
1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Board games applications usually offer a great

user experience when running on desktop computers.

Powerful high performance processors working without

energy restrictions successfully deal with the exploration of

large game trees, delivering strong play to satisfy demanding

users. However, nowadays, more and more game players are

running these games on smartphones and tablets, where the

lower computational power and limited power budget yield a

much weaker play.

Recent Systems-on-a-Chip include programmable logic

tightly coupled with general-purpose processors enabling the

inclusion of custom accelerators for any application to

improve both performance and energy efficiency. In this

article, we analyze the benefits of partitioning the artificial

intelligence of board games into software and hardware. We

have chosen as case studies three popular and complex board

games, Reversi, Blokus, and Connect-6. The designs analyzed

include hardware accelerators for board processing which

improve performance and energy efficiency by an order of

magnitude leading to much stronger and battery-aware

applications.

The results demonstrate that the use of hardware/software

co-design to develop board games allows sustaining or even

improving the user experience across platforms while keeping

power and energy low.

I. INTRODUCTION

OARD games have been the target of many research efforts

in the last decades. These works frequently present

software implementations that are executed in desktop or

server computers. However, currently, users prefer to play

board games on mobile devices such as smartphones or

tablets. The question is: Are the solutions developed for

desktop computers directly applicable to mobile devices? The

fact is that there is a big gap between the strength of the board

game applications developed for desktop computers, and those

developed for mobile devices. At first glance it might be

thought that mobile processors do not provide enough

performance. However, current Systems-on-a-Chip (SoC)

developed for mobile devices include up to eight powerful

out-of-order 64-bit cores running up to more than 2 GHz,

providing a lot of computational power, which is more than

enough to execute a strong board game player. The actual

limit is the power budget. SoCs for mobile devices provide

high peak performance, but running a computationally-

intensive application drains the battery very fast, leading to a

bad user experience.

To overcome this problem for most computer games, mobile

SoCs include specialized hardware resources such as Graphic

Processing Units (GPUs), or fixed hardware accelerators

(called ASICs, Application-Specific Integrated Circuits) for

frequently demanded functionality as decoding high definition

audio and video. These resources not only provide high

performance but are also energy efficient compared with a

general-purpose processor. However, the computational

complexity of many board games is not due to graphics, video,

or audio processing, and hence they cannot take advantage of

these hardware resources. Moreover, adding specialized fixed

accelerators for board games is not a feasible solution, since

each board game has different demands, and not all the users

need additional support for these applications. Fortunately,

there is another option: exploiting the programmable logic

included in recent SoCs, which combine low-power

processors and Field Programmable Gate Arrays (FPGAs)

FPGAs are nowadays the most broadly used programmable

logic devices. They constitute a mature technology that has

been proved to greatly increase performance and reduce

energy consumption on many different applications [1-6].

Board games are excellent candidates to make use of this

technology since the computations involved in solving these

games exhibit a large degree of fine-grained parallelism.

Moreover, FPGAs are flexible and reusable. They can

virtually implement any hardware logic by loading the proper

configuration (i.e. programming the FPGA), and its

functionality can be changed as many times as needed, even at

run-time. Hence the same hardware resources can be used to

provide hardware acceleration for different applications.

The main FPGA manufacturers, Xilinx and Altera, have

released complete processor-based System-on-a-Chip (SoCs)

with an FPGA integrated in a single chip (Zynq-7000 SoC and

Zynq UltraScale+ MPSoc by Xilinx [7], and Arria V [8], and

Stratix 10 by Altera [9]). These platforms are similar to those

found in mobile devices, but including FPGA resources on

chip tightly integrated with the low-power processors. They

allow software developers to use known programming

environments, while logic designers can use the FPGA to

introduce customized features to improve performance and

reduce energy consumption. Moreover, leading manufacturers

like Intel, IBM, and Qualcomm have recently announced that

they are preparing SoCs including processors and FPGAs.

Other companies such as Menta and Flex Logic have designed

their own Intellectual Property (IP) FPGA core, which can be

included in any SoC at a reduced cost. Hence, FPGAs are

expected to be frequently found in mobile SoCs in the near

future, just as GPUs are nowadays.

Coding hardware for FPGAs involves an additional

development effort. Although both Xilinx and Altera provide

High-Level Synthesis (HLS) tools to simplify the process of

Accelerating board games through

Hardware/Software Co-Design
J. Olivito, J. Resano, and J.L. Briz

B

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

mapping a software solution to an FPGA [10], this is still not

straightforward. Hardware/software co-design greatly

mitigates this effort by keeping most of the functionality in

software, and moving to hardware only computationally

intensive data-processing cores.

In this article we propose a co-design approach for board

games. The idea is to code the control of the artificial

intelligence in software and move board-processing

computations to hardware accelerators. In other words, the

hardware will process the boards in order to extract all the

useful information, and the software will use that information

to follow any given strategy to explore the search space. Board

processing cannot be efficiently parallelized in general-

purpose cores because the size of the board is not big enough

to compensate for the parallelization overhead. Moreover, it is

not suitable to leverage the Single-Instruction Multiple-Data

(SIMD) units included in modern processors either. These

units execute the same arithmetic instructions on different

data, but each board position in a board game may demand a

different computational treatment. On the contrary, a custom

Multiple-Instruction Multiple-Data (MIMD) unit implemented

on an FPGA can perfectly face this problem.

We carried out our analysis on three complex board games:

Reversi, Blokus Duo, and Connect6. These games were

selected by the design competition committee of the

International Conference on Field Programmable Technology.

We were awarded the first prize in two of these competitions

and the second prize in the other one, and thanks to these

experiences we get insight about these games. We first

developed and optimized a full software application for each

game, and then we included hardware accelerators to process

boards faster. The techniques implemented to explore the

search space are minimax with alpha-beta pruning, iterative

deepening, and full node ordering on the first two tree levels

according to the previous shallower search. We selected these

techniques because they are frequently found in board games,

and they are enough to build a proof of concept. It is important

to remark that we focus on board processing, and our co-

design approach allows modifying the exploration techniques

without needing to redesign the hardware accelerators. Tasks

such as finding the legal moves or evaluating a board are

always needed, regardless of the techniques selected to

explore the search space. The software and hardware has been

designed targeting the Xilinx Zynq 7000 SoC, which includes

a dual-core ARM Cortex-A9 processor interconnected with an

FPGA in a single chip. As an additional reference, we also

evaluated bare full software versions, executed on a high-

performance Intel i7-2600 processor.

The objective of this article is to evaluate the potential of

hardware/software co-design to develop stronger AI engines

for board games, especially in battery-dependent systems

where the computational power and energy budget are limited.

With current co-design environments, it is possible to design

hybrid processor/FPGA systems where the FPGA can be used

to speed up the most critical computations leading to better

performance and less energy consumption with a reasonable

development effort, which is desirable in high-performance

mobile computing. The results demonstrate that splitting the

board games applications into hardware and software parts,

allows the designers either to develop stronger opponents, or

to reduce the energy consumption, while keeping reasonable

development cycles.

II. RELATED WORK

Board games, especially Chess, attract the interest of the

community not only because of their popularity but because

they pose the challenge of developing computer players strong

enough to beat the best human players. Deep Blue reached the

most memorable milestone in 1997 when it was able to defeat

the world champion at that time, Gary Kasparov. Hardware

accelerators played a key role to succeed [11]. These

accelerators were Application Specific Integrated Circuits

(ASICs) specifically designed for that system. ASICs design

provides the best performance and energy efficiency balance,

but it also involves large development cycles and in most

cases unaffordable costs [12].

The emergence of programmable logic turned the design of

custom hardware into a feasible option, dramatically

shortening the development cycle and lowering costs. Several

works have described implementations of board games in

FPGAs. In [13] Wong et al. presented an implementation on

the Reversi game. Their design reached a 3.67 speedup over

an equivalent software running on a high-end processor. Later

in 2014, Olivito et al. elaborated a comprehensive comparison

of hardware and software implementations of Reversi in terms

of performance and power, and pointed out that the hardware

implementation on a low-cost FPGA was able to perform 25

times faster while consuming 400 times less power than the

software implementation running on a high-end processor

[14]. Other games like Connect6, Blokus and Go have also

been implemented by the FPGA developer’s community. The

works presented in [15-17] detail FPGA-based

implementations and comparisons with software, reporting

speedups of one or even two orders of magnitude. In the light

of these results, it is clear that FPGAs outperform general

purpose processors in these games. However, the design and

implementation of the whole artificial intelligence purely in

hardware requires a much larger development cycle than an

equivalent software design, preventing the use of this

technology.

Hardware/Software co-design combines the flexibility and

short development cycles of software design with the higher

performance and lower power consumption of FPGAs. Early

co-designs were based on systems where the CPU and the

FPGA were in different chips, communicated through a

system bus. One of the first applications of co-design to

accelerate board games was published in 2002 [18]. This work

presents a Chess player in which the move generation was

accelerated by an FPGA and the remaining tasks of the AI

were executed on a processor. In 2004, another successful use

of processors and FPGAs to accelerate a Chess program was

presented in [19]. Brutus was one of the strongest chess

programs at that time and one of its key design strategies was

to split the tree search into software and hardware. In these

previous approaches the CPU/FPGA communication overhead

was a limiting factor both for the granularity and the speedups

obtained by the tasks moved to hardware. The new

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

heterogeneous SoCs, which integrate processors and FPGAs

in the same chip, take weight off this issue. Moreover,

manufacturers provide co-design environments with tools that

automatically generate bus interfaces. Hence, communications

are not only more efficient but also easier to manage.

III. HARDWARE/SOFTWARE CO-DESIGN

Hardware/software co-design allows designers to partition

an application into hardware and software blocks that interact

among them. Profiling the application in order to identify

which tasks demand hardware acceleration, and reducing the

communication overheads are the keys to develop a good co-

design solution.

A. Zynq Processor/FPGA Platform

Zynq-7000 is a SoC which integrates a dual-core ARM

Cortex-A9 general-purpose processor, and an FPGA in a

single chip. This heterogeneous platform joins up software

flexibility and hardware efficiency, allowing developers to

differentiate their products by increasing performance and

energy efficiency. A critical aspect for hardware/software co-

design to succeed is to enable an efficient communication

between the processor and the programmable logic. The

speedup achieved by the custom hardware must compensate

for the communication overhead.

The communication between the ARM processor and the

FPGA in the Xilinx Zynq devices is performed through an

AXI4 interconnection bus [20]. It facilitates IP integration

saving development time while providing high throughput and

low latency. This bus offers several configurations, optimized

to different traffic profiles. Our design leverages AXI-Lite and

AXI-Stream. AXI-Lite is suitable for small transfers. With this

interface the hardware accelerator is assigned a set of 32-bit

registers mapped into the processor memory space.

Communicating hardware and software is as simple as writing

or reading these registers. On the other hand, AXI-Stream is

suitable for large transfers thanks to their burst mode. When

using this interface, a DMA sends the data back and forth

through the AXI ACP (Accelerator Coherency Port) which

ensures cache coherency when a hardware module modifies

the memory without processor intervention.

Fig. 1. Transference throughput of each AXI interface

As a first step in our co-design analysis, we have measured

the communication latency of these two options for different

transfer lengths, since this information is critical to develop an

efficient communication scheme. As it can be seen in Fig. 1,

the throughput of the AXI-Lite interface is constant because

each transfer always sends a single word. Instead, the time in

AXI-Stream burst-based transfers decreases logarithmically as

the transfer size increases. AXI-Stream Custom uses the same

hardware that AXI-Stream but simplifies the driver by

assuming that the source and destination addresses are always

the same along the execution of an application. This

assumption is valid in our applications and greatly increases

the throughput for medium sized transfers.

IV. METHODOLOGY

For each case study, we developed the game application

entirely in software. They were written in C and compiled

with GCC 4.9.2 with the maximum optimization flag

activated; then we gathered data to select the kernels to

accelerate. To this end we used Intel VTune Amplifier XE

2016 running the games on an Intel i7-2600 processor. Intel

VTune leverages dedicated hardware counters on Intel

processors to perform a non-intrusive and statistical profiling.

Once the hotspots were identified, we first tried to

parallelize the software versions using different thread

libraries (POSIX Threads and Intel Threading Building

Blocks), or the powerful SIMD extensions, but neither of these

options improved the results. Then we developed hardware

modules to accelerate those bottlenecks. These hardware

accelerators were written in VHDL and synthetized with the

toolchain of Xilinx Vivado 2015.2. The ARM and FPGA

communication is fully assisted by the tools, being all the AXI

interfaces and the DMA controller self-generated modules.

Power consumption measurements were taken with a

Yokogawa WT210 digital power meter, a device accepted by

Standard Performance Evaluation Corporation (SPEC). We

are interested in the power consumed due to the execution of

our applications, so we measured the power consumed both in

an idle state and while executing our applications, and

considered the difference on average.

V. CASE STUDY I: REVERSI

Reversi is a strategy board game played between two

players on an 8 x 8 board with discs colored black on one side

and white on the opposite side. Each player shall be assigned

to play a color. The goal of the game is to have more discs

than the opponent at the end of the game.

The game will start with blacks making a move. The play

then alternates between whites and blacks until one of the two

following situations occurs: a) There are no moves that the

player can make to outflank the opponent’s disc(s) (the player

is then said to have no valid moves) or b) both players have no

valid moves.
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1 2 4 8 16 32 64 128

Tr
an

sf
e

re
n

ce
 t

im
e

 p
e

r
w

o
rd

 (
n

s)

Transference length (words)

AXI Stream AXI Stream Custom AXI Lite

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

When a player has no valid moves, he forfeits his turn and

the opponent continues to move. A player is not allowed to

voluntarily forfeit his turn. The game ends when both players

have no valid moves or when the entire board has been played.

Therefore, it is possible for a game to end before all 64

squares are filled.

A. Techniques implemented

The board evaluation is based on strategic concepts such as

mobility, which is the number of legal moves; stable discs,

which are those discs cannot be flipped anymore; corners

capture; and number of discs.

B. Hardware acceleration

The profiling revealed that 89.3% of the game time is

invested in the evaluation of boards – 48.6% computing stable

discs, and 40.1% computing the mobility -, 9.6% of the game

time is spent in the move generation, and only 1.1% is due to

the execution of the game-tree search algorithm. Hence, we

developed hardware accelerators for the two tasks involved in

board evaluation:

 Mobility: In order to compute the mobility of each

player, every board square must be analyzed to

determine whether it corresponds to a legal move or

not, by checking different patterns in its row, column

and diagonals. This task exhibits a great degree of data

parallelism as hundreds of patterns must be checked. A

hardware module can seamlessly exploit this

parallelism since it is able to check all the patterns for

all the squares at the same time. Hence, all the legal

moves are identified in just one clock cycle. Fig. 2

points out the legal moves for the white player in this

board and the hardware cell that checks all the patterns

in parallel. A legal move must satisfy two conditions,

that the square is empty, and that at least one

opponent’s disc is followed by an own disc in any

direction. The hardware module that computes the

mobility of a player consists of 60 cells like the one

shown in the figure.

Fig. 2. Cell architecture to determine whether a square

corresponds to a legal move.

 Stable discs: Another metric commonly used to

evaluate boards in the Reversi game is the number of

stable discs. A discs is stable if at least one of their two

neighbors in each direction are stable. Fig. 3 marks in

green the stable discs of the example board and

illustrates the hardware cell that determines if a discs is

stable.

Fig. 3 Cell architecture to detect stable discs

C. Co-design schemes

We have implemented two co-design schemes for the

Reversi game. The first one moves the computation of the

metric mobility, which is one of the two hotspots, to the

hardware side, and the other one moves the whole evaluation

task – mobility and stable discs -. The input of the hardware

accelerator in both cases is the board to evaluate, which is

coded in software as an 8x8 matrix of 1-byte elements, but, in

order to reduce the communication overhead, these data are

compacted to only two bits per square by means of bitwise

operations. We selected the AXI-Lite interface in all the

schemes because it offers the lowest overhead for the required

transfer sizes.

The output in the scheme (a) is the mobility of both players,

which are values from 0 to 60, and therefore 12 bits are

required to encode both values. The transfer wide in the AXI-

Lite bus is 32 bits, so each board evaluation needs four

transfers from the processor to the FPGA to send the board,

and one from the FPGA to the processor to read back the

mobility of both players.

The output in the scheme (b) includes also the number of

stable discs of both players. The range of values is the same as

in the mobility, so each board evaluation reads a total of 24

bits from the hardware accelerator, adding no overhead with

regard to the first scheme, since the transfer size is 32-bits.

 (a) (b)

Fig. 4. Co-design schemes for the Reversi application

VI. CASE-STUDY II: BLOKUS

Blokus is an abstract strategy board game for two to four

players, invented by Bernard Tavitian and first released in

2000. Blokus Duo is a variant of Blokus designed for only two

players that use a smaller (14×14) board. This game is

becoming increasingly popular because its rules are simple

X

X

X

X

X

X

row i patterns

legal move(i, j)
col j patterns

diag_1(i,j) patterns

diag_2(i,j) patterns

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

and games become fast and dynamic.

Each player has a set of 21 different-shaped tiles, and can

place them with eight different rotations. Each set (i.e. player)

has a different color. The tiles can be placed only in those

squares with corner-to-corner contact with a tile of the same

color. Moreover, a new tile cannot have edge-to-edge contact

with any other tile of the same color. Each player places one

tile at one time, and the game continues until neither of them

can place tiles anymore. The score of each player depends on

the number of placed tiles and their size. The larger tiles (five

squares) add five points, and the smaller one (one square) adds

one point. Hence the objective is to occupy as many squares as

you can with your tiles, while trying to reduce the number of

squares available to your opponent.

A. Techniques implemented

Our Blokus application evaluates boards according to the

metric accessibility, which quantifies the squares that are

potentially reachable. A square is reachable if can be occupied

by means of a legal move of the given player. A player with

more accessibility during the game has more chances to win

the game.

The computation of this metric is performed in two steps.

The first one looks for the tiles’ corners where a player can

place a tile by satisfying the corner-to-corner rule. The second

one analyzes the surroundings in order to check whether they

are reachable or not. This step involves many pattern

comparisons, which are amenable to be performed in parallel.

In addition, accessibility is also used to reduce the effective

branch factor of the search tree by exploring only movements

in areas which are also reachable by the opponent. To this end,

the application uses a structure called overlapping map which

is used as a filter to select moves that fight for areas accessible

by both players.

B. Hardware acceleration

Profiling our Blokus software application showed that it

spends 92.7% of the time evaluating boards, 5.3% finding

legal moves and generating new nodes, and 1.9% generating

overlapping maps. According to these results, we decided to

move the evaluation to hardware. We also moved the

generation of overlapping maps, despite not being one of the

larger hotspots, because the hardware developed to evaluate

nodes does also provide such maps.

The hardware module that computes the accessibility,

processes the board vertex-by-vertex, checking in parallel all

the patterns for all the squares surrounding the vertex. As a

result, this module is able to process a board in as many cycles

as vertices. Fig. 5 illustrates the architecture of accelerator

submodule which checks the accessibility surrounding a

vertex.

Fig. 5. Cell architecture to find the squares that are accessible from a given

vertex

C. Co-design schemes

For this game we analyzed three co-design schemes.

Schemes (a) and (b) have the same task distribution, the only

difference is the way the board is sent from the processor to

the accelerator. The size of the board in this game makes

profitable the inclusion of a Direct Memory Access (DMA) in

order to reduce the transference overhead according to the

results presented in Section III.

Scheme (c) takes advantage of the evaluation hardware to

compute the overlapping maps as well. Overlapping maps are

sent from the accelerator to the processor through a DMA

because of its size.

(a) (b) (c)

Fig. 6. Blokus co-design schemes

VII. CASE STUDY III: CONNECT-6

Connect-6 is a board game that was introduced in 2003 by

Professor I-Chen Wu. There are two players: black and white,

each one playing with stones of the corresponding color. The

game is played on a 19 x 19 Go board, and the stones are

placed on the intersections. The black player moves first,

placing one black stone on one intersection. Subsequently,

white and black take turns, placing two stones on two different

unoccupied spaces each turn. The first player that gets six or

more stones of his color in a row (horizontally, vertically, or

diagonally) wins.

A. Techniques implemented

We based the board evaluation in Connect-6 in the concept

of threat. We name ‘t4’ six contiguous squares with four discs

of the same color and two empty squares, ‘t3’ when containing

three discs of the same color and three empty squares, and ‘t2’

when two discs of the same color and four empty squares are

found. Players shall try to make threats while defending from

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

them.

The analysis of the threats in a board requires to analyze

every row, column, diagonal, and reverse diagonal. We name

each of them ‘section’, and we name ‘window’ every possible

combination of six contiguous squares within a section. Each

section is analyzed following the algorithm detailed in [21].

This algorithm presents a data dependence since t4 have to be

analyzed in order to analyze t3, and t3 in order to analyze t2.

Fig. 7 show a trace of the steps that the algorithm follows to

find the threats. In this example we first look for t4s and we

find three windows that satisfy its definition. We select the

leftmost one and place a mark in its rightmost empty square.

We have identified one t4 so far, and a new analysis reports

another window with a t4. We mark it and the subsequent

analysis does not find any t4 anymore. The next analysis

follows the same process looking for t3s, and finally the latest

analysis will look for t2s. Note that, in software, each window

within a section is traversed sequentially whereas in hardware

all the windows can be processed in parallel.

Fig. 7. Threat identification process

Threats are also used to steer the search-tree

exploration. Positions that can upgrade to a threat are

identified, and we explore first those corresponding to t4,

then t3 and finally t2. This approach is very similar to the

scheme presented in [22].

B. Hardware accelerator

This application takes 90.4% of the execution time

evaluating boards, 9.0% finding and selecting moves, and the

remaining 0.6% is due to the min-max control. Fig. 8 details

the architecture of the hardware accelerator developed to

compute the threats in a board. N windows process in parallel

the section under analysis, where n is sized to the number of

windows that fit the section. Next threat selector is a priority

encoder that updates the marks register with each new threat

found, and increments the threat count of the current threat

category.

The accelerator consists of one module per section in the

board (19 rows, 19 columns, and 54 diagonals with at least 6

squares), and a tree adder to add the partial outcome of each

section. This setup fully exploits the available data

parallelism, being the section with the largest number of

threats which determines the time required to fully compute a

board.

Fig. 8. Cell architecture to find threats in a section

C. Co-design schemes

In this case study, we only designed one co-design scheme.

Board evaluation is clearly the target, taking more than 90% of

the execution time. A hardware implementation of the task

next move selection shares most of the hardware used to

evaluate boards, but turns out quite complex and it is out of

scope for this study.

The size of the board in this game is bigger than in the other

case studies, making more profitable the use of the AXI-

Stream interface to send the board from the processor to the

accelerator. The evaluation value fits in a single word, and

hence it is read from the accelerator through the AXI-Lite

interface.

Fig. 9. Connect6 co-design scheme

VIII. EXPERIMENTAL RESULTS

We implemented the software, hardware, and hybrid

versions on the Xilinx Zynq platform (XC7Z020-CLG484

SoC) and then compared performance and power/energy

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

consumption. This platform includes an FPGA and an ARM

dual-core Cortex A-9. As additional references, we also ran

the software version on a desktop computer with an Intel i7-

2600 processor, and we developed an additional co-design

scheme where all the AI is implemented in the FPGA, and the

ARM processor just manages the communications and the

game procedure. We labeled this partition ‘FPGA’ because

almost 100% of the computations were moved to hardware.

Tables I, II and III show experimental results for each case

study. Ex. Time stands for the time required to complete a

game; Partitioning details how the computation is distributed

between the processor and the FPGA.; ∆Power represents the

dynamic power consumption, i.e. the average increase in

power consumption due to the execution of our application;

and numbers in the column Energy are the product of power

and execution time, which represents the energy consumed

during a game due to the execution of our application.

We obtained these measures with the search tree exploring

eight moves in advance in the case of the Reversi, four moves

for the Blokus, and three moves in the case of the Connect6.

With these parameters, our Reversi application explores 14.4

million boards during a game, the Blokus application explores

38.4 million, and the Connect6 explores 4 million.

Table I. Reversi experimental results

Platform
Ex. Time

(Seconds)

Partitioning

(CPU - FPGA)

∆Power

(Watts)

 Energy

 (Joules)

Intel i7 33.0 100.0% - 0.0% 24.19 798.270

ARM 365.8 100.0% - 0.0% 0.10 36.580

Hybrid (a) 189.9 46.5% - 53.5% 0.08 15.192
Hybrid (b) 57.7 8.1% - 91.9% 0.08 4.616

FPGA 3.6 0.0% - 100.0% 0.02 0.072

The results in Table I show that the co-designed solutions

offer remarkable speedups over the bare software version for

the Reversi game. The first hybrid design achieves a 1.9

speedup by moving to the programmable logic fabric the

computations responsible for the 53.5% of the original

computation time. The second co-design solution reaches a

speedup of 6.3 by moving the whole board evaluation to the

accelerator. This version, based on a low-power processor,

approaches the Intel i7 processor performance while

consuming 173 times less energy.

Table II. Blokus experimental results

Platform
Ex. Time

(Seconds)

Partitioning

(CPU - FPGA)

∆Power

(Watts)

 Energy

 (Joules)

Intel i7 852.0 100.0% - 0.0% 28.555 24,328.9

ARM 8,615.5 100.0% - 0.0% 0.104 1,067.1
Hybrid (a) 652.8 7.4% - 92.6% 0.104 67.9

Hybrid (b) 614.1 7.4% - 92.6% 0.100 61.4

Hybrid (b*) 573.8 7.4% - 92.6% 0.100 57.4
Hybrid (c) 475.8 5.4% - 94.6% 0.093 44.2

Hybrid (c*) 427.8 5.4% - 94.6% 0.093 39.8

FPGA 28.7 0.0% - 100.0% 0.032 0.9

The results for the Blokus shown in Table II are impressive

since the hybrid designs even outperform the Intel i7. The

reasons are that the portion of the computation moved to the

programmable logic fabric is greater, and that the size of the

data transferences benefits from the high throughput offered

by the AXI-Stream interface.

Hybrid designs are from 13x to 20x faster than the bare

software application running on the ARM processor. This

improvement in performance leads to huge energy savings.

Notice that co-designs (b) - (b*), and (c) - (c*) have the same

task partitioning and the only difference among them is the

use of a customized DMA driver.

Table III. Connect-6 experimental results

Platform
Ex. Time

(Seconds)

Partitioning

(CPU - FPGA)

∆Power

(Watts)

 Energy

 (Joules)

Intel i7 96.0 100.0% - 0.0% 29.973 2787.21
ARM A9 1244.6 100.0% - 0.0% 0.103 128.19

Hybrid (a) 116.5 9.6% - 90.4% 0.099 11.53

Hybrid (a*) 112.0 9.6% - 90.4% 0.099 11.09
FPGA 9.1 0.0% - 100.0% 0.027 0.25

In the case of Connect-6, moving the board evaluation to

the hardware reduces execution time and the energy consumed

by a factor of 11. As in the Reversi game, this co-design

alternative with a low-power processor almost reaches the

performance of the high-performance Intel i7, but requiring

250 times less energy.

In the three games the scheme that includes the whole AI in

the FPGA, clearly outperforms the Intel i7, and reduces the

energy several orders of magnitude. However, as we will

explain later, this solution involves a much higher

development effort.

Table IV. PS/PL Communication overhead

Design
Communication

overhead

Data transferred

(MB)
Throughput

(MB/s)

Reversi (a) 15.7% 596.8 20.0

Reversi (b) 55.5% 641.0 20.0

Blokus (a) 19.5% 2543.2 20.0

Blokus (b) 14.4% 2543.2 28.7

Blokus (b*) 8.4% 2543.2 52.8

Blokus (c) 18.8% 2702.5 30.2

Blokus (c*) 9.0% 2702.5 70.4

Connect-6 (a) 8.9% 386.2 37.0

Connect-6 (a*) 4.5% 386.2 73.6

Table IV quantifies the impact of the communication

between the processor and the programmable logic in terms of

performance for the hybrid schemes. We collected the data by

measuring the time spent moving data among them. Software

versions store the boards in a two-dimensional array of 1-byte

elements, whereas in hardware each square requires only two

or three bits, depending on the game, and they are stored in

registers. At the time of sending the board from the ARM to

the FPGA, we compact the data by bitwise operations in order

to reduce the communication overhead. This overhead is

included in the communication overhead presented in the

table.

Our co-design schemes send the board from the processor to

the accelerator every time the accelerator is used and then

sends back the evaluation value. There are design alternatives

which could reduce the communication overhead, such as

storing and managing the boards in the accelerator and then

sending chains of movements instead of boards, but this kind

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

of design decisions imply a compromise between efficiency

and design complexity.

Another interesting data is the reconfiguration latency (i.e.

the time needed to properly load the accelerator onto the

FPGA). This delay depends on the size of the configuration to

load. In this case, using partial reconfiguration that only

modifies a specific region of the FPGA, it is possible to load

the games accelerators in 7 up to 70 ms, depending on the

game. Notice that this step is done only once, when the

application is opened.

IX. DESIGN COMPLEXITY

The previous results demonstrate the usefulness of FPGAs

to improve energy efficiency in board games. However, there

are also some drawbacks associated to FPGA hardware

design.

Hardware Description Languages (HDL) like VHDL or

Verilog allow writing a preliminary version in HDL code in

time comparable to the development in C language. However,

writing HDL code ready to be translated into an efficient

hardware implementation requires a good command on digital

logic design, computer architecture concepts, and parallel

computing. FPGA vendors are doing a great effort to simplify

the hardware design process. For instance, Xilinx has

developed a C/C++ to HDL compiler that can directly map

C/C++ code to an FPGA. These tools are promising, but they

still have much room for improvement.

The second drawback comes from the fact that generating

the configuration needed to program an FPGA consumes

much more time than compiling software code. As it can be

observed in Table V, the compilation time when including

hardware is two or even three orders of magnitude greater than

the bare software designs.

The last and more relevant drawback is debugging

complexity. In large designs, the high degree of parallelism

involved, with many hardware modules and signals working at

the same time, makes debugging FPGA systems even harder

than the already difficult software parallel debugging.

Moreover, behavioral simulations are slow, and simulating a

few seconds of real execution time takes several hours. Again,

FPGA vendors are helping at this point with better and better

tools, like powerful simulators or specific support to monitor

some FPGA internal signals. Moreover, the software version

is very helpful when debugging the hardware version, since

the data generated by both versions can be compare in order to

identify the bugs.

Table V. FPGA resources utilization and development effort

Design
LUTs

(%)

FFs

(%)

BRAMs

(%)

Compilation

time (s)

Design time

(weeks)

Reversi ARM - - - 1.7 7

Reversi hybrid (a) 4.8 1.1 0.0 344.0 8

Reversi hybrid (b) 7.4 1.2 0.0 422.0 8

Reversi FPGA 10.4 0.9 2.9 538.0 17

Blokus ARM - - - 2.9 10

Blokus hybrid (a) 29.3 1.9 0.0 911.0 13

Blokus hybrid (b) 29.7 4.9 1.4 1139.0 13

Blokus hybrid (c) 30.0 5.0 1.4 1247.0 13

Blokus FPGA 48.7 5.7 69.6 1771.0 26

Connect-6 ARM - - - 2.4 8

Connect-6 hybrid 72.0 6.4 0.7 1545.0 9

Connect-6 FPGA 81.4 8.0 2.2 1953.2 21

The development of the software versions used in this work,

including optimization and profiling, took from seven to ten

weeks for each game.

Regarding the hybrid versions, the development and

debugging of the hardware accelerator for the Reversi required

only four days due to its simplicity. The accelerators for the

Connect6 and Blokus are more complex, especially in the case

of Blokus, and their development took one week and three

weeks respectively. It is important to mention that the

available design tools for co-design (in our case we use Xilinx

Vivado [23]) are definitely helpful since the communication

infrastructure and the hardware/software interfaces are

generated automatically, and the software can interact with the

hardware accelerator just as it is done with any other

peripheral.

Finally, the development of the ‘FPGA’ versions took from

four to six months for each game. Writing the code for these

versions was not too complex, but debugging a hardware

system that explores millions of boards was very challenging.

We needed to include debugging support to identify the bugs,

and perform time-consuming simulations.

X. CONCLUSIONS

Board games applications designed for the mobile market

lack of strong AIs engines in most cases due both to the lower

computational power and the energy restrictions of battery-

dependent devices. Recent SoCs, which include programmable

logic tightly integrated with the processor, allow the

developers to include specific accelerators to process boards

much faster, and therefore to deliver a stronger play on a

power budget.

We have developed software and hybrid versions of three

popular cross-platform games, and we have run them on a

Zynq hybrid FPGA/processor platform. The results

demonstrate that including accelerators on the FPGA to

process boards increases the AI strength by drastically

improving performance and reducing energy consumption.

In spite of the fact that development on FPGAs adds some

complexity to the design process, hybrid hardware/software

platforms pays-off the harder development cycle since non-

critical tasks remain executed in the general-purpose

processor, and the FPGA is reserved for specific and

demanding tasks.

1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

REFERENCES

[1] Lopez, S. et al., "The Promise of Reconfigurable Computing for

Hyperspectral Imaging Onboard Systems: A Review and Trends,"
Proceedings of the IEEE, vol.101, no.3, pp.698-722, 2013.

[2] Cope, B. et al., “Performance Comparison of Graphics Processors

to Reconfigurable Logic: A Case Study,” IEEE Transactions on
Computers, vol. 59, no. 4, pp. 433–448, 2010.

[3] Seunghun, Jin et al. "FPGA design and implementation of a real-

time stereo vision system." Circuits and Systems for Video
Technology, IEEE Transactions on 20.1 (2010): 15-26.

[4] Cong, J. et al., "Customizable Domain-Specific Computing,"

Design & Test of Computers, IEEE , vol.28, no.2, pp.6,15, 2011.
[5] Lindtjorn, O., et al. "Beyond traditional microprocessors for

geoscience high-performance computing applications." IEEE

Micro 31.2 (2011): 41-49.
[6] Chelton, W.N. and Benaissa, M. “Elliptic curve cryptography on

FPGA”. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 2008, vol. 16, no 2, p. 198-205.
[7] Zynq-7000 SoC & Zynq UltraScale+ MPSoc

http://www.xilinx.com/products/silicon-devices/soc.html

[8] Arria V SoC FPGA Hard Processor System
http://www.altera.com/devices/fpga/arria-fpgas/arria-v/hard-

processor-system/arrv-soc-hps.html

[9] Stratix 10 FPGA and SoC
https://www.altera.com/products/fpga/stratix-series/stratix-

10/overview.html

[10] Xilinx Vivado High-Level Synthesis
http://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html

[11] F. Hsu, “Chess hardware in Deep Blue”, Computing in Science
and Engineering, vol. 8, no. 1, pp. 50-60, 2006

[12] F. Hsu, "A Two-Million Moves/s CMOS Single-Chip Chess Move

Generator" IEEE Journal of Solid-State Circuits, vol. 22, no. 5, pp.
841-846, 1987

[13] C.K. Wong, K.K. Lo, P.H.W. Leong, "An FPGA-based Othello

Solver" International Conference on Field-Programmable
Technology, 2004, pp. 81-88

[14] J. Olivito, R. Gran, J. Resano, C. González, E. Torres,

"Performance and Energy Efficiency Analysis of a Reversi Player

for FPGAs and General Purpose Processors”, Microprocessors and

Microsystems, vol. 39, no. 2, pp. 64-73, 2015

[15] T. Watanabe, R. Moriwaki, Y. Yamaji, Y. Kamikubo, Y. Torigai,
Y. Nihira, T. Yoza, Y. Ueno, Y. Aoyama, M. Watanabe, " An

FPGA Connect6 Solver with a two-stage pipelined evaluation",

International Conference on Field-Programmable Technology,
2011, pp. 1-4

[16] T. Yoza, R. Moriwaki, Y. Torigai, Y. Kamikubo, T. Kubota, T.

Watanabe, T. Fujimori, H. Ito, M. Seo, K. Akagi, Y. Yamaji, M.
Watanabe, "FPGA Blokus Duo Solver using a massively parallel

architecture”, International Conference on Field-Programmable

Technology, 2013, pp. 494-497
[17] K. Koizumi, M. Inaba, K. Hiraki, Y. Ishii, T. Miyoshi, K.

Yoshizoe, "Triple Line-Based Playout for Go- An Accelerator for
Monte Carlo Go”, International Conference on Reconfigurable

Computing and FPGAs, 2009, pp. 161-166

[18] M. Boulé, Z. Zilic, "An FPGA Based Move Generator for the
Game of Chess”, IEEE Custom Integrated Circuits Conference,

2002, pp. 71-74

[19] C. Donninger, A. Kure, U. Lorenz, "Parallel Brutus: the first
distributed, FPGA accelerated Chess Program”, Proc. 18th

International Parallel and Distributed Processing Symposium, 2004

[20] AMBA AXI4 Interface Protocol
http://www.xilinx.com/ipcenter/axi4.htm

[21] I. Wu, D. Huang, “A New Family of k-in-a-row Games”,

Advances in Computer Games, vol. 4250, pp. 180-194

[22] I. Wu, P. Lin, "Relevance-Zone-Oriented Proof Search for

Connect6", the IEEE Transactions on Computational

Intelligence and AI in Games, vol. 2, no. 3, pp. 191-207, 2010

[23] Vivado Design Suite - HLx Editions. Xilinx, 2016.

http://www.xilinx.com/products/design-tools/vivado.html

