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Abstract

The problem of optimal excitation in nonparametric identification
of viscoelastic materials is considered. The goal is to design the in-
put spectrum in an optimal way, so that the average variance of the
estimates is minimized. It is shown how the covariance matrix of the
estimates can be expressed in terms of the input spectrum. This the-
ory can also be used in order to identify the (unknown) excitation,
used in a particular experiment, from measured strain data. Two
scalar criteria connected to A- and D-optimal experiment design, are
considered. The results indicate that the accuracy of the estimates can
be greatly improved by applying an optimal input signal. Issues con-
cerning the implementation of the achieved optimal input spectrum
in live experiments are discussed briefly.

1 Introduction

Viscoelastic materials, such as plexiglass and other plastics, can today be
found in a wide range of practical applications. In order to make efficient use
of these materials, it is of interest to understand their behavior when used
in an environment where the material is subjected to dynamic load. Such
dynamic load could for example be vibrations from a motor, or stress put on
to the structure through collision or impact.

A viscoelastic material is characterized by its frequency dependent com-
plex modulus E(!), that relates stress and strain in the material. In the
frequency domain this relationship looks like�(!) = E(!)"(!); (1)
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where �(!) and "(!) denotes the Fourier transformed stress and strain, re-
spectively. Knowledge about the complex modulus is essential in understand-
ing the materials behavior in a dynamic environment, and can be determined
through different kinds of wave propagation experiments, as studied in [1],
[10] and [23]. In order to get good quality estimates, the collected data should
contain as much valuable information as possible, and design parameters that
influence the information content must thus be chosen carefully. Examples
of such parameters are the input excitation signal, the number of sensors
used in the experiment, and the sensor locations. The procedure of deter-
mining optimal design parameters in an experiment is commonly referred to
as optimal experiment design.

A solid theoretical basis for optimal experiment design is built in [3] and
[20], and is widely employed in different areas of engineering. Some examples
include sensor array signal processing [8] and robotics [13]. The problem of
goal-oriented experiment design has also received a lot of attention, see for
example [7], [11], [4] and [6]. In the control literature, a survey on the
sensor location problem is presented in [12], while the input design problem
is treated in [16]. A more recent discussion on input design can be found
in [25]. A common procedure for optimal experiment design is to minimize
some scalar function of the covariance matrix of the estimate. The design
tools developed is therefore useful in a wide range of applications, where the
covariance matrix can be expressed as a function of the design variable of
interest.

This work will focus on the subject of optimal input signal for identifica-
tion of viscoelastic materials. The subject of optimal sensor locations for this
application has been studied in [18] and [21]. Previously, the preferred kind
of input has been an strain pulse generated by impact from a steel hammer
or an air gun, and the transient response following the pulse was then stud-
ied. However, in order to get good estimates it is important to give sufficient
excitation to all frequencies considered in the identification, i.e. the input
signal should contain enough energy at these frequencies. As an pulse tends
to have the majority of its energy at low frequencies, and as identification of
the complex modulus is frequently carried out for frequencies up to 15 kHz,
this kind of excitation can be expected to be sub-optimal for identification in
the higher frequency range. The question addressed here can thus be formu-
lated as follows: if we have the same energy content as in the original pulse,
and if we could freely control the frequency distribution of this energy, how

would the optimal spectrum of the input signal look?
The paper is organized as follows. In the next section the identification

experiments are described, followed by the modeling of the system in Sec-
tion 3 and identification in Section 4. The optimal experiment design is
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Figure 1: Experimental setup

described in Section 5, and the results are analyzed in Section 6. Finally,
conclusions are drawn in Section 7.

2 Experimental setups

In this work, two kinds of wave propagation experiments will be studied. In
one, longitudinal wave propagation is used, and the setup is shown in Fig-
ure 1. Here a slender bar of length L is suspended horizontally with thin
wires. The bar is then axially excited, giving rise to longitudinal waves trav-
eling back and forth in the bar. The strains caused by the wave propagation
are measured at n different sections located at fxigni=1, at N discrete time
instances. In order to avoid aliasing, the analog strain signals are passed
through a low-pass anti-aliasing filter before sampling.

The second experiment use flexural wave propagation, and the setup is
shown in Figure 2. Here a beam of length L is mounted vertically, and is then
excited laterally to give rise to flexural waves traveling along the beam. As
in the longitudinal case, the associated strain data is collected at n sectionsfxigni=1, atN discrete time instances. Flexural wave propagation experiments
are often useful when the frequencies of interest are between 10 Hz and 1
kHz. With longitudinal wave propagation on the other hand, it is possible
to achieve estimates well above 1 kHz. Since longitudinal wave experiments
are concerned with one dimensional wave propagation, the limiting factor
instead is that we can only consider frequencies for which the wavelengths are
much larger than the diameter of the bar. For these frequencies approximate
1D conditions will prevail in the setup. A common requirement is that the
wavelengths must be at least ten times the diameter of the bar. Similarly a
lower limit on useful frequencies can be estimated from the requirement that
there must be a sufficient strain variation between the outermost sections x1
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Figure 2: Experimental setup

and xn, or that the wavelength must be shorter than 10 times the distance
between these sections.

The identification is carried out in the frequency domain, and the recorded
signals are therefor transformed using the Discrete Fourier Transform (DFT)"̂(!k) =

1pN N�1Xn=0

"(n)e�i 2�N nk (2)

for !k =

(
2�kNT ; 0 � k � N

2

2�(k�N)NT ; N
2
< k < N : (3)

Since the measured signal is real-valued, it is sufficient to consider only the
positive frequencies, i.e. only!k =

2�kNT ; 0 < k < N
2

(4)
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will be considered in this study.

3 Modeling

The wave propagation in the previously described experiments can be mod-
eled in a state-space framework. Note that in the following, all state variables
are in the frequency domain and that the independent variable is the positionx along the center line of the bar/beam.

For an appropriate choice of state variables, the state vector s(x; !) will
follow a system of first-order ordinary differential equations, see [9] or [24]ds(x; !)dx = R(!)s(x; !): (5)

Note that the state vector and the matrix R(!) will be defined differently for
the different experiments. These will be described in detail in the following
subsections. Also note that the strain at section x and frequency ! will be a
linear combination of the elements in the state vector s(x; !), i.e."(x; !) = cT0 (!)s(x; !): (6)

The general solution to (5) is given by

s(x; !) = c�1 (!)e
1(!)x + c+
1 (!)e�
1(!)x + � � �� � �+ c�p (!)e
p(!)x + c+p (!)e�
p(!)x; (7)

where f�
i(!)gpi=1 are the eigenvalues of R(!), and are commonly referred to
as the wave propagation functions. Here f�
i(!)gpi=1 correspond to the wave
propagation in the positive x direction of the bar/beam, and f
i(!)gpi=1 rep-
resent the reflected wave in the negative x direction. The vectors f
�i (!)gpi=1

are amplitudes of the associated waves at x = 0. These vectors depend on
various boundary condition, see Appendix A.

In the following subsections the state-space realizations of both the lon-
gitudinal and the flexural wave propagation models will be described.

3.1 Longitudinal waves

Consider a linearly viscoelastic, homogenous bar of length L, cross sectional
area A, and density �. For longitudinal waves, the wave propagation at sec-
tion x can be described by the normal force N(x; t) and the particle velocityu̇(x; t) at this section. This gives the frequency domain state vector

s(x; !) =
�N(x; !) u̇(x; !)

�T : (8)
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Further, the matrix R(!) in (5) can be defined as

R(!) =

�
0 i!�A
i!E(!)A 0

� ; (9)

see [24] for details. This matrix has only two eigenvalues and the general
solution (7) will thus be on the form

s(x; !) = c�(!)e
(!)x + c+(!)e�
(!)x: (10)

Also note that the relationship between the wave propagation function 
(!)
and the complex modulus E(!) is
2(!) = � �!2E(!)

: (11)

For longitudinal waves, the strain at section x is directly proportional
to the normal force N(x; !) at that section and at that frequency, with
proportionality constant 1=(AE(!)). With the state vector defined as in (8),
the vector c0(!) in (6) can thus expressed as

c0(!) =
h

1AE(!)
0
iT : (12)

.

3.2 Flexural waves

Now consider the linearly viscoelastic, homogenous beam of length L, with
cross-sectional area A, moment of inertia I, and density �. To describe the
flexural wave propagation at section x, appropriate choices of state variables
are the bending moment M(x; t), the shear force Q(x; t), the rotational ve-
locity �̇(x; t), and the time derivative of the center line deflection ẇ(x; t). See
[9] for further details. This gives the frequency domain state vector

s(x; !) =
�Q(x; !) ẇ(x; !) M(x; !) �̇(x; !)

�T : (13)

With the Timoshenko1 beam theory, the matrix R(!) can be defined as

R(!) =

2664 0 i!�A 0 0
i! E(!)A 0 0 �1

1 0 0 i!�I
0 0 i!IE(!)

0

3775 : (14)

1Another and more simplified theory is the Euler-Bernoulli beam theory, see [17].

6



Note that we have here introduced the known constant  , which is dependent
on the cross-sectional geometry and the Poisson’s ratio of the material, see
[9]. The matrix R(!) has four eigenvalues and the general solution (7) will
be

s(x; !) = c�1 (!)e
1(!)x + c+
1 (!)e�
1(!)x + c�2 (!)e
2(!)x + c+

2 (!)e�
2(!)x: (15)

In order to determine the wave propagation functions f�
(!)g2i=1 as the
eigenvalues of R(!), we need to solve the characteristic equation of R(!),
which is given by 
4(!) + 2a(!)
2(!)� b(!) = 0; (16)

where a(!) =
�!2

2E(!)
(1 +  ) (17)b(!) =

�!2E(!)

�AI � �!2E(!)
 � (18)

Hence from (16) the wave propagation functions are given by
2
1(!) = �a(!) +

pa2(!) + b(!) (19)
2
2(!) = �a(!)�pa2(!) + b(!): (20)

which also describes the relationship between the wave propagation functions
and the complex modulus E(!).

For flexural waves, the strain at section x is directly proportional to the
bending moment at that section and at that frequency with proportionality
constant A=(IE(!)). With the state vector defined as in (13), the vector
c0(!) in (6) is thus defined as

c0(!) =
h
0 0 AIE(!)

0
iT : (21)

4 Identification

In this section, we consider the identification of the complex modulus E(!)
from the sampled strain data at a set of predefined sections fxigni=1, as shown
in Figure 1 and 2. We here assume that the sampled data is corrupted by
spatially and temporally white Gaussian noise with zero mean and variance�. If we denote the frequency domain noise by v(x; !), then the Fourier
transform strain measurements can be written as"(x; !) = "0(x; !) + v(x; !); (22)
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where "0(x; !) denotes the noise-free strain from section x.
Now define the measurement vector "(!), the noise-free strain vector"0(!) and the noise vector v(!) as"(!) =

�"(x1; !) � � � "(xn; !)
�T ;"0(!) =

�"0(x1; !) � � � "0(xn; !)
�T ; (23)

v(!) =
�v(x1; !) � � � v(xn; !)

�T :
By combining (7), (6) and (22) with the definitions in (23) we get"(!) = A(!)c(!) + v(!); (24)

where

A(!) =

264e
1x1 e�
1x1 � � � e
px1 e�
px1

...
...

...
...

e
1xn e�
1xn � � � e
pxn e�
pxn375 : (25)

Note that A(!) will be an n � 2 matrix for longitudinal waves, and ann� 4 matrix for flexural waves. Here, we have also introduced the unknown
frequency dependent vector c(!) given by

c(!) =
�
c�1 (!) c+

1 (!) � � � c�p (!) c+p (!)
�

co(!): (26)

The vectors in (26) are all of dimension p� 1.
In conformity with the notations in [14], we will here introduce the fre-

quency dependent real-valued vector

e! =
�er(!) ei(!)

�T
(27)

such that E(!) = er(!) + iei(!): (28)

To stress that the matrix A(!) is an implicit analytic function of the complex
modulus, we will also change this notation to A(e!). The notation in (27)
is helpful since it allows us to deal with a real-valued parameter vector. An
estimate ê! of e! can then be obtained through the solution to the separable
nonlinear least squares problem

ê! = arg min
c(!);e! 

"(!)� A(e!)c(!)



2 ; (29)

where the unknown vector c(!) acts as a nuisance parameter vector of di-
mension p. The number of independent measurements n thus has to satisfy
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n � p+1. For a detailed description of the numerical issues of this estimation
problem, we refer the reader to [14].

In [14] an expression for the covariance matrix for the estimator ê! is
also derived. For any two discrete frequencies !k and !l, and under the
assumption that the signal-to-noise ratio is large, we have that

Ef(ê!l � e0!l)(ê!k � e0!k)Tg =
�

2h(!l)Æl;kI2; 0 < k; l < N=2 (30)

where � is the noise variance, Æl;k the Kronecker delta function, and e0!l
denotes the true parameter vector. Further,h(!) = "�0(!)Ay�(e0!)A�r(e0w)P(e0!)Ar(e0!)Ay(e0!)"0(!); (31)

where Ay(e!) is the pseudo-inverse of A(e!), P(e!) is the orthogonal pro-
jection onto the null space of A�(e!) given by

P(e!) = In � A(e!)Ay(e!); (32)

and Ar(e!) is defined as

Ar(e!) =
�A(e!)�er(!)

: (33)

From the expression (30) for the covariance matrix, we see that the estimate
of the complex modulus has the following properties:� The estimate at a particular frequency is uncorrelated with the estimate

at any other frequency.� The estimates of the real and the imaginary part are uncorrelated at
any given frequency.� The estimates of the real and the imaginary part are of equal variance,
proportional to 1=h(!).� The variance, and thereby the estimation accuracy, is implicitly depen-
dent on the sensor locations and the type of excitation.� The function h(!) is directly proportional to the signal energy, and the
variance is inversely proportional to the signal-to-noise ratio.

The influence of the sensor placement on the estimation accuracy has been
studied in [18] and [21], while the impact of the chosen excitation will be
studied in following sections.
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5 Experiment design

The common procedure for optimal experiment design is to minimize some
scalar function of the covariance matrix P of the estimate. Popular choices
of scalar functions include

A� optimality : min tr(P )

D� optimality : min det(P ) (34)

E� optimality : min�max(P ):
Note that (34) applies in the case of parametric identification, where there
is one covariance matrix for the parameter estimate. Here we are concerned
with nonparametric identification, and accordingly we have one covariance
matrix for each frequency at which we have identified the complex modulus.
For the nonparametric case we are confined to minimizing the covariance
matrix on average, by integrating over some frequency interval. Focusing on
A- and D-optimality we get

A � optimality : min

Z
Ω

tr
�PN(!)

�d! (35)

D� optimality : min

Z
Ω

det
�PN(!)

�d! (36)

where PN is the covariance matrix for the nonparametric estimate, and Ω is
the frequency interval.

In order to do experiment design with respect to the input signal, we
first have to find how the covariance matrix (30) depends on the excitation.
We can here use the linear property of the system, i.e. that there is a lin-
ear dependency between the input excitation signal u(!), and the measured
strains "(!) = g(!)u(!) + v(!): (37)

By the use of (37), the expression for the covariance matrix in (30) can be
reformulated as PN =

�
2ju(!l)j2l(!l)Æl;kI2 ; 0 < k; l < N=2 (38)

where l(!) = g�(!)Ay�(e0!)A�r(e0w)P(e0!)Ar(e0!)Ay(e0!)g(!): (39)

The function l(!) depends solely on the material characteristics and the
sensor positions. How to find the function g(!) used in (39) is described in
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Appendix B. Note that when g(!) has been found, the input signal used in a
particular experiment can easily be identified from the measured strains, by
the use of (37). Also note that depending on how the experiment is set up,
the input for flexural waves can be either the shear force Q, or the rotational
velocity ẇ, at the point of excitation. For longitudinal waves, the input is
the normal force N at the point of excitation.

As the covariance matrix is inversely proportional to the signal energy,
it is obvious that we can make the variance arbitrarily small by choosingju(!)j2 large, see (38). To keep the input energy on a reasonable level, we
must therefore constrain it in the optimizations. This will give the following
problem, which can be solved by calculus of variations, see [5] or [22].

Optimal experiment design: Let the criterion function beV =

Z
Ω

1�ju(!)j2l(!)
�pd! ; Ω = [!1; !2]: (40)

For A-optimality choose p = 1, and for D-optimality choose p = 2. The
optimization problem can then be formulated as

minju(!)j2 V s:t: Z
Ω

ju(!)j2d! = �: (41)

The solution to the optimization problem in (41) is given byjuopt(!)j2 =
1�l(!)
�p=(p+1)

�R
Ω

1
(l(!))p=(p+1)

d!: (42)

The optimal value is given byVopt =
1�p�ZΩ

1�l(!)
�p=(p+1)

d!�p+1: (43)

For a proof, see Appendix C.

Remark 1: Since it is trivially so that we want to use all the input energy
avaliable, we have here chosen the constraint on input energy in (41) as an
equality rather than an inequality.

Remark 2: Since the input energy outside the the interval Ω will have no
effect on the estimates within that interval, the input energy is set to zero
for frequencies outside Ω.
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6 Investigations

The following investigations are based on data taken from live experiments.
In the longitudinal case, a PMMA (plexiglass) bar specimen of length L = 2
m and diameter d = 16 mm was used. A discussed in Section 2, this gives
a range of useful frequencies of approximately 200 Hz - 14 kHz. The sensor
positions fxigni=1 used in the experiment wasXlong = f0 0:290 0:646 1:078 1:600g m; (44)

and the number of data points collected from each sensor N = 212 at a
sampling interval of T = 20 �s. The density of PMMA is � = 1183 kg=m3.
Additional information on these experiments can be found in [10].

No experiments have yet been made on the experimental setup for flexural
waves in Figure 2. However, to evaluate the performance of the optimal
excitation, data from a similar experiment, described in [15], has been used.
The drawback with this data is that the boundary conditions in Appendix A
are not fulfilled at x = 0, which means that the the excitation used in a
particular experiment can not be identified.

The optimal excitation for flexural waves was evaluated for the same ex-
perimental conditions as in [15]. There, a beam made of PP (polypropylene),
with density � = 915 kg=m3 and Poisson’s ratio � = 0:33, was used. The
length of the beam was L = 1:5 m, and the sensor positions fxigni=1Xflex = f0:200 0:354 0:498 0:632 0:817 1:033 1:154 1:400g m: (45)

The number of data points collected from each sensor was N = 216 at a
sampling interval of T = 50 �s. For more information, see [15]. As discussed
in Section 2, flexural wave experiments are useful for frequencies between 10
Hz and 1 kHz. Due to the numerical difficulties mentioned in Appendix B,
this investigation has to be confined to frequencies below 550 Hz.

The problem can now be formulated as follows. In both the longitudinal
and the flexural wave experiment described above, a pulse generated by the
impact of a steel hammer or pendulum was used as an input. This pulse has
a certain energy content in the useful frequency range, and the energy is dis-
tributed over the frequencies in a certain way. If we instead could distribute
this energy freely over the useful frequencies, what would this distribution
optimally be? This problem formulation gives rise several interesting ques-
tions, which will be discussed in the following. For the longitudinal wave
experiments, the energy content of the original pulse is easily estimated by
first identifying the excitation used in the experiment. For the flexural wave
data, the original exciting pulse and its energy content can not be known ex-
actly, as discussed above. We instead have to guess the input power � used
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Figure 3: Typical input signal for a longitudinal wave experiment (a), and
its spectrum (b).

in the optimal experiment design in (41). However, since � enters only as a
scaling factor in the optimal spectrum (42), this guess will have no influence
on how the power is distributed over the frequencies. Note that this is a
theoretical investigation, and that no consideration has been taken as to the
implementability of the achieved input spectra. This is a question for future
work.

Example 1: What input signal has been used in a particular experiment?

In the experiments described above, an unknown pulse generated through
impact with a steel hammer, was used as an input signal. For the longi-
tudinal wave experiment, this pulse can be identified through (62) and the
measured strain data. A typical input signal for the experiment is shown in
Figure 3, along with its power spectra. As can be seen, the impulse has most
of its energy concentrated at low frequencies; the majority of the power lies
below 6 kHz.

Example 2: What is the frequency content of an optimal input signal?

In order to get good estimates for all useful frequencies, we want an input
signal that excites the system for all the frequencies within that range. For
the input signal in Figure 3, it is reasonable to think that the system is in-
sufficiently excited at higher frequencies, since the input lacks power in the
higher frequency range. The lower accuracy in the estimates is evident in
Figure 4a, where a gradual increase in standard deviations can be noted for
frequencies over 6 kHz. If the same reasoning is applied to the standard devi-
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Figure 4: Standard deviations of the estimated complex modulus, based on
experiments using unknown pulse excitation. Longitudinal wave experiments
(a), and flexural wave experiments (b). Analytical standard deviation (solid),
and experimental standard deviation, 10 independent experiments (dotted).

ations in the flexural case (Figure 4b), one may expect the exciting pulse to
have the majority of its power below 250 Hz. The values of the noise variance
used for the calculation of the standard deviations, was � = 2:1 � 10�14 for
longitudinal waves and � = 1:7 � 10�13 for flexural waves, see [19] and [15].
The true complex modulus needed to calculate the standard deviations was
here replaced by the estimated complex modulus, and the true strains by the
measured strains.

The optimal input spectra achieved by (42) are shown in Figure 5. We
have here included all the useful frequencies in the minimization, i.e.

Ω = [200 Hz; 14 kHz] for longitudinal waves, and Ω = [10 Hz; 550 Hz] for
flexural waves. It can be seen that the A- and the D-optimal design give
similar results. However, an important advantage of D-optimality is that
it is invariant under scale changes in the parameters and linear transforma-
tions of the output. Another advantage of D-optimality is that it implies
G-optimality, which means that the variance of the predicted output is min-
imized. These properties have made it one of the most popular methods in
optimal experiment design.

From Figure 5, it is also evident that it is better to distribute the energy
more evenly over the frequencies; for the longitudinal wave experiment more
power has been allocated to the higher frequency range, and a considerable
amount of the input power is concentrated to the higher frequency range for
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Figure 5: Optimal input spectra. Longitudinal wave experiments in (a),
and flexural wave experiments in (b)-(c). In (b) u(!) = Q(0; !), and in (c)u(!) = ẇ(0; !). A-optimal input (solid), and D-optimal input (dash-dotted).
In (a), identified pulse excitation (dotted).

flexural waves. It is also interesting to compare the optimal input spectra
in Figure 5 to the standard deviations in Figure 4. Clearly, the procedure
allocates more input energy to those frequencies for which the current sen-
sor position yields a poor estimate, i.e. where the standard deviations are
increased. Intuitively it makes sense that areas of increased variance needs
to be suppressed when minimizing a criterion function like the one in (40).
This is done by extracting more information from these modes, here achieved

15



0 2 4 6 8 10 12 14
10

−3

10
−2

10
−1

f [kHz]

S
ta

nd
ar

d 
de

vi
at

io
n 

[G
P

a]

(a)

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

f [Hz]

S
ta

nd
ar

d 
de

vi
at

io
n 

[G
P

a]

(b)

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

f [Hz]

S
ta

nd
ar

d 
de

vi
at

io
n 

[G
P

a]

(c)

Figure 6: Standard deviations. Longitudinal wave experiments (a), and
flexural wave experiments (b)-(c). In (b) u(!) = Q(0; !), and in (c)u(!) = ẇ(0; !). Original impulse excitation (dotted), A-optimal input
(solid), and D-optimal input (dash-dotted).

by allocating more input power around certain frequencies, and thereby get
a better estimate.

Example 3: What can be gained in estimation accuracy with the use of an

optimal input signal?

From Figure 6 it is clear that it is possible to achieve better estimate by us-
ing an optimal distribution of input power, compared to that of the classical
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Figure 7: Standard deviations for a longitudinal wave experiment with op-
timal input in the range 2 - 8 kHz. Identified impulse excitation (dotted),
A-optimal input (solid), and D-optimal input (dash-dotted).

impact excitation. For longitudinal wave experiments, the average standard
deviation has decreased by around 40 % over the range of useful frequencies.
The corresponding decrease in maximal standard deviation is about 70 %.
No such comparison can be made for flexural waves, since we do not know
the energy content of the original excitation signal. As was seen in Section 4,
the accuracy of the estimates are inversely proportional to the signal energy,
and comparing experiments with different energy contents may therefore be
deceiving. It is however clear that for both flexural and longitudinal waves,
the optimal input will counteract the increase in standard deviation in the
high frequency range. Instead the accuracy is kept on approximately the
same level for all frequencies. The input power � for the flexural wave exper-
iment has here been chosen based on the results from the longitudinal wave
case, i.e. so that the standard deviations for the optimal input lies between
the higher and the lower values of the original standard deviations.

From Figure 6, it is also clear that keeping standard deviations on the
same level for all frequencies tends to decrease standard deviations in the
higher frequency range, at the expense of accuracy at lower frequencies. It
is however possible to target specific areas and get better accuracy at fre-
quencies with already low variance. In Figure 7, the range 2 - 8 kHz was
targeted for a longitudinal wave experiment, with lower standard deviations
as a result.
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7 Conclusions

This paper treats the problem of optimal excitation for estimating the com-
plex modulus of a viscoelastic material from wave propagation experiments.
In this study, we focus on nonparametric identification in the frequency do-
main. It is important to stress that even though this article treats a specific
application, the procedure for optimal experiment design used here also ap-
plies to the more general case of identification experiments. The key issue is
to have a covariance matrix dependent on the design parameters of interest.

Here, the idea is that if we can distribute the energy content of the input
excitation signal in an optimal way, it is possible to maximize the amount
of useful information that can be extracted from the data, and thereby get
a more accurate estimate. The typical way to excite the system in this kind
of experiments has been through impact by the use of a steel hammer or
an air gun; a kind of excitation that has most of its power in the lower
frequency range. It was found that more accurate estimates can be achieved
by spreading the input power more evenly over the frequencies, and that it is
advantageous to allocate more energy to frequencies where the estimates are
particularly bad. It was also shown how the theory can be used to identify the
excitation used in a particular experiment, since this is generally not known
and hard to measure. Other relevant design parameters for this application
is the number of sensors used in the experiment, and their locations. This
problem was studied in [18] and [21].

In order to confirm the results of this paper, experiments have to be
designed where the optimal input signal can be applied to the system. Issues
to consider in this work include:� What is the effect of the equipment used? This includes the transfer

functions of the amplifier and the shaker used to apply force to the
specimen. These need to be compensated for to some extent. Specif-
ically, there will be an upper limit on how fast the shaker can work,
and thereby how high frequencies that can be generated.� How much energy can we drive into the specimen? This issue concerns
the time span of the experiment, since more energy is generated the
longer the experiment continues.
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A Boundary conditions

A.1 Longitudinal waves

If the longitudinal wave propagation experiment in Figure 1 is designed so
that there is a free end at x = L, the strain (and thereby the normal forceN) at that section will equal zero. The input signal to the system is the
normal force at x = 0 (the point of excitation), which gives the following set
of boundary conditionsN(0; !) = u(!) ; N(L; !) = 0: (46)

A.2 Flexural waves

For a flexural wave propagation experiment designed as in Figure 2, with a
free end at x = L, it holds that the shear force Q equals zero at x = L.
Moreover, the bending moment M equals zero both at x = L and at x = 0.
Depending on the experimental setup, the input signal to the system can be
either the shear force Q or the rotational velocity ẇ at the point of excitation
(x = 0), which gives the following set of boundary conditionsQ(0; !) or ẇ(0; !) = u(!) ; M(0; !) = 0 ; Q(L; !) = 0 ; M(L; !) = 0: (47)

B Derivation of g(!)

First note that the general solution of the system of difference equations in
(5) can also be written on the form

s(x; !) = eR(!)xs(0; !): (48)

Combining (48) with (6), (22) and the definitions in (23) we get"(!) = Γ(!)s(0; !) + v(!) (49)

where

Γ(!) =

264cT0 (!)eR(!)x1

...
cT0 (!)eR(!)xn375 : (50)

To find the relationship between the input signal and s(0; !), we can
apply the boundary conditions described in Appendix A. These giveB1s(0; !) = e1u(!); (51)B2s(L; !) = 0; (52)
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with B1, B2 and e1 defined asB1 =
�
1 0

� ; B2 =
�
1 0

� ; e1 = 1 (53)

for longitudinal waves. For flexural waves B1 depends on the choice of input
signal, B1 =

�
1 0 0 0
0 0 0 1

�
for u(!) = Q(0; !); (54)

or B1 =

�
0 1 0 0
0 0 0 1

�
for u(!) = ẇ(0; !); (55)

while B2 =

�
1 0 0 0
0 0 1 0

� ; e1 =
�
1 0

�T : (56)

Together, (51) and (52) can be written as

Λ(!)s(0; !) = eu(!); (57)

with

Λ(!) =

� B1B2e
R(!)L� ; (58)

and
e =

�
eT1 0T �T : (59)

Combining (57) with (49) then gives"(!) = Γ(!)Λ�1(!)eu(!) + v(!); (60)

and the function g(!) given in (37) satisfies

g(!) = Γ(!)Λ�1(!)e: (61)

Note that we have to assume the matrix Λ(!) to be invertible for all frequen-
cies. This assumption is easily shown to be fulfilled for longitudinal waves,
while ill-conditioned matrices may occur for flexural waves. Also note that
the function g(!) can be used to identify the input in a particular experiment
from the measured strain data. This can be done in a least squares sense by
applying u(!) = gy(!)"(!); (62)

where gy(!) denotes the pseudo-inverse of g(!).
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C Solution to the optimization problem

A problem on the form

miny(!)

Z !2!1

f�!; y(!); y0(!)
�d! (63)

can be solved by calculus of variations, see [5] or [22]. According to this the-
ory, the minimizing function of (63), y�(!), must satisfy the Euler equationdd!� �f�y0�� �f�y = 0; (64)

where the indices of the functions have been omitted for brevity. The closely
related problem with an integral side condition

miny(!)

Z !2!1

f�!; y(!); y0(!)
�d! s:t: Z !2!1

g�!; y(!); y0(!)
�d! = � (65)

can be handled in the same way by first introducing the Lagrange multiplier�, see [2]. The minimum of (65) can then be found through solving the
equivalent optimization problem

miny(!)

Z x2!1

F �!; y(!); y0(!)
�d!; (66)

where F �!; y(!); y0(!)
�

= f�!; y(!); y0(!)
�

+ �g�!; y(!); y0(!)
�: (67)

Note that f(�) will now be replaced by F (�) in (64).
For the design problem in (40) and (41), we have y(!) = ju(!)j2. This

gives f�!; y(!); y0(!)
�

=
1

(y(!)l(!))p ;g�!; y(!); y0(!)
�

= y(!); (68)F �!; y(!); y0(!)
�

=
1

(y(!)l(!))p + �y(!):
Since F (�) does not include y0(!), the Euler equation for this problem is
reduced to �F�y = � p�y(!)

�p+1�l(!)
�p + � = 0: (69)
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The minimizing function y�(!) thus has to satisfyy�(!) =
� p��l(!)

�p�1=(p+1): (70)

To find the value of the Lagrange multiplier � at the optimum, we can use
the constraint in (65). With g(�) defined as in (68), at the minimum point
we have Z !2!1

y�(!)d! =
1�1=(p+1)

Z !2!1

� p�l(!)
�p�1=(p+1)d! = �; (71)

which gives � =
� 1� Z !2!1

� p�l(!)
�p�1=(p+1)d!�p+1: (72)

Substituting � into (70), we get the minimizing functiony�(!) = juopt(!)j2 =
1�l(!)
�p=(p+1)

�R
Ω

1
(l(!))p=(p+1)

d!; (73)

which equals (42). The optimal function value in (43) follows from straight-
forward application of (42) in (40).
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