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Abstract—Temporal action localization (TAL) is a prevailing
task due to its great application potential. Existing works in this
field mainly suffer from two weaknesses: (1) They often neglect
the multi-label case and only focus on temporal modeling. (2)
They ignore the semantic information in class labels and only
use the visual information. To solve these problems, we propose
a novel Co-Occurrence Relation Module (CORM) that explicitly
models the co-occurrence relationship between actions. Besides
the visual information, it further utilizes the semantic embeddings
of class labels to model the co-occurrence relationship. The
CORM works in a plug-and-play manner and can be easily
incorporated with the existing sequence models. By considering
both visual and semantic co-occurrence, our method achieves
high multi-label relationship modeling capacity. Meanwhile, ex-
isting datasets in TAL always focus on low-semantic atomic
actions. Thus we construct a challenging multi-label dataset UCF-
Crime-TAL that focuses on high-semantic actions by annotating
the UCF-Crime dataset at frame level and considering the
semantic overlap of different events. Extensive experiments on
two commonly used TAL datasets, i.e., MultiTHUMOS and
TSU, and our newly proposed UCF-Crime-TAL demenstrate the
effectiveness of the proposed CORM, which achieves state-of-the-
art performance on these datasets.

Index Terms—Co-occurrence relationship, semantic informa-
tion, temporal action localization

I. INTRODUCTION

MONG the field of computer vision, temporal action

localization (TAL) [1[]-[15]] has received lots of attention
due to its great potential in real-world applications, such as
security monitoring, human-computer interaction, efc. Given
an untrimmed video, TAL aims to localize where the actions
occur and identify their categories.

Except for temporal modeling, the multi-label case, i.e.,
multiple actions occur at the same time, is also one of the most
challenging problems for TAL, which often occurs in practice.
It is difficult for models to detect all these co-occurring
actions. There always exists some relationship among these co-
occurring actions. In general, as is shown in Figure [T} the co-
occurrence relationship among actions can be divided into two
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Fig. 1. Examples of the co-occurrence relationship. The first example is
the co-occurrence of “Basketball dribble” and “Run”, which indicates the
semantic overlap relationship. The second example is the co-occurrence of
“Basketball dunk” and “Celebrate”, which indicates the contextual relation-
ship.

cases. One is the semantic overlap relationship and the other
is contextual relationship. For example, during a basketball
game, the actions of “Basketball Dribble” and “Run” often
share the same motion pattern. And the actions of “Basketball
Dunk” and “Celebrate” have close contextual relationship.
Understanding the relationship among these actions is signif-
icant to deal with the multi-label case.

There exist some works [3], [16] that focus on modeling the
relationship among actions. Piergiovanii et al. [16] propose a
new concept “super event” to relate a set of sub-events in
terms of fixed temporal patterns to understand the relationship
among actions. Praveen et al. 3] propose an attention-based
multi-layer action dependency layer, which contains a co-
occurrence dependency branch that models the co-occurrence
relationship between different actions within a time step. How-
ever, these methods all adopt an implicit modeling approach,
i.e., the network learns the relationship among actions without
any supervision. This causes two drawbacks. First, the network
is likely to learn inadequate or even incorrect relationship.
Second, it takes more time for the model to capture the
correct relationship. Considering that the guidance of proper
supervision is significant, we propose a method that can model
the co-occurrence relationship among actions in an explicit
manner.

Besides, when modeling the relationship among actions,
the existing works always ignore the semantic information
among action classes and only focus on the visual information.
Actually, the semantic relationship of co-occurrence actions
is usually much closer. For instance, action “Pole Vault” is
highly semantically related to action “Jump”. Also, action
“Basketball Dribble” and action “Running” have a great
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Fig. 2. The structure of our COR Network. It contains a main prediction branch and a proposed Co-Ocurrence Relation Module (CORM). The input of
CORM are class labels and the visual feature extracted from sequence model. The visual feature also acts as the input of the prediction branch. The CORM
learns the co-occurrence relationship among actions and help the model to deal with the multi-label case. It plays a supporting role. And in inference, the
TAL results can be obtained just according to the output of the prediction branch.

semantic overlap. On the other hand, semantic information
has been proven to be helpful in other computer vision
tasks, such as few-shot object detection [17]-[[19] and video
gesture recognition [20]. However, it has not been explored in
temporal action localization.

Thus, in this work, we propose a novel lightweight Co-
Occurrence Relation Module (CORM) to deal with the multi-
label case, considering not only the visual but also the se-
mantic information. In the CORM, we propose to estimate
the co-occurrence intensity of the actions relying both on
the spatiotemporal visual features and on the semantic space
of class labels. The CORM contains two branches, i.e. a
Visual Co-Occurrence Relation branch (VCOR branch) and
a Semantic Co-Occurrence Relation branch (SCOR branch).
The VCOR branch extracts the corresponding visual feature
of each action, and then uses these features to capture the
co-occurrence relationship. While the SCOR branch directly
leverages the semantic embeddings of class labels to model
the relationship. To supervise the CORM, we construct a
co-occurrence matrix as ground truth, which is calculated
based on the class labels of each time without any extra
annotations. It reflects which actions frequently occur together
in a video sequence. With the supervision, the network can
better understand the relationship among these co-occurrence
actions. CORM is plug-and-play. As shown in Figure [2] it
can be combined with existing sequence models in TAL, i.e.,
models that only focus on temporal modeling, such as TGM
[21]], PDAN [22], to build Co-Occurrence Relation (COR)
Networks. Our proposed CORM enables COR Networks to
integrate the co-occurrence relationship in the learned features
of sequence models, to help the model make more accurate
and comprehensive predictions. It should be noted the CORM
is only an auxiliary module which is used in training for
better learning ability. And in inference, we only evaluate the
performance of the prediction branch.

In addition, the current datasets [23]], [24] for TAL are
always fine-grained and low-semantic. This makes the network
lack the ability to understand complex events macroscopically.
Therefore, we introduce a novel high-semantic dataset UCF-
Crime-TAL based on UCF-Crime [25], which is a dataset
for anomaly detection containing 13 high-semantic anomaly
classes. We annotate UCF-Crime at the frame level to form a
multi-label video dataset UCF-Crime-TAL for temporal action
localization. When annotating, we label all classes that fit the
real situation for each time step. Although some works [26],
[27] also label the UCF-Crime dataset along the temporal
dimension, they don’t consider the multi-label case and only
assign one class label to a time step. There are two main
challenges within UCF-Crime-TAL: (1) It only focuses on
abnormal events but not all subsistent events. (2) The anomaly
classes within it are high-semantic. For instance, the anomaly
event “Arrest” may be a series of element actions such as
assault and shooting. This requires the model to abstract the
concept of “Arrest” from these continuous concrete actions.
Thus this dataset is highly challenging.

In summary, this paper makes the following contributions:

e We propose a new Co-Occurrence Relation Module
(CORM) that models the co-occurrence relationship
among actions explicitly.

o We introduce the semantic information to the CORM
and utilize it to model semantic relation among different
actions based on the word embeddings of class labels.

e We introduce a new dataset UCF-Crime-TAL for the
action localization task, which is annotated with dense
labels considering the multi-label case. It is challenging
due to its high-semantic action classes.

e We evaluate our method on three datasets, i.e., Multi-
THUMOS, TSU, and our newly introduced UCF-Crime-
TAL dataset. Our method consistently outperforms exist-
ing state-of-the-art methods.
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II. RELATED WORK
A. Temporal Action Localization

Temporal action localization is popular due to its good fit
to reality. There exist two main challenges in this field, i.e.,
the different ranges of actions’ temporal durations and the
multi-label case. There mainly exist two kinds of methods
in temporal action localization. The top-down methods [1]],
[2f], [28[]-[33] first propose temporal regions of actions, then
identify their categories. Such methods require a large number
of proposals and cause heavy computation costs.

The other bottom-up methods [3[], [[16[], [21]], [[22f], [34{—[37]]
generate predictions for each time step and concatenate time
steps with the same label to form the final proposals. These
methods work faster. Existing bottom-up methods [22], [34],
[35]], [38]] often focus on the first challenge. There only exist
a few works that focus on the second one. Piergiovanni et al.
[16] define a concept “Super-event” to connect a set of co-
occurring sub-events with fixed temporal patterns. Tirupattur
et al. [3|] propose an M LAD layer that contains two sub-
branches that model the actions’ relationship within a timestep
and the temporal pattern of each action respectively. However,
the above methods both model the action relation in an implicit
manner, which means no supervision is provided. That leads
to insufficient and inefficient learning ability. Consequently,
we propose the CORM which works in an explicit manner,
i.e., it learns the co-occurrence relationship under the guidance
of supervision, which is built based on the original temporal
annotations of the datasets without any additional information.

It is important to note the difference between temporal
action localization (TAL) and temporal action segmentation
(TAS). TAS is a very closely-related task that aims to segment
a temporally untrimmed video and classify each segmented
part. It mainly deals with procedural sequences, such as “mak-
ing coffee”, “fried egg” et al. While TAL focuses on more
general videos where the temporal relation among actions
is not such strong. And TAS focuses on finding the exact
transition point between actions. However, TAL pays more
attention to the duration of each action.

B. Semantic Information Model

Obviously, the semantic information largely reflects the
relationship between actions. However, in temporal action
localization, it is ignored. While in the field of zero-shot
object detection [[17]-[19], [39], [40], the semantic relationship
between objects is always utilized for auxiliary detection. Zhu
et al. [[17] propose to use the word embeddings of class labels
to construct a semantic space to learn the relationship between
different classes. Then it fuses this relationship into the net-
work. Nie et al. 18] learn the relationship among different
classes from visual and semantic perspectives respectively. For
the semantic relationship modeling, it constructs a semantic
relational graph, where nodes are the semantic representations
of classes. Yang et al. [19] use the semantic knowledge to
enable the model to know what visual features should be
focused on. In gesture recognition, Wang et al. [20] attempt
to fuse the semantic relationship into the network to assist
gesture recognition. However, this semantic information has

not been considered in TAL. As far as we know, we are the
first to utilize the word embeddings of class labels to model
semantic co-occurrence relationship in TAL.

C. Datasets

In recent years, researchers have proposed various datasets
for temporal action localization. At first, most datasets [41]—
[44] focus on videos that contain sparse and well-separated
instances of actions. ActivityNet [41] and THUMOS [42]] all
have a large number of videos, which focus on sports and out-
door activities respectively. It only exists a few action instances
in a video. However, in real life, there always occur multiple
actions at the same time. To better fit the reality, datasets with
dense labels [23]], [24] are proposed. MultiTHUMOS [23] is
a dataset that extends THUMOS [42]] from 20 action classes
to 65 classes. And the label number is extended from 0.3 per
frame to 1.5 per frame. TSU [24]| contains realistic untrimmed
videos, which record the diverse spontaneous human activities
in real-world settings. The activities within the above datasets
are all atomic and low-semantic, such as “Run”, “Jump”, etc.
However, in real life, we always need to pay more attention
to highly semantic activities. Motivated by the shortcomings
of these datasets, we introduce UCF-Crime-TAL, which is
formed by annotating the UCF-Crime [25] with dense labels
at the frame level. When annotating, we consider the overlap
of different events, thus making the multi-label annotations.

III. METHOD

In this section, we introduce our Co-Occurrence Relation
Module (CORM). Firstly, we introduce how to build a co-
occurrence matrix for a video sequence, which is used as the
ground truth of the CORM. Then we describe the specific
structure of the CORM. Finally, we show the method to con-
struct the COR Network and the design of the loss function.

A. Ground truth building

To model the co-occurrence relationship correctly and ef-
ficiently, we construct ground truth of this relationship for
the CORM. It should be noted that we only use the original
temporal annotations of the datasets to build this ground truth,
without any additional information.

We mathematically represent the co-occurrence relationship.
Given a video sequence of length 7', we build an N x N co-
occurrence matrix R* as the ground truth of the CORM, where
N denotes the class number of actions. R*(i, j) represents the
co-occurrence relation intensity between class ¢ and class j.
The following is the detailed building process. According to
the original temporal annotations, we can get which class of
action occurs at each time step. Suppose that there occur K
classes of actions at time step ¢, we can construct an action
class set C; based on their categories:

Ci={a}ty,ck€1,2,-- N (1)

where c;, denotes the class of the k-th action. Then we build
a co-occurrence matrix Rj (i, ) for time step ¢:

v 1, ifieCiNnjeC
Rt(w){ e 6)
0, otherwise
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Fig. 3. The structure of Co-Occurrence Relation Module (CORM). The

CORM contains two branches, i.e., the VCOR branch and the SCOR branch.
The input of VCOR branch is visual feature extracted from the sequence
model. The input of SCOR branch is the class labels.

In this manner, we can relate the co-occurring actions within
each time step. Finally, to obtain the co-occurrence relation-
ship for the video sequence, we sum up the co-occurrence
matrixes along the temporal dimension:

T
R*=> " R; 3)
t=0

where R* is an N x N matrix that denotes the co-occurrence
relationship within the whole video sequence.

When two classes of actions occur simultaneously more
often, the corresponding value in R* is higher, which indicates
a closer co-occurrence relationship between them. With the
supervision of this matrix, the network can better understand
the relationship within the co-occurrence actions.

B. Co-Occurernce Relation Module (CORM)

CORM explores the co-occurrence relationship among ac-
tions to encode it in the learned features of the network. It
contains two branches, i.e., the Visual Co-Occurrence Relation
branch (VCOR branch) and the Semantic Co-Occurrence Re-
lation branch (SCOR branch). The VCOR branch learns visual
co-occurrence information. While the SCOR branch captures
the co-occurrence relationship from the semantic perspective.
The structure of the CORM is shown in Figure [3]

1) Visual Co-Occurrence Relation branch: The VCOR
branch models the co-occurrence relationship among actions
from the visual perspective. Specifically, our VCOR branch
contains three parts: (1) feature preprocessing, (2) class-
specific feature extraction, and (3) correlation modeling.

In the first part, we preprocess the input feature X, €
RT*Do_where Dy denotes the channel dimension. We utilize

a linear layer f to reduce the channel dimension from Dy to
D,:

X = f(Xp), X € RT*Dv 4)

Then, we unsqueeze X to obtain the new feature X' €
RT X1Xx D,

Secondly, in the class-specific feature extraction part, given
X', we use a linear layer g to extract corresponding features
for each class:

Xeas = 9(X'), Xos € RTN*Dw (5)

where N denotes the number of classes. Xs(¢,1,:) indicates
the extracted feature for the ¢-th class in time step t.

Finally, based on the class-specific features, we can ob-
tain the co-occurrence matrix. For the class-specific feature
Xes(t) € RV*Dv in time step ¢, we can compute their co-
occurrence relationship by the following method:

Ry = M(Xus(t), Ry € RN*N (6)

where R} is the learned co-occurrence matrix at time step ¢.
M denotes the correlation modeling method, which will be
discussed in Section

2) Semantic Co-Occurrence Relation branch: The SCOR
branch models the co-occurrence relationship among actions
from the semantic perspective. In few-shot object detection,
existing methods [17]-[19] always utilize semantic informa-
tion to model the relationship among different classes. They
always construct the semantic space using the Word2Vec [435]]
or Glove [46] which specifically encodes individual words.
However, the class label in video tasks are always phrases,
rather than individual words. Therefore, we utilize Phrase-
BERT [47] that focuses on phrase embeddings to encode the
action labels. It proposes a contrastive finetuning objective to
enable BERT [48] to encode more powerful phrase embed-
dings.

Given a set of class labels, we first encode them into em-
beddings using Phrase-BERT, thus constructing the semantic
space W, € RN*De_where W, (i) is the semantic embedding
of the i-th class label. For the semantic information, we also
utilize the correlation modeling function M to capture the co-
occurrence relationship from the semantic perspective:

R® = M(W,), R® € RV*N (7

This branch delves into the semantic relationship among
actions. The correlation modeling function will be discussed
in Section [II-B4

3) Fusion method: After capturing the co-occurrence rela-
tionship from visual and semantic perspectives, we fuse them
to obtain a combined co-occurrence relationship. We firstly
add the semantic co-occurrence matrix with the visual co-
occurrence matrix in each time step by a weighted summation.

Ri=axR'+ R’ ®)

where the o and [ are both learnable parameters, which
indicate the importance of R* and R’ respectively. Then we
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sum the R; along the temporal dimension to obtain the co-
occurrence matrix for the whole video sequence:

T
R=> R, ReRVV )
t=0

By the fusion method discussed above, we can obtain the
co-occurrence matrix which contains both visual and semantic
information.

4) Correlation Modeling function: In this section, we dis-
cuss the correlation modeling function M. We propose two
methods, which are shown in Figure [

The first method maps the input feature X € RV*P to a
new space and then computes the distance among different
actions as their correlation strength. Specifically, given a pair
of classes (7, j) and their corresponding features (z;, x;), we
formulate the first correlation modeling function M as:

Mi(z,25) = o(p(;) — ¥(z;))) (10)
where o(-) indicates the sigmoid activation function. ¢(-) and
() are linear layers which reduce the channel dimension
from D to 1. M;(+) calculates the distance between ¢(z;) and
1(z;), which indicates the co-occurrence relationship between
the i-th class and the j-th class.

The second method is based on the self-attention mecha-
nism. Given an input X € RV*P we first transform it into
Q and K via two linear layers h, and hy. Then, we calculate
the self-attention matrix using @ and K:

hgyhi : RVNXP oy RVXde = h - X K =hy - X (11)

QK™
en

where the element in (i,5) of My(X) represents the co-
occurrence relationship between class ¢ and class j.

Ms(X) = softmax(

) (12)

C. COR Network

We insert the CORM to sequence models to build our Co-
Occurrence Relation Network (COR Network) for temporal
action localization. In previous works, after obtaining the
video sequence feature, the networks always only use the
feature to make predictions for each time step. Different
from them, we also utilize it to capture the co-occurrence
relationship among actions, i.e., this feature is also fed into
our CORM. The CORM is used in training to help the model
capture the co-occurrence relationship among actions. And
when inference, the TAL results can be obtained from the
prediction branch. Thus during inference, we just need to
evaluate the performance of the prediction branch.

As shown in Figure 2l our COR Network contains a
main prediction branch and a auxiliary module CORM. The
extracted feature Xy € RT*Po from the sequence model is
fed into the prediction branch as well as the CORM. The
structure and ground truth of CORM are already discussed
above. The prediction branch utilizes a linear layer to predict
class labels for each time step. Specifically, given the extracted
feature of length 7', each time-step ¢ contains a ground-truth
label y; . € {0,1}, where ¢ € 1,..., N indicates the action
class. The prediction branch needs to predict class probabilities
Yt.c € [0, 1].

We design loss functions for our COR Network. For the
prediction branch, we use the Binary Cross Entropy (BCE)
loss. For the CORM, we utilize the Mean Squared Error
(MSE) loss to supervise. Specifically, the two loss functions
are described as follows:

Lpor = yr.clog(p(clv)) + (1 = yi,e) log(1 — p(cfvr)) (13)

L X
Lyse = - Z(Rf — R;)?

i=1

(14)

where v, is the visual feature at frame ¢ and y; .. is the ground-
truth label for class ¢ in time ¢. The R; and R indicate the
prediction and the ground truth of the co-occurrence relation
intensity between action ¢ and other actions.

The overall loss is computed by a weighted sum of the two
losses introduced above.

Liotat = Lpce +a X Lyse (15)

where a is used to control the numerical scale of the MSE
loss.

IV. UCF-CRIME-TAL DATASET

In this section, we introduce our proposed UCF-Crime-TAL
dataset. We first describe how we densely annotate the UCF-
Crime dataset at the frame level. Then we discuss the
challenges of the UCF-Crime-TAL dataset.

A. Annotation

The UCF-Crime [25] dataset is a large-scale video anomaly
detection dataset, which contains 13 anomaly classes. This
dataset consists of not only abnormal videos but also normal
videos where no abnormal events occur. UCF-Crime only has
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Fig. 5. (a) An example of annotations on UCF-Crime-TAL dataset. It shows a case of “Arrest” in which the action of “Assault” and “Shooting” also take

place. (b) The distribution of different classes in UCF-Crime-TAL dataset.

video-level abnormal-or-not labels, i.e., whether the current
video has abnormal events or not, without the specific class
of the abnormal events. When we use UCF-Crime for TAL,
we only care about abnormal events. The normal events act
as the background. Therefore, to better match the temporal
action localization task, we remove videos which only contain
normal events to construct our UCF-Crime-TAL dataset. Then
we annotate the UCF-Crime-TAL dataset with dense labels at
the frame level. Given a video, we first locate the abnormal
events. Then we annotate each time step with all abnormal
classes that occur currently. Figure [5a] shows an example of the
annotation. This video shows an example of action “Arrest”.
When the policeman arrests the criminal, the criminal assaults
the policeman. Then the policeman shoots at him. And we
show the distribution of abnormal activities in UCF-Crime-
TAL in Figure [5b]

B. Challenges

The UCF-Crime-TAL dataset is based on the UCF-Crime
[@] dataset, which aims at anomaly detection. This leads to
2 challenges.

(1) Only focus on abnormal events: It only focuses on
abnormal events rather than all occurred events. In TAL,
we need to localize the interested actions and classify them.
Different from previous datasets, the UCF-Crime-TAL dataset
only concerns about the anomaly events other than all subsis-
tent events. Thus to make correct predictions, networks need
to distinguish which type of events should be focused on.

(2) High-semantic level: Compared to other datasets, UCF-
Crime-TAL is more high-semantic. The abnormal events in
it usually contain a series of atomic events. When making
predictions, networks need to associate these atomic events
to abstract out higher semantic-level abnormal events. For
example, as is shown in Figure [5a] the criminal notices that
the policeman is approaching him. So the criminal assaults the
policeman. Then the policeman shoots at the criminal. In this
case, the above atomic events form the high-semantic abnor-
mal event “Arrest”. Only understand the semantic relationship
among these atomic events can the model understand the high-
semantic abnormal events.

V. EXPERIMENTS
A. Datasets

We evaluate our method on two commonly used densely-
labeled datasets MultiTHUMOS (23], TSU and our pro-
posed UCF-Crime-TAL dataset. MultiTHOMOS is extended
from THUMOS , which contains videos of various sports
activities. It is labeled with 65 different classes at frame-
level. It contains 413 videos where 200 of that are used for
training and others for validation. On average, MultiTHUMOS
contains 1.5 labels per frame and 10.5 action classes per video.
TSU focuses on long untrimmed videos, the average
length of which is 21 minutes. It contains 536 videos with 51
classes. We use its defined Cross-Subject evaluation protocol
for our work. Specifically, it splits 18 subjects into training set
and testing set, which contain 11 and 7 subjects respectively.
As for the UCF-Crime-TAL dataset, we follow the split setting
of the training set and the testing set in UCF-Crime.

B. Implementation Details

Following the previous works, we utilize the I3D features
as input. They are the output features after the Global Average
Pooling of the 13D network. Thus the dimension of
input features is 1024. For MultiTHUMOS and UCF-Crime-
TAL datasets, the length of input features is fixed to 256.
As for TSU, because of its long duration, the length of
input features is fixed to 512. In our work, we insert the
CORM into other sequence models to form different COR
Networks. When training our COR Network, we set the initial
learning rate to 0.0005. The batch size is set to 16, 8, and 32
for MultiTHUMOS, TSU, and UCF-Crime-TAL respectively.
And we train 200, 300, and 60 epochs for them respectively.
Meanwhile, the loss balance factor a is set to 0.001, 0.0003,
and 0.0005 for MuliTHUMOS, TSU and UCF-Crime-TAL
dataset respectively. When testing, we evaluate the per-frame
mAP of these datasets.

C. Comparison with the State-of-the-Art

In this section, we compare our proposed COR Network
with state-of-the-art TAL methods. The results are shown in
Table . We use MS-TCT without the hmap branch as the
baseline, in which we use 3 Global-Local Relation Blocks
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THREE DATASETS. WE REPORT THE PER-FRAME MAP ONLY USING RGB VIDEOS AS INPUT.

Methods Visual Encoder GFLOPs  MultiTHUMOS TSU UCF-Crime-TAL
13D + LSTM [50] 13D - 29.9 15.9 -
Super-event [|16] 13D 0.8 36.4 17.2 -
TGM [21] 13D 1.2 37.2 26.7 -
PDAN [22] 13D 32 40.2 32.7 15.88
MLAD [3] 13D 44.8 422 - 15.18
MS-TCT [35] 13D 6.6 43.1 33.7 18.54
baseline 13D 5.76 42.32 30.69 18.07
COR Network 13D 5.79 45.33 36.34 20.40
TABLE 11 TABLE III

THE CORRELATION MODELING FUNCTION CHOICES OF CORM. WE
CHOOSE DIFFERENT CORRELATION MODELING FUNCTIONS FOR VCOR
BRANCH AND SCOR BRANCH. AND WE EVALUATE THE MAP VALUE OF

THESE MODELS.

Methods | VCOR branch | SCOR branch | AP
COR Network | M1 M2 | M1 2z | ™

A 44.77

B 45.33

C 42.35

D 43.24

baseline | - | - | 42.32

for each stage. And we build our COR Network based on
it. For a comprehensive comparison, we reproduce several
previous works on our UCF-Crime-TAL dataset. Obviously,
our COR Network achieves state-of-the-art performance on the
three datasets. Previous works [3]], [[16[], [21], [22], [35], [50]
always pay more attention to temporal modeling but not the
multi-label case. Superevent [16] and TGM [16] all propose
new filters to model the temporal patterns of different actions.
PDAN [22] and MS-TCT [35] all use multi-stage architecture
to process different ranges of actions. And MS-TCT fuses
features from different stages to make predictions, thus it can
achieve better performance. Thanks to the above works, the
problem of temporal modeling has been well solved. However,
the multi-label case is still a challenge. MLAD [3|] firstly
focuses on the multi-label case, which utilizes multiple self-
attention layers to model co-occurrence dependencies and tem-
poral action dependencies simultaneously. However, it learns
these dependencies in an implicit manner, i.e., without any
supervision. That makes the model takes more time to capture
the right dependencies. Specifically, MLAD needs to train
2500 epochs to achieve its best performance. Meanwhile, since
it stacks multiple self-attention layers, it evolves much more
computation costs (44.8 GFLOPs). Different from it, we pro-
pose a lightweight plug-and-play module CORM, which can
be easily incorporated with existing sequence models to handle
both temporal modeling and the multi-label case. Therefore,
our CORM can achieve the best performance. Compared with
the previous works, our COR Network outperforms them by
a large margin, i.e., 2.23 mAP on MultiTHUMOS, 2.64 mAP
on TSU and 1.86 mAP on UCF-Cime-TAL respectively.

On the other hand, when inserting CORM into the baseline,
the performance achieves a large amount of improvement, i.e.,

THE EFFECTIVENESS OF EACH COMPONENT IN CORM. WE ADD THE
VCOR BRANCH AND THE SCOR BRANCH TO OUR BASELINE ONE BY ONE
AND EVALUATE THEIR MAP VALUE ON THE MULTITHUMOS DATASET.
BASELINE* INDICATES ONLY ADDING THE VCOR BRANCH TO THE

BASELINE.
Methods | VCOR branch | SCOR branch | mAP
baseline 42.32
baseline* v 4431
COR Network v v 45.33

3.01 mAP, 5.65 mAP, and 2.33 mAP on the three datasets
respectively. The baseline only focuses on the temporal mod-
eling but does not take the co-occurrence relationship into
account. Obviously, CORM makes up for the shortcomings
of the baseline.

Last but not least, our CORM is a lightweight module.
CORM only introduces a small number of parameters (0.05M)
and GFLOPs (0.03). The number of parameters of the base-
line, MS-TCT, and COR Network are 83.93M, 87.11M, and
83.98M respectively. As shown in Table [I, our COR Network
achieves better performance with lower GFLOPs (5.79) and
fewer parameters (83.98M) compared with MS-TCT (6.6,
87.11M). It also can be combined with other more efficient
sequence models, which will be discussed in Section

D. Ablation Study

In this section, we perform full ablation study on the Mul-
tiTHUMOS dataset. Firstly, we investigate the best setting of
our CORM in Section Then, we study the effectiveness
of each component in our CORM in Section[V-D2] Finally, we
show the universality of CORM in Section Note that
baseline in this section indicates MS-TCT without its hmap
branch. And the COR Network in Section [V-D2] and Section
follows the best settings discussed in Section

1) Correlation methods: Based on the baseline, we apply
different correlation methods to VCOR branch and SCOR
branch to construct four different COR Networks. The results
are shown in Table [lIl Compared with the baseline, except for
COR Network C, other COR Networks all achieve obvious
improvements, ie., 2.45, 3.01 and 0.92 mAP respectively.
That indicates the effectiveness of modeling the co-ocurrence
relationship, regardless of the specific approach. Among them,
COR Network B achieves the best performance (45.33 mAP)
which uses M; correlation function for the VCOR branch and
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TABLE IV
DIFFERENT SEQUENCE MODELS W/ AND W/O THE CORM. WE REPORT
THE MAP VALUE OF THESE MODELS ON MULTITHUMOS DATASET.

Methods mAP A mAP
TGM 37.2 137
TGM + CORM 38.57 "~
PDAN 40.2 133
PDAN + CORM 41.53 ’
baseline 42.32 301
baseline + CORM  45.33 ’

My for the SCOR branch. Compared COR Network A(B) with
C(D), we can find that the M; method performs better in
the VCOR branch. While compared COR Network A(C) with
B(D), obviously, the M2 method performs better in the SCOR
branch. We suspect the reason is that M5 correlation modeling
method utilizes the self-attention mechanism, which is orig-
inally proposed in the field of natural language processing.
Thus, it may be more suitable to handle the input of word
embeddings.

2) Analysis on each component: We analyze the effec-
tiveness of each component in our CORM. Specifically, we
add the VCOR branch and SCOR branch one by one to the
baseline to form three models. The results are shown in Table
And baseline* indicates only adding the VCOR branch
to the baseline. We find that adding the VCOR branch and
the SCOR branch can respectively bring 2 mAP and 1 mAP
improvement to the model. That indicates the effectiveness of
our VCOR branch and SCOR branch. When learning the co-
occurrence relationship, the visual information plays a leading
role. And the semantic relationship among actions is an im-
portant auxiliary component which contains prior information.
The SCOR branch introduces a priori information of external
knowledge, which can offer the semantic relationship that
is missing in visual information. Then during the training
process, the SCOR branch can gradually fuse the hidden
semantic relationship into CORM. Note that it is unnecessary
to evaluate the CORM that only contains the SCOR branch.
Because the SCOR branch is directly based on the class labels
other than the visual information. If we only use the SCOR
branch in CORM, there will be no information backpropogated
into the sequence model and no influence on the prediction
branch. The prediction result is the same as the baseline.

3) Generalization of CORM: To demonstrate the general-
ization of the CORM, we insert it into 3 existing sequence
models, i.e., TGM [21]], PDAN [_22] and MS-TCT [35]] without
the hmap branch. Then we report the mAP values of these
models, which is shown in Table After inserting the
CORM, the performance of the three sequence models is im-
proved by 1.37, 1.33, and 3.01 mAP respectively. As discussed
before, the three sequence models all only focus on temporal
modeling but neglect the co-occurrence relationship among
actions. When adding the CORM, the networks can handle
both the temporal modeling problem and the multi-label case.
Thus they can get better performance. And the improvement of
these sequence models demonstrates that temporal modeling
and co-occurrence relationship modeling are complementary,

TABLE V
THE LEARNED WEIGHT VALUES IN FUSION METHOD (a AND (3 IN
EQUATION@ ON THREE DATASETS, i.e., MULTITHUMOS, TSU AND
UCF-CRIME-TAL.

Datasets « B
MultiTHUMOS  0.0964  0.0463
TSU 0.2095  0.097

UCF-Crime-TAL  0.9544  0.9546

which are both significant for temporal action localization.
Last but not least, the improvement indicates that our CORM
can be easily combined with existing sequence models and
make up for their shortcomings in co-occurrence modeling.

E. The values of o and 3

In this subsection, we discuss the values of the learned
parameters, i.e., « and [ in the CORM. We show the
learned values of « and § in Table [V| We can find that in
MulthiTHUMOS and TSU datasets, the values of « are both
larger than the values of S. That indicates the leading role
of visual information, and the semantic information acts as
a complementary role in these two datasets. However, in our
proposed UCF-Crime-TAL dataset, the values of « and /3 are
about the same. We suspect it is due to the high-semantic level
of class labels in UCF-Crime-TAL. We believe that the values
of o and [ imply the importance of the visual and semantic
information. When the class labels are high-semantic, it is
much more difficult to model the co-occurrence relationship
among actions only depending on the visual information. And
the semantic information contains prior information, which
can guide the co-occurrence relationship modeling to a certain
extent. Thus at this point, the semantic information is more
important, even on par with visual information. In general, the
suitable values of « and (8 can help the model better integrate
the visual and semantic co-occurrence information into the
CORM, so that the model can learn more comprehensive co-
occurrence relationship.

F. Visualization

We visualize the localization result of an example on the
MultiTHUMOS [23] dataset in Figure [6] Compared with the
MS-TCT, the localization result of our COR Network is much
closer to the ground truth. In particular, for some actions with
shorter duration, our COR Network performs better than the
MS-TCT. And its prediction of the actions’ durations is more
consistent with the ground truth. And most importantly, as
is shown in the duration (a), (b), (c), and (d) in Figure [§]
the COR Network performs better in the multi-label case. In
the duration (a), the hammer thrower is walking to the court.
And the class labels are “Walk” and “Stand”. The semantic
overlap between “Walk” and “Stand” is high. Compared with
MS-TCT, our COR Network makes more accurate predictions.
It indicates our COR Network can better dig out the semantic-
overlap relationship among the co-occurring actions. And for
the durations (b), (c), and (d), they are actually three subactions
of the action “Hammer Throw”. The hammer thrower first
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Fig. 6. Visualization of the localization result on an example video from
localization results of MS-TCT and our COR Network.

winds up the hammer. Then he spins his body to accelerate the
hammer. Finally, he releases the hammer at the right time. The
contextual relationship among “Hammer Throw”, “Hammer
Throw Wind Up”, “Hammer Throw Spin”, and “Hammer
Throw Release” is very tight. Our COR Network explicitly
models the co-occurrence relationship among actions, so it
performs better in this case.

VI. CONCLUSION

In this work, we propose a novel module CORM to solve
the multi-label case in TAL by learning the co-occurrence
relationship among actions explicitly with the guiance of
the actions’ co-occurrence matrix. It works in a plug-and-
play manner and can be easily incorporated with the existing
sequence models. It contains a VCOR branch and a SCOR
branch, which model the co-occurrence relationship among
actions both from the visual perspective and the semantic
perspective. Considering the existing datasets in TAL are low-
semantic, we construct a new high-semantic dataset UCF-
Crime-TAL by annotating the UCF-Crime dataset for every
time step with dense labels. Finally, we evaluate our proposed
CORM on three challenging multi-label TAL datasets, on
which it achieves state-of-the-art performance consistently.
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