem 5 that the fixed points of Gs can

be one to one mapped to the fixed points of Fs. The initial

states x0
i are distributed according to a Gaussian distribution

N (µ0,Σ0). Therefore, βT
12x

0
i are distributed according to

the normal distribution N
(

βT
12µ0, β

T
12Σ0β12

)

. Thus, one can

analyze the dependence of
[

Fs(α, 1−α)
]

1
−α on α to show
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that this function has a unique zero in [0, 1] in case 1) or 2)
holds. Indeed, if 1) or 2) holds, the sign of the derivative with

respect to α of
[

Fs(α, 1 − α)
]

1
− α does not change. Thus,

this function is monotonic. This implies that Fs and Gs have

unique fixed points.

C. Proof of Theorem 7

We use Schauder’s fixed point theorem [41] to prove the ex-

istence of a fixed point. We start by showing that Gp is a com-

pact operator, i.e., Gp is continuous and maps bounded sets to

relatively compact sets. Let x̂ be in C([0, T ],Rn) and {x̂k}k∈N

be a sequence converging to x̂ in
(

C([0, T ],Rn), ‖.‖∞
)

. Let

Qj = max
(θ,t)∈Θ×[0,T ]2

‖Φθ
j (t)‖

+ max
(θ,t)∈Θ×[0,T ]4

‖Ψθ
j (t)‖+max

θ∈Θ
‖Mθ‖.

We have

‖Gp(x̂k)−Gp(x̂)‖∞ ≤
l

∑

j=1

Qj

{

qT 2

r
‖x̂k−x̂‖∞+V1j+

Qj‖pj‖T + q‖x̂‖∞T 2

r
V2j

}

,

where

V1j =

∫

Θ

∫

Rn

∣

∣

∣1Dθ
j
(x̂k)(x

0)− 1Dθ
j
(x̂)(x

0)
∣

∣

∣‖x0‖ dP0dPθ

V2j =

∫

Θ

∫

Rn

∣

∣

∣1Dθ
j
(x̂k)

(x0)− 1Dθ
j
(x̂)(x

0)
∣

∣

∣ dP0dPθ.

Under Assumption 5,

V1j =

∫

Θ

∫

Rn

∣

∣

∣
1 ◦

Dθ
j
(x̂k)

(x0)− 1 ◦

Dθ
j
(x̂)

(x0)
∣

∣

∣
‖x0‖ dP0dPθ.

But,

∣

∣

∣1 ◦

Dθ
j
(x̂k)

(x0)− 1 ◦

Dθ
j
(x̂)

(x0)
∣

∣

∣‖x0‖ ≤ 2‖x0‖ and converges

to zero for all (x0, θ) in R
n × Θ. We have E‖x0‖ < ∞.

Therefore, by Lebesgue’s dominated convergence theorem

[48], V1j converges to zero. By the same technique, we prove

that V2j converges to zero. Hence, Gp is continuous.

Let V be a bounded subset of C([0, T ],Rn). We show

in the following via Arzela-Ascoli Theorem that the closure

of Gp(V ) is compact. Let {Gp(x̂k)}k∈N ∈ Gp(V ). By the

continuity of Φθ
j (σ, t) with respect to (σ, t, θ), of its derivative

with respect to t and σ, and by the boundedness of x̂k, one

can prove that for all (t, s) in [0, T ]2,

‖Gp(x̂k)(t)−Gp(x̂k)(s)‖ ≤
(

K1E‖x0‖+K2

)

|t− s|,

where K1 and K2 are positive constants. This inequal-

ity implies the uniform boundedness and equicontinuity of

{Gp(x̂k)}k∈N. By Arzela-Ascoli Theorem [41], there exists a

convergent subsequence of {Gp(x̂k)}k∈N. Hence, Gp(V ) and

its closure are compact sets, and Gp is a compact operator.

Now we construct a nonempty, bounded, closed, convex

subset U ⊂ C([0, T ],Rn) such that Gp(U) ⊂ U . Let Q =
max(k1 + k2, k3), where k1, k2 and k3 are defined in (40).

We have ‖Gp(x)(t)‖ ≤ Q+Q
∫ t

0

∫ T

σ
‖x̂(τ)‖ dτdσ.. Consider

the following set

U =
{

x ∈ C([0, T ],Rn)| ‖x(t)‖ ≤ R(t), ∀t ∈ [0, T ]
}

,

where R is a continuous positive function on [0, T ] to be

determined later. U is an nonempty, bounded, closed and

convex subset of C([0, T ],Rn). If we find an R positive such

that R(t) = Q+Q
∫ t

0

∫ T

σ
R(τ) dτdσ, for all t ∈ [0, T ], then

for all x̂ ∈ U ,

‖Gp(x)(t)‖ ≤ Q+Q

∫ t

0

∫ T

σ

R(τ) dτdσ = R(t). (44)

Hence, Gp(U) ⊂ U . It remains to find such R. Note that the

equality in (44) is equivalent to the second order differential

equation R̈ = −QR, with the boundary conditions, R(0) = Q
and Ṙ(T ) = 0. Thus, R(t) = Q/ cos(

√
Qt), which is positive

under Assumption 4. Having found R, U is well defined and

by Schauder’s Theorem, Gp has a fixed point in U .

D. Proof of Theorem 8

We consider an arbitrary agent i ∈ {1, ..., N} applying

an arbitrary full state feedback control law ui. Suppose that

this agent i can profit by a unilateral deviation from the

decentralized strategies. This means that

Ji(ui, u
∗
−i) ≤ Ji(u

∗
i , u

∗
−i). (45)

In the following, we prove that this potential cost improvement

is bounded by some ǫN that converges to zero as N increases

to infinity. We denote respectively by xi and x∗
j the states

corresponding to ui and u∗
j . In view of (34), the compactness

of Θ, the continuity of x∗
j with respect to θ and E‖x0

i ‖2 < ∞,

the right hand side of (45) is bounded by Q1 independently of

N . For any X and Y in C([0, T ],Rn), we define < X|Y >=

E

(

∫ T

0
XT (t)Y (t) dt

∣

∣

∣x0
i

)

and ‖X‖2 =
√

< X|X >. We

have

Ji(ui, u
∗
−i) = Ji

(

xi, x̂, x
0
i

)

+
q

2

∥

∥

∥x̂− 1

N

N
∑

j=1

x∗
j

∥

∥

∥

2

2

+
q

2N2
‖x∗

i − xi‖22 + S1 + S2 + S3,

where

S1 =
q

N

〈

x∗
i − xi

∣

∣

∣xi − x̂
〉

S2 =
q

N

〈

x∗
i − xi

∣

∣

∣
x̂− 1

N

N
∑

j=1

x∗
j

〉

S3 = q
〈

x̂− 1

N

N
∑

j=1

x∗
j

∣

∣

∣xi − x̂
〉

,

with x̂ is a fixed point of Gp. By the Cauchy-Schwarz

inequality,

|S1| ≤
q

N

∥

∥

∥x∗
i − xi

∥

∥

∥

2

∥

∥

∥xi − x̂
∥

∥

∥

2
.

In view of (45) and the bound Q1,

∥

∥

∥x∗
i −xi

∥

∥

∥

2
and

∥

∥

∥xi− x̂
∥

∥

∥

2
are bounded. Thus, |S1| ≤ η1/N , where η1 > 0. Similarly,

|S2| ≤ η2/N , where η2 > 0. We define

αN =
∥

∥

∥x̂− 1

N

N
∑

j=1

Ex∗
j

∥

∥

∥

2
=

∥

∥

∥

∫

Θ

x̄θ dPθ −
∫

Θ

x̄θ dPN
θ

∥

∥

∥

2
,
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where x̄θ = E(x0θ|θ), with x0θ defined in (38). We have

∥

∥

∥x̂− 1

N

N
∑

j=1

x∗
j

∥

∥

∥

2

2
≤ 2α2

N + 2
∥

∥

∥

1

N

N
∑

j=1

(

Ex∗
j − x∗

j

)∥

∥

∥

2

2
.

By the compactness of [0, T ] × Θ, the family of functions

x̄θ(t) defined on Θ and indexed by t is uniformly bounded

and equicontinuous. By Corollary 1.1.5 of [50], we deduce

lim
N→+∞

sup
t∈[0,T ]

∥

∥

∥x̂(t)− 1

N

N
∑

j=1

Ex∗
j (t)

∥

∥

∥ = 0.

Thus, αN converges to 0 as N increases to infinity. By

the independence of the initial conditions (and thus the in-

dependence of x∗
j , j ∈ {1, . . . , N}) and the assumption

E‖x0
i ‖2 < ∞, we deduce that

∥

∥

∥

1
N

∑N
j=1

(

Ex∗
j − x∗

j

)∥

∥

∥

2

2
=

O(1/N). Thus, S3 and

∣

∣

∣Ji

(

x∗
i , x̂, x

0
i

)

− Ji

(

u∗
i , u

∗
−i

)∣

∣

∣ con-

verge to 0 as N increases to infinity. By optimality, we

have Ji

(

x∗
i , x̂, x

0
i

)

≤ Ji

(

xi, x̂, x
0
i

)

. Therefore, Ji(ui, u
∗
−i) ≥

Ji(u
∗
i , u

∗
−i)+ǫN , where ǫN = Ji

(

x∗
i , x̂, x

0
i

)

−Ji

(

u∗
i , u

∗
−i

)

+

S1 + S2 + S3 converges to 0 as N increases to infinity.
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