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Abstract—Board games applications usually offer a great 

user experience when running on desktop computers. 

Powerful high performance processors working without 

energy restrictions successfully deal with the exploration of 

large game trees, delivering strong play to satisfy demanding 

users. However, nowadays, more and more game players are 

running these games on smartphones and tablets, where the 

lower computational power and limited power budget yield a 

much weaker play. 

Recent Systems-on-a-Chip include programmable logic 

tightly coupled with general-purpose processors enabling the 

inclusion of custom accelerators for any application to 

improve both performance and energy efficiency. In this 

article, we analyze the benefits of partitioning the artificial 

intelligence of board games into software and hardware. We 

have chosen as case studies three popular and complex board 

games, Reversi, Blokus, and Connect-6. The designs analyzed 

include hardware accelerators for board processing which 

improve performance and energy efficiency by an order of 

magnitude leading to much stronger and battery-aware 

applications. 

The results demonstrate that the use of hardware/software 

co-design to develop board games allows sustaining or even 

improving the user experience across platforms while keeping 

power and energy low. 

I. INTRODUCTION 

OARD games have been the target of many research efforts 

in the last decades. These works frequently present 

software implementations that are executed in desktop or 

server computers. However, currently, users prefer to play 

board games on mobile devices such as smartphones or 

tablets. The question is: Are the solutions developed for 

desktop computers directly applicable to mobile devices? The 

fact is that there is a big gap between the strength of the board 

game applications developed for desktop computers, and those 

developed for mobile devices. At first glance it might be 

thought that mobile processors do not provide enough 

performance. However, current Systems-on-a-Chip (SoC) 

developed for mobile devices include up to eight powerful 

out-of-order 64-bit cores running up to more than 2 GHz, 

providing a lot of computational power, which is more than 

enough to execute a strong board game player. The actual 

limit is the power budget. SoCs for mobile devices provide 

high peak performance, but running a computationally-

intensive application drains the battery very fast, leading to a 

bad user experience. 

To overcome this problem for most computer games, mobile 

SoCs include specialized hardware resources such as Graphic 

Processing Units (GPUs), or fixed hardware accelerators 

(called ASICs, Application-Specific Integrated Circuits) for 

frequently demanded functionality as decoding high definition 

audio and video. These resources not only provide high 

performance but are also energy efficient compared with a 

general-purpose processor. However, the computational 

complexity of many board games is not due to graphics, video, 

or audio processing, and hence they cannot take advantage of 

these hardware resources. Moreover, adding specialized fixed 

accelerators for board games is not a feasible solution, since 

each board game has different demands, and not all the users 

need additional support for these applications. Fortunately, 

there is another option: exploiting the programmable logic 

included in recent SoCs, which combine low-power 

processors and Field Programmable Gate Arrays (FPGAs) 

FPGAs are nowadays the most broadly used programmable 

logic devices. They constitute a mature technology that has 

been proved to greatly increase performance and reduce 

energy consumption on many different applications [1-6]. 

Board games are excellent candidates to make use of this 

technology since the computations involved in solving these 

games exhibit a large degree of fine-grained parallelism. 

Moreover, FPGAs are flexible and reusable. They can 

virtually implement any hardware logic by loading the proper 

configuration (i.e. programming the FPGA), and its 

functionality can be changed as many times as needed, even at 

run-time. Hence the same hardware resources can be used to 

provide hardware acceleration for different applications.   

The main FPGA manufacturers, Xilinx and Altera, have 

released complete processor-based System-on-a-Chip (SoCs) 

with an FPGA integrated in a single chip (Zynq-7000 SoC and 

Zynq UltraScale+ MPSoc by Xilinx [7], and Arria V [8], and 

Stratix 10 by Altera [9]). These platforms are similar to those 

found in mobile devices, but including FPGA resources on 

chip tightly integrated with the low-power processors. They 

allow software developers to use known programming 

environments, while logic designers can use the FPGA to 

introduce customized features to improve performance and 

reduce energy consumption. Moreover, leading manufacturers 

like Intel, IBM, and Qualcomm have recently announced that 

they are preparing SoCs including processors and FPGAs. 

Other companies such as Menta and Flex Logic have designed 

their own Intellectual Property (IP) FPGA core, which can be 

included in any SoC at a reduced cost. Hence, FPGAs are 

expected to be frequently found in mobile SoCs in the near 

future, just as GPUs are nowadays.  

Coding hardware for FPGAs involves an additional 

development effort. Although both Xilinx and Altera provide 

High-Level Synthesis (HLS) tools to simplify the process of 
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mapping a software solution to an FPGA [10], this is still not 

straightforward. Hardware/software co-design greatly 

mitigates this effort by keeping most of the functionality in 

software, and moving to hardware only computationally 

intensive data-processing cores. 

In this article we propose a co-design approach for board 

games. The idea is to code the control of the artificial 

intelligence in software and move board-processing 

computations to hardware accelerators. In other words, the 

hardware will process the boards in order to extract all the 

useful information, and the software will use that information 

to follow any given strategy to explore the search space. Board 

processing cannot be efficiently parallelized in general-

purpose cores because the size of the board is not big enough 

to compensate for the parallelization overhead. Moreover, it is 

not suitable to leverage the Single-Instruction Multiple-Data 

(SIMD) units included in modern processors either. These 

units execute the same arithmetic instructions on different 

data, but each board position in a board game may demand a 

different computational treatment. On the contrary, a custom 

Multiple-Instruction Multiple-Data (MIMD) unit implemented 

on an FPGA can perfectly face this problem. 

We carried out our analysis on three complex board games: 

Reversi, Blokus Duo, and Connect6. These games were 

selected by the design competition committee of the 

International Conference on Field Programmable Technology. 

We were awarded the first prize in two of these competitions 

and the second prize in the other one, and thanks to these 

experiences we get insight about these games. We first 

developed and optimized a full software application for each 

game, and then we included hardware accelerators to process 

boards faster. The techniques implemented to explore the 

search space are minimax with alpha-beta pruning, iterative 

deepening, and full node ordering on the first two tree levels 

according to the previous shallower search. We selected these 

techniques because they are frequently found in board games, 

and they are enough to build a proof of concept. It is important 

to remark that we focus on board processing, and our co-

design approach allows modifying the exploration techniques 

without needing to redesign the hardware accelerators. Tasks 

such as finding the legal moves or evaluating a board are 

always needed, regardless of the techniques selected to 

explore the search space. The software and hardware has been 

designed targeting the Xilinx Zynq 7000 SoC, which includes 

a dual-core ARM Cortex-A9 processor interconnected with an 

FPGA in a single chip. As an additional reference, we also 

evaluated bare full software versions, executed on a high-

performance Intel i7-2600 processor. 

The objective of this article is to evaluate the potential of 

hardware/software co-design to develop stronger AI engines 

for board games, especially in battery-dependent systems 

where the computational power and energy budget are limited. 

With current co-design environments, it is possible to design 

hybrid processor/FPGA systems where the FPGA can be used 

to speed up the most critical computations leading to better 

performance and less energy consumption with a reasonable 

development effort, which is desirable in high-performance 

mobile computing. The results demonstrate that splitting the 

board games applications into hardware and software parts, 

allows the designers either to develop stronger opponents, or 

to reduce the energy consumption, while keeping reasonable 

development cycles. 

II. RELATED WORK 

Board games, especially Chess, attract the interest of the 

community not only because of their popularity but because 

they pose the challenge of developing computer players strong 

enough to beat the best human players. Deep Blue reached the 

most memorable milestone in 1997 when it was able to defeat 

the world champion at that time, Gary Kasparov. Hardware 

accelerators played a key role to succeed [11]. These 

accelerators were Application Specific Integrated Circuits 

(ASICs) specifically designed for that system. ASICs design 

provides the best performance and energy efficiency balance, 

but it also involves large development cycles and in most 

cases unaffordable costs [12]. 

The emergence of programmable logic turned the design of 

custom hardware into a feasible option, dramatically 

shortening the development cycle and lowering costs. Several 

works have described implementations of board games in 

FPGAs. In [13] Wong et al. presented an implementation on 

the Reversi game. Their design reached a 3.67 speedup over 

an equivalent software running on a high-end processor. Later 

in 2014, Olivito et al. elaborated a comprehensive comparison 

of hardware and software implementations of Reversi in terms 

of performance and power, and pointed out that the hardware 

implementation on a low-cost FPGA was able to perform 25 

times faster while consuming 400 times less power than the 

software implementation running on a high-end processor 

[14]. Other games like Connect6, Blokus and Go have also 

been implemented by the FPGA developer’s community. The 

works presented in [15-17] detail FPGA-based 

implementations and comparisons with software, reporting 

speedups of one or even two orders of magnitude. In the light 

of these results, it is clear that FPGAs outperform general 

purpose processors in these games. However, the design and 

implementation of the whole artificial intelligence purely in 

hardware requires a much larger development cycle than an 

equivalent software design, preventing the use of this 

technology. 

Hardware/Software co-design combines the flexibility and 

short development cycles of software design with the higher 

performance and lower power consumption of FPGAs. Early 

co-designs were based on systems where the CPU and the 

FPGA were in different chips, communicated through a 

system bus. One of the first applications of co-design to 

accelerate board games was published in 2002 [18]. This work 

presents a Chess player in which the move generation was 

accelerated by an FPGA and the remaining tasks of the AI 

were executed on a processor. In 2004, another successful use 

of processors and FPGAs to accelerate a Chess program was 

presented in [19]. Brutus was one of the strongest chess 

programs at that time and one of its key design strategies was 

to split the tree search into software and hardware. In these 

previous approaches the CPU/FPGA communication overhead 

was a limiting factor both for the granularity and the speedups 

obtained by the tasks moved to hardware. The new 
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heterogeneous SoCs, which integrate processors and FPGAs 

in the same chip, take weight off this issue. Moreover, 

manufacturers provide co-design environments with tools that 

automatically generate bus interfaces. Hence, communications 

are not only more efficient but also easier to manage. 

III. HARDWARE/SOFTWARE CO-DESIGN 

Hardware/software co-design allows designers to partition 

an application into hardware and software blocks that interact 

among them. Profiling the application in order to identify 

which tasks demand hardware acceleration, and reducing the 

communication overheads are the keys to develop a good co-

design solution.  

A. Zynq Processor/FPGA Platform 

Zynq-7000 is a SoC which integrates a dual-core ARM 

Cortex-A9 general-purpose processor, and an FPGA in a 

single chip. This heterogeneous platform joins up software 

flexibility and hardware efficiency, allowing developers to 

differentiate their products by increasing performance and 

energy efficiency. A critical aspect for hardware/software co-

design to succeed is to enable an efficient communication 

between the processor and the programmable logic. The 

speedup achieved by the custom hardware must compensate 

for the communication overhead. 

The communication between the ARM processor and the 

FPGA in the Xilinx Zynq devices is performed through an 

AXI4 interconnection bus [20]. It facilitates IP integration 

saving development time while providing high throughput and 

low latency. This bus offers several configurations, optimized 

to different traffic profiles. Our design leverages AXI-Lite and 

AXI-Stream. AXI-Lite is suitable for small transfers. With this 

interface the hardware accelerator is assigned a set of 32-bit 

registers mapped into the processor memory space. 

Communicating hardware and software is as simple as writing 

or reading these registers. On the other hand, AXI-Stream is 

suitable for large transfers thanks to their burst mode. When 

using this interface, a DMA sends the data back and forth 

through the AXI ACP (Accelerator Coherency Port) which 

ensures cache coherency when a hardware module modifies 

the memory without processor intervention. 

 
Fig. 1. Transference throughput of each AXI interface 

 

As a first step in our co-design analysis, we have measured 

the communication latency of these two options for different 

transfer lengths, since this information is critical to develop an 

efficient communication scheme. As it can be seen in Fig. 1, 

the throughput of the AXI-Lite interface is constant because 

each transfer always sends a single word. Instead, the time in 

AXI-Stream burst-based transfers decreases logarithmically as 

the transfer size increases. AXI-Stream Custom uses the same 

hardware that AXI-Stream but simplifies the driver by 

assuming that the source and destination addresses are always 

the same along the execution of an application. This 

assumption is valid in our applications and greatly increases 

the throughput for medium sized transfers. 

IV. METHODOLOGY 

For each case study, we developed the game application 

entirely in software. They were written in C and compiled 

with GCC 4.9.2 with the maximum optimization flag 

activated; then we gathered data to select the kernels to 

accelerate. To this end we used Intel VTune Amplifier XE 

2016 running the games on an Intel i7-2600 processor. Intel 

VTune leverages dedicated hardware counters on Intel 

processors to perform a non-intrusive and statistical profiling. 

Once the hotspots were identified, we first tried to 

parallelize the software versions using different thread 

libraries (POSIX Threads and Intel Threading Building 

Blocks), or the powerful SIMD extensions, but neither of these 

options improved the results. Then we developed hardware 

modules to accelerate those bottlenecks. These hardware 

accelerators were written in VHDL and synthetized with the 

toolchain of Xilinx Vivado 2015.2. The ARM and FPGA 

communication is fully assisted by the tools, being all the AXI 

interfaces and the DMA controller self-generated modules. 

Power consumption measurements were taken with a 

Yokogawa WT210 digital power meter, a device accepted by 

Standard Performance Evaluation Corporation (SPEC). We 

are interested in the power consumed due to the execution of 

our applications, so we measured the power consumed both in 

an idle state and while executing our applications, and 

considered the difference on average.  

V. CASE STUDY I: REVERSI 

Reversi is a strategy board game played between two 

players on an 8 x 8 board with discs colored black on one side 

and white on the opposite side. Each player shall be assigned 

to play a color. The goal of the game is to have more discs 

than the opponent at the end of the game. 

The game will start with blacks making a move. The play 

then alternates between whites and blacks until one of the two 

following situations occurs: a) There are no moves that the 

player can make to outflank the opponent’s disc(s) (the player 

is then said to have no valid moves) or b) both players have no 

valid moves. 
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1 2 4 8 16 32 64 128

Tr
an

sf
e

re
n

ce
 t

im
e

 p
e

r 
w

o
rd

 (
n

s)

Transference length (words)

AXI Stream AXI Stream Custom AXI Lite



1943-068X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2604923, IEEE
Transactions on Computational Intelligence and AI in Games

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

When a player has no valid moves, he forfeits his turn and 

the opponent continues to move. A player is not allowed to 

voluntarily forfeit his turn. The game ends when both players 

have no valid moves or when the entire board has been played. 

Therefore, it is possible for a game to end before all 64 

squares are filled. 

A. Techniques implemented 

The board evaluation is based on strategic concepts such as 

mobility, which is the number of legal moves; stable discs, 

which are those discs cannot be flipped anymore; corners 

capture; and number of discs. 

B. Hardware acceleration 

The profiling revealed that 89.3% of the game time is 

invested in the evaluation of boards – 48.6% computing stable 

discs, and 40.1% computing the mobility -, 9.6% of the game 

time is spent in the move generation, and only 1.1% is due to 

the execution of the game-tree search algorithm. Hence, we 

developed hardware accelerators for the two tasks involved in 

board evaluation: 

 Mobility: In order to compute the mobility of each 

player, every board square must be analyzed to 

determine whether it corresponds to a legal move or 

not, by checking different patterns in its row, column 

and diagonals. This task exhibits a great degree of data 

parallelism as hundreds of patterns must be checked. A 

hardware module can seamlessly exploit this 

parallelism since it is able to check all the patterns for 

all the squares at the same time. Hence, all the legal 

moves are identified in just one clock cycle. Fig. 2 

points out the legal moves for the white player in this 

board and the hardware cell that checks all the patterns 

in parallel. A legal move must satisfy two conditions, 

that the square is empty, and that at least one 

opponent’s disc is followed by an own disc in any 

direction. The hardware module that computes the 

mobility of a player consists of 60 cells like the one 

shown in the figure. 

 

Fig. 2. Cell architecture to determine whether a square 

corresponds to a legal move. 

 

 Stable discs: Another metric commonly used to 

evaluate boards in the Reversi game is the number of 

stable discs. A discs is stable if at least one of their two 

neighbors in each direction are stable. Fig. 3 marks in 

green the stable discs of the example board and 

illustrates the hardware cell that determines if a discs is 

stable. 

 
Fig. 3 Cell architecture to detect stable discs 

C. Co-design schemes 

We have implemented two co-design schemes for the 

Reversi game. The first one moves the computation of the 

metric mobility, which is one of the two hotspots, to the 

hardware side, and the other one moves the whole evaluation 

task – mobility and stable discs -. The input of the hardware 

accelerator in both cases is the board to evaluate, which is 

coded in software as an 8x8 matrix of 1-byte elements, but, in 

order to reduce the communication overhead, these data are 

compacted to only two bits per square by means of bitwise 

operations. We selected the AXI-Lite interface in all the 

schemes because it offers the lowest overhead for the required 

transfer sizes. 

The output in the scheme (a) is the mobility of both players, 

which are values from 0 to 60, and therefore 12 bits are 

required to encode both values. The transfer wide in the AXI-

Lite bus is 32 bits, so each board evaluation needs four 

transfers from the processor to the FPGA to send the board, 

and one from the FPGA to the processor to read back the 

mobility of both players. 

The output in the scheme (b) includes also the number of 

stable discs of both players. The range of values is the same as 

in the mobility, so each board evaluation reads a total of 24 

bits from the hardware accelerator, adding no overhead with 

regard to the first scheme, since the transfer size is 32-bits. 

 

 
                   (a)                  (b)  

 

Fig. 4. Co-design schemes for the Reversi application 

VI. CASE-STUDY II: BLOKUS 

Blokus is an abstract strategy board game for two to four 

players, invented by Bernard Tavitian and first released in 

2000. Blokus Duo is a variant of Blokus designed for only two 

players that use a smaller (14×14) board. This game is 

becoming increasingly popular because its rules are simple 
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and games become fast and dynamic. 

Each player has a set of 21 different-shaped tiles, and can 

place them with eight different rotations. Each set (i.e. player) 

has a different color. The tiles can be placed only in those 

squares with corner-to-corner contact with a tile of the same 

color. Moreover, a new tile cannot have edge-to-edge contact 

with any other tile of the same color. Each player places one 

tile at one time, and the game continues until neither of them 

can place tiles anymore. The score of each player depends on 

the number of placed tiles and their size. The larger tiles (five 

squares) add five points, and the smaller one (one square) adds 

one point. Hence the objective is to occupy as many squares as 

you can with your tiles, while trying to reduce the number of 

squares available to your opponent. 

A. Techniques implemented 

Our Blokus application evaluates boards according to the 

metric accessibility, which quantifies the squares that are 

potentially reachable. A square is reachable if can be occupied 

by means of a legal move of the given player. A player with 

more accessibility during the game has more chances to win 

the game. 

The computation of this metric is performed in two steps. 

The first one looks for the tiles’ corners where a player can 

place a tile by satisfying the corner-to-corner rule. The second 

one analyzes the surroundings in order to check whether they 

are reachable or not. This step involves many pattern 

comparisons, which are amenable to be performed in parallel. 

In addition, accessibility is also used to reduce the effective 

branch factor of the search tree by exploring only movements 

in areas which are also reachable by the opponent. To this end, 

the application uses a structure called overlapping map which 

is used as a filter to select moves that fight for areas accessible 

by both players. 

B. Hardware acceleration 

Profiling our Blokus software application showed that it 

spends 92.7% of the time evaluating boards, 5.3% finding 

legal moves and generating new nodes, and 1.9% generating 

overlapping maps. According to these results, we decided to 

move the evaluation to hardware. We also moved the 

generation of overlapping maps, despite not being one of the 

larger hotspots, because the hardware developed to evaluate 

nodes does also provide such maps. 

The hardware module that computes the accessibility, 

processes the board vertex-by-vertex, checking in parallel all 

the patterns for all the squares surrounding the vertex. As a 

result, this module is able to process a board in as many cycles 

as vertices. Fig. 5 illustrates the architecture of accelerator 

submodule which checks the accessibility surrounding a 

vertex.  

 

 

 

 

 

 

 
Fig. 5. Cell architecture to find the squares that are accessible from a given 

vertex 

C. Co-design schemes 

For this game we analyzed three co-design schemes. 

Schemes (a) and (b) have the same task distribution, the only 

difference is the way the board is sent from the processor to 

the accelerator. The size of the board in this game makes 

profitable the inclusion of a Direct Memory Access (DMA) in 

order to reduce the transference overhead according to the 

results presented in Section III. 

Scheme (c) takes advantage of the evaluation hardware to 

compute the overlapping maps as well. Overlapping maps are 

sent from the accelerator to the processor through a DMA 

because of its size. 

 
(a)        (b)         (c) 

 

Fig. 6. Blokus co-design schemes 

VII. CASE STUDY III: CONNECT-6 

Connect-6 is a board game that was introduced in 2003 by 

Professor I-Chen Wu. There are two players: black and white, 

each one playing with stones of the corresponding color. The 

game is played on a 19 x 19 Go board, and the stones are 

placed on the intersections. The black player moves first, 

placing one black stone on one intersection. Subsequently, 

white and black take turns, placing two stones on two different 

unoccupied spaces each turn. The first player that gets six or 

more stones of his color in a row (horizontally, vertically, or 

diagonally) wins. 

A. Techniques implemented 

We based the board evaluation in Connect-6 in the concept 

of threat. We name ‘t4’ six contiguous squares with four discs 

of the same color and two empty squares, ‘t3’ when containing 

three discs of the same color and three empty squares, and ‘t2’ 

when two discs of the same color and four empty squares are 

found. Players shall try to make threats while defending from 
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them. 

The analysis of the threats in a board requires to analyze 

every row, column, diagonal, and reverse diagonal. We name 

each of them ‘section’, and we name ‘window’ every possible 

combination of six contiguous squares within a section. Each 

section is analyzed following the algorithm detailed in [21]. 

This algorithm presents a data dependence since t4 have to be 

analyzed in order to analyze t3, and t3 in order to analyze t2. 

Fig. 7 show a trace of the steps that the algorithm follows to 

find the threats. In this example we first look for t4s and we 

find three windows that satisfy its definition. We select the 

leftmost one and place a mark in its rightmost empty square. 

We have identified one t4 so far, and a new analysis reports 

another window with a t4. We mark it and the subsequent 

analysis does not find any t4 anymore. The next analysis 

follows the same process looking for t3s, and finally the latest 

analysis will look for t2s. Note that, in software, each window 

within a section is traversed sequentially whereas in hardware 

all the windows can be processed in parallel. 

 

Fig. 7. Threat identification process 

 

Threats are also used to steer the search-tree 

exploration. Positions that can upgrade to a threat are 

identified, and we explore first those corresponding to t4, 

then t3 and finally t2. This approach is very similar to the 

scheme presented in [22]. 

B. Hardware accelerator 

This application takes 90.4% of the execution time 

evaluating boards, 9.0% finding and selecting moves, and the 

remaining 0.6% is due to the min-max control. Fig. 8 details 

the architecture of the hardware accelerator developed to 

compute the threats in a board. N windows process in parallel 

the section under analysis, where n is sized to the number of 

windows that fit the section. Next threat selector is a priority 

encoder that updates the marks register with each new threat 

found, and increments the threat count of the current threat 

category. 

The accelerator consists of one module per section in the 

board (19 rows, 19 columns, and 54 diagonals with at least 6 

squares), and a tree adder to add the partial outcome of each 

section. This setup fully exploits the available data 

parallelism, being the section with the largest number of 

threats which determines the time required to fully compute a 

board. 

 

Fig. 8. Cell architecture to find threats in a section 

 

C. Co-design schemes 

In this case study, we only designed one co-design scheme. 

Board evaluation is clearly the target, taking more than 90% of 

the execution time. A hardware implementation of the task 

next move selection shares most of the hardware used to 

evaluate boards, but turns out quite complex and it is out of 

scope for this study. 

The size of the board in this game is bigger than in the other 

case studies, making more profitable the use of the AXI-

Stream interface to send the board from the processor to the 

accelerator. The evaluation value fits in a single word, and 

hence it is read from the accelerator through the AXI-Lite 

interface.  

 
Fig. 9. Connect6 co-design scheme 

VIII. EXPERIMENTAL RESULTS 

We implemented the software, hardware, and hybrid 

versions on the Xilinx Zynq platform (XC7Z020-CLG484 

SoC) and then compared performance and power/energy 
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consumption. This platform includes an FPGA and an ARM 

dual-core Cortex A-9.  As additional references, we also ran 

the software version on a desktop computer with an Intel i7-

2600 processor, and we developed an additional co-design 

scheme where all the AI is implemented in the FPGA, and the 

ARM processor just manages the communications and the 

game procedure. We labeled this partition ‘FPGA’ because 

almost 100% of the computations were moved to hardware. 

Tables I, II and III show experimental results for each case 

study. Ex. Time stands for the time required to complete a 

game; Partitioning details how the computation is distributed 

between the processor and the FPGA.; ∆Power represents the 

dynamic power consumption, i.e. the average increase in 

power consumption due to the execution of our application; 

and numbers in the column Energy are the product of power 

and execution time, which represents the energy consumed 

during a game due to the execution of our application. 

We obtained these measures with the search tree exploring 

eight moves in advance in the case of the Reversi, four moves 

for the Blokus, and three moves in the case of the Connect6. 

With these parameters, our Reversi application explores 14.4 

million boards during a game, the Blokus application explores 

38.4 million, and the Connect6 explores 4 million. 
 

Table I. Reversi experimental results 

Platform 
Ex. Time 

(Seconds) 

Partitioning 

(CPU - FPGA) 

∆Power 

(Watts) 

 Energy 

 (Joules) 

Intel i7     33.0   100.0% -     0.0%   24.19         798.270 

ARM   365.8   100.0% -     0.0%     0.10           36.580 

Hybrid (a)   189.9     46.5% -   53.5%   0.08           15.192 
Hybrid (b)     57.7       8.1% -   91.9%   0.08             4.616 

FPGA       3.6       0.0% - 100.0%   0.02             0.072 

 

The results in Table I show that the co-designed solutions 

offer remarkable speedups over the bare software version for 

the Reversi game. The first hybrid design achieves a 1.9 

speedup by moving to the programmable logic fabric the 

computations responsible for the 53.5% of the original 

computation time. The second co-design solution reaches a 

speedup of 6.3 by moving the whole board evaluation to the 

accelerator. This version, based on a low-power processor, 

approaches the Intel i7 processor performance while 

consuming 173 times less energy.  

 
Table II. Blokus experimental results 

Platform 
Ex. Time 

(Seconds) 

Partitioning 

(CPU - FPGA) 

∆Power 

(Watts) 

 Energy 

 (Joules) 

Intel i7        852.0   100.0% -     0.0% 28.555  24,328.9 

ARM     8,615.5   100.0% -     0.0%   0.104    1,067.1 
Hybrid (a)        652.8       7.4% -   92.6% 0.104        67.9 

Hybrid (b)        614.1       7.4% -   92.6% 0.100        61.4 

Hybrid (b*)        573.8       7.4% -   92.6% 0.100        57.4 
Hybrid (c)        475.8       5.4% -   94.6% 0.093        44.2 

Hybrid (c*)        427.8       5.4% -   94.6% 0.093        39.8 

FPGA          28.7       0.0% - 100.0% 0.032          0.9 
 

The results for the Blokus shown in Table II are impressive 

since the hybrid designs even outperform the Intel i7. The 

reasons are that the portion of the computation moved to the 

programmable logic fabric is greater, and that the size of the 

data transferences benefits from the high throughput offered 

by the AXI-Stream interface. 

Hybrid designs are from 13x to 20x faster than the bare 

software application running on the ARM processor. This 

improvement in performance leads to huge energy savings. 

Notice that co-designs (b) - (b*), and (c) - (c*) have the same 

task partitioning and the only difference among them is the 

use of a customized DMA driver.   

 
Table III. Connect-6 experimental results 

Platform 
Ex. Time 

(Seconds) 

Partitioning 

(CPU - FPGA) 

∆Power 

(Watts) 

 Energy 

 (Joules) 

Intel i7     96.0   100.0% -     0.0%    29.973         2787.21 
ARM A9 1244.6   100.0% -     0.0%      0.103           128.19 

Hybrid (a)   116.5       9.6% -   90.4%      0.099             11.53 

Hybrid (a*)   112.0       9.6% -   90.4%      0.099             11.09 
FPGA       9.1               0.0% - 100.0%      0.027               0.25     

 

In the case of Connect-6, moving the board evaluation to 

the hardware reduces execution time and the energy consumed 

by a factor of 11. As in the Reversi game, this co-design 

alternative with a low-power processor almost reaches the 

performance of the high-performance Intel i7, but requiring 

250 times less energy.  

In the three games the scheme that includes the whole AI in 

the FPGA, clearly outperforms the Intel i7, and reduces the 

energy several orders of magnitude. However, as we will 

explain later, this solution involves a much higher 

development effort.   
 

Table IV. PS/PL Communication overhead 

Design 
Communication 

overhead 

Data transferred 

(MB) 
Throughput 

(MB/s) 

Reversi (a) 15.7%   596.8 20.0 

Reversi (b) 55.5%   641.0 20.0 

Blokus (a) 19.5% 2543.2 20.0 

Blokus (b) 14.4% 2543.2 28.7 

Blokus (b*)   8.4% 2543.2 52.8 

Blokus (c) 18.8% 2702.5 30.2 

Blokus (c*)   9.0% 2702.5 70.4 

Connect-6 (a)   8.9%   386.2 37.0 

Connect-6 (a*)   4.5%   386.2 73.6 

 

Table IV quantifies the impact of the communication 

between the processor and the programmable logic in terms of 

performance for the hybrid schemes. We collected the data by 

measuring the time spent moving data among them. Software 

versions store the boards in a two-dimensional array of 1-byte 

elements, whereas in hardware each square requires only two 

or three bits, depending on the game, and they are stored in 

registers. At the time of sending the board from the ARM to 

the FPGA, we compact the data by bitwise operations in order 

to reduce the communication overhead. This overhead is 

included in the communication overhead presented in the 

table. 

Our co-design schemes send the board from the processor to 

the accelerator every time the accelerator is used and then 

sends back the evaluation value. There are design alternatives 

which could reduce the communication overhead, such as 

storing and managing the boards in the accelerator and then 

sending chains of movements instead of boards, but this kind 
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of design decisions imply a compromise between efficiency 

and design complexity. 

Another interesting data is the reconfiguration latency (i.e. 

the time needed to properly load the accelerator onto the 

FPGA). This delay depends on the size of the configuration to 

load. In this case, using partial reconfiguration that only 

modifies a specific region of the FPGA, it is possible to load 

the games accelerators in 7 up to 70 ms, depending on the 

game. Notice that this step is done only once, when the 

application is opened. 

IX. DESIGN COMPLEXITY 

The previous results demonstrate the usefulness of FPGAs 

to improve energy efficiency in board games. However, there 

are also some drawbacks associated to FPGA hardware 

design.   

Hardware Description Languages (HDL) like VHDL or 

Verilog allow writing a preliminary version in HDL code in 

time comparable to the development in C language. However, 

writing HDL code ready to be translated into an efficient 

hardware implementation requires a good command on digital 

logic design, computer architecture concepts, and parallel 

computing. FPGA vendors are doing a great effort to simplify 

the hardware design process. For instance, Xilinx has 

developed a C/C++ to HDL compiler that can directly map 

C/C++ code to an FPGA. These tools are promising, but they 

still have much room for improvement. 

The second drawback comes from the fact that generating 

the configuration needed to program an FPGA consumes 

much more time than compiling software code. As it can be 

observed in Table V, the compilation time when including 

hardware is two or even three orders of magnitude greater than 

the bare software designs.  

The last and more relevant drawback is debugging 

complexity. In large designs, the high degree of parallelism 

involved, with many hardware modules and signals working at 

the same time, makes debugging FPGA systems even harder 

than the already difficult software parallel debugging. 

Moreover, behavioral simulations are slow, and simulating a 

few seconds of real execution time takes several hours. Again, 

FPGA vendors are helping at this point with better and better 

tools, like powerful simulators or specific support to monitor 

some FPGA internal signals. Moreover, the software version 

is very helpful when debugging the hardware version, since 

the data generated by both versions can be compare in order to 

identify the bugs. 

 

 

 

 

 

 

 

 

 

 

 

Table V. FPGA resources utilization and development effort 

Design 
LUTs 

(%) 

FFs 

(%) 

BRAMs 

(%) 

Compilation 

time (s) 

Design time 

(weeks) 

Reversi ARM - - -       1.7   7 

Reversi hybrid (a)   4.8 1.1   0.0   344.0   8 

Reversi hybrid (b)   7.4 1.2   0.0   422.0   8 

Reversi FPGA 10.4 0.9   2.9   538.0 17 

Blokus ARM - - -       2.9 10 

Blokus hybrid (a) 29.3 1.9   0.0   911.0 13 

Blokus hybrid (b) 29.7 4.9   1.4 1139.0 13 

Blokus hybrid (c) 30.0 5.0   1.4 1247.0 13 

Blokus FPGA 48.7 5.7 69.6 1771.0 26 

Connect-6 ARM - - -       2.4   8 

Connect-6 hybrid 72.0 6.4   0.7 1545.0   9 

Connect-6 FPGA 81.4 8.0   2.2 1953.2 21 

  

The development of the software versions used in this work, 

including optimization and profiling, took from seven to ten 

weeks for each game.  

Regarding the hybrid versions, the development and 

debugging of the hardware accelerator for the Reversi required 

only four days due to its simplicity. The accelerators for the 

Connect6 and Blokus are more complex, especially in the case 

of Blokus, and their development took one week and three 

weeks respectively. It is important to mention that the 

available design tools for co-design (in our case we use Xilinx 

Vivado [23]) are definitely helpful since the communication 

infrastructure and the hardware/software interfaces are 

generated automatically, and the software can interact with the 

hardware accelerator just as it is done with any other 

peripheral. 

Finally, the development of the ‘FPGA’ versions took from 

four to six months for each game. Writing the code for these 

versions was not too complex, but debugging a hardware 

system that explores millions of boards was very challenging. 

We needed to include debugging support to identify the bugs, 

and perform time-consuming simulations. 

X. CONCLUSIONS 

Board games applications designed for the mobile market 

lack of strong AIs engines in most cases due both to the lower 

computational power and the energy restrictions of battery-

dependent devices. Recent SoCs, which include programmable 

logic tightly integrated with the processor, allow the 

developers to include specific accelerators to process boards 

much faster, and therefore to deliver a stronger play on a 

power budget. 

We have developed software and hybrid versions of three 

popular cross-platform games, and we have run them on a 

Zynq hybrid FPGA/processor platform. The results 

demonstrate that including accelerators on the FPGA to 

process boards increases the AI strength by drastically 

improving performance and reducing energy consumption. 

In spite of the fact that development on FPGAs adds some 

complexity to the design process, hybrid hardware/software 

platforms pays-off the harder development cycle since non-

critical tasks remain executed in the general-purpose 

processor, and the FPGA is reserved for specific and 

demanding tasks.  
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