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Abstract. We introduce a dispersive point target model based on scattering by a particle in the far-
field. The synthetic aperture imaging problem is then expanded to identify these targets and recover their
locations and frequency dependent reflectivities. We show that Kirchhoff migration (KM) is able to identify
dispersive point targets in an imaging region. However, KM predicts target locations that are shifted in
range from their true locations. We derive an estimate for this range shift for a single target. We also show
that because of this range shift we cannot recover the complex-valued frequency dependent reflectivity, but
we can recover its absolute value and hence the radar cross-section (RCS) of the target. Simulation results
show that we can detect, recover the approximate location, and recover the RCS for dispersive point targets
thereby opening opportunities to classifying important differences between multiple targets such as their
sizes or material compositions.

Keywords. Synthetic aperture radar, Dispersive targets, Kirchhoff migration, Radar cross-section

1. Introduction

Synthetic aperture radar is an imaging modality in which an airborne antenna is used to collect the
reflected signal from a region of interest on the ground. High resolution images are reconstructed by
coherently processing the signals along the known flight trajectory [1, 2, 3, 4]. These images provide
an estimate of the spatial dependence of the reflectivity often ignoring its frequency content. However,
the dispersive nature of the reflectivity of targets is of great interest as it can be helpful for material
identification, for example.

A natural approach that has been proposed to that effect is based on dividing the frequency band into
sub-bands and then creating an image for each sub-band [5, 6]. Although the individual images have
lower resolution, they can be successfully used to provide information about the frequency dependence of
the reflectivity. In the same spirit, frequency and direction dependent reflectivity has been successfully
reconstructed in [7] using sparsity constraint optimization approaches while dividing the bandwidth and
the array aperture in sub-bands and sub-apertures respectively. The reflectivity in this case has a four
dimensional parametrization, i.e., space, frequency and direction. Computational complexity limits the
applicability of this method for on-the-fly scenarios.

Exploiting Doppler shift in the SAR ambiguity function [1] has been extended to frequency dependent
reflectivities and an expression for the SAR point spread function in space and frequency domain has been
derived [8]. This point spread function allows for reconstructing an image in which each pixel provides
frequency dependent information about the reflectivity [9]. The approach gives promising results but
achieving high range resolution remains a challenge.

Another way to account for dispersive targets is to consider the signal in the time domain in which case
the scattering delay induced by the target needs to be separated from the propagation delay. This is a
challenging problem that has been addressed in [10] provided the synthetic aperture is wide enough. The
important question of detectability of this scattering delay in the presence of speckle has been evaluated
using statistical divergence measures in [11].

In this paper we consider a realistic model for a frequency dependent reflectivity and propose an imaging
method based on coherent back-projection. This method allows us to first image the spatial location of the
targets and then determine their frequency dependent reflectivities. High resolution imaging of the target
location is obtained using the the tunable synthetic aperture radar imaging approach of [12]. This method
relies on a simple mathematical transformation of the classical SAR image depending on a user-defined
parameter, ε. The resulting image scales the traditional SAR image resolution by

√
ε thus achieving

sub-wavelength target localization.
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Due to the frequency dependence of the reflectivity, the target’s location is reconstructed up to a shift in
range. Our theoretical analysis provides an estimate of this shift and shows that it is inherently connected
to fundamental scattering properties of the target, namely the reflectivity. Once the target location is
estimated, the radar cross-section (RCS) of the target can be recovered. Promising results are obtained
for single and multiple targets scenarios. Gaining access to RCS information is very important for some
remote sensing applications as it provides target classification information in addition to detection and
spatial localization.

The remainder of this paper is as follows. In Section 2 we review the elementary theory of scattering by
a particle and use that to introduce our dispersive point target model. In Section 3 we describe the SAR
imaging problem for dispersive point targets. We apply Kirchhoff migration (KM) to identify the location
which, in turn, enables the recovery of the radar cross-section for a single dispersive point target in Section
4. There we show that KM accurately identifies the target location in cross-range, but may produce a
shift in range. We derive an estimate for this range shift that identifies the key mechanism producing this
shift. We extend these results for multiple targets in Section 5. For that case, we introduce an elementary
linear regression problem to obtain the radar cross-sections for each of the targets. In Section 6 we give
our conclusions. Appendix A gives a description of scalar wave scattering by a sphere which we use to
generate frequency dependent reflectivities used in the simulations results shown here.

2. Scattering by a particle

We briefly review elementary aspects of scattering by a particle and use that to introduce our dispersive
point target model. Consider the observation of the scattered field Us at distance R away from a particle
with R > d2/λ where d is the particle diameter and λ the wavelength of the incident light. For this case,
the leading behavior of the scattered field is [13]

(1) Us ∼ f(ô, ı̂;ω)
eiωR/c

R

where ô is the direction of observation, ı̂ is the propagation direction of the incident plane wave, ω is the
frequency and c is the wave speed. The leading behavior given by (1) is a spherical wave modified by f ,
the scattering amplitude. The scattering amplitude contains the amplitude and phase of the scattered
field in the far-field at frequency ω.

In synthetic aperture imaging, we measure only the backscattered field corresponding to ô = −ı̂. The
radar cross-section (RCS),

(2) σRCS(ω) = 4π|f(−ı̂, ı̂;ω)|2

gives a measure of the power backscattered by the particle. The RCS as a function of ω depends on the
size, shape, and material properties of the particle.

SAR imaging methods such as KM tend to produce images of general objects that exhibit peaks at the
most singular portions of those objects, e.g. closest boundaries, corners, etc [3]. For this reason, point
target models are commonly used for those imaging problems. The point target model that is typically
used for SAR imaging problems assumes that the scattered field measured at a point x is given by

(3) U s(x) = ρ
eiω|x−y|/c

4π|x− y|
U inc(y).

Here, U inc is the incident field, y is the location of the point target and ρ is a complex scalar called the
reflectivity. Comparing (3) with (1), we see that the reflectivity is the scattering amplitude when f is
assumed to be independent of direction and frequency.

We introduce an extension to (3) through inclusion of a frequency dependent reflectivity %(ω) according
to

(4) U s(x) = %(ω)
eiω|x−y|/c

4π|x− y|
U inc(y).

We call (4) the dispersive point target model. This model is characterized by the position y and the
frequency dependent reflectivity %(ω).
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In the numerical simulations that follow, we determine %(ω) from the scattering amplitude for a dielec-
tric sphere with radius α and relative refractive index nrel (see Appendix A). Using that reflectivity, we
compute the RCS through evaluation of σRCS(ω) = 4π|%(ω)|2.

3. Synthetic aperture imaging

In synthetic aperture radar (SAR) imaging, a single transmitter/receiver is used to collect the scattered
electromagnetic field over a synthetic aperture that is created by a moving platform [1, 3, 4]. The moving
platform is used to create a suite of experiments in which pulses are emitted and resulting echoes are
recorded by the transmitter/receiver at several locations along the flight path. Let f(t) denote the
broadband pulse emitted and let d(s, t) denote the data recorded. Here, the measurements depend on
the slow time s that parameterizes the flight path of the platform, r(s), and the fast time t in which the
round-trip travel time between the platform and the imaging scene on the ground is measured.

High-resolution images of the probed scene can be obtained because the data are coherently processed
over a large synthetic aperture created by the moving platform. As illustrated in Fig. 1, the platform
is moving along a trajectory probing the imaging scene by sending a pulse p(t) and collecting the cor-
responding echoes. We call range the direction that is obtained by projecting on the imaging plane the
vector that connects the center of the imaging region to the central platform location. Cross-range is
the direction that is orthogonal to the range. Denoting the size of the synthetic aperture by a and the
available bandwidth by B, the typical resolution of the imaging system is O((c/B)(L/R)) in range and
O(λ0L/a) in cross-range. Here c is the speed of light and λ0 the wavelength corresponding to the central
frequency while L denotes the distance between the platform and the imaging region and R the offset in
range.

Figure 1. Synthetic aperture radar imaging schematic.

In what follows, we use the start-stop approximation which neglects displacements of the platform and
targets in comparison with the propagation of signals emitted and received on the platform. Let xn for
n = 1, . . . , N denote the positions of the emitter/receiver along the flight path making up a synthetic
aperture. The imaging system operates with frequencies ωm for m = 1, . . . ,M sampling the system
bandwidth, 2πB.

Suppose there is dispersive point target located at y0, a point in the imaging region, with frequency
dependent reflectivity, %0(ω). When the signal is emitted from the emitter/receiver, it propagates into
the medium, is incident on the dispersive point target and scatters. The field scattered by the dispersive
point target is then measured on the emitter/receiver. The resulting measurement of the scattered field
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by the emitter/receiver due to an isotropic and flat frequency point source at xn is

(5) dmn = %0(ωm)
ei2ωm|xn−y0|/c

(4π|xn − y0|)2
, m = 1, . . . ,M, n = 1, . . . , N.

The matrix D ∈ CM×N whose entries are given by (5) contains the measurements.
The imaging problem is to determine the locations of targets and the frequency dependent reflectivity in

some specified imaging region. We show below that we cannot recover the frequency dependent reflectivity,
in general. Instead we seek to recover the RCS for each of the targets.

In the simulations results that follow, we use system parameters based on the GOTCHA data set [14].

In particular, we have set R = 3.55 km and H = 7.30 km, so that L =
√
H2 +R2 = 8.12 km. The synthetic

aperture created by the linear flight path is a = 0.13 km. The central frequency is ω0/(2π) = 9.6 GHz
and the bandwidth is B = 622 MHz. Using c = 3 × 108 m/s, we find that the central wavelength is
λ0 = 3.12 cm. The imaging region is at the ground level z = 0. We use M = 25 equi-spaced frequencies
sampling the bandwidth, and N = 32 equi-spaced spatial measurements sampling the synthetic aperture.

4. KM for a single dispersive point target

Let y denote a point in the imaging region. We consider the image formed through evaluation of the
KM imaging function,

(6) IKM(y) =
M∑
m=1

N∑
n=1

dmne
−i2ωm|xn−y|/c.

Note that in (6), the entries of the data matrix are back-propagated to y through multiplication by

e−i2ωm|xn−y|/c. Those results are summed over spatial locations (sum in n) and frequencies (sum in m).
Through evaluation of this KM imaging function over a set of points and plotting those results, we produce
an image of targets in the imaging region.
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Figure 2. Evaluation of (6) on an imaging region that is 500/k0×500/k0 centered about
the target location (x0, y0) with k0 denoting the central wavenumber. The reflectivity was
computed for a sphere with k0α = 1.4 and nrel = 1.4. Measurement noise was added so
that SNR = 3.73 dB.

In Fig. 2 we show the result of evaluating (6) for a dispersive point target located at (k0x0, k0y0) =
(273.713,−346.167) over a 500/k0 × 500/k0 imaging region. The reflectivity was computed for a sphere
with k0α = 1.4 and nrel = 1.4. Measurement noise was added so that SNR = 3.73 dB. The image shown
in Fig. 2 shows IKM normalized by its maximum value. This image indicates the presence of a target
through its peak. The location of the peak predicts the location of the target. Away from the peak, we
observe imaging artifacts as sidelobes to the peak.
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We have recently introduced a modification to KM that produces tunably high-resolution images [12].

Let ĨKM denote (6) normalized by its maximum as shown in Fig. 2. The modification to KM simply
requires evaluation of

(7) IKM
ε =

ε

1− (1− ε)ĨKM
,

with ε denoting a user-defined parameter. The resolution of the resulting image produced using (7) scales
with

√
ε.

When we plot IKM
ε with ε = 10−4 using the image shown in Fig. 2, we obtain the image shown in

Fig. 3. Note that the region plotted is 20/k0 × 20/k0, which is a much smaller region than that plotted
in Fig. 2. This result shows that this modified KM method is able to image targets with subwavelength
resolution. Moreover, since the parameter ε is user-defined, this high resolution is tunable.
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Figure 3. Evaluation of the modified KM given in (7) with ε = 10−4 applied to the
image shown in Fig. 2 on an imaging region that is 20/k0 × 20/k0 centered about the
target location (x0, y0).

4.1. Range shift. Because of the high-resolution capabilities of the modified KM method, we are able
to observe that the predicted target location is shifted from the exact location, especially in range. The
peak of the image shown in Fig. 3 is located at (k0x̂, k0ŷ) = (273.113,−349.770) compared to the true
location at (k0x0, k0y0) = (273.713,−346.167). In simulations, we find that if the SNR is larger, the cross-
range coordinate x0 becomes exact. However, the range coordinate y0 remains shifted. For example, with
SNR = 13.73 dB we obtain a predicted target location at (k0x̂, k0ŷ) = (273.713,−350.170), and with
SNR = 23.73 dB, we obtain a predicted target location at (k0x̂, k0ŷ) = (273.713,−350.170). We find that
this shift in the predicted range of the target varies with both the size parameter, k0α, and the relative
refractive index, nrel used to generate the frequency dependent reflectivity.

To understand the cause of this shift in the range coordinate, we substitute (5) into (6) and obtain

(8) IKM(y) =

M∑
m=1

%0(ωm)

N∑
n=1

ei2ωm(|xn−y0|−|xn−y|)/c

(4π|xn − y0|)2
.

Consider a coordinate system in which the origin lies at the center of the imaging region. The coordinates
of the spatial measurements are xn = (ξn, R,H) for n = 1, . . . , N with ξn = −a/2 +a(n−1)/(N −1). We
write y0 = (x0, y0, 0) and y = (x0, y0 + y, 0). Let θ denote the look angle (see Fig. 1) so that R = L sin θ
and H = L cos θ. In the asymptotic limit L→∞, we find that

(9) |xn − y0| − |xn − y| = y sin θ +O(L−1).
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It follows that

(10) IKM ∼ N

(4πL)2

M∑
m=1

%0(ωm)ei2ωmy sin θ/c,

in this asymptotic limit.
Let

(11) a(y) =
M∑
m=1

%me
i2kmy sin θ,

with %m = %0(ωm) and km = ωm/c. Using

(12) km = k0 +
2πB

c

(
−1

2
+
m− 1

M − 1

)
,

for m = 1, . . . ,M, with k0 denoting the central wavenumber, we introduce the scaled variable y sin θ =
2πBY/c and consider instead

(13) a

(
2πB

c sin θ
Y

)
= ei2κ0YA(Y ),

where

(14) A(Y ) =
M∑
m=1

%m exp

[
i

(
−1 + 2

m− 1

M − 1

)
Y

]
,

and κ0 = k0 sin θc/(2πB).
In what follows, we make use of the following identity

(15)

M∑
m=r+1

exp

[
i

(
−1 + 2

m− 1

M − 1

)
Y

]
= eirY/(M−1)ΨM

r (Y ).

where

(16) ΨM
r (Y ) =

sin
(
M−r
M−1Y

)
sin
(

Y
M−1

) .

The function ΨM
r (Y ) is real and even, and it attains its maximum of M − r on Y = 0. When we apply

the summation by parts formula,

(17)

M∑
m=1

umvm = u1

M∑
m=1

vm −
M−1∑
r=1

(ur+1 − ur)
M∑

m=r+1

vm,

to (14), we find that

(18) A(Y ) =

M∑
m=1

∆%me
i(m−1)Y/(M−1)ΨM

m−1(Y ),

with ∆%m = %m+1 − %m and %0 ≡ 0. It follows that

(19)

|A(Y )|2 =
M∑
m=1

|∆%m|2(ΨM
m−1(Y ))2 + 2

M−1∑
m=1

M∑
r=m+1

{
Re [∆%∗m∆%r] cos

(
r −m
M − 1

Y

)
ΨM
m−1(Y )ΨM

r−1(Y )

}

− 2
M−1∑
m=1

M∑
r=m+1

{
Im [∆%∗m∆%r] sin

(
r −m
M − 1

Y

)
ΨM
m−1(Y )ΨM

r−1(Y )

}
.

Note that in (19) the first two sums are even functions of Y and the third sum is odd in Y . That third
sum plays a key role in the range shift.
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To compute an estimate for where |A(Y )|2 attains its maximum, we expand the functions of Y in each
of the three sums in (19) about Y = 0 and keep terms up to O(Y 2). Combining these results yields a
quadratic approximation for |A(Y )|2. By computing the critical point of this quadratic approximation,

we find that this approximation attains its maximum on Ŷ = −3(M − 1)α1/α2 where

(20) α1 =
M−1∑
m=1

M∑
r=m+1

Im[∆%m∆%r](r −m)(M −m+ 1)(M − r + 1),

and

(21) α2 =

M∑
m=1

|∆%m|2
[
(M −m+ 1)4 − (M −m+ 1)2

]
+

M−1∑
m=1

M∑
r=m+1

Re[∆%∗m∆%r]
(
M2 + 2M − 3mr +m(2m−M − 1) + r(2r −M − 1)

)
.

This critical point Ŷ gives an estimate for the range shift of the target location predicted by KM.
We show a comparison of the numerically determined location of the predicted target and this estimate
in Fig. 4. This comparison is done using the frequency dependent reflectivity of a sphere with relative
refractive index 1.4 for various non-dimensional sizes, k0α.

0 0.5 1 1.5 2 2.5 3
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 4. A comparison of the range coordinate of the target predicted using KM (nu-

merical), and by computing the estimate Ŷ (estimate) over reflectivities computed using
spheres with nrel = 1.4 over a range of different sizes, k0α.

These results show that the estimate accurately captures the behavior of this range shift over a broad
range of sphere sizes. However, the error of this estimate grows with the sphere size, but especially where
the range shift oscillates. These oscillations are presumably due to the complex scattering behavior of
large spheres (k0α > 1) that exhibit phenomena such as Mie resonances. In Fig. 5 we show the RCS
evaluated on the central frequency ω0 normalized by the geometric cross-section, σg = πα2 for spheres
with nrel = 1.4 over the same range of k0α plotted in Fig. 4. Note that the behavior of the range shifts
shown in Fig. 4 closely follow the behavior of the RCS shown in Fig. 5. In this way, we see that the
range shift in the predicted range of the target by KM is inherently connected to fundamental scattering
properties of the target.

4.2. Radar cross-section. We now seek to recover %(ωm) for m = 1, . . . ,M . Suppose we have evaluated
(6) and produced an image that identifies a target and its predicted location, ŷ0. We evaluate

(22) φm =
1

N

N∑
n=1

dmn(4π|xn − ŷ0|)2e−i2ωm|xn−ŷ0|/c,
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Figure 5. The RCS σRCS normalized by the geometric cross-section σg = πα2 evaluated
on the central frequency ω0 for spheres with nrel = 1.4 over a range of sphere sizes k0α.

for m = 1, . . . ,M . Substituting (5) into (22) yields

(23) φm = %0(ωm)
1

N

N∑
n=1

|xn − ŷ0|2

|xn − y0|2
ei2ωm∆τn ,

with ∆τn = (|xn − y0| − |xn − ŷ0|)/c.
In the asymptotic limit L→∞, we find using the same expansions used above that

(24) φm ∼ %0(ωm)ei2ωm∆y sin θ/c,

for m = 1, . . . ,M . Here, ∆y denotes the range shift associated with the predicted location ŷ0. Because
the range shift ∆y is not known, we cannot remove the factor of ei2ωm∆y sin θ/c from the expression above.
Therefore, we cannot recover the complex values of %0(ωm). However, we find that

(25) |φm|2 ∼ |%0(ωm)|2.

Therefore, we recover the RCS given the predicted location of the target by KM through evaluation of

(26) σ̂RCS(ωm) = 4π|φm|2.

In Fig. 6 we show the estimated RCS using (26) for the same data used in Figs. 2 and 3. To estimate
ŷ0 we use the mesh location used to plot those images where IKM

ε attains its maximum value which is
(x̂, ŷ) = (1.357,−1.738) cm compared to the true location (x0, y0) = (1.360,−1.720) cm. The exact RCS
computed from the reflectivity is plotted for comparison. The estimated RCS is indistinguishable from
the exact RCS and the relative error is on the order of 10−4.

We consider a target whose reflectivity is computed for a sphere of size k0α = 2.8 and relative refractive
index nrel = 1.4. Measurement noise was added so that SNR = 3.72 dB. The location predicted by finding
the mesh point on which IKM

ε attains its maximum is (x̂, ŷ) = (1.358,−1.797) cm. We estimate the RCS
through evaluation of (26) using this predicted target location. The results are plotted in Fig. 7. Note
that the RCS for this problem is markedly different from that shown in Fig. 6. Nonetheless, the estimated
RCS is still accurate with a relative error on the order of 10−5.

5. Multiple targets

Suppose now the imaging region contains Q dispersive point targets at locations yq with reflectivities
%q(ω) for q = 1, . . . , Q. Assuming that these targets scatter independently, measurements are modeled
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Figure 6. The recovered RCS using (26) normalized by the geometric cross-section σg =
πα2 for the reflectivity used in Figs. 2 and 3 corresponding to k0α = 1.4 and nrel = 1.4.
To compute σ̂RCS(ω), we estimate ŷ0 by finding where IKM

ε attains its maximum value on
the mesh used for plotting.

9.2 9.4 9.6 9.8 10

1

1.02

1.04

1.06

Figure 7. The recovered RCS using (26) normalized by the geometric cross-section σg =
πα2 for the reflectivity corresponding to k0α = 2.8 and nrel = 1.4. To compute σ̂RCS(ω),
we estimate ŷ0 by finding where IKM

ε attains its maximum value on the mesh used for
plotting.

according to

(27) dmn =

Q∑
q=1

%q(ωm)
ei2ωm|xn−yq |/c

(4π|xn − yq|)2
.

From our results for a single target, we anticipate that evaluating the KM imaging function given in (6)
will identify and locate targets under the condition that these targets are not too close to one another as
measured with respect to the resolution produced by KM for a single target.

In Fig. 8 we show a result of evaluating (6) over an imaging region containing three different dispersive
point targets. The first target is located at (k0x1, k0y1, k0z1) = (140.882, 40.252, 0). Its reflectivity
%1(ω) is computed using a sphere of size k0α1 = 0.8 and relative refractive index nrel,1 = 1.8. The
second target is located at (k0x2, k0y2, k0z2) = (−40.252,−140.882, 0). Its reflectivity %2(ω) is computed
using a sphere of size k0α1 = 1.2 and relative refractive index nrel,2 = 1.4. The third target is located
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Figure 8. Imaged produced by KM through evaluation of (6) over an imaging region
containing 3 dispersive point targets whose exact locations are plotted as red “+” symbols.

at (k0x3, k0y3, k0z3) = (−161.008, 161.008, 0). Its reflectivity %3(ω) is computed using a sphere of size
k0α3 = 1.8 and relative refractive index nrel,3 = 1.4. Measurement noise was added to the data so that
SNR = 22.84 dB. Figure 8 shows three distinct peaks in the vicinity of the three targets whose locations
are plotted as red “+” symbols.

To obtain high-resolution images of individual targets, we consider 50/k0 × 50/k0 sized sub-regions
about each of the peaks shown in Fig. 8. We normalize the portion of the image contained in each of
those sub-regions so that the maximum value contained in that sub-region is unity. Then we apply (7)
with ε = 10−4. Those results appear in Fig. 9.
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Figure 9. Images produced using modified KM given in (7) in 50/k0× 50/k0 sub-regions
centered about each of the exact target locations. The left plot corresponds to target 1,
the center plot corresponds to target 2 and the right plot corresponds to target 3.

The modified KM images produce high resolution images of the targets. However, we observed that
the predicted target locations are shifted in both range and cross-range from the exact target locations.
The predicted location for target 1 is (k0x̂1, k0ŷ1) = (141.382, 43.502), for target 2 is (k0x̂2, k0ŷ2) =
(−39.002,−144.882), and for target 3 is (k0x̂3, k0ŷ3) = (−162.758, 145.008). These shifts in the predictions
from the exact locations are approximately 2λ0.

To understand why these shifts in predicted target locations occur in both range and cross-range,
suppose we evaluate (6) on y1, the exact location for target one. The result is

(28) IKM(y1) =

M∑
m=1

N∑
n=1

 %1(ωm)

(4π|xn − y1|)2
+

Q∑
q=2

%q(ωm)
|xn − y1|2

|xn − yq|2
ei2ωm∆τn1q

 ,
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where ∆τnpq = (|xn−yq|− |xn−yp|)/c. From this result we see that in addition to the contribution made
by target 1, we obtain small, but non-trivial contributions by all other targets, each of which carries a
phase associated with ∆τnq,p. Therefore, upon computing |IKM|, those phases mix leading to shifts in the
predicted target positions.

Even though the predicted locations of targets are not exact, we seek to recover the RCS of each of the
targets. Let ŷp denote the approximate location of target p. Let

(29) φm(ŷp) =
1

N

N∑
n=1

dmn(4π|xn − ŷp|)2e−i2ωm|xn−ŷp|/c.

Substituting (27) into this expression, we obtain

(30) φm(ŷp) =

Q∑
q=1

apq(ωm)%q(ωm),

where

(31) apq(ωm) =
1

N

N∑
n=1

|xn − ŷp|2

|xn − yq|2
ei2ωm∆τ̂nq,p ,

and ∆τ̂npq = (|xn − yq| − |xn − ŷp|)/c. Equation (30) is a linear system for the unknown reflectivities
%q(ωm). Although apq(ωm) uses the predicted target position ŷp, it uses the exact target positions yq.
Since we do not have access to those exact target locations, we instead consider the linear system,

(32) φm(ŷp) =

Q∑
q=1

ãpq(ωm)%̃q(ωm),

where

(33) ãpq(ωm) =
1

N

N∑
n=1

|xn − ŷp|2

|xn − ŷq|2
ei2ωm∆τ̃nq,p ,

with ∆τ̃npq = (|xn − ŷq| − |xn − ŷp|)/c, and

(34) %̃q(ωm) = %q(ωm)
|xn − ŷq|2

|xn − yq|2
eiωm(∆τnpq−∆τ̂npq).

When the predicted target locations are close, we expect that |xn − ŷq|2/|xn − yq|2 ≈ 1. The difference
in phase, ∆τnpq −∆τ̂npq, may be significant, so we expect that we will not be able to recover %q(ωm) from
%̃q(ωm). However, in the asymptotic limit as L→∞, we find that the RCS for the qth target is

(35) σRCS,q(ωm) = 4π|%̃q(ωm)|2 +O(L−1).

Hence, we use this leading behavior to estimate the RCS of the targets.
To summarize, we give the following procedure for estimating the RCS for each of the targets identified

in the imaging region.

(1) Evaluate (6) over the imaging region to identify targets.
(2) Evaluate (7) in sub-regions to estimate the locations of individual targets.
(3) Solve the linear system (32) and obtain %̃q(ωm) for q = 1, . . . , Q and m = 1, . . . ,M .
(4) Evaluate (35) to obtain estimates for the RCS for each of the Q targets.

The results for the recovered RCS for the three targets shown in Figs. 8 and 9 are shown in Fig. 10.
These results are more noisy than the ones obtained for the single target case but their accuracy is still
sufficient to help us characterize targets of different materials/size. As the SNR of data decreases, the
locations of the targets are recovered with the same precision but the recovered RCS’s are more noisy.
For data with SNR = 12.84 dB, the predicted location for target 1 is (k0x̂1, k0ŷ1) = (141.632, 43.002), for
target 2 is (k0x̂2, k0ŷ2) = (−39.502,−144.632), and for target 3 is (k0x̂3, k0ŷ3) = (−163.508, 145.508) and
the recovered RCS are shown in Figure 11.
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Figure 10. The recovered RCS for the three targets normalized by the corresponding
geometric cross-section for the three targets whose location is recovered from Fig 7. Data
with SNR = 22.84 dB. The left plot corresponds to target 1, the center plot corresponds
to target 2 and the right plot corresponds to target 3.

Figure 11. The recovered RCS for the three targets normalized by the corresponding
geometric cross-section. Data with SNR = 12.84 dB. The left plot corresponds to target
1, the center plot corresponds to target 2 and the right plot corresponds to target 3.

We observe in Fig. 11 that the recovered RCS oscillates due to the measurement noise. A smoothing
estimate can be obtained using quadratic regression as illustrated by the results in Fig. 12. Those
smoothed results effectively capture the behaviors of the RCS for the individual targets.
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Figure 12. The recovered RCS for the three targets normalized by the corresponding
geometric cross-section. Data with SNR = 12.84 dB. Smoothing using quadratic regression
over the results shown in Fig 9. The left plot corresponds for target 1, the center plot
corresponds to target 2 and the right plot corresponds to target 3.
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6. Conclusions

We have introduced a dispersive point target model in which the reflectivity is dependent on frequency.
We have used scalar wave scattering by a dielectric sphere to model targets of different sizes and materials.
Then we have applied KM and our recent modification to KM to obtain high-resolution images of dispersive
point targets from SAR measurements. For a single dispersive point target, we observe a shift in the
predicted location of the target in the range coordinate. We have computed an accurate estimate for
this range shift which is in terms of the frequency dependent reflectivity. Despite the range shift in the
predicted location of a single dispersive point target, we are able to recover its radar cross-section (RCS)
using that prediction.

When we apply KM and its modification to an imaging region containing multiple dispersive point
targets, we find that we can image each of the target locations provided that they are far enough apart
from one another with respect to the resolution of KM. We have shown that our modification to KM
works in sub-regions that isolate an individual target. Those high resolution images of individual targets
reveal that the predicted locations of the targets are shifted in range and cross-range. To recover the
RCS for each of the targets, we introduce a linear system using the predicted locations. Our numerical
results show that the recovery of RCS’s for multiple targets is much more sensitive to noise. By applying
smoothing to those RCS results, we obtain good approximations that allow one to distinguish qualitative
differences between the different targets.

By introducing the dispersive point target model and developing methods for imaging dispersive point
targets, we have opened opportunities for target classification. Indeed, by recovering the RCS as a function
of frequency, we may be able to distinguish targets with different characteristics such as sizes or material
properties. We believe that this opportunity to classify in addition to target detection and locatization is
useful for a broad variety of SAR imaging applications.

Appendix A. Scalar wave scattering by a sphere

We briefly describe scalar wave scattering by a sphere and explain how we generated different frequency
dependent reflectivities from this problem. For a fixed frequency, let k0 denote the wavenumber in the
exterior to a sphere of radius α and k1 = k0nrel denote the wavenumber interior to that sphere. A plane
wave is incident on the sphere in direction ı̂, which we denote by Ui. The scattered field exterior to the
sphere is

(36) Us(R, ô) =

∞∑
n=0

anh
(1)
n (k0R)Pn(ı̂ · ô),

with h
(1)
n denoting the spherical Hankel function of the first kind with order n, and Pn denoting the

Legendre polynomial of order n. The field interior to the sphere is

(37) Uint(R, ô) =

∞∑
n=0

bnjn(k0R)Pn(ı̂ · ô),

with jn denoting the spherical Bessel function. We determine the expansion coefficients an and bn by
requiring that Ui+Us = Uint and ∂rUi+∂rUs = ∂rUint on R = α. We compute a numerical approximation
by truncating the series at n = 32 and making use of the orthogonal properties of Legendre polynomials.

Using the asymptotic behavior h
(1)
n (z) ∼ i−n−1z−1eiz as z →∞, we find that

(38) Us(R, ô) ∼

[
1

k0

∞∑
n=0

ani−n−1Pn(ı̂ · ô)

]
eik0R

R
,

in the asymptotic limit, R → ∞. The bracketed term in the expression above gives the scattering
amplitude f . Next, we use Pn(−1) = (−1)n to determine that

(39) f(ı̂,−ı̂) =
1

k0

∞∑
n=0

(−1)ni−n−1an.
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We approximate this scattering amplitude by truncating the series as we have done to determine the
expansion coefficients. That result is used as our frequency dependent reflectivity. We compute different
reflectivities by specifying different values of the radius α and the reflective index nrel.
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