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Adaptive Cruise Control for a SMART Car: A Comparison Benchmark for
MPC-PWA Control Methods

Daniele Corona and Bart De Schutter

Abstract—The design of an adaptive cruise controller for a
SMART car, a type of small car, is proposed as a benchmark setup
for several model predictive control methods for nonlinear and
piecewise affine systems. Each of these methods has been already
applied to specific case studies, different from method to method.
This paper has therefore the purpose of implementing and com-
paring them over a common benchmark, allowing us to assess
the main properties, characteristics, and strong/weak points of
each method. In the simulations, a realistic model of the SMART
car, including gear box and engine nonlinearities, is considered.
A description of the methods to be compared is presented, and
the comparison results are collected in a table. In particular, the
tradeoffs between complexity and accuracy of the solution, as well
as computational aspects are highlighted.

Index Terms—Adaptive cruise control, mixed integer optimiza-
tion, model predictive control (MPC), piecewise affine systems,
road vehicles.

I. INTRODUCTION

AN adaptive cruise controller (ACC) typically aims to
increase road safety and passenger comfort. These issues

can be modeled by introducing a performance criterion and
constraints. This approach is very appealing for several reasons.
First, it allows to extend the range of specific design require-
ments, for instance, fuel consumption and mechanical stress
of the vehicle, by simply introducing additional constraints.
Second, the problem of designing the control law may be
naturally cast into a model predictive control (MPC) framework
[1], which will result in a constrained minimization problem
for which several efficient solvers may be used.

In this paper, the design of an ACC for a SMART car is con-
sidered as a benchmark problem for existing MPC methods for
piecewise affine (PWA) systems. The SMART car is a compact
road vehicle produced by the SMART company. In this applica-
tion, the 37-kW gasoline model has been considered. The non-
linear and switching dynamics of the system, as well as the pres-
ence of design constraints, make the task of designing an ACC
rather challenging, and traditional control techniques may not
be suitable. More specifically, the engine torque and the air drag
introduce nonlinearities, while the gear box forces the designer
to deal with hybrid behavior, which eventually results in PWA
models. Part of this paper is hence dedicated to PWA systems,
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a subclass of hybrid systems, i.e., systems exhibiting both con-
tinuous (time-driven) and discrete (event-driven) behavior. In
particular, a PWA system is composed of a finite set of affine
systems and a switching signal that triggers, internally or exter-
nally forced, the active mode. PWA models arise, among others,
from processes that integrate integer/logical behavior with con-
tinuous variables or from quantized inputs [2] or from the linear
spline approximation of nonlinearities [3]. The discontinuities,
implicitly hidden in their discrete behavior, make the control
design a nontrivial task, the complexity of which is addition-
ally increased if constraints are considered. Recently, the control
system and computer science communities have devoted signif-
icant efforts to the analysis and control of PWA systems.

Several methods that aim to design the control law for this
class were proposed in the literature. Most of them are MPC-
based, i.e., the control law that minimizes a finite-horizon per-
formance, is determined based on measurements of the current
state of the system and using a model to predict the future be-
havior and applied in a receding horizon fashion [4]–[6]. A par-
ticular representation of PWA systems that allows to use the
MPC scheme is the mixed logical dynamical (MLD) model, for
which the control law may be given in implicit [7] or explicit
form [8]. Variants that consider robustness [9], [10] or stability
properties [11], [12] were also considered. Methods based on
the construction of a piecewise Lyapunov function have been
developed in [13] and [14].

Despite the presence of several methods, an applicative com-
parison test bed that highlights their main features is, to the best
of our knowledge, missing. The goal of this paper is to propose
a benchmark setup for the MPC on a PWA system, applied to
the design of an ACC for a SMART. We implement and compare
some of these methods, thus allowing to assess their main prop-
erties, characteristics, and strong/weak points for the common
ACC case study. In addition, we also include a state-of-the-art
version of the ACC used in the automotive industry (based on an
adaptive proportional-integral (PI) actuator) in our comparison
study.

This paper is organized as follows. We first describe a detailed
model of the system, taken from measurements on a real vehicle,
and the specific control problem and constraints. Then, we pro-
vide a short description of eight different control methods, based
on PI and MPC in different flavors, namely, PWA, nonlinear,
on-line, and off-line, differing in the level of approximation of
the prediction model with respect to the simulation model. The
target is to assess and to compare the features of the different
control design methods, highlighting the major advantages or
disadvantages of the methods. To this purpose, we establish a
comparison table that highlights key aspects of the control de-
sign schemes, the complexity of the mathematical problem, and
the quality of the solution.
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Fig. 1. (a) ACC setup and (b) nonlinear friction (solid line), PWA approximation (dashed line), and affine approximation (dash–dotted line).

II. MODEL AND PROBLEM DESCRIPTION

A. Model

The aim of an ACC is to ensure a minimal separation between
the vehicles and speed adaptation. In a basic ACC application,
two cars are driving one after the other [see Fig. 1(a)]. In gen-
eral, platoons of cars can also be considered (see, for instance,
[15]) in a multi-agent framework, but here we restrict ourselves
to the study of the basic experimental condition of only two
vehicles, allowing better insight into the physics of the global
system with a reduced number of variables. We assume that the
front vehicle communicates its speed and position to the rear
vehicle, which has to track them as well as possible. So, for the
control design purpose, only the dynamics of the rear vehicle
can be considered.

An accurate model of the system considers the air drag pro-
portional to the square of the speed and a constant road-tire
static friction proportional to the weight of the vehicle. The dy-
namics of the rear vehicle are thus described by

(1)

where is the position at time and is the trac-
tion force, proportional to the normalized throttle/brake position

, considered as an input. The mass of the SMART is equal
to 800 kg, the wheel radius is 0.28 m, the viscous friction co-
efficient equals 0.5 kg/m, the Coulomb friction coefficient
equals 0.01, is the acceleration due to gravity (9.8 m/s ), the
minimal rotational speed equals 105 rad/s, and the max-
imal rotational speed is 630 rad/s. The value of the func-
tion is equal to 1, 0, or 1 when its argument is posi-
tive, zero, or negative, respectively. The traction force depends
on the current gear and on the ground speed

. Additionally, we provide the function in Fig. 2, ob-
tained from the transmission ratio of the engine torque curve
[16] in the engine rotational velocity range :

, , where is the en-
gine torque, is the average radius of the wheels, and rep-
resents the gear ratios. Here, we have omitted the dependence on
time of , , and . The values of , including also the ef-
ficiency of the transmission from engine to wheel, are provided
in Table I. Since the maximal engine torque Nm

Fig. 2. Traction force transmitted to the wheel at maximum throttle input for
different gears.

TABLE I
TRANSMISSION RATES, MAXIMUM TRACTION FORCES, AND GROUND

VELOCITY SWITCHING CONDITIONS IN A SMART

may be considered constant [16] in the range ,
we also give the values in this specific range.

Braking will be simulated by applying a negative throttle. Due
to friction behavior in motion inversion [17], model (1) is valid
as long as the ground speed is different from zero. Hence, we
impose to be above a nonzero minimum velocity.

A state space representation of system (1) is

(2)

with , , and

. This model is nonlinear because of the fric-
tion and traction forces and hybrid because of the discrete
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TABLE II
VALUES OF THE PARAMETERS SPECIFYING THE CONTRAINTS

dependences of . In the MPC approach, we intend to use this
model as a simulation tool while using simpler models to make
predictions.

B. Constraints

Safety, comfort, and economical or environmental issues, as
well as limitations on the model, result in defining constraints
on the behavior of the system. In particular, we consider limita-
tions on the state , i.e., position, velocity, and accel-
eration, and on the control input . More precisely, we impose
that, for all , we should have ,

, and . These con-
straints express, respectively, the operational range of the speed,
the tracking of the leading vehicle trajectory
within a given tolerance [see Fig. 1(a)], and bounds on ac-
celeration for comfort or security specifications. We shall con-
sider as well an additional nonoperational constraint on the po-
sition: , which is necessary in the
MLD approach of the problem. This constraint is not restric-
tive, as in an MPC receding horizon approach we can always
reset the origin of the position measurements, and let be
the maximal distance that the vehicle can cover when driving at
its maximal speed during the entire prediction horizon.

Moreover, we consider limitations on control input
and, finally, two constraints on the gear shift

and , where is a finite small time-interval.
The last condition forbids jumps of gears with more than one
position as these usually provoke nonoptimal fuel consumption
in up-shifting and mechanical stress in down-shifting. Numer-
ical values are listed in Table II. Although some of these con-
straints may be violated without causing major damages, i.e.,
collision or engine breakdown, we decided to consider all of
them as hard.

Since we are in an MPC framework, we will immediately
provide the expression of the constraints in discrete time. Hence,
for all

(3)

where is the discrete counter and is the sampling time.

C. Optimal Control Problem

The control signal is designed by solving a constrained
finite-horizon optimal control problem in an MPC receding
horizon fashion. In this framework, the prediction or acquisition
of samples ahead of the front vehicle trajectory is used to
compute the optimal control law . The MPC approach is
largely used to design the control action of constrained systems
and, in particular, PWA systems (see, e.g., [7], [9], and [12]).
The control action is obtained by solving

(4)

subject to the particular prediction model that will be described
in the sequel and the constraints derived from physical specifi-
cations (see Section II-B). We are interested in minimizing the
number of gear switchings , the variation of the control input

, and the deviation from a given reference trajectory commu-
nicated by the leading vehicle. Here, is the

tracking error, is the se-

quence of control inputs, is
the gear shift sequence, , , and are weight matrices
of appropriate dimension, and is a set of parameters con-
taining the initial conditions and the prediction of the reference
trajectory for the next sample steps. In this application, we

have
.

Additionally, an appropriately tuned shorter control horizon
may also be considered when we set ,

. This has the general advantage of reducing
the number of variables and of providing a smoother solution.
Nevertheless, here we only consider . The choice of
the 1-norm in (4) offers a valid tradeoff between the complexity
of the optimization problem and the quality of the solution. It al-
lows the use of (mixed-integer) linear programming [18]–[20].

We consider a reference trajectory in which the front
vehicle is driving at the constant velocity of 15 m/s and its po-
sition is obtained by integration of this velocity. This choice
permits us to study the behavior of the controllers in a smooth
driving scenario (i.e., extra-urban road with speed limits and a
low traffic density) and therefore to compare the features of the
different design methods when facing a nominal scenario. More
stressful scenarios, i.e., involving complex maneuvers such as
abrupt braking or acceleration, may not influence significantly
the comparison of the different MPC methods, but they are of
major interest for future studies that deal more specifically with
the technical design of the controller and especially with the def-
initions of its safety margins.

In order to solve the problem above, i.e., to design an appro-
priate control law, we may use a prediction model that gives
an approximation of the physical system. In an MPC setup, the
measured output , possibly affected by disturbances ,
is plugged into the controller, which also receives the predic-
tion of the reference . According to these values, the con-
troller computes the next optimal control input, which is then
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fed into the real system or, in our case, the full nonlinear sim-
ulation model. At the next sampling step, new measurements
are obtained and the whole procedure is repeated (i.e., we use a
moving or receding horizon approach).

III. DESIGN METHODS

In the following, we propose eight different methods to deal
with the nonlinearity raising from the friction force, the engine
torque, and the gears. The prediction models and control ap-
proaches, extensively described in the sequel, are given here:

• nonlinear MPC: NMPC;
• on-line PWA MPC: MLD-on;
• off-line PWA MPC: MLD-off;
• gears and linear approximation: GLA;
• gears and tangent approximation: GTA;
• basic tangent approximation: BTA;
• basic gain-scheduling approximation: BGS;
• optimized proportional-integral (PI) controller.
In the first case, we consider the exact expression of the

friction and implement a nonlinear mixed-integer MPC. In
the second case, we provide a PWA approximation using
least-squares splines by the introduction of one breakpoint and
then implement a mixed-integer MPC based on the equivalent
MLD model. For this particular case, an on-line solution and
an off-line solution are calculated. Another possibility is to
approximate the friction as (where

are chosen using least squares) or to linearize it around
the operating point with its tangent. We also take into account
methods that are based on very simple prediction models. In
these cases, we use a linear differential equation where the
gear shift action is not considered and the traction force is
averaged for every gear and velocity. The nonlinearity due to
the air drag is first treated with a tangent around the operating
point (in Section III-F) and next gain-scheduled for an off-line
method (in Section III-G). The expected advantage over the
first five methods is to obtain a rough good solution at a very
low computational cost, which in many applications may be
considered to be acceptable.

Before proceeding further with the descriptions of the
models, some additional comments are required for the first
five methods regarding the use of gear shift. In all of these cases,
the problem remains, to an extent, hybrid. Moreover, in all
methods, we approximate the function in (2) as follows.
We first consider it to be constant with the velocity and we take,
for each gear, its maximum value, as depicted in Fig. 2. This
yields the six values in Table I, namely, . Then,

we define .

This allows us to express

(5)

as an affine function of the gear , with . In
Fig. 3, we depict the approximation of the traction force de-
scribed above. In order to encode the gear in a binary way, which
is necessary to implement an MLD model, at least three binary
variables , with ,2,3, are needed. The encoding
can be done by setting , so that, to each

Fig. 3. Traction force approximation for different gears.

TABLE III
ENCODING OF GEAR j VIA THREE BINARY VARIABLES �

value of the gear, there corresponds one and only one logic com-
bination of , as listed in Table III. Plugging the expres-
sion for into (5), we obtain

(6)

The gear switching condition is governed by the value of the
current velocity. Hence, we have

(7)

where is the current gear position and the
values of are given in Table I. Note that the
switching condition is not uniquely defined, thus different
gears are admitted for a specific value of the speed. The exact
modeling of such a scenario is possible, but it requires the
introduction of several extra binary variables, making the
computational aspect of the problem more complex. A simple
strategy is to approximate the inequality (7) by

(8)

which preserves linearity and a one-to-one relation between ve-
locity and current gear. Within this condition, the approxima-
tion depends only on the choice of the two values and .
The values of and are obtained as
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Fig. 4. Approximation of switching velocities for different gears.

subject to . The choice of the weights
was preferred towards the higher velocities ( ,

), where the engine works with higher efficiency. We depict
this approximation in Fig. 4.

A. Method 1: Nonlinear MPC (NMPC)

In this method, the prediction model is the discrete-time rep-
resentation of the simulation model (2). For the integration, we
use a first-order Euler approximation,1 leading to

(9)

where is the chosen sampling time and
, as in (6).

Using this model, problem (4) is transformed into a mixed-
integer nonlinear optimization problem (MINLP) of the form

(10)

where includes the control variables and some additional
dummy variables. The function and the constant matrix
represent the feasible area of the optimization problem. In
particular, they express the constraints on the physical system
over the control horizon and on some logic variables appearing
in the vector . This problem, to be solved on-line at each step

, can be solved using branch-and-bound algorithms [21], [22].
Note that its complexity is caused by the presence of nonconvex
constraints and of integer variables.

B. Method 2: Piecewise Affine MPC (MLD-on)

A least squares approximation [Fig. 1(b)] of the nonlinear
friction curve leads to a PWA prediction model

if
if

(11)

where the matrices are derived using the data
shown in Fig. 1(b).2 To deal with this PWA system, we exploit

1In this particular application, the error introduced by this approximation
versus the exact integration is negligible even for a long simulation time.

2For the sake of simplicity, we only consider one breakpoint, leading to a
PWA composed of two operating modes. A finer approximation is also possible
by setting more than one breakpoint on the nonlinear curve.

the MLD transformation (see [7] and [18, Sec. 4.3]). This results
in the following mixed-integer linear program (MILP):

(12)

where includes the control variables and some additional
dummy variables required to convert the objective function
into a linear one. The linear constraints in (12) include the op-
erational constraints discussed previously and some additional
constraints introduced by the MLD transformation.

C. Method 3: Piecewise Affine MPC (MLD-off)

This method is actually a variant of the one described in
Section III-B, but it is solved off-line, leading to a multi-para-
metric MILP (mp-MILP). In simple terms, problem (12) is
solved explicitly in the parameters (there are several algorithms;
see, for instance, [8] and [19]). The optimal solution
and its argument are parametrized over . Under the
conditions given in [8, Theorem 1.16], the functions and

are PWA functions of . These coefficients and the corre-
sponding partition of the parameter space can be precalculated
and stored off-line. This strategy avoids solving optimization
problems on-line, and the on-line calculations then reduce to
the mere search in a lookup table. Although theoretically equiv-
alent to the previous problem, the experiments described in
Section IV show that the mp-MILP might introduce numerical
difficulties that affect the equivalence of the solution.

D. Method 4: Gears and Linear Approximation (GLA)

As in the previous section, we approximate with an
affine function, leading to the prediction model

(13)

One possible choice is to obtain matrices by mini-
mizing the quadratic error between the parabola and the line,
as shown in Fig. 1(b). The presence of the gear shift keeps this
problem mixed-integer, but it differs from the PWA problem
because there is one binary variable less. This is quite advan-
tageous if the prediction horizon is short. The transformation
into an on-line MILP is obtained by setting

and considering the additional
constraints that convert it into the MLD form. The structure of
the MILP is similar to problem (12).

E. Method 5: Gears and Tangent Approximation (GTA)

Another possible way to linearize the friction nonlinearity is
to use as a prediction model the affine system tangent to the
current operating point [23]. This idea is actually very efficient
for smooth nonlinear systems with a relatively small sampling
time. As in the previous section, we approximate with an
affine function, with a slope equal to the derivative of the friction
curve around the current velocity. This gives

(14)

The transformation into an on-line MILP is obtained by
setting
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and considering the additional constraints that convert it
into the MLD form. The structure of the MILP is similar to
problem (12).

F. Method 6: Basic Tangent Approximation (BTA)

This prediction model neglects the presence of the gear shift.
In other words, we do not assume the traction force, expressed
by the coefficient , as dependent from the current gear or the
current velocity. Hence, the prediction model is

(15)

where the coefficient is obtained as an average of the coeffi-
cients listed in Table I. The rough approximation has the clear
advantage of leading to an on-line linear optimization problem
of the form

(16)

the complexity of which is polynomial (fast), unlike previous
problems, which are typically NP-hard. The value of the gear
shift in this case is chosen according to the value of the current
velocity and (8).

G. Method 7: Basic Gain-Scheduling Approximation (BGS)

The previous method also suggests an off-line version, in
a gain scheduling fashion. The nonlinear curve depicted in
Fig. 1(b) is approximated into, say, linear models

, , , , , and in point-to-point secant ap-
proximation. For each affine model , we solve an off-line
mp-LP [24], [25] problem of the form (16). More precisely, we
construct lookup tables, each valid for a given range
of velocity. In the simulation, the controller selects the table
according to the current value of the speed. As in the previous
method, the gear is chosen based on the velocity range.

H. Method 8: Proportional-Integral Action (PI)

As additional method we implement a proportional-integral
(PI) controller. This is the technique mostly used in practice
[26]. The controller first computes a desired acceleration

(17)

where and are the proportional and integral coefficients
and is the tracking error at step . Then, the
actuators regulate the throttle, the gear, and the braking action
in order to better achieve the desired value of the acceleration.

In industrial versions of the device as used for ACC, the coef-
ficients and depend on the current value of the state
(position and velocity) and of the tracking error signal , ac-
cording to specifically designed bell-shaped curves [26]. The
parameters of these curves (offset and peak values and stan-
dard deviation) are tuned empirically to obtain high comfort in
acceleration and high security in braking for a variety of sce-
narios. In this study, we have tuned the mentioned parameters so
that the controller minimizes the performance index described
in Section II-C for the given tracking scenario.

IV. NUMERICAL RESULTS

All methods were implemented in Matlab 7 on an Intel
Pentium 4 3-GHz processor. All optimizations, LP and
MILP, were performed with Cplex under TOMLAB v5.1;
the multi-parametric problems (methods MLD-off and BGS)
are solved with the multi-parametric toolbox MPT v2.6 [20].
The MINLP (mixed-integer nonlinear program) of method
NMPC (Section III-A) is solved with the Branch-and-Bound
algorithm of TOMLAB v5.1, toolbox MINLP v1.5, and the op-
timal coefficients for method PI are obtained via the nonlinear
programming function fmincon of the Matlab optimization
toolbox.

A. General Experimental Setup

The experiments, carried out in computer simulation, al-
lowed us to establish the comparison issues among the different
methods described previously. Additionally, they exhibit a
positive and encouraging motivation to perform a real-life
emulation. However, it should be remarked that, for a possible
embedded solution in a real SMART, several technical issues
should be regarded, like the sensor system, the resources of
the on-board electronics, the real-life disturbances, and the
actuators delays. The cost of the device is also a relevant
discrimination parameter. Note that modern technology (e.g.,
differential GPS, laser sensors, and extended Kalman filters
[27]) provides fast and highly accurate measurements, with a
maximal error of 1 m in positioning and 0.1 m/s in velocity.

The general data common to all experiments are as follows.

We have taken , , ,

, s, a simulation time of 75 s, throttle
initial position equal to 0, initial gear I, and initial state .
The choice of the weight matrices strongly penalizes the gap be-
tween reference and vehicle position compared with the other
variables. In these experiments, the reference (the leading ve-
hicle) is moving with a constant speed of 15 m/s (54 km/h).
The controller measures its current state, receives the reference
state, and predicts3 the reference in the subsequent future
samples. On the basis of previous gear and control input infor-
mation, it evaluates the optimal decision strategy. In the on-line
methods, this is done by solving an optimal control problem and
in the off-line methods by consulting a prescheduled table.

The integration of (1) is done after the optimization, using the
Matlab ode45 subroutine and assuming the input constant.

B. Points of Comparison and Results

The comparison topics are listed in Table IV, and for each
line of the table the worst entry is indicated in bold and the best
in italics. The comparison is divided into four groups.

The first one (computational features) refers to strictly com-
putational highlights of the problem, and should orientate the
reader with time and memory demands and complexity of the
method. We use the acronyms NP-H and P to indicate NP-hard
and polynomial complexity. For what concerns the on-line

3If the leading vehicle is human driven, it is not useful to predict the reference
over a long future period. Hence, we have limited the prediction period toN =

2. If automatically driven vehicles [28] are used, then higher values may be
selected for N .
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TABLE IV
BENCHMARK PROBLEM: POINTS OF COMPARISON FOR THE 8 METHODS DESCRIBED IN SECTION III WITH N = 2 FOR MPC

computational time, the maximum and average values along
the whole simulation time are collected. Linear and off-line
methods (i.e., BTA, BGS, MLD-off, and PI) are really com-
petitive compared with the others, especially with the method
NMPC. As a drawback, the off-line methods require a longer
off-line precomputation. We remark here that the sampling
time s is longer than in common ACC devices, where
measurements are taken at the frequency of 5 to 10 Hz [1], [29]
(that is, –0.2 s). Nevertheless, this is not restrictive;
in fact, all methods (except for NMPC) require an on-line
computation time shorter than 0.1 s.

The major advantage of the off-line methods is that they do
not require the optimizer on-board, but merely an efficient data-
base browser. In a real-life application, this is highly preferable,
since the performance of an on-board platform is unquestion-
ably poorer than that of a desktop computer. Moreover, the op-
timizers require extra on-board memory (indicated in Table IV
with “ ”) and may have a cost impact due to software
licenses. On the other hand, off-line MPC methods require a
bigger on-line memory. Under these considerations, the method
8 (PI) is highly competitive, as it does not require a significant
amount of on-line memory.

The Max tractable , only applicable for MPC methods,
is the biggest such that the on-line computational time is
smaller than the sampling time . For the MPC off-
line methods, this value is the biggest such that the required
on-line memory is smaller than 128 Mb, which is the memory
capacity of an on-board chip.

Finally, the item Number (#) of regions (for off-line MPC
methods) is an indicator of the granularity of the solution: when
integers are involved, the lookup table is more complex.

The second group of comparison points refers to the pro-
gramming features, such as basic data of the corresponding op-
timization problem and, in particular, the size of the problem.
The number of variables (real and integer), the number of con-
straints (linear and nonlinear), and the number of parameters
(i.e., the dimension of ) which affects the complexity for the
off-line methods are computed. Methods 1–5, which make use
of the more complex gear-shift prediction model, have a very
high number of variables. This is due to the transformation of
the problem into an equivalent one, as it happens in particular for
the MLD-on method, which requires the introduction of several
auxiliary variables and constraints. This results in higher com-
putation time and memory requirements. In this section of the
table, we also recall whether the method is on-line ' .

The third group of the table lists some important features
of the quality of the solution, providing a better insight into
the physical/mechanical aspects of the problem. The first indi-
cator is the total cost of the evolution in closed loop. A higher
value of the cost means, broadly speaking, a worse tracking of
the position. For this item, the most approximate methods be-
have better. On the counterpart, it can be seen in the following
line that they violate the constraint on the acceleration due to
a very aggressive initial action. The PI controller, which does
not allow to include constraints, performs the poorest. Other as-
pects are also listed, in particular, the maximum and minimum
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, namely the variation of the throttle or brake position. All
methods behave quite similarly for this item, due to the fact
that they all exhibit an initial effort to reach the target: in this
case, a longer horizon would produce some differences. Next
we consider transient features: position and velocity overshoot,
the duration of the transient on the velocity tracking,4 and the
number of gear switchings made to reach the steady state of
the velocity. In particular, with position overshoot, we indicate
with how many meters the vehicle overtakes the reference.5 In
all cases, the linear methods are really competitive.

The same conclusion cannot be drawn for the number of con-
straint violations in the fourth group of the table: in this case, the
bigger model mismatch of the linear methods compared with the
MLD or NMPC methods is the source of numerous constraint
violations. This shows once more the importance of the tradeoff
in the MPC framework between the accuracy of the prediction
model and the quality of the solution. To better highlight this as-
pect, the same computations were performed in the presence of
disturbances. In particular, two cases are reported: measurement
errors (abbreviated dist.) on position and velocity (uniformly
random distributed error of 1 m for the position and 0.1 m/s
for the speed) and model variation (abbreviated mdl. var.). For
the former case, the number of gear switchings is unstable for
method GLA (28 switchings) and PI (38 switchings), while the
other methods are not affected. In the latter case, a particular sce-
nario with wet asphalt (smaller friction coefficient ),
loaded vehicle (higher mass kg), long driving (higher
tire pressure, and bigger wheel radius m) is depicted.
As expected, in this case the on-line methods are not affected
(they recompute on-line the optimization) but the lookup table
or precomputed coefficients for the PI, generated with nominal
parameters, will only suggest suboptimal solutions and possibly
more constraint violations.

V. CONCLUSION

We have presented a benchmark that serves as a test bed to
compare MPC-based control methods developed for PWA sys-
tems. More specifically, we have considered the design of an
adaptive cruise controller for a SMART, and we have consid-
ered seven different variants (on-line and off-line), with dif-
ferent degrees of approximation of the friction and of the pre-
diction model. In addition, we have considered a version of an
ACC controller as it is used in industry (based on an adaptive PI
method). We have compared and assessed the different methods
including the tradeoffs between performance and computational
aspects. The results are collected in a table from which it is pos-
sible to recognize the expected behavior of the different methods
and which allows us to compare the strong and weak points of
each of the methods.

Topics for future research include: considering more com-
plex scenarios, performing the comparison on real vehicles,
including additional controllers in the comparison, and in-
vestigating whether the obtained results also apply to other
applications.

4The time required by the controller to keep the velocity within a 5% band
around the reference.

5Note that the hard constraint x (k) � � (k) + d is still satisfied.

REFERENCES

[1] V. Bageshwar, W. Garrard, and R. Rajamani, “Model predictive control
of transitional maneuvers for adaptive cruise controller,” IEEE Trans.
Veh. Technol., vol. 53, no. 5, pp. 1573–1585, Sep. 2004.

[2] N. Elia and S. Mitter, “Quantization of linear systems,” in Proc. 38th
IEEE Conf. Decision Control, Phoenix, AZ, Dec. 1999, pp. 3428–3435.

[3] E. Sontag, “Nonlinear regulation: The piecewise affine approach,”
IEEE Trans. Autom. Control, vol. 26, no. 2, pp. 346–357, Apr. 1981.

[4] E. Camacho and C. Bordons, Model Predictive Control. London,
U.K.: Springer-Verlag, 1998.

[5] J. Maciejowski, Predictive Control With Constraints. Harlow, U.K.:
Prentice-Hall, 2002.

[6] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, Jun. 2000.

[7] A. Bemporad and M. Morari, “Control of systems integrating logic, dy-
namics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427, Mar.
1999.

[8] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Sys-
tems, ser. LNCIS 290. Berlin, Germany: Springer-Verlag, 2003.

[9] E. Kerrigan and D. Mayne, “Optimal control of constrained, piecewise
affine systems with bounded disturbances,” in Proc. 41th IEEE Conf.
Decision Control, Las Vegas, NV, Dec. 2002, pp. 1552–1557.
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