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Linear Consensus Algorithms Based on

Balanced Asymmetric Chains

Sadegh Bolouki and Roland P. Malhamé

Abstract

Multi agent consensus algorithms with update steps based onso-called balanced asymmetric chains,

are analyzed. For such algorithms it is shown that (i) the setof accumulation points of states is finite, (ii)

the asymptotic unconditional occurrence of single consensus or multiple consensuses is directly related

to the property of absolute infinite flow for the underlying update chain. The results are applied to well

known consensus models.

I. INTRODUCTION

Consensus problems in multi-agent systems have gained increasing attention in various re-

search communities. Many of the consensus algorithms in theliterature can be described by

linear update equations:

X(n+ 1) = AnX(n), n ≥ 0, (1)

whereX(n) is the vector of states (the value of an unknown parameter or probability) andAn

for everyn ≥ 0 is a stochastic matrix, i.e., each row ofAn sums to 1.An will be referred to

as the matrix of interaction coefficients. Distributed averaging algorithms were first introduced

by DeGroot in [1]. Later, Chatterjee and Senata [2] considered the same class of consensus

problems with time-varying interaction coefficients. The authors found sufficient conditions for

consensus via backward products of stochastic matrices. Results of [2] were generalized in [3]–

[5], whereby more general conditions for consensus to occurwere provided. Unlike [1], [2], in

the model considered in [3]–[5], communication links between individuals are not necessarily
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bidirectional. Briefly stated, sufficient conditions for convergence in [3]–[5] are, non vanishing

interaction rates, and continuously repeated connectivity of the integrated communication graph.

As an alternative model, Vicsek et al. [6] considered a system of multiple agents moving in

the plane with the same speed but different headings, where heading of agents are updated

according to an averaging algorithm. Consensus was observed in simulations. Jadbabaie et al.

in [7] analyzed a linearized version of the Viscek model and provided conditions under which

consensus occurs. The authors showed that consensus occursexponentially fast if there exists

an infinite sequence of contiguous, nonempty, bounded, time-intervals[ni, ni+1), i ≥ 0, starting

at n0 = 0, with the property that across each such interval, all agents are linked together (via

a chain of neighbors). Following [7], many authors tried to generalize the consensus results by

employing different techniques (see [8] and references therein). Hendrickx et al. in recent work

[8] generalized the previous results by introducing an important property of stochastic matrices,

the so-called cut-balance property. The authors also considered the multiple consensus problem.

However, to obtain the main results, in the discrete case, a uniform positive lower bound for non

zero interaction coefficients still appeared to be necessary, unlike in the corresponding continuous

time theorems. Recently, Touri and Nedić [9]–[12] have approached the consensus problem via

the backward product of stochastic matrices as in [2]. For a class of random stochastic matrices,

they have derived necessary and sufficient conditions for a.s. ergodicity. Existing results on

consensus in discrete time distributed averaging algorithms are subsumed in [10], [12].

In this note, by introducing a property of stochastic chains, herein called balanced asymmetry,

we derive equivalent conditions for unconditional consensus and multiple consensus to occur in

a class of multi-agent systems with dynamics (1). In the process, we also establish that if the

balanced asymmetry property is satisfied, the set of accumulation points of states is finite.

The rest of this paper is organized as follows: Essential notions that are required to state the

main results are defined and illustrated in Section II. Main results on unconditional consensus

and multiple consensus are presented in Section III. The relationship of our results to existing

results in the literature as well as their applications to known models are discussed in Section

IV. Concluding remarks end the paper in Section V.

A. Notation

Throughout this article, we adopt the following notation:
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• S is the set of agents ands = |S| is the number of agents.

• n stands for discrete time index.

• X(n) = [X1(n) · · ·Xs(n)]
T , n ≥ 0, is the state vector.

• For everyn ≥ 0, (1n, 2n, . . . , sn) is a permutation of{1, 2, . . . , s} such that agentin (1 ≤

i ≤ s) has theith least state value among all agents at timen.

• zi(n) = Xin(n) is the ith least number amongX1(n), . . . , Xs(n). Particularly,z1(n) and

zs(n) are the state values of agents associated with the least and the greatest state values

at timen respectively.

• An, n ≥ 0 is the matrix of interaction ratesaij(n), 1 ≤ i, j ≤ s.

II. NOTIONS AND TERMINOLOGY

Definition 1: Consider a multi-agent system with dynamics (1). By unconditional consensus

in system (1), we mean that no matter at what instant or at whatvalues states are initialized, all

Xi(n)’s, i = 1, . . . , s, converge to identical values asn goes to infinity.

We now define ergodicity according to [9]. Let(An) be a chain of stochastic matrices. For

n > k ≥ 0, following [9], denoteA(n, k) = An−1An−2 . . . Ak.

Definition 2: [9] A chain (An) of stochastic matrices is said to beergodicif for every k ≥ 0,

limn→∞A(n, k) exists and is equal to a matrix with identical rows.

It is possible to show that occurrence of unconditional consensus in a multi-agent system

is equivalent to ergodicity of the transition chain of the system. This is how unconditional

consensus and ergodicity are related. Besides consensus, there is another important notion,

multiple consensus, that constitutes our focus in this work.

Definition 3: For a multi-agent system with dynamics (1), unconditional multiple consensus

occurs if for everyi, 1 ≤ i ≤ s, limn→∞Xi(n) exists, no matter at what instant or at what

values states are initialized.

To formulate multiple consensus as a property of chains of stochastic matrices, we introduce

class-ergodicity, as follows.

Definition 4: A chain (An) of stochastic matrices isclass-ergodicif ∀k ≥ 0, limn→∞A(n, k)

exists and can be relabeled as a block diagonal matrix with each block having identical rows.

By relabeling, we mean applying the same permutation to rowsand columns of a square matrix.
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Clearly, if (An) in dynamics (1) is class-ergodic, unconditional multiple consensus occurs. The

converse is true also, by noting that theith column ofA(n, k) is equal toX(n) when X is

initialized at timek by the initial valueei denoting all of the components equal to zero, but

the ith one equal to 1. Therefore, unconditional multiple consensus occurs in a system with

dynamics (1) if and only if chain(An) is class-ergodic.

In the rest of this section, we provide essential notions that are employed to obtain our main

results.

A. l1-approximation [10]

Definition 5: Chain(An) is said to be anl1-approximation of chain(Bn) if
∑∞

n=0 ‖An−Bn‖

is finite, where the norm refers to themax norm, i.e., the maximum of the absolute values of

the matrix entries.

It is not difficult to show thatl1-approximation is an equivalence relation in the set of chains of

row stochastic matrices.

Proposition 1: [10] Let (An) be an l1-approximation of chain(Bn). Then, (An) is class-

ergodic if and only if(Bn) is.

B. Absolute Infinite Flow [11]

Definition 6: A chain (An) of row stochastic matrices is said to have the absolute infinite

flow property if
∞
∑

n=0

(

∑

i∈T (n+1)

∑

j∈T̄ (n)

aij(n) +
∑

i∈T̄ (n+1)

∑

j∈T (n)

aij(n)
)

= ∞ (2)

whereT (0), T (1), . . . is an arbitrary sequence of subsets ofS, S = {1, . . . , s}, with the same

cardinality, andT̄i denotes the complement ofTi in S. Note that ifAn is a matrix of order 1,

i.e., s = 1, then the absolute infinite flow property is trivially satisfied.

In [11], the authors show that the absolute infinite flow property is a necessary condition for

ergodicity. In addition, they prove necessity and sufficiency of the absolute infinite property in

the case of chains of doubly stochastic matrices.
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C. Balanced Asymmetry

Definition 7: Consider a chain(An) of stochastic matrices. Chain(An) is said to bebalanced

asymmetricif there exists anM ≥ 1 such that for any two non empty subsetsS1 and S2 of

S = {1, . . . , s} with the same cardinality, we have

∑

i∈S1

∑

j∈S̄2

aij(n) ≤ M
∑

i∈S̄1

∑

j∈S2

aij(n), ∀n ≥ 0, (3)

where the overbar indicates complementation.

We provide the following non trivial subclasses of balancedasymmetric chains:

1) chains of doubly stochastic matrices:It can be shown that all chains of doubly stochastic

matrices are balanced asymmetric withM = 1.

2) Chains possessing the following two properties:

self-confidence:There existsδ > 0 such thataii(n) ≥ δ for every i = 1, . . . , s andn ≥ 0.

cut-balance:[8] There existsK ≥ 1, such that for everyE ⊂ {1, . . . , s}

∑

i∈E

∑

j∈Ē

aij(n) ≤ K
∑

i∈Ē

∑

j∈E

aij(n), ∀n ≥ 0. (4)

Indeed, inequalities (4) and (3) are equivalent whenS1 is identical toS2, while if S1 6= S2,

then S1 ∩ S̄2 and S̄1 ∩ S2 are both non empty. As a result, and given the assumed self

confidence property, both sums in inequality (3) are boundedbelow byδ. In addition, both

sums are bounded above bys − 1 for any non emptySi, i = 1, 2. Thus, the chain is

balanced asymmetric withM = max{K, (s − 1)/δ}. Note that the cut-balance property

defined above, is the definition given in [8] in the continuoustime case. In [12], chains

having the cut-balance property are called balanced chains.

Remark 1:Balanced asymmetry is a stronger condition than cut-balance, although the latter

together with self-confidence, becomes stronger than the former.

Remark 2:For those chains that arel1-approximation of balanced asymmetric chains, the

absolute infinite flow property is equivalent to:
∞
∑

n=0

∑

i∈T̄ (n+1)

∑

j∈T (n)

aij(n) = ∞ (5)

for any sequenceT (n) of subsets ofT as in Eq. (2). This can be easily seen by combining

relations (2) and (3).
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D. Unbounded Interactions Graph [8]

The unbounded interactions graph of a chain is an important notion in this article, especially

in class-ergodicity analysis. In the following, we define unbounded interactions graph of a chain

of row stochastic matrices, which is the discrete time version of the definition given in [8].

Definition 8: Let (An) be a stochastic chain representing interaction coefficients of s agents,

whereS = {1, . . . , s} is the set of agents. We form a directed graphGA = {S,E} with (i, j) ∈ E

if and only if
∑∞

n=0 aij(n) = ∞. GA is called theunbounded interactions graphof A.

Taking into account that balanced asymmetry is a stronger condition than cut-balance, following

a proof quite similar to that of Theorem 2 (b) in [8], one can establish the following proposition.

Proposition 2: Let (An) be stochastic chain with unbounded interactions graphGA. If (An)

is balanced asymmetric, then every weakly connected component ofGA is strongly connected.

According to Proposition 2, under the balanced asymmetry condition, the unbounded interactions

graph can be partitioned into strongly connected components, herein calledislands.

III. CONVERGENCERESULTS

Recalling the definition ofzi(n)’s from Part I-A, we first state a theorem on the limiting

behavior of states in a multi-agent system associated with an l1-approximation of a balanced

asymmetric chain.

Theorem 1:Consider a multi-agent system with dynamics (1). Assume that chain(An) is an

l1-approximation of a balanced asymmetric chain. Then,limn→∞ zi(n) exists for everyi ∈ S.

Proof: To prove Theorem 1, we use a technique similar to the one we adopted previously

in proving Theorem 2 of [13]. Note that this technique was also independently discovered by

Hendrickx and Tsitsiklis (see [8]). According to the definition of zi(n), we havez1(n) ≤ z2(n) ≤

· · · ≤ zs(n), ∀n ≥ 0. Moreover, since states of agents are updated via a convex combination

of their current states,z1(n) is a non-decreasing function ofn, and zs(n) in a non-increasing

function of n. Thus,

z1(0) ≤ zi(n) ≤ zs(0), ∀i ∈ S. (6)

As a result, bothzi(n) andXi(n) are bounded in a bounded interval, and definingL , zs(0)−

z1(0), we have:

Xi(n)−Xj(n) ≤ L, ∀n ≥ 0, ∀i, j ∈ S. (7)
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Now, let (Bn) be a balanced asymmetric chain that is anl1-approximation of(An). Let An =

Bn +Mn, ∀n ≥ 0. Denote‖Mn‖ , mn, n ≥ 0, andm′
n ,

∑n−1
k=0 mk, n > 0 with m′

0 = 0. Note

that m′
n remains bounded, according to the definition ofl1-approximation. SetK = 2M , and

recallingL , zs(0)− z1(0), define functionSr(n) for everyr, 1 ≤ r ≤ s by

Sr(n) ,

r
∑

i=1

K−i(zi(n) + sm′
nL). (8)

In the following we show thatlimn→∞ Sr(n) exists for everyr = 1, . . . , s. SinceSr is a linear

combination ofzi’s with bounded coefficients, andm′
n is bounded, it is bounded. Moreover,

Sr(n+ 1)− Sr(n) ≥ K−s

r−1
∑

k=1

[(

s
∑

i=k+1

k
∑

j=1

bin+1jn

)

(zk+1(n)− zk(n))

]

≥ 0 (9)

(see [14] for details). Hence,Sr(n) is non decreasing. From boundedness and monotonic in-

creasing behavior ofSr, we obtain thatlimn→∞ Sr(n) exists for everyr = 1, . . . , s. Furthermore,

definingS0 ≡ 0, Eq. (8) implies

zi(n) = Ki(Si(n)− Si−1(n))− sm′
iL. (10)

Thus, convergence ofzi’s is immediately implied from convergence ofSi, Si−1, andm′
i.

Convergence ofzi(n)’s in Theorem 1 implies that the set of accumulation points ofagents’ states

is finite. In the next two theorems, we address the issues of unconditional consensus (ergodicity)

and unconditional multiple consensus (class-ergodicity).

Theorem 2:If chain (An) is an l1-approximation of a balanced asymmetric chain, then(An)

is ergodic if and only if it has the absolute infinite flow property.

Proof: The necessity of the absolute infinite flow property has been proved in [11]. Here

we show that if chain(An) has the absolute infinite flow property together with being anl1-

approximation of a balanced asymmetric chain, then(An) is ergodic, or equivalently, consensus

occurs in system (1), no matter at what instant or what valuesstates are initialized. With no loss

of generality, we assume that states are initialized atn = 0 (Otherwise, if states are initialized

at n = n0 6= 0, we remove the firstn0 term of (An) and obtain another chain which is still an

l1-approximation of a balanced asymmetric chain and has the absolute infinite flow property, and

proceed with the new chain). Let(Bn) be a balanced asymmetric chain with boundM which

is an l1-approximation of(An). It is straightforward to verify that chain(An) has the absolute

infinite flow property if and only if chain(Bn) does. The main part of the proof is common
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with the proof of Theorem 1. According to Theorem 1, we know that limn→∞ zi(n) exists for

every i ∈ S. Let us define∀i ∈ S: Zi = limn→∞ zi(n). From the definition ofzi’s, we have:

Z1 ≤ Z2 ≤ · · · ≤ Zs (11)

Since z1(n) and zs(n) are respectively the least and the greatest values of statesat time n,

consensus occurs if and only ifZ1 = Zs. Assume that this does not happen, or equivalently,

Z1 < Zs. We wish to show that applying the absolute infinite flow property in inequality (9)

when r = s, leads to an unboundedSs(n), which would be a contradiction. SinceZ1 < Zs,

from inequalities (11) we conclude that there existsp, 1 ≤ p ≤ s − 1 such thatZp < Zp+1. If

we defineǫ , (Zp+1 − Zp)/2 > 0, there existsN ≥ 0 such that

zp+1(n)− zp(n) > ǫ, ∀n ≥ N (12)

On the other hand, for balanced asymmetric chains, the absolute infinite flow property reduces

to Eq. (5). From Eq. (5), we conclude that for any sequenceT (n) of subsets ofS of the same

cardinality:
∞
∑

n=N

∑

i∈T̄ (n+1)

∑

j∈T (n)

bij(n) = ∞ (13)

since
∑N−1

n=0

∑

i∈T̄ (n+1)

∑

j∈T (n) bij(n) is finite. If in Eq. (13) we setT (n) = {1n, 2n, . . . , rn},

we obtain
∞
∑

n=N

s
∑

i=r+1

r
∑

j=1

bin+1jn = ∞ (14)

On the other hand, we note that according to Theorem 1,limn→∞ Sr(n) exists for everyr =

1, . . . , s. Therefore, we can write

lim
n→∞

Sr(n)− Sr(0) =

∞
∑

n=0

(Sr(n + 1)− Sr(n)) (15)

Relations (15) and (9) yield:

limn→∞ Sr(n)− Sr(0) ≥
∑∞

n=0

{

K−s
∑r−1

k=1

[(

∑s

i=k+1

∑k

j=1 bin+1jn

)

(zk+1(n)− zk(n))
]}

= K−s
∑r−1

k=1

[

∑∞
n=0

(

∑s

i=k+1

∑k

j=1 bin+1jn

)

(zk+1(n)− zk(n))
]

(16)

Settingr = s we obtain

lim
n→∞

Ss(n)− Ss(0) ≥ K−s

s−1
∑

k=1

[

∞
∑

n=0

(

s
∑

i=k+1

k
∑

j=1

bin+1jn

)

(zk+1(n)− zk(n))

]

(17)
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From the above inequality, recalling thatzk+1(n) ≥ zk(n), and keeping only terms corresponding

to k = p andn ≥ N in the RHS, we obtain

lim
n→∞

Ss(n)− Ss(0) ≥ K−s

∞
∑

n=N

(

s
∑

i=p+1

p
∑

j=1

bin+1jn

)

(zp+1(n)− zp(n)) (18)

Inequalities (12) and (18) imply

lim
n→∞

Ss(n)− Ss(0) ≥ ǫ.K−s

∞
∑

n=N

s
∑

i=p+1

p
∑

j=1

bin+1jn (19)

From Eq. (14) we know that the RHS of inequality (19) is unbounded. Thus, the LHS is

unbounded, and so isSs(n), which is a contradiction. This completes the proof.

Theorem 3:Let chain (An) be anl1-approximation of a balanced asymmetric chain. Then,

(An) is class-ergodic if and only if the absolute infinite flow property holds over each island of

the unbounded interactions graph induced by(An).

Proof: To prove the sufficiency of the condition, we adopt the same technique as used in

[10] and form a new chain(Bn) of the bounded interactions graphGA by eliminating interaction

coefficients between each agent within an island and agents of other islands at all times. From

definition of GA and its islands, it is immediately implied that(Bn) is an l1-approximation of

(An), and consequently, is anl1-approximation of a balanced asymmetric chain. According to

Proposition 1, it suffices to prove that(Bn) is class-ergodic. The system with(Bn) as transition

chain can be decomposed into subsystems corresponding to islands, as there is no communication

between islands at all. It is straightforward to verify thateach subchain of(Bn) corresponding

to a subsystem is balanced asymmetric and possesses the absolute infinite flow property. Thus,

Theorem 2 implies that each subchain is ergodic, and as a result, (Bn) is class-ergodic.

We now prove the converse property. More specifically, we assume that(An) is class-ergodic

and also is anl1-approximation of a balanced asymmetric chain, and prove that the absolute

infinite flow property holds inside each island. Once again weform chain(Bn) from (An) by

eliminating all interaction coefficients between agents ofdistinct islands. Since(Bn) is an l1-

approximation of(An), Proposition 1 implies that(Bn) is class-ergodic as well. Note that(Bn)

is also anl1-approximation of a balanced asymmetric chain, as(An) is. It is sufficient now to

show that the absolute infinite flow property holds inside islands of the bounded interactions

graph induced by chain(Bn). Define subchains of(Bn) corresponding to islands. We shall show

August 16, 2018 DRAFT
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that each island subchain is ergodic. Thus, consider an arbitrary initial state for each subsystem

and by concatenating these states, form an initial vectorY (0) for the original system:

Y (n+ 1) = BnY (n), n ≥ 0. (20)

Since (Bn) is assumed class-ergodic, unconditional multiple consensus occurs in system (20).

Let I be an arbitrary island. We wish to show that agents ofI belong to the same consensus

cluster. Assume that on the contrary, there exists an islandI containing agents corresponding

to distinct consensus clusters. We proceed with the exact same proof of Theorem 2, identifying

this time Y with X in the theorem, and taking advantage of inequality (19) by setting p as

follows: since members of islandI do not belong to the same cluster,I can be partitioned into

non emptyI1 subsets and̄I1 such that

lim
n→∞

Yi(n) < lim
n→∞

Yj(n), ∀i ∈ I1, j ∈ Ī1. (21)

Recalling that(Bn) is an l1-approximation of a balanced asymmetric chain, the orderedlimits

{Zk}k=1,...,s in Theorem 1 exist. Setp equal to the maximum indexk such that

Zk ≤ max{ lim
n→∞

Yi(n)|i ∈ I1} (22)

and follow steps (15) to (19) in Theorem 2. Since, by definition of the islandI:
∞
∑

n=0

∑

i∈Ī1,j∈I1

bij(n) = ∞, (23)

the RHS of inequality (19) is unbounded as in the proof of Theorem 2, which is a contradiction.

Therefore all agents contained in every island end up in the same consensus cluster. Since the

initial state was arbitrary, we obtain that every subchain is ergodic. From ergodicity and balanced

asymmetry of each subchain, we conclude that the absolute infinite flow property holds for each

subchain, i.e., inside each island.

As a result of Theorem 3, the following result, stated and proved previously in [12], provides

a sufficient condition for class-ergodicity of a chain of rowstochastic matrices. Recall definitions

of self-confidence and cut-balance properties from Part II-C.

Theorem 4:If chain (An) is an l1-approximation of a self-confident and cut-balanced chain,

it is also class-ergodic.

Proof: From Proposition 1, to prove class-ergodicity of(An), we can assume that(An)

is self-confident and cut-balanced. These two properties of(An) imply that (An) is balanced

August 16, 2018 DRAFT
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asymmetric. Therefore, according to Theorem 3, it suffices to show that the absolute infinite

flow property holds over each island of the strong interaction digraphGA. Let I be an arbitrary

island andT (0), T (1), . . . be an arbitrary sequence of subsets ofI with the same cardinality.

Keeping in mind Remark 2, we consider the following two cases:

Case I. The sequenceT (0), T (1), . . . becomes invariant after a finite time, i.e., there exist

T ⊂ I andN ≥ 0 such thatT (i) = T for everyn ≥ N . In this case,
∞
∑

n=0

∑

i∈T̄ (n+1)

∑

j∈T (n)

aij(n) ≥

∞
∑

n=N

∑

i∈T̄

∑

j∈T

aij(n). (24)

SinceI is a strongly connected component of the unbounded interactions graph, there exist two

agentsp ∈ T̄ andq ∈ T such that
∑∞

n=0 apq(n) = ∞. Consequently,
∑∞

n=N apq(n) diverges and

so does the RHS of inequality (24). This proves the result.

Case II. The sequenceT (0), T (1), . . . does not converge, i.e., there exists a time subsequence

n0, n1, . . . such thatT (nk) 6= T (nk + 1) for everyk = 0, 1, . . .. Clearly,
∞
∑

n=0

∑

i∈T̄ (n+1)

∑

j∈T (n)

aij(n) ≥

∞
∑

k=0

∑

i∈T̄ (nk+1)

∑

j∈T (nk)

aij(nk). (25)

SinceT (nk) 6= T (nk + 1) and the two subsets are of the same cardinality, there existsan agent

that belongs to both̄T (nk+1) andT (nk). Hence, due to self-confidence of chain(An), we have
∑

i∈T̄ (nk+1)

∑

j∈T (nk)

aij(nk) > δ > 0. (26)

Therefore, the RHS of inequality (25) diverges. This provesthe result again in this case.

IV. D ISCUSSION

A. Relationship to Previous Work

Considering the body of the work on discrete time linear consensus algorithms and their

convergence properties in the past decade, [8] and [9]–[12]appear to provide the most general

results. In the following, we compare our results to those ofthe mentioned papers in terms of

generality.

In Theorem 2 of [8] (main discrete time result of [8]), the authors require the following three

assumptions to establish unconditional multiple consensus in system (1): (i) A uniform positive

lower bound on positive interaction rates, (ii) Positive diagonal coefficients, (iii) Cut-balance

(discrete time version).
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The above assumptions are stronger than the ones made in our Theorem 4, itself a consequence

of our main result, Theorem 3. More specifically, the self-confidence property in Theorem 4 is

implied by assumptions (i) and (ii), and the cut-balance property in Theorem 4 is an immediate

result of assumptions (i) and (iii).

In papers [9]–[12], there are several related results, mostly extended to random chains. Among

all the related results, one can consider Corollary 4 and thedeterministic counterpart of Theorem

4 in [12], as the most general ones. Corollary 4 in [12] is as general as our current Theorem

4. However, it is difficult a priori to rank in terms of generality the deterministic counterpart

of Theorem 4 of [12] and our main results here, namely Theorems 2 and 3. To see this, we

note that there are example systems covered by our theorems and not by those in [12], and vice

versa.

As an illustration, if we define chain(An) by:

An =





1/n 1− 1/n

1− 1/n 1/n



 , ∀n ≥ 0 (27)

then,(An) is balanced assymmetric and has the absolute infinite flow property. Thus, it is ergodic

according to (our) Theorem 2. However, ergodicity is not implied from Corollary 4 in [12], as

the latter would require(An) to be weakly aperiodic.

Conversely, consider time-invariant chain(An) defined by

An =





1/2 1/2

1 0



 , ∀n ≥ 0. (28)

It is not balanced asymmetric and therefore it is outside thereach of our theorems. However, from

Corollary 4 in [12], one can conclude that(An) is ergodic, since it belongs to the thus-denoted

setP∗ (see [12]) and is weakly aperiodic.

B. Relationship to Known Models

We now apply our theorems to chains corresponding to different types of models and consensus

algorithms found in the literature in order to analyze when their transition chains become ergodic

or class-ergodic.
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1) Models with Finite Range Interactions:The Krause model [16] is an example of endoge-

nous models with finite range interactions. These models arespecial cases of first order models

in which interaction rates evolve endogenously. In these models, agenti receives information

from agentj if and only if the distance between the two agents is less thansome pre-specified

valueR. More specifically, starting from some non increasing function f : R≥0 → R
≥0 vanishing

at R, define interaction weight

aij =
f(|Xi −Xj|)

∑s

k=1 f(|Xi −Xk|)
(29)

Note that in the Krause model,f(y) = 1 for 0 ≤ x < R and f(y) = 0 elsewhere. It can

be proved that in this case, the transition chain has self-confidence withδ = 1/s, and is cut-

balanced withM = s (see Part IV-B of [15] for details). Thus, according to Theorem 4, the

chain is class-ergodic, i.e., unconditional multiple consensus occurs.

2) The C-S model:The C-S (Cucker-Smale) model [17] is an example of endogenous con-

sensus models with interaction weights remaining strictlypositive. We apply our results to a

generalized version of the C-S model [17] that describes evolution of positionsXi’s and velocities

Vi’s in a bird flock, in a three dimensional Euclidian space:










Xi(n+ 1) = Xi(n) + hVi(n),

Vi(n+ 1) = Vi(n) +
∑

j 6=i f(‖Xi(n)−Xj(n)‖)(Vj(n)− Vi(n)),
(30)

wheref : R≥0 → R
≥0 is a non increasing function. Note that in this model, the limiting behavior

of velocities is of interest. The transition chain in this algorithm can be obtained by rewriting

velocities’ update equation in the form of Eq. (1). Clearly,the transition chain is symmetric and

so is cut-balanced. To enforce self-confidence, one may require an additional assumption, such

as, f(y) < 1/s, ∀y ≥ 0. Under this assumption, the self-confidence property is satisfied with

δ = 1/s. The combination of the self-confidence and cut-balance properties of the chain allows

an application of Theorem 4 to conclude that the chain is class-ergodic (unconditional multiple

consensus), without any additional assumption.

Theorem 5:For a system withs agents evolving according to generalized C-S dynamics (30),

assume thatf(y) has the following property:

f(y) < 1/s, ∀s ≥ 0 (31)
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Also assume that initial agents positions and velocities are such that

Mv <
s

3h

∫ ∞

Mx

f(y)dy. (32)

whereMx andMv are maximum norms of respectively initial agent position vector differences,

and initial agent velocity vector differences. Then, all agents’ velocities converge to a common

value. Moreover, the maximum distance between any two agents remains bounded by some

numberR at all times.

Theorem 5 is not an immediate result of Theorems 2 and 4. However, to prove Theorem 5, we

employ a technique similar to that used in the proof of Theorem 2. See Part IV-C of [15] for

the proof.

The following corollary follows from Theorem 5:

Corollary 1: For a multi-agent system with dynamics (30) wheref(y) = K/(σ2+y2)β (the C-

S model [17]), assume thatK/σ2β < 1/s. Then, under either condition (i) or (ii) in the following,

agents’ velocities asymptotically converge to a common value: (i) β ≤ 1/2, (ii) β > 1/2 and

Mv < sK/(3h(2β − 1)(Mx + σ)2β−1).

3) The JLM model:Similary, and without any additional assumptions, based onTheorem 4, it

can be shown that in the JLM model [7], multiple consensus occurs. Moreover, as the JLM model

is balanced asymmetric, Theorem 2 gives a necessary and sufficient condition for unconditional

consensus, although exponential convergence is not guaranteed (see [15] for details).

V. CONCLUSION

In this note, we have focused on a class of linear distributedaveraging algorithms in discrete

time, such that the underlying non homogeneous update Markov chain satisfies a property

called balanced asymmetry. Under the balanced asymmetry assumption, we established that,

asymptotically, states of agents involved in the consensusalgorithm keep taking their values

within a fixed set of limiting values of cardinality at mosts.

Furthermore, considering the graph of unbounded interactions and its islands as introduced

by Hendrickx et al [8] for continuous time consensus algorithms, under the balanced asymmetry

assumption, we established a necessary and sufficient condition for the above limits to become

that of individual agent states; the number of potential consensus clusters is equal to the number

of islands, and consensus over an island occurs if and only ifthe so-called absolute infinite flow
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property (Touri and Nedić [11]) holds on that island. Finally, we displayed the applicability of

our results to a number of well-known consensus models in theliterature. In future work, we

shall investigate the impact of the number of agents increasing to infinity on all of our results.
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[10] B. Touri and A. Nedić. On approximations and ergodicity classes in random chains,IEEE Transactions on Automatic

Control, Vol. 57, No. 11, pages 2718–2730, 2012.
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