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Intrinsic Distortion of a Fully Differential
BD-Modulated Class-D Amplifier with Analog

Feedback
Stephen M. Cox, Jun Yu, Wang Ling Goh, and Meng Tong Tan

Abstract—This paper presents a mathematical analysis of a
fully differential BD-modulated Class-D amplifier with analog
feedback, i.e., one having a bridge-tied-load output configuration
with negative feedback and ternary PWM signal. Notwithstand-
ing the highly nonlinear nature of the amplifier’s operation, an
extremely accurate closed-form expression for the audibleoutput
signal is derived and verified based on computer simulations.
This expression demonstrates that there exist larger high-order
intrinsic distortions (e.g., 5th-order harmonic distorti on and
intermodulation distortion) for BD-modulation, compared to that
for AD-modulation (binary PWM signal). Furthermore, the 3r d-
order harmonic distortion has a roughly parabolic responseas
a function of the magnitude of the input signal and reaches its
peak when the modulation index of the input signal is around
0.7. Overall, the BD-modulated Class-D amplifier has a larger
intrinsic distortion for small input signal but a smaller in trinsic
distortion for large input signal, compared to AD-modulated
designs.

Index Terms—BD modulation, bridge-tied-load (BTL), filter-
less Class-D amplifier, differential-ended, intermodulation dis-
tortion (IMD), time-domain analysis, total harmonic distortion
(THD).

EDICS Category: ACS350, ACS130, ACS100, NOLIN150

I. I NTRODUCTION

CLASS-D amplifiers have rapidly supplanted linear ampli-
fiers in recent years, both for low-power and high-power

devices [1]. Their adoption has been motivated by their high
efficiency. Although a variety of modulation topologies have
been developed for the analog-feedback Class-D amplifier,
the traditional pulse width modulation (PWM) scheme is still
widely used due to its fixed and moderate switching frequency.

As proposed in [2], a pulse width modulated Class-D
amplifier can be further categorized into two types: AD mod-
ulation (or Class-AD) and BD modulation (or Class-BD).
The PWM signal for AD modulation takes only two values,
e.g., plus/minus supply voltage, and hence it is also referred
to as binary modulation. By contrast, the PWM signal for
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Fig. 1. Circuit schematic of a fully differential BD-modulated Class-D
amplifier.

BD modulation takes three values, e.g., plus/minus supply
voltage and ground, and so is named ternary modulation.
AD modulation is dominant for single-ended output configu-
rations. BD modulation is usually realized with a differential-
ended output stage, yielding a so-called bridge-tied-load(BTL)
configuration. Furthermore, as the carrier frequency compo-
nents of the two half bridges are in phase, BD modulation has
much lower differential-mode high-frequency current ripple
loss, compared to AD modulation. This is essential for a
“filterless” Class-D amplifier to achieve high power efficiency
when the LC filter is minimized or even completely removed.

Fig. 1 shows a popular circuit structure for a 2nd-order
Class-D amplifier applying BD modulation and with analog
feedback. The output stage is differential-ended and the carri-
ers of both bridge halves are in-phase, whereas the modulating
signals are generated from a fully-differential 2nd-orderloop
filter and hence have opposite phase. The optional output LC
filter is omitted, as it does not affect the analysis presented
in this work. Fully differential loop filters have been widely
employed in the recent works [3]–[6], although their imple-
mentation is not limited to the structure shown in Fig. 1.
For instance, the 2nd-order loop filter may in fact comprise
two 1st-order integrators, as demonstrated in [5], and the
input resistors can be replaced by a differential operational
transconductance amplifier (OTA), as in [6].

Furthermore, there are some BD-modulated Class-D am-
plifiers reported in the literature that are built using pseudo-
differential loop filters, in which two single-ended loop filters
are employed, one for each bridge half. Consequently, the
circuit is exactly a combination of two single-ended AD-
modulated Class-D amplifiers. The audible frequency compo-
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nents of such pseudo-differential BD modulation are therefore
the same as those for AD modulation, except that the output
swing is doubled. Thus, in the present work, we are interested
only in BD-modulated Class-D amplifiers with fully differen-
tial loop filter.

The performance of PWM Class-D amplifiers has been sig-
nificantly improved in the last decade. This improvement has
mainly been driven by the advancement of power MOSFET
fabrication technology, as well as optimized circuit imple-
mentation. The total harmonic distortion (THD) reported in
the recent works [1], [4], [5] has reached around0.01%, at
which level the intrinsic distortion due to the feedback loop
structure becomes a limiting factor for linearity wheneverthe
designer wishes to use a low switching frequency to ensure a
high power efficiency. Some attempts at reducing the intrinsic
harmonic distortion have been reported [3], [7]–[9]. In [8](see
also [10]), a sample-and-hold block added after the loop filter
was proposed, to reduce the intrinsic harmonic distortion.This
idea was recently implemented in a BD-modulated Class-D
amplifier [3] and an impressive THD of0.00122% at 1 kHz
and50% maximum output power was achieved.

While BD modulation has been widely accepted by the in-
dustry, a comprehensive mathematical analysis of this topology
is not available in the literature; indeed it is highly nontrivial.
As we investigate in this paper, the intrinsic distortion ofa
BD-modulated closed-loop Class-D amplifier is quite different
from that of an AD-modulated design. To be more precise,
BD modulation causes higher intrinsic distortion for small
input signals, but has less intrinsic distortion for large input
signals. Interestingly, its 3rd-order harmonic has a roughly
parabolic response as a function of the magnitude of the input
signal. In addition, BD modulation suffers larger high-order
harmonic distortion, compared to AD modulation, e.g., the
5th-order harmonic may be even larger than the 3rd-order
harmonic. According to audio engineers, human beings are
quite sensitive to high-order harmonic distortion, compared
to low-order harmonic distortion. This may be a potential
drawback of BD modulation.

This paper is organized as follows. In Section II, we briefly
review the prior analysis of Class-D amplifiers, especially
focusing on the intrinsic distortion for a closed-loop design. In
Section III, the major steps in analyzing the BD-modulation
design are summarized, and an explicit amplifier output ex-
pression is derived. In Section IV, the closed-form expressions
for the intrinsic distortion, in the form of total harmonic
distortion (THD) and intermodulation distortion (IMD) are
derived and analyzed. In Section V, we compare our analytical
results with simulations of the amplifier, and demonstrate
the excellent agreement. Finally, we give our conclusions in
Section VI.

II. L ITERATURE REVIEW

The analysis of Class-D amplifiers can be traced back to
the 1950s [11]. There, a double Fourier series was applied to
derive an expression for the output signal of an open-loop
Class-D amplifier with either natural or uniform sampling.
This series demonstrated that an ideal open-loop naturally

sampled PWM Class-D amplifier does not introduce any
harmonic distortion in the audio band. This conclusion is
extended to an arbitrary band-limited input signal in [12].
However, due to component variation, non-ideal power stage
and distorted carrier signal [13], the THD for practical open-
loop Class-D amplifiers is typically0.1%. Therefore, negative
feedback is widely applied in commercial products to improve
the linearity of open-loop Class-D amplifiers.

However, it is also well known that a closed-loop pulse
width modulated Class-D amplifier has intrinsic distortiondue
to the injection of high-frequency carrier ripples at the output
of the loop filter. The ripple signal contains high frequency
intermodulation products between the input and carrier signals.
The input-dependent ripple signal causes timing errors at
the rising and falling edges of the PWM signal and hence
generates distortion in the demodulated output signal. Put
more abstractly, the intrinsic distortion is caused by the circuit
structure itself and is not related to practicalities of circuit
construction.

Various analyses of this intrinsic distortion phenomenon of
a closed-loop Class-D amplifier have been reported in recent
years [7], [10], [14], [15], focusing only on AD modulation
(binary PWM signal). The analysis in [7] provides an insight
into the source of the intrinsic distortions, and the derivation
process closely reflects the working mechanism of the system.
It gives an expression for the output which is valid for a
general input signal (followed by a more detailed treatment
of the case of sinusoidal input, capturing the third-harmonic
distortion terms), at modest algebraic cost. (An extensionof
the analysis in [7] to self-oscillating designs was reported
in [16].) In our previous work [10], [14], we introduced
an alternative time-domain analysis technique that is ableto
precisely predict the intrinsic harmonic distortion of an AD-
modulated Class-D amplifier with either 1st-order or 2nd-
order loop filter. The essential mathematical tool for this
calculation is a perturbation method based on the small ratio
between typical audio frequencies and the amplifier switching
frequency. The advantages of this technique are: 1) that the
output signal is obtained analytically for any band-limited
input signal, in a compact form, 2) that the derivation pro-
cedure is systematic and hence the analytical expression can
in principle be obtained to any desired precision, and 3) that
the order of magnitude of the errors that arise from computing
only the first few terms in the perturbation expansion can be
estimated.

In this paper, we will extend this technique to the fully
differential BD-modulated closed-loop Class-D amplifier.Due
to the ternary stage of the output signal, the analytical work
is even more complex than previous treatments, involving
much heavy algebra, which is relegated to a computer algebra
package. The value of this analysis is that it yields a closed-
form expression for the audio-frequency components of the
amplifier output, which allows us to investigate the unique
properties of the BD modulation. To our knowledge, this is the
first analytical work on the output spectrum of BD modulation,
although it was first introduced in the 1970s and has been
widely used for nearly one decade for audio amplifiers.
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Fig. 2. Fully differential BD-modulated Class-D amplifier with negative
feedback and BTL output configuration. See text for details.

III. M ATHEMATICAL ANALYSIS OF BD MODULATION

Fig. 2 shows the mathematical model that we have derived
for the BD-modulated Class-D amplifier illustrated in Fig. 1.
As in our previous work [14], we have added a constant
gain block (i.e., equal to−k) into the mathematical model
to represent a feedforward path from the input signal to the
loop filter output signal. Although this feedforward path is
not shown in Fig. 1, it can be easily realized by creating an
extra input port at each comparator. In addition, this model
is suitable for both first-order (i.e.,c2 = 0) and second-order
(i.e., c2 > 0) loop filter designs. In this work, we focus on
the second-order loop filter design as it provides a higher
linearized loop gain and hence can significantly suppress the
distortion caused by the power stage. However, the output
expression for first-order design is also provided at the end
of this section, for completeness. Expressions for the model
parametersc1 andc2, and the input signal,s(t), (all indicated
in Fig. 2) are given in Table I, where the passive components
and the signals refer to the circuit schematic shown in Fig. 1.

TABLE I
MATHEMATICAL MODEL PARAMETERS

Model Parameter Expression

c1 (VDD/VT )(1/(R2C1))

c2 1/(2R3C1)

s(t) (R2/R1)(1/VDD)Vin(t)

A. Formulation of the Model

The input to the device is an audio signal,s(t), of relatively
low frequency. Throughout this paper, voltages are scaled so
that s(t) lies in the range−1 < s(t) < 1. The amplifier
output is a high-frequency square-wave PWM signal,g(t),
taking the values−1, 0 and 1. As illustrated in Fig. 2, the
signalss(t) and g(t) are summed and this sum is integrated
twice, in succession, yielding signalsm(t) and p(t), which
satisfy

dm(t)

dt
= −c1(s(t) + g(t)),

dp(t)

dt
= c2m(t), (1)

wherec1 andc2 are positive constants.
Next, m(t) and p(t) are summed with a multiple of the

original audio signal,−ks(t), and with a high-frequency
triangular carrier wavev(t) of period T ; this sum is fed to

0.15 0.16 0.17 0.18 0.19 0.20

-1.0

-0.5

0.0

0.5

1.0

V
ol

ta
ge

 (V
)

Time (ms)

 s(t)   g(t)

Fig. 3. Waveforms for typical operation of the amplifier. Note that the
amplifier outputg(t) alternates between0 and −1 when s(t) > 0 and
between1 and0 whens(t) < 0.
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Fig. 4. Waveforms for typical operation of the amplifier.

the noninverting input of a comparator, whose inverting input
is at zero volts. The carrier wave is given by

v(t) =

{

1 − 4t/T for 0 ≤ t < 1
2T,

−3 + 4t/T for 1
2T ≤ t < T,

(2)

together with the periodicity conditionv(t + T ) = v(t). The
comparator output voltage is given by

u(t) =

{

+1/2 if m(t) + p(t) − ks(t) + v(t) > 0,
−1/2 if m(t) + p(t) − ks(t) + v(t) < 0.

(3)

Also, the sumh(t) = m(t) + p(t) − ks(t) is inverted, added
to the carrier wave and fed to a second comparator, whose
output is given by

w(t) =

{

+1/2 if −(m(t) + p(t) − ks(t)) + v(t) > 0,
−1/2 if −(m(t) + p(t) − ks(t)) + v(t) < 0.

(4)
The output of the amplifier is given byg(t) = u(t) − w(t):

g(t) =







+1 if |v(t)| < m(t) + p(t) − ks(t),
0 if −|v(t)| < m(t) + p(t) − ks(t) < |v(t)|,
−1 if m(t) + p(t) − ks(t) < −|v(t)|.

(5)
Finally, this output is fed back to the input of the amplifier,
providing negative feedback.

Fig. 3 shows the typical waveform of the output differential
PWM signal,g(t), corresponding to a sinusoidal input signal,
s(t). Note thatg(t) switches between−1 and0 whens(t) > 0,
and between0 and 1 when s(t) < 0. A zoomed-in view of
the internal control signals (±h(t) andv(t)) and the two com-
parator output signals (u(t) andw(t)) is illustrated in Fig. 4
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for the time interval from0.15 ms to0.16 ms of Fig. 3. These
figures show thatu(t) andw(t) each switch twice during one
carrier-wave period, withg(t) switching correspondingly four
times. We denote the times at which the comparator outputs
switch between the values± 1

2 by An, Bn, Cn and Dn, for
integersn, wherenT < An, Bn, Cn, Dn < (n + 1)T . More
specifically,

u(t) =

{

+1/2 for Bn−1 < t < An,
−1/2 for An < t < Bn

(6)

and

w(t) =

{

+1/2 for Dn−1 < t < Cn,
−1/2 for Cn < t < Dn.

(7)

In writing (6) and (7), we assume normal operation, i.e.,
that each comparator switches twice during each carrier-wave
period, as observed in simulations. (For sufficiently large
signal amplitudes, occasional pulses may be skipped in some
other Class-D amplifier designs, leading to a degradation in
performance; however, we have not observed pulse-skippingin
the present design. A discussion of the “large-signal” stability
of an AD-modulated Class-D amplifier can be found in [14].)

It proves useful to introduce the fractional switching times
αn, βn, γn and δn, given byAn = (n + αn)T , Bn = (n +
βn)T , Cn = (n + γn)T , Dn = (n + δn)T , where

0 < αn < 1
2 < βn < 1, 0 < γn < 1

2 < δn < 1. (8)

Finally, in view of the need, from (1), to integrate the input
signal twice, we introducef(t) such thats(t) = f ′′(t).

B. Structure of the Calculation

The present BD modulation design is more complicated
to analyze than previously considered AD modulation de-
signs [14]. In part this is because the outputg(t) switches four
times per carrier-wave period. However, the more significant
complication, for the mathematical model, is that the relative
order of the switchings ofu(t) and w(t) differs, depending
on the sign ofs(t). Below, we present a detailed analysis for
the cases(t) > 0, for which the order of switchings is

· · · < An < Cn < Dn < Bn < An+1 < · · · . (9)

For the cases(t) < 0, the order of switching is· · · < Cn <
An < Bn < Dn < Cn+1 < · · · and consequent modifications
to the account below are readily worked out.

The details of the calculation are highly algebraically in-
volved, and it is useful to highlight the structure of the
calculation, as follows. First, we integrate (1) fromt = An

to t = An+1, across each of the subintervals indicated in (9),
noting thatg(t) is constant in each subinterval; specifically,

g(t) =

{

−1 for An < t < Cn or Dn < t < Bn,
0 otherwise.

(10)

Thus we obtain

m(Cn)=m(An) − c1(f
′(Cn) − f ′(An)) + c1(Cn − An),

p(Cn)=p(An) + c2m(An)(Cn − An) −F(An, Cn)

+1
2c1c2(Cn − An)2,

m(Dn)=m(Cn) − c1(f
′(Dn) − f ′(Cn)),

p(Dn)=p(Cn) + c2m(Cn)(Dn − Cn) −F(Cn, Dn),

m(Bn)=m(Dn) − c1(f
′(Bn) − f ′(Dn)) + c1(Bn − Dn),

p(Bn)=p(Dn) + c2m(Dn)(Bn − Dn) −F(Dn, Bn)

+1
2c1c2(Bn − Dn)2,

m(An+1)=m(Bn) − c1(f
′(An+1) − f ′(Bn)),

p(An+1)=p(Bn) + c2m(Bn)(An+1 − Bn) −F(Bn, An+1),

whereF(t1, t2) = c1c2(f(t2) − f(t1) − f ′(t1)(t2 − t1)).
It is then straightforward, if algebraically messy, to elim-

inate the intermediate values ofm and p and hence obtain
difference equations, of the form

mn+1=M(n, mn, pn, αn, βn, γn, δn, αn+1), (11)

pn+1=P(n, mn, pn, αn, βn, γn, δn, αn+1), (12)

wheremn denotesm(An) andpn denotesp(An).
The switching times are determined, according to (3), (4),

(6) and (7), from

m(An) + p(An) − ks(An) + 1 − 4αn=0, (13)

m(Bn) + p(Bn) − ks(Bn) − 3 + 4βn=0, (14)

−m(Cn) − p(Cn) + ks(Cn) + 1 − 4γn=0, (15)

−m(Dn) − p(Dn) + ks(Dn) − 3 + 4δn=0. (16)

The six equations (11)–(16) constitute a set of governing
difference equations for the amplifier. They can be used as
the basis for accurate numerical simulations of the amplifier
(cf. [17], [18]), but, more importantly, they can be used to
predict a closed-form expression for the audio output of the
amplifier in response to a general audio input, as we now
demonstrate.

C. Solving the Model

The key to a mathematical analysis of the difference-
equation model (11)–(16) is the observation that the carrier-
wave frequency greatly exceeds a typical audio frequency
(typically 500kHz and20Hz–20kHz, respectively). Thus each
voltage in the amplifier may be considered to oscillate at the
carrier-wave frequency, with a slow modulation. To make this
idea more precise, we introduce the small parameter

ǫ ≡ ωT ≪ 1, (17)

where ω is a typical audio (angular) frequency, and the
(dimensionless) slow time scale

τ = ωt = ǫt/T. (18)

To acknowledge the relatively slow variation of the audio
signal, we also writes(t) = S(τ) = d2F (τ)/dτ2, where
F (τ) = ǫ2f(t)/T 2. The presence of a small parameter in the
problem allows us to use perturbation methods to solve the
mathematical model.
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We next introduce six functions that are to be determined
from (11)–(16): these represent the four switching times in
a given switching period, together with the values of the
integrator outputs sampled at timest = An. Thus we introduce
the functionsα(τ), β(τ), γ(τ), δ(τ), m(τ) andp(τ), such that

(α(ǫn), β(ǫn), γ(ǫn), δ(ǫn), m(ǫn), p(ǫn)) =

(αn, βn, γn, δn, mn, pn).

Furthermore, we expand each function in powers ofǫ, so that

α(τ) =
∞
∑

n=0

ǫnα(n)(τ), β(τ) =
∞
∑

n=0

ǫnβ(n)(τ), etc.,

(19)
and solve the problems that arise from substituting these
functions into (11)–(16) at successive powers ofǫ.

At leading order, after much algebra, we find the fractional
switching times to be given by

α(0)(τ)= 1
16 (1 − S(τ))(4 − c1TS(τ)),

β(0)(τ)=α(0)(τ) + 1
2 (1 + S(τ)),

γ(0)(τ)=α(0)(τ) + 1
2S(τ),

δ(0)(τ)=α(0)(τ) + 1
2 ,

while the sampled values of the integrator outputs are

m(0)(τ) = − 1
4c1TS(τ)(1−S(τ)), p(0)(τ) = −(1−k)S(τ).

(20)
From (10), the average ofg(t) over a carrier-wave period is

−β(0)(τ) + δ(0)(τ) − γ(0)(τ) + α(0)(τ) = −S(τ) = −s(t).
(21)

Thus, to a good approximation, the audio-frequency compo-
nent of the amplifier output is the inverted audio input signal.

In order to make useful predictions about the amplifier
distortion, it is necessary to proceed in succession to terms
of ordersǫ, ǫ2 and ǫ3. The volume of algebra necessary to
analyze these problems grows rapidly; since it is really only
the final answer that is of practical significance, we record
none of the detailed intermediate results here.

Once the first few terms in the expansions for the functions
α, β, γ andδ have been found, the final step in the calculation
is to extract from the switching times the audio components
that are present ing(t). Extending the approach used previ-
ously in [14], we find that the audio-frequency components of
the output, which we denote byga(t), are given by (cf. [12],
[19])

ga(t) =

∞
∑

n=1

(−ǫ)n−1

n!

dn−1

dτn−1
(αn(τ)+δn(τ)−βn(τ)−γn(τ)).

(22)
Calculating terms up to orderǫ3, then rewriting the answer in
terms ofs(t), the output expression is finally derived as

ga(t)=−s(t) + T 2 d2

dt2

{[

−
1

48
+

1 − k

c1c2T 2

]

s(t) − 1
24s3(t)

}

+ 1
16T 2 d2(s2(t))

dt2
sgn(s(t)), (23)

wheresgn(s) equals1 for s > 0, and−1 for s < 0.

Equation (23) is of particular importance because it accu-
rately predicts the audible output components for BD modula-
tion and is suitable for an arbitrary band-limited input signal. If
we compare (23) with the output signal expression in [14], the
similarities and differences between the audible output signals
for AD and BD modulation may be interpreted as follows.

Similarities—The terms in the first line of (23) are exactly
as for the AD-modulated second-order design analyzed in [14].
The term(s(t))′′ contributes only to the distortion of the fun-
damental frequency components, causing the magnitude of the
fundamental frequency components to slightly increase. Also,
the feedforward path (i.e.,−k) can be used to compensate the
distortion of the fundamental output components.

Differences—The quadratic term in the second line of (23),
i.e., 1

16T 2(s2(t))′′ sgn(s(t)), is new, and unique to BD modu-
lation. This term reflects the change in the relative switching
order of the two bridge halves for positive and negative
values ofs(t) and significantly affects the intrinsic distortion
components that are appreciably present in the output. Note
that this term is a product of an even function of the input
signal,(s2(t))′′, and an odd function,sgn(s(t)). As a result,
it will generate only odd-order harmonics, with magnitudes
proportional to the square of the input signal magnitude.

It may also be worthwhile to highlight that the terms
(s3(t))′′ and (s2(t))′′ sgn(s(t)) in (23) are the source of
harmonics and intermodulation products in the demodulated
output signal. As these two terms are independent of the loop
filter parameters (i.e.,c1 andc2), we conclude that, up to the
order of the analysis (i.e.,ǫ3), the THD and IMD of the BD-
modulated Class-D amplifier are independent of the design of
the loop filter. We recall that the same property also holds for
AD modulation [14].

The audible output expression for first-order loop filter
design (i.e.c2 = 0) has been derived in the same way, and is

ga(t)=−s(t) +
1 − k

c1

ds

dt
− 1

32T 2 d2(s2(t))

dt2
sgn(s(t))

+T 2 d2

dt2

{[

1

48
−

1 − k

c2
1T

2

]

s(t) + 1
48s3(t)

}

. (24)

As the coefficients for the nonlinear terms in (24) are exactly
half of those in (23), the intrinsic distortion components for
the first-order design have the same trend as for the second-
order design, except that the magnitude is reduced by half.
For the sake of brevity, the analysis in the following sections
of this work is based only on the second-order design. It is
worth noting that the coefficients of the cubic terms in (23) and
(24) agree with the corresponding results in [7]; furthermore,
the finding that this component of the intrinsic distortion is
reduced by half for the purely first-order design is also in
accordance with [7].

IV. I NTRINSIC DISTORTION OF ABD-MODULATED

CLASS-D AMPLIFIER

In this section, we will examine the intrinsic distortion ofa
BD-modulated closed-loop Class-D amplifier for both single-
tone and two-tone input signals, in the form of THD and IMD,
respectively. Due to thesgn(s(t)) function, this derivation
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procedure is rather mathematically involved. To simplify the
presentation, only the final expressions are presented here,
with some important details attached in the Appendix.

A. Total Harmonic Distortion

For a single-tone audio input signal, a nonlinear amplifier
gives rise to an audio output that can be expressed as

ga(t) =

∞
∑

n=−∞

gnenjωt. (25)

Then the total harmonic distortion is defined as

THD(%) =
√

|g2|2 + |g3|2 + · · ·/|g1| × 100. (26)

By substituting the audio signal,s(t) = s0 sin ωt, into (23),
ga(t) may be derived as

−s0

{

1 + (ωT )2
[(

−
1

48
+

1 − k

c1c2T 2

)

− 1
32s2

0

]}

sin ωt

− 3
32 (ωT )2s3

0 sin 3ωt + (ωT )2s2
0

∑

odd n

n sin nωt

2π(n2 − 4)
. (27)

Note that, in contrast to AD modulation, there exist significant
high-order odd harmonics in the output of a BD-modulated
Class-D amplifier, which are represented by the summation
term in (27). In addition, we note that the third-harmonic
distortion term has coefficient3(ωT )2s2

0(
1

10π − 1
32s0), which

has a maximum ats0 = 32
15π ≈ 0.679. Furthermore, the third-

harmonic distortion of the BD modulation isgreater than
that of the single-ended design (AD modulation) unless the
audio signal amplitude is sufficiently large, specifically unless
s0 > 8

5π ≈ 0.509.
If we includeall generated harmonics from (27), we find

THD∼(ωT )2s0

{

(

3
10π − 3

32s0

)2
+

∑

oddn≥5

n2

4π2(n2 − 4)2

}1/2

∼(ωT )2s0

{

(

3
10π − 3

32s0

)2
+ 1

64

(

1 − 1696
225π2

)

}1/2

. (28)

Consideration of this expression shows that the THD of a
BD-modulated Class-D amplifier increases with increasing
signal amplitudes0. As with the third-harmonic distortion, this
amplifier hasgreaterTHD than its AD-modulated counterpart
for small signal amplitudes; the present design has lower THD
only whens0 > 5(9π2 − 16)/(162π) ≈ 0.715. Of course, it
should be borne in mind that the higher harmonics generated
by the amplifier will be beyond the range of human hearing, so
the infinite sum implicit in (28) should be (generally severely)
truncated. If such a truncation is made, it still remains the
case that the THD increases with increasings0 (unless we
keep only the third harmonic term, in which case the THD
has a maximum ats0 = 32

15π , as above).
Fig. 5 illustrates the output spectrum of a BD-modulated

2nd-order Class-D amplifier based on MATLAB simulation.
The input signal is set at 1 kHz with modulation index equal
to 0.7. The carrier frequency is set to 250 kHz, which will
be the default value in the rest of the paper (in the absence
of specification to the contrary). This figure clearly shows
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Fig. 5. Frequency spectrum of the demodulated output signalof the Class D
amplifier with BD modulation. The input signal is set to have frequencyFin =
1 kHz and modulation indexMin = 0.7. Carrier frequency is set to 250 kHz.

Fig. 6. 3D plot of the THD of a BD-modulated Class-D amplifier as a
function of both the modulation index and frequency of the input signal.

that there exist significant high-order harmonic components
in the output spectrum. It is particularly noteworthy that the
5th harmonic is in this case larger than 3rd harmonic. This in-
dicates that the BD-modulated Class-D amplifier has an output
spectrum that is quite different from that for AD modulation.

Using (27), we are able to predict the THD performance
of a BD-modulated Class-D amplifier, with relatively little
computational effort, and without the need for numerous time-
consuming simulations. Fig. 6 shows a three-dimensional plot
of the THD with respect to both the modulation index and the
frequency of the input signal. The data are calculated basedon
our analytical expression, including all significant harmonics
within the 20 kHz audio band. The corresponding contour lines
with 0.01% THD incremental step are plotted on the base of
the 3D diagram.

B. Intermodulation Distortion

Intermodulation distortion (IMD) arises when the amplifier
input comprises multiple signals with different frequencies.
The output then contains contributions at sums and differences
of the various frequencies. IMD can significantly detract from
the listening experience.

We thus consider the IMD for an input signal

s(t) = s1 sinω1t + s2 sin ω2t (s1, s2 > 0). (29)
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For such a signal, the output may be written as

ga(t) =

∞
∑

m=−∞

∞
∑

n=−∞

gm,nej(mω1+nω2)t, (30)

and the “order” of a given intermodulation product (IMP) is
defined as|m| + |n|. Then the IMD of orderK is

IMDK(%) =
1

|g0,1|

√

∑

|gm,n|2 × 100, (31)

where the sum is taken over all IMP with order less than or
equal toK.

The contribution to the IMD from the terms in the first line
of (23) may be expressed as

∑

Gm,n sin(mω1 + nω2)t, (32)

where the nonzero coefficients are

G1,0=−(1 + µω2
1T

2)s1 + 1
32s3

1ω
2
1T

2 + 1
16s1s

2
2ω

2
1T

2,

G0,1=−(1 + µω2
2T

2)s2 + 1
32s3

2ω
2
2T

2 + 1
16s2

1s2ω
2
2T

2,

G3,0=− 3
32s3

1ω
2
1T

2, G0,3 = − 3
32s3

2ω
2
2T

2,

G2,±1=− 1
32s2

1s2(2ω1 ± ω2)
2T 2,

G1,±2=− 1
32s1s

2
2(ω1 ± 2ω2)

2T 2,

and whereµ = − 1
48 + (1 − k)/(c1c2T

2). Recall that the
intermodulation products generated by the first line of (23)
are consistent with those of an AD-modulated Class-D ampli-
fier [20].

The corresponding calculation for the term
1
16T 2(s2(t))′′ sgn(s(t)) in the second line of (23) is more
complicated; for this we use the method of Bennett [21],
[22]. The detailed derivation is given in the Appendix, with
the final expression forga(t) being

− 1
16T 2σ(ω2

1s1 sinω1t + ω2
2s2 sinω2t)

+ 1
16T 2σ2

∞
∑

p=1

∞
∑

q=−∞

p+q odd

(pω1 + qω2)
2Hpq sin(pω1 + qω2)t

+ 1
16T 2σ2

∞
∑

q=1

q odd

q2ω2
2H0q sin qω2t, (33)

where

Hpq =

∞
∑

n=1
n odd

16

n3π3
Jp(nπs1/σ)Jq(nπs2/σ), (34)

and σ = s1 + s2. Here J denotes the Bessel function of the
first kind. Note that the second line of (33) indicates high-
order IMPs. For instance, the 5th IMP at frequency3ω1 +2ω2

has coefficient116T 2(3ω1 + 2ω2)
2σ2H32.

To provide some insight into the functionsHpq corre-
sponding to low-order intermodulation products, we show
in Fig. 7 the functionsHpq(λ) up to fifth order, where
λ = s1/σ = s1/(s1+s2). Note that only the case of oddp+q
needs to be considered and that the behavior of the remaining
low-orderHpq which are not plotted in Fig. 7 may be inferred
from that figure using the relationHpq(λ) = Hqp(1−λ). The
variableλ represents the relative magnitude ofs1 to the total
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Fig. 7. Plots of the functionsHpq(λ) for low-order intermodulation products
with odd p + q, whereλ = s1/(s1 + s2). Values ofp, q are indicated next
to each curve.
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Fig. 8. Frequency spectrum of the output signal for a BD-modulated 2nd-
order Class-D amplifier.

input signal. Finally, combining (32) and (33) allows us to
determine analytically the IMD.

The frequency spectrum of the output signal in a typical
IMD test is shown in Fig. 8. The two-tone stimulus signals
are at60 Hz and 7 kHz, with the amplitudes equal to0.5
and0.125, respectively. Compared to the frequency spectrum
of the AD-modulated amplifier shown in [20], there exist
significant high-order IMPs in a BD-modulated amplifier,
illustrated as the sideband components surrounding the peaks
at 7 kHz and 14 kHz. Furthermore, this figure shows that the
5th-order IMPs are even larger than the 3rd-order IMPs at the
frequencies surrounding the 2nd-order harmonic of the high-
frequency tone (i.e.,14 kHz).

V. A NALYTICAL AND SIMULATION RESULTS

In this section, the analysis leading to our expression (23)
for the audible output signal of a BD-modulated 2nd-order
Class-D amplifier is verified by comparing the derived ex-
pressions against computer simulations using both MATLAB
Simulink and Cadence Spectre simulators. Since this work
focuses on the intrinsic distortion of the BD-modulated Class-
D amplifier with the assumption that all the effects of a
practical circuit, such as component variation, non-ideality
of the output stage and nonlinearity of the low-pass filter,
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Fig. 9. THD of a BD-modulated 2nd-order Class-D amplifier against the
modulation index of the input signal.

are eliminated, no hardware test is required. The Cadence
simulation is sufficient to demonstrate the accuracy of the
mathematical model derived from the circuit schematic. The
second-order loop filter is designed to achieve a high low-
frequency gain inside the audio range and the parameter values
used are:c1 = 498800 s−1, c2 = 490340 s−1, T = 4e-6 s
and k = 0. In our Cadence simulations, the power stage is
built using a pair of PMOS and NMOS transistors with large
W/L ratio, which are simulated using foundry provided BISIM
models for the 0.18µm CMOS process. The fully differential
amplifier is created based on a macro model (a single pole
system: DC gain = 120 dB and gain-bandwidth product =
100 MHz). The comparator is built using a simple voltage-
controlled voltage source. The passive components (capacitors
and resistors) are from Cadence analog library. The supply
voltage is 3.3 V. As described above, the simulation circuit
built in Cadence is quite ideal except for the power MOSFETs.

A. Verification of Total Harmonic Distortion

Fig. 9 presents the THD performance against the modulation
index of the input signal. The modulation index ranges from
0.1 to 0.9 and the input signal frequency is set to 3 kHz,
so that the high-order harmonic distortions are included. The
THD results are calculated based on all the harmonics within
the audio range (i.e., from 20 Hz to 20 kHz). The MATLAB
simulation results for a 2nd-order Class-D amplifier with
binary PWM signal are also provided for comparison. As
illustrated in Fig. 9, the matching between the analytical
results and the simulation results is excellent; in particular,
the MATLAB simulation results and the analytical results are
almost indistinguishable. Compared with its AD-modulated
counterpart, BD modulation suffers from a much higher THD
for small input signal whereas it achieves a better performance
for large input signal. Recall that music has a crest factor
(i.e., peak to rms ratio) range of4–10. This means that the
modulation index of the input signal in most conditions is
around 0.35 or even lower, in which case the AD-modulated
Class-D amplifier has a much better performance, compared
to BD modulation.

Fig. 10 shows the magnitude of the 3rd- and 5th-harmonic
components plotted against the magnitude of the input signal
with the same input setting as for Fig. 9. This figure shows that
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Fig. 10. The 3rd and 5th harmonic components in the demodulated output
signal.
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Fig. 11. THD against the frequency of the input signal. The modulation
index of the input signal is 0.7.

the analytical results perfectly match the MATLAB simulation
results even for individual frequency components and hence
demonstrates the accuracy of the analytical expression. The
Cadence Spectre simulation results are slightly higher than
the analytical predictions and the MATLAB simulation results.
This is probably due to the practical limitations of the power
MOSFET model employed in the Cadence simulation, such as
the on-resistance and the asymmetry of the rising and falling
switching edges. As expected from our analysis, the 3rd-order
harmonic distortion reaches its peak when the modulation
index of the input signal is around 0.7 and then decreases with
further increased input signal. On the other hand, the 5th-order
harmonic increases quadratically with the magnitude of the
input signal and becomes the dominant distortion component
for large input signal.

The THD performance against the input signal frequency of
the BD-modulated 2nd-order closed-loop Class-D amplifier is
given in Fig. 11. The modulation index of the input signal is
fixed at 0.7. The input signal frequency is from 1 kHz to 6 kHz.
The flattening of the curve between 4 kHz and 5 kHz is due
to the fact that the 5th-harmonic distortion for input frequency
higher than 4 kHz will fall outside the audio band. As a
result, the advantage of lower THD at large modulation index
for BD modulation becomes quite obvious for high frequency
input signal.

As for the AD-modulated design, the THD of a BD-
modulated Class-D amplifier is predicted by the model to be
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Fig. 13. Harmonic components of a fully differential BD-modulated Class-D
amplifier versus the loop filter parameterc2. The input signal hasFin = 3 kHz
andMin = 0.7.

inversely proportional to the square of the switching frequency.
This is illustrated in Fig. 12 by the same decreasing slopes
for both AD and BD modulations. Note that analytical and
MATLAB simulation results are almost indistinguishable. The
Cadence simulation results also closely follow the predicted
analytical results; the increasing mismatch at higher carrier
frequency is probably because of the relative weakening of the
intrinsic distortion compared to other sources of distortion.

Fig. 13 illustrates MATLAB simulation results of the signif-
icant 3rd and 5th harmonics when the second-order loop filter
parameterc2 reduces from a typical value to 0. It confirms
that the harmonic components are independent of the loop
filter parameters over a wide range of values, correspondingto
normal second-order loop filter design. Whenc2 is sufficiently
small, however, a dependence on this parameter emerges, and
the loop filter becomes close to a first-order design (i.e., the
limiting case ofc2 = 0 as indicated by the linearized loop
gain transfer function,c1(s + c2)/s2); in this case, the THD
is reduced by half (just as predicted by the output expression
of a first-order loop filter design given in (24)).

B. Verification of Intermodulation Distortion

The testing standard set by the Society of Motion Picture
and Television Engineers (SMPTE) is applied here to examine
the performance of the BD-modulated Class-D amplifier and
to verify the accuracy of the analytical output signal expres-
sions. The two-tone input signal consists of a low-frequency
high-amplitude tone (60 Hz) and a linearly combined high-
frequency tone (7 kHz) at 1/4 the amplitude (12 dB) of

0.05 0.10 0.151E-3
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AD modulation 
IMD3(%)&IMD5(%)

IMD3(%)

 Analytical IMD3  Matlab IMD3  Cadence IMD3
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D
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Modulation Index (M2)
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Fig. 14. SMPTE IMD against the modulation index of the high-frequency
input signal.

the low-frequency tone [23]; thusf1 = ω1/2π = 60 Hz,
f2 = ω2/2π = 7 kHz, s1 = 4s2.

Fig. 14 illustrates the SMPTE IMD of the BD-modulated
2nd-order Class-D amplifier against the modulation index
of the high-frequency input component. To ensure that the
combined input magnitude is less than 1, the modulation index
of the 60 Hz input signal varies from 0.1 to 0.7 and the modu-
lation index of the 7 kHz input signal changes correspondingly
from 0.025 to 0.175. Recall that the maximum order of the
intermodulation products included for the IMD calculation
is indicated by the subscript. For example, IMD5 means
that up to 5th-order IMPs are considered in the calculation.
As shown in Fig. 14, the analytical prediction of the IMD
is excellent when compared with the MATLAB simulation
results. The Cadence simulation results also closely follow the
analytical results. The mismatch in the low modulation index
range is probably due to the insignificance of the intrinsic
intermodulation distortion for small input signal compared
to the distortions introduced by other error sources (e.g. the
tolerance error of the simulator and the extra distortion caused
by the non-ideal power MOSFETs). For instance, due to the
low-frequency input signal at 60 Hz, a longer simulation
duration is required for frequency analysis, compared to that
for THD. Consequently, the error tolerance setting of the
Cadence Spectre simulator is relaxed as a trade-off to achieve
an affordable simulation time and not to have overloaded
simulation data. However, the relaxed tolerance setting limits
the accuracy of the Cadence simulation results.

In addition, the MATLAB simulated IMD3 and IMD5

results for AD modulation are also shown in Fig. 14. As is
the case for THD, BD modulation achieves smaller IMD for
large input signal, but has larger IMD for small input signal,
compared to AD modulation. The crossing point for equal
IMD performance is aroundM2 = 0.1 (i.e., the summed
magnitude for the two-tone signals is equal to 0.5, half the
full input signal swing). It may also be worthwhile to highlight
that, for AD modulation, the IMD5 almost overlaps with the
IMD3, which shows that 5th-order IMPs at the output of an
AD-modulated Class-D amplifier are insignificant and can be
ignored when compared to 3rd-order IMPs.

Fig. 15 plots the magnitude of the typical 3rd and 5th-
order IMPs for BD modulation against the modulation index
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Fig. 15. The IMPs along with the high frequency fundamental output
compoment against the modulation index of the high frequency input signal.

of the high-frequency input signal,M2, with the same input
setting as Fig. 14. Note that only the IMPs at frequency equal
to nf2 + mf1 are shown here, as the remaining IMPs at
frequencynf2 −mf1 have similar patterns to their respective
counterparts. It is clear that the analytical expression accu-
rately predicts the dependency of each individual frequency
component for a range of values ofM2. Note that the 3rd-
order IMP at frequencyf2 + 2f1 has a roughly parabolic
response against the magnitude of the input signal, whereas
the 3rd-order IMP at frequency2f2 + f1 has a fluctuating
response, i.e., rising to a peak whenM2 increases to 0.1,
followed by a trough atM2 ≈ 0.15. As a result, IMD3 in
Fig. 14 is noted to decrease whenM2 is higher than a certain
value, approximately 0.1. On the other hand, the 5th-order
IMPs increase monotonically with respect toM2 and dominate
the intrinsic distortion of the amplifier for large input signal.
This is reflected in Fig. 14 as the IMD5 is significant larger
than the IMD3 for M2 beyond 0.1.

VI. CONCLUSIONS

In this paper, we have presented a comprehensive mathe-
matical analysis of the intrinsic distortion of a BD-modulated
closed-loop Class-D amplifier. The derived analytical expres-
sion accurately predicts the audio components of the frequency
spectrum of the output signal and is applicable to any band-
limited input signal. For the special case of either single-tone

or two-tone input signals, the analytical expression clearly
demonstrates the unique intrinsic distortion properties of a BD-
modulated design, as compared to its AD-modulated counter-
part. More precisely, it shows that the 3rd-order harmonic and
intermodulation products for BD modulation have a roughly
parabolic response as a function of the magnitude of the
input signal. Furthermore, there exist significant high-order
distortion components in the output spectrum for BD modu-
lation, in the form of the 5th-order harmonic and 5th-order
intermodulation products, compared to AD modulation. This
may be a potential drawback of BD modulation as human
beings are quite sensitive to such high-order distortion.

APPENDIX

To derive the intermodulation products generated by the
term 1

16T 2(s2(t))′′ sgn(s(t)) in the second line of (23), we
begin by introducing a constantσ, which is arbitrary, except
that σ ≥ s1 + s2. Then we define a functionH(s), given by

H(s) = s2 sgn(s) for |s| < σ, (35)

together with the periodicity conditionH(s + 2σ) = H(s).
This function may be represented by the Fourier series

H(s) = σs +

∞
∑

n=−∞

n odd

4jσ2

n3π3
enjπs/σ. (36)

Now we see that, for a two-tone input signal signal of the
form s(t) = s1 sinω1t+ s2 sin ω2t, H(s) can be expressed as

H(s(t)) = σs(t) +

∞
∑

p=−∞

∞
∑

q=−∞

Hpqe
jΩpqt, (37)

where

Hpq =

∞
∑

n=1
n odd

8jσ2

n3π3
Jp(nπs1/σ)Jq(nπs2/σ), (38)

Ωpq = pω1+qω2 and J denotes the Bessel function of the first
kind. In deriving (37), we use the Jacobi–Anger result [24]

ejz sin θ =

∞
∑

m=−∞

Jm(z)emjθ. (39)

Note that, despite superficial appearances, once the infinite
sums are taken in (37),the final answer is independent of the
choice ofσ: thus equation (37) holds forany σ ≥ s1 + s2.
To simplify our presentation, we have setσ = s1 + s2 in
Section IV.
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