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Characterization of the Critical Sets of Quantum
Unitary Control Landscapes
Jason M. Dominy, Tak-San Ho, and Herschel A. Rabitz

Abstract—This work considers various families of quantum
control landscapes (i.e. objective functions for optimal control)
for obtaining target unitary transformations as the general
solution of the controlled Schrödinger equation. We examine the
critical point structure of the kinematic landscapes JF (U) =
‖(U −W )A‖2 and JP (U) = ‖A‖4 − |Tr(AA†W †U)|2 defined
on the unitary group U(H) of a finite-dimensional Hilbert
space H. The parameter operator A ∈ B(H) is allowed to be
completely arbitrary, yielding an objective function that measures
the difference in the actions of U and the target W on a subspace
of state space, namely the column space of A. The analysis of
this function includes a description of the structure of the critical
sets of these kinematic landscapes and characterization of the
critical points as maxima, minima, and saddles. In addition, we
consider the question of whether these landscapes are Morse-Bott
functions on U(H). Landscapes based on the intrinsic (geodesic)
distance on U(H) and the projective unitary group PU(H) are
also considered. These results are then used to deduce properties
of the critical set of the corresponding dynamical landscapes.

Index Terms—Quantum control, quantum information, opti-
mization.

I. INTRODUCTION

AN important application of quantum optimal control
theory is the generation of target quantum logic gates

for quantum information processing. The goal of such optimal
control is to arrange the dynamics such that the desired logical
gate is realized as the final time unitary evolution operator,
which is the general solution of the controlled Schrödinger
equation. In most applications, the optimization goal is not a
single unitary operator, but a family of logically equivalent
operators. For example, since the global phase is not observ-
able, the goal may be any unitary operator that is equivalent
to the target gate up to global phase. Likewise, in some cases
only a subspace of the Hilbert space H of states may be used
for the quantum register, so that any unitary propagator should
be acceptable that acts as the target gate on that subspace. In
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contrast to other quantum control problems, for example the
maximization of a quantum mechanical observable, there is
no unique or natural choice for the objective function against
which the optimization is performed. Indeed, any smooth
function J : U(H)→ R with a global minimum at the target
unitary gate or gates is a candidate objective for the unitary
problem. But, as we will see, some choices may exhibit more
favorable convergence and other properties.

The theory of quantum control landscapes has been devel-
oped over a series of papers, including [1]–[9], as a way to
think about the problem of finding optimal solutions within
quantum control. This is pursued principally by building up
a picture of the topography of the objective function as a
landscape over the space of all admissible controls, typically
through analysis of the structure of the set of critical points of
the objective function. This provides direct information about
the gradient flow associated with the landscape. For example,
the presence of a local maximum or minimum can act as a
“trap” for the gradient flow or its time-reversal, respectively.
And although saddles do not trap the flow, the flow can be
greatly slowed in close proximity to a saddle. While, for a
given objective function, gradient ascent/descent may not be
the most efficient method for finding optimal controls, the
topography of the landscape and its impact on the behavior of
the gradient flow offers insights into the expected performance
of classes of algorithms (local deterministic algorithms versus
more non-local stochastic algorithms, for example). As a con-
sequence, a quantum control landscape analysis will typically
begin with the identification of the set of critical points.

The critical points of the kinematic landscape having been
identified, they may then be characterized as local maxima,
local minima, and saddles. As has been demonstrated for
other classes of kinematic quantum control landscapes, the
landscapes considered in this work will turn out to have global
maxima and minima, but no other local extrema capable of
impeding optimization. Moreover, the critical sets will be
shown generally to comprise disjoint submanifolds, and these
submanifolds are nondegenerate in the Morse-Bott sense [10]–
[12]. In other words, the null space of the Hessian of J
and the tangent space of the critical submanifold coincide
at each critical point U ∈ U(H). This condition identifies
the kinematic landscape as a Morse-Bott function, which is
interesting for at least two reasons. First, certain results about
the convergence of the gradient flow may be proved for Morse-
Bott functions, in particular that (on a compact manifold)
the gradient flow always converges to a critical point [13].
Second, the identification of the null space of the Hessian and
the tangent space of the critical submanifold is important for
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certain numerical methods, such as second order D-MORPH
[14], that are designed to explore the critical sets.

Let K denote the space of admissible control functions. For
the present analysis, K will be L2([0, T ];R), the space of
square integrable real-valued functions on the interval [0, T ],
where T is some fixed final time over which the controlled
dynamics take place. Let H be a complex Hilbert space of
dimension N <∞ and let B(H) denote the space of bounded
linear operators on H endowed with the real Hilbert-Schmidt
inner product 〈A,B〉 = <Tr(A†B). U(H) ⊂ B(H) will
denote the unitary group on H endowed with the Riemannian
metric induced by the Hilbert-Schmidt inner product, and
u(H) will denote the corresponding Lie algebra of skew-
Hermitian operators acting on H. Also let UT : K → U(H)
denote the map, defined implicitly by the Schrödinger equation
in the dipole approximation

i~
dU

dt
(t, t0) =

(
H0 − µE(t)

)
U(t, t0), U(t0, t0) = 1, (1)

such that UT (E) = U(T, 0)[E ] is the unitary propagator at
time T for the control field E ∈ K. Finally, for any candidate
objective function J : U(H)→ R (the “kinematic landscape”),
let J̃ : K→ R (the “dynamical landscape”) be the composition
J̃ = J ◦ UT . Then

grad J̃(E) = (dEUT )∗
(

grad J
(
UT (E)

))
, (2)

where (dEUT )∗ is the operator adjoint of the differential
dEUT . Much of the important information about the na-
ture of the gradient flow of J̃ is embodied in the critical
points of this landscape, i.e. those fields E ∈ K for which
grad J̃(E) = 0. Any E ∈ K such that dEUT is full rank and
grad J

(
UT (E)

)
= 0 (so-called “regular” critical points) will

satisfy the condition. There may be other critical points where
dEUT is rank-deficient and grad J

(
UT (E)

)
may or may not be

zero (“singular” points). Consideration of such singular points
is important for a complete understanding on the dynamical
control landscape. However, since UT is a highly nonlinear
map from an infinite-dimensional space to a finite-dimensional
space, singular points are expected to be rare and will not be
considered in the present analysis. Singular points and their
role in quantum control landscapes have only recently begun
to be studied [15]–[18].

Several classes of landscapes for generating target unitary
transformations will be considered. They include JF (U) =
‖(U −W )A‖2 and JP (U) = ‖A‖4 − |Tr(AA†W †U)|2 for
some fixed target W ∈ U(H) and some arbitrary fixed
A ∈ B(H), as well as the corresponding landscapes using
the intrinsic (geodesic) distance on the unitary group U(H)
and the projective unitary group PU(H), rather than the norm
(Euclidean) distance as in JF and JP . The parameter operator
A, though arbitrary in our analysis, can have some implications
for the landscape topography and should be chosen carefully
in application. A might be chosen to be a partial isometry, for
example, so that AA† is a projection onto a subspace of H.
Such a form may be desirable in quantum information when
only a subspace of H is designated as the quantum register.
Alternatively, A might be chosen to be nondegenerate, which
can have the effect of simplifying the landscape topography

Fig. 1. Example of two orthogonal rank 1 vector bundles (i.e. line bundles)
over S1 in R3. Analogously, each Hessian eigenbundle considered in this
paper is a rank m vector bundle over a critical submanifold of U(H),
where m is the multiplicity of the corresponding eigenvalue. It is formed
by “gluing” together the m-dimensional λ-eigenspaces at each point of the
critical submanifold for a given Hessian eigenvalue λ.

by making all critical submanifolds zero-dimensional, and
perhaps making optimization easier.

Landscapes of the form JF and JP have been studied in
the past [2], [8], [9]. The present paper extends these various
works by broadening the families of landscapes under consid-
eration, describing the structures of the critical submanifolds
and Hessian eigenbundles (vector bundles formed from the
Hessian eigenspaces along critical submanifolds; see Figure 1),
and directly addressing the issue of Morse-Bott nondegeneracy
of the critical submanifolds.

The paper is organized as follows. Sections II and III
describe the critical points of the kinematic landscapes JF and
JP . The two additional landscapes based on geodesic distance
are presented and analyzed in Section IV. In Section V, these
results are related back to the dynamical landscapes. The
overall results are summarized in Section VI. Two appendices
are included which provide a proof of the infinite Fréchet
differentiability of the control-to-propagator map UT and a
derivation of the gradient of the geodesic distance landscape
on U(H).

II. KINEMATIC CRITICAL POINT ANALYSIS OF CERTAIN
PHASE-DEPENDENT LANDSCAPES

For now we put aside the dynamical component of the map
and focus just on the critical point analysis of the kinematic
map

JF (U) = ‖(U −W )A‖2 = 2‖A‖2 − 2<Tr(A2W †U), (3)

defined as a function on the unitary group: JF : U(H) → R,
where A2 := AA† is Hermitian and positive semi-definite.
In contrast to the landscape JP that will be the subject of
the next section, the value of JF (U) depends upon the global
phase of U . However, if A2 has a null space, then JF (U)
is invariant to the action of U on that null space. Generally
speaking, the parameter operator A ∈ B(H) may be chosen
to vary the relative weights of different parts of the unitary
operator. This freedom allows for the possibility that A is a
projection operator as discussed in [19].
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A. Critical Point Identification

The operator A2 induces a natural orthogonal decomposi-
tion of H into the eigenspaces of A2, H =

⊕κ
i=0 Vi, under

which A2 =
⊕κ

i=0 ω
2
i 1Vi where 0 = ω2

0 < ω2
1 < · · · < ω2

κ

are the eigenvalues of A2. Note that ω2
0 = 0 is a special case,

and that V0, the null space of A2, may be a trivial (zero-
dimensional) subspace, while the other Vi are assumed to be
nontrivial. This is done because of the special significance of
V0 in the analysis that follows. The dimension of subspace Vi
(i.e. the multiplicity of eigenvalue ω2

i ) will be denoted by ni.
The remainder of Section II will be concerned with proving

the results encapsulated in the following theorem and illustrat-
ing them with examples.

Theorem 1. The kinematic objective JF is a Morse-Bott
function on U(H) exhibiting M =

∏κ
i=1(ni + 1) connected

critical submanifolds, each of which is isomorphic to a product
of Grassmann manifolds and a unitary group:

Crit(JF )

=
⊔

0≤νi≤ni
∀i=1,...,κ

{
U = W

κ⊕
i=0

Xi : Xi ∈ U(Vi) for 0 ≤ i ≤ κ,

and X 2
i = 1Vi and

Tr(Xi) = ni − 2νi for 1 ≤ i ≤ κ
}

(4a)

'
⊔

0≤νi≤ni
∀i=1,...,κ

U(V0)⊕Grν1
(
V1
)
⊕ · · · ⊕Grνκ

(
Vκ
)
, (4b)

where Grνi
(
Vi
)

denotes the Grassmann manifold of all νi-
dimensional linear subspaces of Vi. The critical submani-
fold described by a particular set of indices (ν1, . . . , νκ)
corresponds to a critical value JF = 4

∑κ
i=1 ω

2
i νi and has

dimension

N0 = n20 + 2

κ∑
i=1

νi(ni − νi), (5)

while the ranks of the negative and positive Hessian eigen-
bundles (i.e. the numbers of negative and positive Hessian
eigenvalues) on this submanifold are

N− =

κ∑
i=1

ν2i + 2

κ∑
0≤i<j

niνj (6)

N+ =

κ∑
i=1

(ni − νi)2 + 2

κ∑
0≤i<j

ni(nj − νj). (7)

Of these critical submanifolds, exactly one (corresponding to
νi = ni for all i = 1, . . . , κ) is the set of global maxima
and one (corresponding to νi = 0 for all i = 1, . . . , κ) is
the set of global minima, both being isomorphic to U(n0).
The remaining M − 2 critical submanifolds are all saddles,
so that JF admits no local traps.

The differential of JF , dUJF : TUU(H)→ R, is given by

dUJF (δU) = −2<Tr(A2W †δU)

= 〈UA2W †U −WA2, δU〉, (8)

where the last step includes a projection of −2WA2 into the
tangent space TUU(H). Therefore,

grad JF (U) = UA2W †U −WA2 (9)

and a critical point of JF is a U such that UA2W †U = WA2.
Let X = W †U ∈ U(H). Then the critical point condition
becomes X †A2 = A2X . This result also implies that XA4 =
A4X , since X †A4X = (X †A2)(A2X ) = (A2X )(X †A2) =
A4. Because the eigendecomposition of H induced by A4 is
the same as for A2, H =

⊕κ
i=0 Vi, the fact that X commutes

with A4 implies that X =
⊕κ

i=1 Xi with Xi ∈ U(Vi) for each
i. Then X †A2 = A2X implies that ω2

iX
†
i = ω2

iXi for each i =
0, . . . , κ, so that for i = 1, . . . , κ, Xi = X †i is both unitary and
Hermitian, and therefore has eigenvalues ±1. In other words,
each Xi is a unitary involution: X 2

i = 1Vi . Consequently, for
i = 1, . . . , κ, there exists a further orthogonal decomposition
of Vi into the positive and negative eigenspaces of Xi, i.e.
Vi = V−i ⊕ V

+
i , with respect to which Xi = −1V−i ⊕ 1V+

i
.

The dimension of V−i will be denoted νi, and the dimension
of V+

i is then ni− νi. This is equivalent to the statement that
Tr(Xi) = ni − 2νi.

As a result, the set of critical points of JF is given by

Crit(JF ) =
{
U = W

κ⊕
i=0

Xi : Xi ∈ U(Vi) for 0 ≤ i ≤ κ

and X 2
i = 1Vi for 1 ≤ i ≤ κ

}
(10a)

=
⊔

0≤νi≤ni
∀i=1,...,κ

C{νi} (10b)

where the critical submanifold C{νi} is isomorphic to

U(V0)⊕Grν1
(
V1
)
⊕ · · · ⊕Grνκ

(
Vκ
)

(11)

and where Xi ∈ U(Vi) such that X 2
i = 1Vi is uniquely

identified by its −1 eigenspace V−i , so the space of all such
Xi with νi-dimensional −1 eigenspace is isomorphic to the
space of all νi-dimensional subspaces of Vi, which is the
Grasmannian

Grνi
(
Vi
)
' U(Vi)

U(V−i )⊕U(V+
i )
. (12)

For each νi = 0, . . . , ni, the Grassmannian of admissible Xi
forms a connected submanifold of U(Vi), and since the traces
of the Xi corresponding to different νi are different [Tr(Xi) =
ni − 2νi] the Grasmannians on Vi corresponding to different
νi are disconnected. With ni + 1 disjoint choices for each i =
1, . . . , κ, it is clear that JF admits exactly M =

∏κ
i=1(ni+1)

connected critical submanifolds.

B. Hessian Analysis

Turning to the question of the signatures of these criti-
cal points, we extend the gradient vector field grad JF in
the obvious way to all of B(H) and differentiate to find
dU grad JF (δU) = δU A2W †U+UA2W †δU . Projecting this
onto the tangent bundle of U(H) gives the Hessian operator
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TABLE I
EIGENVALUES AND EIGENSPACES OF THE OPERATOR

LU† ◦HessJF ,U ◦LU ∈ B
(
u(H)

)
DESCRIBED IN (15), WHERE LU

DENOTES LEFT MULTIPLICATION BY U .

Subspace of u(H) Eigenvalue λ

u(V0) 0
u(V±i ) ±2ω2

i

u(Vi)/
[
u(V−i )⊕ u(V+

i )
]

0

u(Vsii ⊕ V
sj
j )/

[
u(Vsii )⊕ u(Vsjj )

]
siω

2
i + sjω

2
j

at U , HessJF ,U ∈ B
(
TUU(H)

)
,

HessJF ,U (δU) := ∇δU grad JF (U) (13a)

=
1

2

(
δUA2W †U +WA2U†δU

+ UA2W †δU + δU U†WA2
)
, (13b)

where ∇δU denotes the covariant derivative in the direction
δU [20], and where we have used the fact that any tangent
vector δU ∈ TUU(H) satisfies δU† = −U†δU U†. At a
critical point, grad JF (U) = 0, so that W †U and U†W both
commute with A2, and also W †UA2 = U†WA2. Then the
Hessian becomes

HessJF ,U (δU) = δUA2W †U + UA2W †δU. (14)

Suppose that U ∈ U(H) is a critical point of JF , let X =
W †U as before, and let Y = U†δU ∈ u(H), where u(H)
denotes the Lie algebra of skew-Hermitian operators on H.
Then δU is an eigenvector of HessJF ,U , i.e. HessJF ,U (δU) =
λδU , if and only if

YA2X +A2XY = λY. (15)

We will use again the decomposition H =
⊕κ

i=0 Vi into
eigenspaces of A2 and the further decomposition at a critical
point U = W

⊕
Xi of Vi = V−i ⊕V

+
i into eigenspaces of Xi.

The space u(H) may similarly be decomposed into subspaces
of skew-Hermitian operators supported on “diagonal” and
“off-diagonal” blocks

u(H) = u(V0)⊕
κ⊕
i=1

u(V−i )⊕ u(V+
i )⊕ u(Vi)

u(V−i )⊕ u(V+
i )

⊕
κ⊕

0≤i<j

⊕
si=±
sj=±

u(Vsii ⊕ V
sj
j )

u(Vsii )⊕ u(Vsjj )
, (16)

where the sum over si is neglected for i = 0 since V0 is not
decomposed into ± subspaces. It is straightforward to see that
the elements of these identified subspaces are eigenvectors of
(15) with eigenvalues as in Table I.

Notice that for orthogonal subspaces Q and R of dimension
q and r, respectively, dim[u(Q)] = q2 and dim

[
u(Q ⊕

R)/
(
u(Q) ⊕ u(R)

)]
= (q + r)2 − q2 − r2 = 2qr. Then the

Hessian null space is

E0 = U

(
u(V0)⊕

κ⊕
i=1

u(Vi)
u(V−i )⊕ u(V+

i )

)
(17)

which is identical to the tangent space of the associated critical
submanifold, and consequently has the same dimension

N0 = n20 + 2

κ∑
i=1

νi(ni − νi). (18)

Therefore JF is a Morse-Bott function for all A matrices.
The negative Hessian eigenspace (i.e. the negative Hessian
eigenbundle at U , see Figure 1), spanned by the Hessian
eigenspaces with strictly negative eigenvalues, is

E− = U

 κ⊕
i=1

u(V−i )⊕
κ⊕

0≤i<j

u(Vi ⊕ V−j )

u(Vi)⊕ u(V−j )

 (19)

which has dimension

N− =

κ∑
i=1

ν2i + 2

κ∑
0≤i<j

niνj . (20)

Finally, the positive Hessian eigenspace is

E+ = U

 κ⊕
i=1

u(V+
i )⊕

κ⊕
0≤i<j

u(Vi ⊕ V+
j )

u(Vi)⊕ u(V+
j )

 (21)

which has dimension

N+ =

κ∑
i=1

(ni − νi)2 + 2

κ∑
0≤i<j

ni(nj − νj). (22)

It is easy to see that N0 +N−+N+ = N2 = dim
(
U(H)

)
as expected. Furthermore, we find that N+ = 0 if and only if
νi = ni for all i = 1, . . . , κ, i.e. only at the global maximum
{U = −W

(
X0 ⊕ 1H/V0

)
: X0 ∈ U(V0)}. Likewise N− = 0

if and only if νi = 0 for all i = 1, . . . , κ, i.e. only at the
global minimum {U = W

(
X0 ⊕ 1H/V0

)
: X0 ∈ U(V0)}.

So, there are no local traps in the kinematic landscape, and
the remaining

∏κ
i=1(ni + 1)− 2 critical submanifolds are all

saddles.

C. Examples

Example 1 (A2 is a projection). Suppose that A2 = AA†

is a projection, or equivalently, that A is a partial isometry.
Then H = V0 ⊕ V1, ω2

0 = 0, and ω2
1 = 1. By Theorem 1, JF

admits exactly n1+1 critical submanifolds, each isomorphic to
U(V0)⊕Grν1

(
V1
)

and having dimension N0 = n20+2ν1(n1−
ν1) for ν1 = 0 . . . , n1. The critical submanifold identified by
index ν1 has critical value JF = 4ν1 and the Hessian has
eigenvalues in the set {−2,−1, 0,+1,+2}. At a critical point
U ∈ Cν1 , the negative Hessian eigenspace

E− = E−2 ⊕ E−1 = U

[
u(V−1 )⊕ u(V0 ⊕ V−1 )

u(V0)⊕ u(V−1 )

]
(23)

is of dimension N− = ν21 + 2n0ν1, and the positive Hessian
eigenspace

E+ = E+2 ⊕ E+1 = U

[
u(V+

1 )⊕ u(V0 ⊕ V+
1 )

u(V0)⊕ u(V+
1 )

]
(24)

is of dimension N+ = (n1− ν1)2 + 2n0(n1− ν1). The full set
of critical values for this problem is {0, 4, 8, . . . , 4n1}.
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U(1)
φ7→φ1

// U(H)

π

��

SU(H)

p

��

Z/NZei2πk/N1←[koo

PU(H)

Fig. 2. U(H) and SU(H) as fibre bundles over PU(H). The two
compositions of maps depicted here are exact, i.e. each composition f ◦ g is
such that ker(f) = im(g). Since U(1)1 ⊂ U(H) is the subgroup of global
phase rotations, PU(H) may be thought of as the unitary group modulo
global phase: two unitary operators U,W ∈ U(H) will be mapped by π to
the same operator in PU(H) if and only if W †U ∈ U(1)1, i.e., if and only
if U = eiθW for some θ ∈ R.

Example 2 (A2 is nondegenerate and nonsingular). Suppose
that A2 is nondegenerate and nonsingular, so that H =⊕N

i=1 Vi, ni = 1 for all i = 1, . . . , N , and ω2
1 < · · · < ω2

N . By
Theorem 1, the critical set of JF comprises exactly 2N isolated
critical points (i.e. zero-dimensional critical submanifolds).
For the critical point identified by indices (ν1, . . . , νN ), the
critical value is JF = 4

∑N
i=1 νiω

2
i , the negative Hessian

eigenbundle has dimension N− =
∑N
i=1(2i − 1)νi, and the

positive eigenbundle has dimension N+ = N2 −
∑N
i=1(2i −

1)νi.

III. KINEMATIC CRITICAL POINT ANALYSIS OF CERTAIN
PHASE-INVARIANT LANDSCAPES

We now turn our attention to the kinematic landscape

JP (U) := ‖A‖4 − |Tr(A2W †U)|2. (25)

This function is phase-invariant, meaning that JP (eiθU) =
JP (U) for any θ ∈ R. Since the global phase of a state
vector |ψ〉 ∈ H has no physical meaning, neither does the
global phase of the unitary propagator, so that U and eiθU are
functionally equivalent. A phase-invariant objective function
such as JP which treats such equivalent operators as equally
optimal may therefore be desirable as it may be expected
to require optimization only with respect to the degrees of
freedom that are physically relevant.

The remainder of Section III will be concerned with proving
the following theorem.

Theorem 2. The critical set of the kinematic objective function
JP comprises a global maximum set and M connected nonde-
generate critical submanifolds. The global maximum set need
not globally be a submanifold of U(H), but away from self-
intersection points is a codimension 2 submanifold of U(H).
The remaining critical submanifolds are of the form

C{νi} =
{
U = φWZ : φ ∈ U(1), Z ∈

κ⊕
i=0

U(Vi), and

Z2
i = 1Vi with Tr(Zi) = ni − 2νi for i ≥ 1

}
(26)

' U(V0)⊕

[
U(1)×

κ⊕
i=1

Grνi
(
Vi
)]
, (27)

where 0 ≤ νi ≤ ni are such that
∑
i(ni − 2νi)ω

2
i > 0.

The number, M , of these critical submanifolds is equal to the
number of choices of these integers {νi} satisfying the above
two conditions and therefore depends on the singular values
{ωi} of the parameter operator A. The critical submanifold
C{νi} described by a particular set of indices (ν1, . . . , νκ)
corresponds to a critical value of

JP = 4

(
κ∑
i=1

νiω
2
i

)(
κ∑
i=1

(ni − νi)ω2
i

)
(28)

and has dimension

N0 = 1 + n20 + 2

κ∑
i=1

νi(ni − νi), (29)

while the dimensions of the negative and positive Hessian
eigenbundles on this submanifold are

N− =

κ∑
i=1

ν2i + 2

κ∑
0≤i<j

niνj (30)

N+ = −1 +

κ∑
i=1

(ni − νi)2 + 2

κ∑
0≤i<j

ni(nj − νj). (31)

Consequently, of these submanifolds C{νi}, exactly one (cor-
responding to the case νi = 0 for all i = 1, . . . , κ) is the set of
global minima {U = φW (Z0⊕1H/V0) : φ ∈ U(1) and Z0 ∈
U(V0)}, and the remaining M − 1 critical submanifolds are
all saddles, so that JP admits no local traps. For an open,
dense set of A operators in B(H), the global maximum set of
JP is a nondegenerate submanifold of U(H), in which case
JP is a Morse-Bott function.

A. Distance Metric on PU(H)

There are various ways of deriving a phase-invariant land-
scape like JP from one that is phase-dependent like JF . A
simple approach is to observe that

min
φ∈U(1)

‖(U − φW )A‖2 = 2‖A‖2 − 2|Tr(A2W †U)|. (32)

This provides a means to define a quotient metric on the
projective unitary group PU(H) (see Figure 2) from the metric
d(U,W ) = ‖(U −W )A‖2 on U(H).

Another approach involves the adjoint representation of the
unitary group, Ad : U(H) → Aut

(
u(H)

)
⊂ GL

(
u(H)

) ∼=
GL(N2;R), which is given by Ad(U)A = UAU† for any
A ∈ u(H), and where Aut

(
u(H)

)
is the group of Lie

algebra automorphisms on u(H) [21], [22]. With u(H) given
the Hilbert-Schmidt inner product, 〈Ad(U)A,Ad(U)B〉 =
〈UAU†, UBU†〉 = 〈A,B〉, so that for each U ∈ U(H),
Ad(U) is an orthogonal operator on u(H), i.e. Ad : U(H)→
SO(u(H)). Furthermore, if W and U differ only by a global
phase, i.e. W = φU , then Ad(U) = Ad(W ). Moreover, the
kernel of Ad, i.e. Ad−1(id), is the center of U(H) [23, Cor.
5.2, pg. 129] [21, Thm. 3.50] which is Z

(
U(H)

)
= {φ1} =

U(1)1. Then Ad(U) = Ad(W ) if and only if W = φU , so
the image of Ad is a faithful representation of PU(H) and Ad
may be thought of as playing a role similar to the projection
π : U(H)→ PU(H).
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Consider some target W ∈ U(H) and some B ∈ GL
(
u(H))

and define

J(U) =
1

2
‖(Ad(U)−Ad(W )) ◦B‖2HS, (33)

where ‖ · ‖HS is the Hilbert-Schmidt norm on End
(
u(H)

) ∼=
RN2×N2

, the space of all linear operators acting on u(H).
Then,

J(U) = Tr(B∗B)− Tr
(
B∗Ad(W )∗Ad(U)B

)
. (34)

Let A ∈ B(H) be an arbitrary linear operator on H, and let
B be defined by B(Ω) = AΩA†. It follows from (34) that
the kinematic landscape JP (U) = ‖A‖4−|Tr(A2W †U)|2 on
U(H) is equivalent to the weighted Hilbert-Schmidt distance
function on the subgroup of SO

(
u(H)

)
given by Im(Ad) '

PU(H). In other words, JP is completely equivalent to JF ,
but applied to PU(H), rather than U(H).

B. Critical Point Identification

Now, the differential of JP at U ∈ U(H), dUJP :
TUU(H)→ R is given by

dUJP (δU) = −Tr(A2W †δU) Tr(U†WA2)

− Tr(A2W †U) Tr(δU†WA2) (35a)

=
〈

Tr(U†WA2)UA2W †U

− Tr(A2W †U)WA2, δU
〉

(35b)

so that

grad JP (U) = Tr(U†WA2)UA2W †U −Tr(A2W †U)WA2.
(36)

For JP (U) < ‖A‖4, Tr(U†WA2) 6= 0, so grad JP (U) = 0 if
and only if A2Z = Z†A2, where

Z =
Tr(U†WA2)

|Tr(U†WA2)|
W †U ∈ U(H). (37)

This same condition was considered in section II (and [9]),
where it was shown to imply that, under the orthogonal
decomposition H =

⊕κ
i=0 Vi of H into the eigenspaces of

dimensions {ni} of A2, Z =
⊕κ

i=0 Zi with Zi ∈ U(Vi) for
i = 0, . . . , κ and Z2

i = 1Vi for i ≥ 1. Since the involutions
Zi for i ≥ 1 have eigenvalues ±1, they induce a further
orthogonal decomposition of Vi into Vi = V−i ⊕ V

+
i into

the ±1 eigenspaces of Zi of dimensions νi and ni − νi,
respectively.

Drawing on the material above, we find that any critical
point U of JP with JP (U) < ‖A‖4 can be written as

U =
Tr(A2W †U)

|Tr(U†WA2)|
WZ (38)

with Z =
⊕κ

i=0 Zi and Z2
i = 1Vi for i ≥ 1. This

characterization is complicated by the presence of U on both
sides of the equation, especially with regard to the phase factor
on the right hand side. However, it may be observed for any
U = φWZ with φ ∈ U(1), Z ∈

⊕κ
i=0 U(Vi), and Z2

i = 1Vi
for i ≥ 1, that [U†W,A2] = [W †U,A2] = 0 and U†WA2 =
(A2W †U)† = φ−2A2W †U , so that grad JP (U) = 0. Hence,

every such U is a critical point of JP , and they comprise
connected critical sets

C{νi} :=
{
U = φWZ : φ ∈ U(1), Z ∈

κ⊕
i=0

U(Vi), and

Z2
i = 1Vi with dim(V−i ) = νi for i ≥ 1

}
(39)

for all 0 ≤ νi ≤ ni. However, it may be observed that for
any such set of indices {νi}, C{νi} = C{ni−νi}, since U =
φWZ ∈ C{νi} if and only if U = (−φ)W (−Z) ∈ C{ni−νi}.
It suffices then to only consider C{νi} for which Tr(A2Z) =∑κ
i=1 ω

2
i (ni − 2νi) > 0 to avoid identifying the same critical

submanifold twice. Such a critical submanifold C{νi} has the
critical value

JP (U) =
(

Tr
(
A2
))2 − |Tr

(
A2W †U

)
|2 (40a)

=

(
κ∑
i=1

niω
2
i

)2

−

(
κ∑
i=1

(ni − 2νi)ω
2
i

)2

(40b)

= 4

(
κ∑
i=1

νiω
2
i

)(
κ∑
i=1

(ni − νi)ω2
i

)
(40c)

for every U ∈ C{νi}.

C. Hessian Analysis

Given the form of the gradient of JP in (36), by again
extending the gradient vector field to B(H) and differentiating,
it is found that

dU grad JP (δU)

= Tr(δU†WA2)UA2W †U + Tr(U†WA2)δUA2W †U

+ Tr(U†WA2)UA2W †δU − Tr(A2W †δU)WA2,
(41)

whence, by projection onto the tangent bundle of U(H),

HessJP ,U (δU) = ∇δU grad JP

= −Tr(A2W †δU)WA2 + Tr(δU†WA2)UA2W †U

+
1

2

{
Tr(U†WA2)δUA2W †U+Tr(A2W †U)WA2U†δU

+ Tr(U†WA2)UA2W †δU + Tr(A2W †U)δUU†WA2
}
.

(42)

On one of the critical submanifolds C{νi}, the Hessian is given
by

HessJP ,U (δU) = Tr(A2W †U)δUU†WA2

+ Tr(A2W †U)WA2U†δU

− 2 Tr(A2W †δU)WA2. (43)

Writing a critical U ∈ C{νi} as U = φWZ and letting Y =
U†δU , the Hessian eigenvalue problem HessJP ,U (δU) = λδU
can be written as an eigenvector problem on u(H) as

Tr(A2Z)
[
Y ZA2 +ZA2Y

]
−2 Tr(A2ZY )ZA2 = λY. (44)

Observe that Tr(A2ZY ) = 0 for any Y in u(V0), su(V±i )
for i = 1, . . . , κ, u(Vi)/

(
u(V−i ) ⊕ u(V+

i )
)

for i = 1, . . . , κ,
or U(Vsii ⊕ V

sj
j )/

[
U(Vsii ) ⊕ U(Vsjj )

]
for 0 ≤ i < j and
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TABLE II
SOME EIGENVALUES AND EIGENSPACES OF THE OPERATOR

LU† ◦HessJP ,U ◦LU ∈ B
(
u(H)

)
DESCRIBED IN (44), WHERE LU

DENOTES LEFT MULTIPLICATION BY U .

Subspace of u(H) Eigenvalue λ

u(V0) 0
su(V±i ) ±2ω2

i Tr(A2Z)

u(Vi)/
[
u(V−i )⊕ u(V+

i )
]

0

u(Vsii ⊕ V
sj
j )/

[
u(Vsii )⊕ u(Vsjj )

]
(siω

2
i + sjω

2
j )Tr(A2Z)

si, sj ∈ {±}. So for Y in any of these subspaces of u(H),
the eigenvalue problem (44) becomes

Tr(A2Z)
[
Y ZA2 + ZA2Y

]
= λY, (45)

which means, as in Section II-B, that each element of these
subspaces is an eigenvector as in Table II. The only sub-
space of u(H) not covered by these cases is the subspace
S ⊂ u(H) spanned by elements Y ∈ u(H) of the form
Y =

⊕κ
i=1

(
α−i 1V−i

⊕α+
i 1V+

i

)
for imaginary numbers {α±i }.

For such a Y , (44) is block diagonal with V±i diagonal block

±ω2
i

(
2 Tr(A2Z)α±i − 2 Tr(A2ZY )

)
1V±i

= λα±i 1V±i
. (46)

Solving for α±i , we find that, for λ 6= ±ω2
i Tr(A2Z) for all

V±i such that dim(V±i ) > 0,

α±i =
2ω2

i Tr(A2ZY )

2ω2
i Tr(A2Z)∓ λ

. (47)

Then for Y =
⊕κ

i=1

(
α−i 1V−i

⊕ α+
i 1V+

i

)
∈ S, it follows that

Tr(A2ZY ) =

κ∑
i=1

ω2
i (−νiα−i + (ni − νi)α+

i ) (48a)

= Tr(A2ZY )

κ∑
i=1

2ω4
i

(
− νi

2ω2
i Tr(A2Z) + λ

+
ni − νi

2ω2
i Tr(A2Z)− λ

)
(48b)

which implies that either Tr(A2ZY ) = 0 or f(λ) = 1 where

f(λ) :=

κ∑
i=1

(
− 2ω4

i νi
2ω2

i Tr(A2Z) + λ
+

2ω4
i (ni − νi)

2ω2
i Tr(A2Z)− λ

)
.

(49)
It may be observed that f(λ) → 0 as λ → ±∞, that f

is an increasing function away from its poles, and that f has
a simple pole at −2ω2

i Tr(A2Z) for any i = 1, . . . , κ for
which νi > 0, and a simple pole at 2ω2

i Tr(A2Z) for any i
for which νi < ni (see Fig. 3). The number of distinct poles
is then equal to the dimension of the subspace S ∈ u(H)
under consideration; furthermore, if νi = ni for all i, then
Tr(A2Z) < 0 which was disallowed by convention, so f must
have at least one positive pole. It is then clear that f(λ) = 1
has dim(S) distinct solutions: one less than the smallest pole,
and one between each pair of adjacent poles. Moreover, it may
be seen that λ = 0 is one of these solutions, corresponding
to the eigenvector Y (0) = i

⊕κ
i=1 1Vi of (44). The number of

solutions f(λ) = 1 with λ < 0 is then equal to the number

Λ

fHΛL

Fig. 3. A depiction of the general properties of f(λ) defined in Eq.(49),
namely that f(λ) → 0 as λ → ±∞, f(0) = 1, f exhibits simple poles
at some subset of {±2ω2

i Tr(A2Z)}, and that f is stricly increasing away
from these poles.

ν+ of i ∈ {1, . . . , κ} for which νi > 0, and the number of
solutions f(λ) = 1 with λ > 0 is one less than the number
ν− of i ∈ {1, . . . , κ} for which νi < ni. To each of these
solutions λ, we may associate the eigenvector

Y (λ) =

κ⊕
i=1

(
α−i 1V−i

⊕ α+
i 1V+

i

)
∈ S (50)

with

α±j =
2iω2

j Tr(A2Z)

2ω2
j Tr(A2Z)∓ λ

. (51)

So, to summarize, at a critical point U = φWZ ∈ C{νi},
the Hessian null space is

E0 = U

(
u(V0)⊕

[
u(1)1H/V0 ×

κ⊕
i=1

u(Vi)
u(V−i )⊕ u(V+

i )

])
(52)

which is readily seen to be identical to the tangent space of
C{νi} and is of dimension

N0 = 1 + n20 + 2

κ∑
i=1

νi(ni − νi). (53)

The negative Hessian eigenspace is

E−= U

⊕
λ<0
f(λ)=1

RY (λ)⊕
κ⊕
i=1

su(V−i )⊕
κ⊕

0≤i<j

u(Vi ⊕ V−j )

u(Vi)⊕u(V−j )

,
(54)

having dimension

N− =

κ∑
i=1

ν2i + 2

κ∑
0≤i<j

niνj , (55)

and the positive Hessian eigenspace is

E+ = U

⊕
λ>0
f(λ)=1

RY (λ)⊕
κ⊕
i=1

su(V+
i )⊕

κ⊕
0≤i<j

u(Vi ⊕ V+
j )

u(Vi)⊕u(V+
j )

,
(56)
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having dimension

N+ = −1 +

κ∑
i=1

(ni − νi)2 + 2

κ∑
0≤i<j

ni(nj − νj). (57)

As a result, N− = 0 if and only if νi = 0 for all i = 1, . . . , κ,
i.e. only at the global minimum

{U = φW (Z0 ⊕ 1H/V0) : φ ∈ U(1), Z0 ∈ U(V0)}. (58)

Furthermore, N+ can be zero for such a critical point only if∑κ
i=1(ni−νi)2 = 1 and

∑κ
0≤i<j ni(nj−νj) = 0, i.e. only if

n0 = 0, ν1 = n1 − 1, and νi = ni for i = 2, . . . , κ. However,
in this case, the constraint Tr(A2Z) > 0 implies that 2ω2

1 >∑κ
i=1 niω

2
i , which can only happen in the trivial case κ =

N = 1 where global phase rotations are the only dynamics
and every point is critical with respect to JP . Therefore, there
are no maxima among the C{νi}. The only maximal points of
JP belong to the global maximum set considered presently.

D. Global Maximum Set

Finally, consider the global maximum set {U : JP (U) =
‖A‖4} = {U : Tr(A2W †U) = 0}, which is the intersection
of U(H) with the (complex) hyperplane in B(H) orthogonal
to WA2. This set does not admit analysis by the methods
used thus far, so a different approach is required. Let F :
U(H) → R2 be given by F1 := <Tr(A2W †U) and F2 :=
=Tr(A2W †U). Then,

dUF1(δU) = <Tr(A2W †δU)

=
1

2
〈WA2 − UA2W †U, δU〉 (59a)

dUF2(δU) = =Tr(A2W †δU)

=
1

2
〈iWA2 + iUA2W †U, δU〉 (59b)

so that the gradients are given by

gradF1(U) =
1

2

(
WA2 − UA2W †U

)
(60a)

gradF2(U) =
i

2

(
WA2 + UA2W †U

)
. (60b)

Thus, dF is surjective except where there exists (α, β) 6= 0 ∈
R2 such that α gradF1(U) = β gradF2(U), i.e. where

φU†WA2 = φ̄A2W †U, (61)

where φ = (α− iβ)/|α+ iβ|. As we have already seen, this
equation implies that U = φW

⊕κ
i=0 Zi with Z2

i = 1Vi for
i ≥ 1.

For such a U ,

Tr(A2W †U) = φTr(A2Z) = φ

κ∑
i=1

ω2
i (ni − 2νi), (62)

so the only way that Tr(A2W †U) can be zero is if the vector
(ω2

1 , . . . , ω
2
κ) is orthogonal to one of the possible vectors (n1−

2ν1, . . . , nκ− 2νκ), i.e. (ω2
1 , . . . , ω

2
κ) must lie in the union of

the 2N−n0−1 hyperplanes which are the orthogonal spaces of
the vectors (n1−2ν1, . . . , nκ−2νκ). Consequently, for a given
orthogonal decomposition H =

⊕κ
i=0 Vi, the collection of all

A’s for which A2 = AA† =
⊕κ

i=1 ω
2
i 1Vi and dF is surjective

at F (U) = 0 [hence {U : F (U) = 0} is a codimension
2 submanifold of U(H)] comprises an open dense subset of
the A’s in B(H) for which AA† =

⊕κ
i=1 ω

2
i 1Vi . It follows

that the set of all A operators for which dF is surjective at
F (U) = 0 is open and dense in B(H).

Now, at a point U such that Tr(A2W †U) = 0,

HessJP ,U (δU)

= −Tr(A2W †δU)WA2 + Tr(δU†WA2)UA2W †U (63a)

= −1

2

{
〈WA2 − UA2W †U, δU〉(WA2 − UA2W †U)

+ 〈iWA2 + iUA2W †U, δU〉(iWA2 + iUA2W †U)
}

(63b)

so that the Hessian is rank 2 except where there exists
(α, β) 6= 0 ∈ R2 such that α

(
WA2 − UA2W †U

)
=

β
(
iWA2 + iUA2W †U

)
. This is exactly the condition just

considered for the surjectivity of dF , so that the Hessian
is rank 2 if and only if dF is surjective. So, on the open
dense set of A’s for which this happens, the maximum set
is a nondegenerate (in the Morse-Bott sense), codimension
2 submanifold of U(H) (this is similar to a classical result
on such distance functions [24, Thm. 6.6]). Since the other
critical points also comprise nondegenerate submanifolds, we
conclude that for these A’s, JP is a Morse-Bott function.

Let P := U†WA2−A2W †U ∈ u(H) and Q := iU†WA2+
iA2W †U ∈ u(H). Then letting Y = U†δU , the Hessian
eigenvalue equation at the global maximum may be written

λY = −1

2

(
〈P, Y 〉P + 〈Q,Y 〉Q

)
. (64)

Let γ± and v± be the eigenvalues and eigenvectors of the real,
symmetric, positive semidefinite Gram matrix

G =

[
〈P, P 〉 〈P,Q〉
〈Q,P 〉 〈Q,Q〉

]
. (65)

Then the eigenvalues of (64) are λ± = −γ±/2 and the
eigenvectors are Y ± = v±1 P + v±2 Q.

E. Examples
Example 3 (A2 is a projection). Suppose that A2 is a
projection, or equivalently, A is a partial isometry. Then
H = V0⊕V1, ω2

0 = 0, and ω2
1 = 1. By Theorem 2, aside from

the global maximum set, JP admits exactly dn1/2e critical
submanifolds Cν1 for ν1 = 0, . . . , dn1/2e − 1, each isomor-
phic to U(V0) ⊕

[
U(1) × Grν1

(
V1
)]

and having dimension
N0 = 1+n20+2ν1(n1−ν1). The critical submanifold Cν1 has
critical value JP = 4ν1(n1 − ν1), and the Hessian operator
at a critical point U ∈ Cν1 can have (depending on ν1 and
n0) eigenvalues −2n1, −2n1 + 4ν1, −n1 + 2ν1, 0, n1 − 2ν1,
and 2n1 − 4ν1. The negative Hessian eigenspace at U is

E− = E−2n1
⊕ E−2n1+4ν1 ⊕ E−n1+2ν1

= U

[
RY (−2n1) ⊕ su(V−1 )⊕ u(V0 ⊕ V−1 )

u(V0)⊕ u(V−1 )

]
(66)

of dimension N− = (2n0 + ν1)ν1, where

Y (−2n1) =

{
i
ν1
1V−1

⊕ i
n1−ν11V+

1
ν1 > 0

0 otherwise.
(67)
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The positive Hessian eigenspace at U is

E+ = E2n1−4ν1 ⊕ En1−2ν1

= U

[
su(V+

1 )⊕ u(V0 ⊕ V+
1 )

u(V0)⊕ u(V+
1 )

]
(68)

of dimension N+ = (2n0 + n1 − ν1)(n1 − ν1) − 1. The full
set of critical values for this problem is {0, 4(n1− 1), 8(n1−
2), . . . , 4b(n21 − 1)/4c, n21}, where the final value n21 = ‖A‖4
is the globally maximal value. In the particular case that A2

is fully degenerate (e.g., A = 1), it is found that the maximum
set of JP is a nondegenerate submanifold if and only if N =
dim(H) is odd. However, when N is even, arbitarily small
perturbations of A about 1 are sufficient to obtain a Morse-
Bott function.

Example 4 (ω2
i = 2i). Suppose that A2 is nondegenerate

and nonsingular, so that H =
⊕N

i=1 Vi, ni = 1 for all i =
1, . . . , N , and ω2

1 < · · · < ω2
N . Suppose further that ω2

i = 2i

for i = 1, . . . , N . Then ω2
N >

∑N−1
i=1 ω2

i , so
∑N
i=1 ω

2
i (ni −

2νi) > 0 if and only if νN = 0. Therefore, by Theorem 2, the
critical set of JP comprises 1 global maximal set and exactly
2N−1 critical submanifolds C{νi}, each isomorphic to U(1)
and equal to a global phase orbit {φU : φ ∈ U(1)} of a
single unitary operator. For the critical submanifold identified
by indices (ν1, . . . , νN ), the critical value is

JP = 4

(
N−1∑
i=1

2iνi

)(
N∑
i=1

2i(ni − νi)

)

= 4

(
N−1∑
i=1

2iνi

)[
2N+1 − 2−

N−1∑
i=1

2iνi

]
, (69)

the negative Hessian eigenbundle has dimension N− =∑N−1
i=1 (2i− 1)νi, and the positive eigenbundle has dimension

N+ = N2 − 1 −
∑N−1
i=1 (2i − 1)νi. The full set of critical

values for this problem is {16(2N − 2), 32(2N − 3), 48(2N −
4), . . . , 2N+1(2N+1 − 4), (2N+1 − 2)2}. The last of these
critical values corresponds to the global maximum.

IV. LANDSCAPES BASED ON INTRINSIC DISTANCE

The kinematic landscapes JF and JP considered above
are based on the Euclidean (or norm) distance on U(H) and
PU(H), respectively. We now describe two additional distance
measures based on the intrinsic distance between operators in
U(H) and PU(H) under the Riemannian metric induced by
the real Hilbert-Schmidt inner product on B(H).

The first of these distance measures is quite simple to
define. Since the chosen Riemannian metric is bi-invariant on
U(H), any geodesic starting at U ∈ U(H) is of the form
γ(s) = UeAs for some A ∈ u(H). To find a geodesic joining
U to some target W ∈ U(H), let UeA = γ(1) = W , so that
eA = U†W and A = log(U†W ). This matrix logarithm is not
uniquely defined, but the length of the geodesic γ defined
on the interval [0, 1] is given by L[γ] =

∫ 1

0
‖γ′(s)‖ ds =

‖A‖. The minimum such length is obtained by taking A =
log(U†W ) from the principal branch of the logarithm so that

all eigenvalues lie in (−iπ, iπ]. We then define the landscape
as

JG(U) :=
1

2
‖ log(U†W )‖2. (70)

Then the gradient of JG is given by (see Appendix B)

grad JG(U) = −U log(U†W ). (71)

As most numerical matrix logarithm routines (e.g., the logm
function in MATLAB) compute the principal branch, they
provide a ready means to obtain both the landscape value
and the gradient. Since the norm of grad JG is the distance
to the target, this vector field is only zero at the target, i.e.
the global minimum of the landscape. Hence, there are no
traps or saddles. The gradient field has the property that it is
discontinuous and multiply defined at the cut loci of U(H)
(where the spectrum of U†W contains −1), but this is not
a problem for an optimal control algorithm since the matrix
logarithm routine will have to choose one from among the
possible solutions, all of which describe minimal geodesics to
the target that are equally satisfactory.

A phase-invariant version of JG may be constructed analo-
gously by considering minimal geodesics on the projective
unitary group PU(H) ' U(H)/U(1), or equivalently by
defining JGP (U) := minφ∈U(1)

1
2‖ log(φU†W )‖2 on U(H).

It may be shown that

JGP = min
k∈ZN

1

2

∥∥∥log
(
e

2πik
N det(U†W )−

1
N U†W

)∥∥∥2 (72a)

grad JGP (U)

= −U
{

log
(
e

2πik
N det(U†W )−

1
N U†W

)
− Tr

[
log
(
e

2πik
N det(U†W )−

1
N U†W

)] 1
N

}
, (72b)

where k in (72b) is the minimizer from (72a). With this
minimizing k, the trace in (72b) will be zero, so that

grad JGP (U) = −U log
(
e

2πik
N det(U†W )−

1
N U†W

)
. (73)

As with JG, the norm of grad JGP is the distance to the
target, and this vector field is only zero at the target, i.e.
the global minimum of the landscape. Hence, there are no
traps or saddles. One downside to this landscape is that it
appears that all N possible values of k must be tried in
order to find the minimizer of (72a). This behavior has a
topological interpretation on PU(H). Since the fundamental
group of PU(H) is π1(PU(H)) ∼= ZN = Z/NZ, there are
exactly N homotopy classes of paths connecting π(U) to the
target π(W ). Within each of these classes is a unique minimal
geodesic, and these N minimal geodesics are identified by the
vectors

U

{
log
(
e

2πik
N det(U†W )−

1
N U†W

)
− 1

N
Tr
[
log
(
e

2πik
N det(U†W )−

1
N U†W

)]
1

}
(74)

indexed by k.
A distance metric based on intrinsic distance could in

principle be applied to the case where only some of the
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states are important, analogous to JF and JP where A is
rank deficient (e.g. where A is a projector). This is equivalent
to computing the geodesic distance between points on the
Stiefel manifold VH/V0(H) ' U(H)/

(
1V0 ⊕ U(H/V0)

)
or

on its projective cousin VH/V0(H)/U(1). However, the two-
point geodesics on these spaces are non-trivial to compute.
The calculation requires solution of a boundary value problem
or an optimization problem to find each minimal geodesic.
For that reason, these intrinsic distance metrics may not be
practical for this scenario.

V. DYNAMICAL CRITICAL POINT ANALYSIS

Now that we have elucidated the structure of the critical
sets of the kinematic landscapes JF and JP , we return to
the problem of characterizing the critical set of the dynamical
landscapes J̃ = J ◦ UT . Let M ⊂ U(H) be one of the
critical submanifolds identified in the previous sections. It
can be proved (see Appendix A) that UT : K → U(H)
is C∞ (i.e., infinitely Fréchet differentiable). In addition,
since U(H) is finite-dimensional, if UT (E) ∈ M then
(dEUT )−1

(
TUT (E)M

)
has finite codimension, so is closed

and has a closed complement (i.e., it “splits”). Therefore,
away from singular points of UT (i.e., those E ∈ K such
that dEUT is rank-deficient), UT is transversal to M and by
the transversal mapping theorem [25], U−1T (M) is a Hilbert
submanifold of K, TE

(
U−1T (M)

)
= (dEUT )−1

(
TUT (E)M

)
,

and codim
(
U−1T (M)

)
= codim(M).

Let E ∈ K be a regular critical point of J̃ , i.e. such
that grad J̃(E) = 0 and dEUT is full rank. It may be
seen that at such a point, the Hessian of J̃ is given by
HessJ̃,E = (dEUT )∗ ◦ HessJ,UT (E) ◦(dEUT ). Let AE be the
linear operator on TUT (E)U(H) given by

AE =
(
dEUT ◦(dEUT )∗

) 1
2 ◦HessJ,UT (E) ◦

(
dEUT ◦(dEUT )∗

) 1
2 .

(75)
Since dEUT is assumed to have full rank, we may invoke
Sylvester’s law of inertia [26] to conclude that AE and
HessJ,UT (E) have the same numbers of positive, negative,
and zero eigenvalues. Let {(ηj , Qj)} for j = 1, . . . , N2

be the eigenvalues and eigenvectors of AE , and let Zj =

(dEUT )∗ ◦
(
dEUT ◦ (dEUT )∗

)− 1
2Qj . Then

HessJ̃,E Zj = (dEUT )∗◦HessJ,UT (E) ◦
(
dEUT ◦(dEUT )∗

) 1
2Qj

= ηj(dEUT )∗ ◦
(
dEUT ◦ (dEUT )∗

)− 1
2Qj

= ηjZj (76)

so that {(ηj , Zj)} for j = 1, . . . , N2 are eigenvalues and
eigenvectors of HessJ̃,E . Because HessJ̃,E is self-adjoint, any
other eigenvector Z must be orthogonal to the {Zj}. Also,
note that since the {Qj} span TUT (E)U(H), the {Zj} span
Range

(
(dEUT )∗

)
. Then, for any X ∈ TUT (E)U(H), 0 =

〈Z, (dEUT )∗(X)〉 = 〈dEUT (Z), X〉, so that dEUT (Z) = 0
and therefore HessJ̃,E Z = 0. Thus, HessJ̃,E has infinitely
many eigenvalues; N2 of them are identical to the eigenvalues
of AE , and the remaining infinite number of eigenvalues are
all zero. Since J has no local traps, we can conclude that J̃

has no local traps among the regular critical points. From the
transversal mapping theorem we find that TE

(
U−1T (M)

)
=

(dEUT )−1
(
TUT (E)M

)
, implying that for any f ∈ K, we have

HessJ̃,E(f) = (dEUT )∗ ◦HessJ,UT (E) ◦(dEUT )(f) = 0

⇐⇒ dEUT (f) ∈ ker HessJ,UT (E) (77a)
⇐⇒ dEUT (f) ∈ TUT (E)M (77b)

⇐⇒ f ∈ (dEUT )−1
(
TUT (E)M

)
(77c)

⇐⇒ f ∈ TE
(
U−1T (M)

)
. (77d)

Hence, the null space of HessJ̃,E is identical to TE
(
U−1T (M)

)
,

the tangent space to the critical submanifold.
In the case where the Hamiltonian takes the dipole form

H(t) = H0 − E(t)µ for any E ∈ L2(R+;R), the Fréchet
derivative of UT is given by [27]

dEUT (δE) =
i

~
UT (E)

∫ T

0

U†t (E)µUt(E)δE(t)dt. (78)

Then the adjoint operator of the derivative is

dEU
∗
T (A)(t) = −=Tr

(
A†UT (E)U†t (E)µUt(E)

)
(79)

for any A ∈ TUT (E)U(H), and the operator norm of this
adjoint is uniformly bounded by ‖dEU∗T ‖ ≤

√
T‖µ‖. For any

smooth “kinematic” function g : U(H)→ R, let g̃ = g◦UT be
the corresponding “dynamical” function on L2(R+;R). Then
grad g̃(E) = dEU

∗
T (grad g(UT (E))) and

‖ grad g̃(E)‖ ≤ ‖dEU∗T ‖‖ grad g(UT (E))‖ (80a)

≤
√
T‖µ‖‖ grad g(UT (E))‖. (80b)

Since g is smooth, ‖ grad g‖ is continuous over U(H), so
that since U(H) is compact, ‖ grad g‖ is uniformly bounded.
Therefore, ‖ grad g̃‖ is uniformly bounded over L2(R+;R).
For any dynamical quantum control landscape constructed in
this way, in particular the landscapes considered in the present
paper, the slope of the landscape (i.e. the speed of the gradient
flow) is uniformly bounded by some constant.

Taken together, these results show that, even though the
control space K is unbounded and infinite-dimensional and one
might naively expect anything to happen, the landscapes un-
der consideration are well-behaved, exhibiting gradient flows
which do not get trapped (at least away from singular points)
and which do not speed out of control.

VI. SUMMARY

This work presented an expanded analysis of landscapes
JF and JP , which are based on the Euclidean distances
between unitary operators in U(H) and PU(H), respectively.
The expansion appears in several ways. First, additional free-
dom has been allowed in the landscape functions themselves,
by admitting A matrices that are rank-deficient. Landscapes
based on these rank-deficient A matrices measure the distance
between unitary operators by their action on a subspace of the
full state space. This can be the desired objective for designing
a quantum information processor, for example, where only this
subspace of the state space is to be used for the quantum
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register. This additional freedom in defining the landscape
is consistent with the principal finding of earlier work on
landscapes of this form: they have no suboptimal minima
(i.e., “traps”) that could impede a deterministic optimal control
algorithm (such as gradient descent) from reaching the global
minimum.

In addition to broadening the families of landscapes for
consideration, we have provided more detail on the structure of
the critical sets and the behavior of the landscape functions at
these critical sets. The critical sets were shown to generally be
disjoint unions of critical submanifolds and we have described
the structure of these submanifolds, as products of Grassmann
manifolds and unitary groups. Furthermore, we have shown
that these critical submanifolds are generally nondegenerate
in the Morse-Bott sense, so that the kinematic landscapes are
generally Morse-Bott functions.

These results were related back to the corresponding dy-
namical landscapes through the control-to-propagator map UT ,
implicitly defined by the Schrödinger equation, that takes a
control function as input and returns the final time unitary
evolution operator. This map was shown to be infinitely
Fréchet differentiable, leading to the conclusion that, away
from the singular points of UT , the level sets and critical
sets of the dynamical landscapes are C∞ smooth, finite codi-
mension submanfolds of the infinite-dimensional control space
K = L2(R+;R). Also, the number of positive and negative
Hessian eigenvalues (and therefore the characterization as a
minimum, maximum, or saddle) was shown to be identical
for a kinematic critical point and a regular point of UT that
maps to it. This behavior implies that no traps exist in the
dynamical landscape among the set of regular points of UT .
Furthermore, Morse-Bott nondegeneracy of the critical set is
also preserved away from singular points of UT , which can be
important for certain numerical landscape exploration methods
such as second order D-MORPH [14].

Finally, two additional landscapes were introduced that are
based on the intrinsic or geodesic distance between operators
in U(H) and PU(H), respectively, rather than Euclidean dis-
tance. These kinematic landscapes have the desirable property
of having no critical points except for the global minimum
at the target. These landscapes may allow for more efficient
performance of optimal control algorithms over JF and JP ,
since the latter have many saddle points where the gradient is
zero.

APPENDIX A
DIFFERENTIABILITY OF U(T, 0) WITH RESPECT TO THE

CONTROL

Let M(H) ⊂ B(H) denote the space of Hermitian op-
erators endowed with the real Hilbert-Schmidt inner product
〈A,B〉HS = <Tr(A†B), and let H(H) = L2

(
R+;M(H)

)
=

M(H)⊗L2(R+;R) denote the space of all square-integrable
time-dependent Hamiltonians on H with inner product

〈H1, H2〉L2 =

∫ ∞
0

<Tr[H1(t)H2(t)] dt. (81)

Let ZT : H(H) → U(H) be the map, defined implicitly
through the Schrödinger equation, that takes a time-dependent
Hamiltonian H(·) ∈ H(H) and produces the corresponding
unitary time-evolution operator at time T : U(T, 0) ∈ U(H).
This map is well-defined over the entire domain because of
the absolute convergence of the Dyson series over H(H):

ZT (H) = 1+

(
− i
~

)∫ T

0

dt1H(t1)

+

(
− i
~

)2 ∫ T

0

dt1H(t1)

∫ t1

0

dt2H(t2) + . . . .

(82)

In this appendix, we will prove that ZT is infinitely Fréchet
differentiable over H(H). A corollary is that the map UT :
K → U(H) defined in the body of the paper is infinitely
Fréchet differentiable over all of K = L2(R+;R).

Lemma 1. If f : [a, b]→ R is integrable, then∫ b

a

dt1 f(t1)

∫ t1

a

dt2 f(t2) · · ·
∫ tn−1

a

dtn f(tn)

=
1

n!

(∫ b

a

f(t) dt

)n
. (83)

Proof: Note first that (83) holds trivially for n = 1.
Suppose that it holds for n = m. Then∫ b

a

dt1 f(t1)

∫ t1

a

dt2 f(t2) · · ·
∫ tm

a

dtm+1 f(tm+1)

=
1

m!

∫ b

a

f(t1)

(∫ t1

a

f(t) dt

)m
dt1 (84a)

=
1

m!

∫ b

a

d

dt1

[
1

m+ 1

(∫ t1

a

f(t) dt

)m+1
]

dt1 (84b)

=
1

(m+ 1)!

(∫ b

a

f(t) dt

)m+1

(84c)

and the lemma follows for arbitrary n ∈ N by induction.

Definition 1. For integrable operator-valued functions Ai :
[0, T ] → B(H) and for integrable real-valued functions ai :
[0, T ]→ R, we will use the following short-hand notation for
the Dyson-esque terms

ΥT [A1, A2, . . . , An]

:=

∫ T

0

dt1A1(t1)

∫ t1

0

dt2A2(t2) · · ·
∫ tn−1

0

dtnAn(tn)

(85a)
ΥT [a1, a2, . . . , an]

:=

∫ T

0

dt1 a1(t1)

∫ t1

0

dt2 a2(t2) · · ·
∫ tn−1

0

dtn an(tn).

(85b)

Lemma 2. If g1, . . . , gm ∈ L2(R+;R+) are non-negative
square-integrable functions on [0,∞), then

ΥT [g1, g2, · · · gm] ≤ Tm/2‖g1‖L2 · · · ‖gm‖L2 (86)
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Proof: Since the gi’s are non-negative functions, we get
the inequalities

ΥT [g1, g2, · · · gm]

≤
∫ T

0

dt1 g1(t1)

∫ T

0

dt2 g2(t2) · · ·
∫ T

0

dtm gm(tm) (87a)

≤ Tm/2
m∏
i=1

(∫ T

0

dti g
2
i (ti)

) 1
2

(87b)

≤ Tm/2‖g1‖L2 · · · ‖gm‖L2 (87c)

by extension of the integrals out to the interval [0, T ], followed
by application of the Cauchy-Schwarz inequality, and finally
extension out to [0,∞).

Lemma 3. If f, g1, . . . , gm ∈ L2(R+;R+) are non-negative
square-integrable functions on [0,∞), then

ΥT [f, . . . , f︸ ︷︷ ︸
β0 terms

, g1, f, . . . , f︸ ︷︷ ︸
β1 terms

, g2, f, . . . , f, gm, f, . . . , f︸ ︷︷ ︸
βm terms

]

≤ T
1
2

∑
βi∏m

i=0 βi!
‖f‖

∑
βi

L2 ΥT [g1, g2, · · · gm] (88)

Proof: Let σi = β0 + · · ·+ βi + i+ 1 for i = 0, . . . ,m.
Then, using Fubini’s theorem, we may rearrange the order of
integration as follows:

ΥT [f, . . . , f︸ ︷︷ ︸
β0 terms

, g1, f, . . . , f︸ ︷︷ ︸
β1 terms

, g2, f, . . . , f, gm, f, . . . , f︸ ︷︷ ︸
βm terms

]

=

∫ T

0

dtσ0 g1(tσ0)

∫ tσ0

0

dtσ1 g2(tσ1) · · ·∫ tσm−2

0

dtσm−1
gm(tσm−1

)

∫ T

tσ0

dt1 f(t1)

∫ t1

tσ0

dt2 f(t2)

· · ·
∫ tσ0−2

tσ0

dtσ0−1 f(tσ0−1)

∫ tσ0

tσ1

dtσ0+1 f(tσ0+1)∫ tσ0+1

tσ1

dtσ0+2 f(tσ0+2) · · ·
∫ tσ1−2

tσ1

dtσ1−1 f(tσ1−1)

· · ·
∫ tσm−2

tσm−1

dtσm−2+1 f(tσm−2+1)

∫ tσm−2+1

tσm−1

dtσm−2+2 f(tσm−2+2)

· · ·
∫ tσm−1−2

tσm−1

dtσm−1−1 f(tσm−1−1)

∫ tσm−1

0

dtσm−1+1 f(tσm−1+1)

· · ·
∫ tσm−2

0

dtσm−1 f(tσm−1) (89a)

=
1∏m

i=0 βi!

∫ T

0

dtσ0 g1(tσ0)

∫ tσ0

0

dtσ1 g2(tσ1) · · ·

· · ·
∫ tσm−2

0

dtσm−1
gm(tσm−1

)

(∫ T

tσ0

f(t) dt

)β0

×

×

(∫ tσ0

tσ1

f(t) dt

)β1

· · ·
(∫ tσm−1

0

f(t) dt

)βm
(89b)

where the last step follows from Lemma 1. Then, since f is

a non-negative function, we get the inequality

ΥT [f, . . . , f︸ ︷︷ ︸
β0 terms

, g1, f, . . . , f︸ ︷︷ ︸
β1 terms

, g2, f, . . . , f, gm, f, . . . , f︸ ︷︷ ︸
βm terms

]

≤ 1∏m
i=0 βi!

(∫ T

0

f(t) dt

)∑m
i=0 βi

×

×
∫ T

0

dt1 g1(t1)

∫ t1

0

dt2 g2(t2) · · ·
∫ tm−1

0

dtm gm(tm)

(90a)

≤ T
1
2

∑
βi∏m

i=0 βi!

∥∥f∥∥∑ βi

L2 ΥT [g1, g2, . . . , gm] (90b)

by first extending the f integrals to the interval [0, T ]. and
then invoking the Cauchy-Schwarz inequality.

Definition 2. For m = 0, 1, 2, . . . , let Bm
(
TH(H);B(H)

)
denote the space of bounded m-multilinear operators from(
TH(H)

)m
= TH(H) × TH(H) × · · · × TH(H) to B(H),

with the norm

‖A‖ = sup
{‖δHj‖6=0}

‖A(δH1, . . . , δHm)‖
‖δH1‖ · · · ‖δHm‖

(91)

for each A ∈ Bm
(
TH(H);B(H)

)
. Then let ϕT,m : H →

Bm
(
TH(H);B(H)

)
be defined by

ϕT,m(H)(δH1, δH2, · · · , δHm)

:=

∞∑
n=m

∑
a0+···+am=n−m

∑
π∈Sm

(
− i
~

)n
×

×ΥT [H, . . . ,H︸ ︷︷ ︸
a0 terms

, δHπ(1), H, . . . ,H︸ ︷︷ ︸
a1 terms

, δHπ(2), H, . . .

. . . , H, δHπ(m), H, . . . ,H︸ ︷︷ ︸
am terms

] (92)

where Sm denotes the symmetric group on m elements (i.e., the
group of permutations of m elements). For m, q = 0, 1, 2, . . . ,
let ΨT,m,q : H⊕ TH→ Bm

(
TH(H);B(H)

)
be defined by

ΨT,m,q(H, δH)(δH1, δH2, · · · , δHm)

:=

∞∑
n=m+q

∑
a0+···+am+q

=n−m−q

∑
b0+···+bm=q

∑
π∈Sm

(
− i
~

)n
×

×ΥT [H, . . . ,H︸ ︷︷ ︸
a0 terms

, A1, H, . . . ,H︸ ︷︷ ︸
a1 terms

, A2, H, . . .

. . . , H,Am+q, H, . . . ,H︸ ︷︷ ︸
am+q terms

], (93)

where

{A1, A2, . . . , Am+q}
=
{
δH, . . . , δH︸ ︷︷ ︸

b0 terms

, δHπ(1), δH, . . . , δH︸ ︷︷ ︸
b1 terms

, δHπ(2), δH, . . .

. . . , δH, δHπ(m), δH, . . . , δH︸ ︷︷ ︸
bm terms

}
(94)

Lemma 4. ϕT,m and ΨT,m,q are well-defined since their
defining sums converge absolutely, and for each H ∈ H and
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δH ∈ TH, ϕT,m(H) and ΨT,m,q(H)(δH) are bounded m-
multilinear operators.

Proof: Let f(t) = ‖H(t)‖, gi(t) = ‖Ai(t)‖, hj(t) =
‖δHj(t)‖, and h(t) = ‖δH(t)‖. Then

‖ΥT [H, . . . ,H︸ ︷︷ ︸
a0 terms

, A1, H, . . . ,H,Am+q, H, . . . ,H︸ ︷︷ ︸
am+q terms

]‖

≤ ΥT [f, . . . , f︸ ︷︷ ︸
a0 terms

, g1, f, . . . , f︸ ︷︷ ︸
a1 terms

, g2, f, . . . , f, gm+q, f, . . . , f︸ ︷︷ ︸
am+q terms

]

(95a)

≤ T
n−m−q

2∏m+q
i=0 ai!

‖f‖n−m−qL2 ΥT [g1, g2, . . . , gm+q] (95b)

=
T
n−m−q

2∏m+q
i=0 ai!

‖H‖n−m−qL2 ×

×ΥT [h, . . . , h︸ ︷︷ ︸
b0 terms

, hπ(1), h, . . . , h︸ ︷︷ ︸
b1 terms

, hπ(2), h, . . .

. . . , h, hπ(m), h, . . . , h︸ ︷︷ ︸
bm terms

] (95c)

≤
T
n−m

2 ‖H‖n−m−qL2 ‖h‖qL2∏m+q
i=0 ai!

∏m
j=0 bj !

ΥT [hπ(1), hπ(2), . . . , hπ(m)]

(95d)

≤
T
n
2 ‖H‖n−m−qL2 ‖h‖qL2∏m+q
i=0 ai!

∏m
j=0 bj !

‖h1‖L2‖h2‖L2 · · · ‖hm‖L2 (95e)

≤
T
n
2 ‖H‖n−m−qL2 ‖δH‖qL2∏m+q
i=0 ai!

∏m
j=0 bj !

‖δH1‖L2‖δH2‖L2 · · · ‖δHm‖L2

(95f)

by appealing to Lemmas 2 and 3. Recall, as a special case of
the multinomial theorem [28], that∑

c1+···+cr=p

p!∏r
i=1 ci!

= rp. (96)

It follows that

‖ΨT,m,q(H, δH)(δH1, δH2, . . . , δHm)‖

≤
∞∑

n=m+q

∑
a0+···+am+q=n−m−q

b0+···+bm=q

∑
π∈Sm

T
n
2

~n
∏m+q
i=0 ai!

∏m
j=0 bj !

×

× ‖H‖n−m−qL2 ‖δH‖qL2

m∏
j=1

‖δHj‖L2 (97a)

=

∞∑
n=m+q

m!T
n
2 (m+ q + 1)n−m−q(m+ 1)q

~n(n−m− q)!q!
‖H‖n−m−qL2 ×

× ‖δH‖qL2

m∏
j=1

‖δHj‖L2 (97b)

=
m!T

m+q
2 (m+ 1)q

~m+qq!
exp

(
(m+ q + 1)

√
T

~
‖H‖L2

)
×

× ‖δH‖qL2

m∏
j=1

‖δHj‖L2 (97c)

so that the sum converges absolutely, ΨT,m,q(H, δH) is a
bounded m-multilinear operator for each H ∈ H and δH ∈
TH, and

‖ΨT,m,q(H, δH)‖

≤ m!T
m+q

2 (m+ 1)q

~m+qq!
exp

(
(m+ q + 1)

√
T

~
‖H‖L2

)
‖δH‖qL2

<∞. (98)

Since ϕT,m(H) = ΨT,m,0(H, δH), this conclusion also holds
for ϕT,m(H).

Theorem 3. ZT is infinitely Fréchet differentiable, i.e. C∞,
everywhere on H.

Proof: We begin by establishing that ϕT,m is Fréchet dif-
ferentiable for each m = 0, 1, 2, . . . , with derivative ϕT,m+1.
Observe that

ϕT,m+1(H)(δH1, . . . , δHm, δH)

= ΨT,m,1(H, δH)(δH1, . . . , δHm) (99)

and that since the defining sum for ϕT,m(H + δH) converges
absolutely, it may be rearranged as

ϕT,m(H + δH)(δH1, . . . , δHm)

=

∞∑
q=0

ΨT,m,q(H, δH)(δH1, . . . , δHm). (100)

Then by appealing to the bound of ΨT,m,q in (97c), we get

‖ϕT,m(H + δH)− ϕT,m(H)− ϕT,m+1(H)(·, . . . , ·, δH)‖
= sup
{‖δHj‖=1}

∥∥ϕT,m(H + δH)(δH1, . . . , δHm)

− ϕT,m(H)(δH1, . . . , δHm)

− ϕT,m+1(H)(δH1, . . . , δHm, δH)
∥∥ (101a)

= sup
{‖δHj‖=1}

∥∥∥∥ ∞∑
q=2

ΨT,m,q(H, δH)(δH1, . . . , δHm)

∥∥∥∥
(101b)

≤ sup
{‖δHj‖=1}

∞∑
q=2

∥∥ΨT,m,q(H, δH)(δH1, . . . , δHm)
∥∥ (101c)

≤
∞∑
q=2

m!T
m+q

2 (m+ 1)q

~m+qq!
×

× exp

(
(m+ q + 1)

√
T

~
‖H‖L2

)
‖δH‖qL2 (101d)

=
m!T

m+2
2 (m+ 1)2

~m+2
exp

(
(m+ 3)

√
T

~
‖H‖L2

)
‖δH‖2L2

× exp

[
(m+ 1)

√
T

~
‖δH‖L2 exp

(√
T

~
‖H‖L2

)]
.

(101e)

Hence,

lim
‖δH‖→0

1

‖δH‖
∥∥ϕT,m(H + δH)− ϕT,m(H)

− ϕT,m+1(H)(·, . . . , ·, δH)
∥∥ = 0 (102)



14

and therefore ϕT,m is Fréchet differentiable with derivative
ϕT,m+1. Since ZT = ϕT,0, this implies that ZT is infinitely
Fréchet differentiable, and that the m’th derivative of ZT is
ϕT,m.

Lemma 5. Let Ĥ : K → H(H) be defined by Ĥ(E)(t) =
H0 − µE(t) for some fixed Hermitian operators H0 and µ in
M(H). Then Ĥ is infinitely Fréchet differentiable, i.e. C∞.

Proof: Let ζ : K → B(TK; TH(H)) be defined by
ζ(E)(δE)(t) = −µδE(t). For each E ∈ K, ζ(E) is linear, and
‖ζ(E)(δE)‖L2 = ‖µ‖HS‖δE‖L2 , so ζ(E) is bounded. Now,

lim
‖δE‖→0

‖Ĥ(E + δE)− Ĥ(E)− ζ(E)(δE)‖
‖δE‖

= 0 (103)

so that ζ is the Fréchet derivative of Ĥ. Since ζ is constant (i.e.,
ζ(E) is the same linear operator regardless of which E ∈ K
is input), the higher Fréchet derivatives also exist and are all
equal to zero.

Theorem 4. UT = ZT ◦ Ĥ : K→ U(H) is a composition of
C∞ maps and therefore is itself a C∞ map.

APPENDIX B
GRADIENT OF JG

Several steps in Section IV require differentiation of expres-
sions involving the matrix logarithm. Since the expressions to
be differentiated are all similar, this appendix will demonstrate
the computation of the gradient of the kinematic landscape JG,
as the other variations follow along similar lines. To this end,
we fix some target W ∈ U(H) and recall

JG(U) :=
1

2
‖ log(U†W )‖2HS. (104)

The differential of this function may then be written

dUJG(δU)

= 〈log(U†W ),dU†W log(−U†δUU†W )〉HS (105a)

= 〈−U
[(

dU†W log
)∗

(log(U†W ))
]
W †U, δU〉, (105b)

where (dU†W log)∗ is the adjoint (super-)operator. As a result,
the gradient, which is the dual vector in TUU(H) of the
differential functional, is given by

grad JG(U) = −U
[(

dU†W log
)∗

(log(U†W ))
]
W †U (106)

It follows from the inverse relationship of the operator
logarithm and exponential that exp ◦ log = id, whence
dlogZ exp ◦dZ log = id for any Z ∈ U(H), and therefore(

dZ log
)∗ ◦ (dlogZ exp

)∗
= id. (107)

Now, it is well-known [29], [30] that

dlogZ exp(X) =

∫ 1

0

es log(Z)Xe(1−s) log(Z) ds, (108)

and therefore(
dlogZ exp

)∗
(X) =

∫ 1

0

e−s log(Z)Xe−(1−s) log(Z) ds,

(109)

It follows that(
dlogU†W exp

)∗(
U†W log(U†W )

)
=

∫ 1

0

e−s log(U
†W )U†W log(U†W )e−(1−s) log(U

†W ) ds

= log(U†W ), (110)

and consequently, using (107),(
dU†W log

)∗(
log(U†W )

)
=
(
dU†W log

)∗ ◦ (dlogU†W exp
)∗(

U†W log(U†W )
)

= U†W log(U†W ). (111)

We therefore can rewrite the gradient of JG as

grad JG(U) = −U
[(

dU†W log
)∗(

log(U†W )
)]
W †U

= −W log(U†W )W †U

= −U log(U†W ). (112)

where the last step follows from the fact that W †U commutes
with log(U†W ).
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