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Abstract
Protein signaling networks play a central role in transcriptional regulation and the etiology of
many diseases. Statistical methods, particularly Bayesian networks, have been widely used to
model cell signaling, mostly for model organisms and with focus on uncovering connectivity
rather than inferring aberrations. Extensions to mammalian systems have not yielded compelling
results, due likely to greatly increased complexity and limited proteomic measurements in vivo. In
this study, we propose a comprehensive statistical model that is anchored to a predefined core
topology, has a limited complexity due to parameter sharing and uses micorarray data of mRNA
transcripts as the only observable components of signaling. Specifically, we account for cell
heterogeneity and a multi-level process, representing signaling as a Bayesian network at the cell
level, modeling measurements as ensemble averages at the tissue level and incorporating patient-
to-patient differences at the population level. Motivated by the goal of identifying individual
protein abnormalities as potential therapeutical targets, we applied our method to the RAS-RAF
network using a breast cancer study with 118 patients. We demonstrated rigorous statistical
inference, established reproducibility through simulations and the ability to recover receptor status
from available microarray data.

Index Terms
cell signaling networks; signaling protein; microarray; statistical learning; Bayesian networks;
Stochastic Approximation Expectation Maximization; Gibbs sampling; Mann-Whitney-Wilcoxon
test

I. Introduction
Cells are complex molecular machines contained within phospholipid membranes that
isolate a unique chemical environment. A key component of the cellular machinery is the set
of protein signaling networks, which permit a cell to sense the internal and external
environments and respond by altering metabolism and gene expression. Signaling networks
comprise interacting signaling pathways, with each pathway containing a number of
individual signaling proteins.

Signaling proteins can modify their behavior based on conformational changes induced by
other signaling proteins. In the typical case, a kinase (a protein capable of adding a
phosphate group to a protein) modifies its target protein by adding phosphate groups at
serine or threonine amino acid residues. The modified protein undergoes a conformational
change, activating its own kinase activity, leading to modification of a new target protein.
This chain of phosphorylation causes a signal to be transduced through the cytosol of the
cell, resulting in changes in enzymatic activity or activation or suppression of a
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transcriptional regulator (i.e., a transcription factor or co-factor). In addition to kinases, there
are phosphatases that remove phosphate groups, thus reversing the signal from a kinase.
Also, for certain signaling proteins, activity is generated by cleavage of a parent protein or
dimerization, which is especially common for receptor tyrosine kinases that reside on the
cell membrane and respond to external environmental cues, such as hormones or growth
factors.

A. Statistical Network Modeling
Biological data are inherently probabilistic and generally display hierarchical relationships.
Statistical analysis is then a logical approach for modeling large-scale molecular networks
and for identifying specific nodes within a signaling network that are optimal therapeutic
targets. In particular, graphical Markov models, such as Bayesian networks, have gained
considerable interest lately in biomedical research because they naturally accommodate
hierarchical network structure and reduce model identification to estimating low-
dimensional conditional distributions.

However, despite their early promise, few major insights have emerged from such modeling
efforts, at least for mammalian data. It is likely many of the problems that have arisen in
applying Bayesian networks to these data arise from the high dimensionality of the data and,
in the case of reverse engineering regulatory networks, from the necessity of learning both
the underlying topology and estimating the corresponding statistical parameters. As a result,
methods designed to reduce what needs to be learned from data by incorporating prior
knowledge have come into use. They are even more required when, like in the present study,
small sample sizes come in combination with a large proportion of unobservable
components in the process of interest.

In particular, in the work described here, in order to apply graphical Markov models to
learning signaling networks, we utilize existing knowledge about biological wiring diagrams
as well as sharply reduce dimensionality by parameter-sharing. In addition, we account for
cell heterogeneity by modeling the observed expression data as cell averages. Recent
evidence on TRAIL induced cell death suggests that variability in protein concentrations
between even clonal cells can lead to phenotypic variation that homogeneous models cannot
address [7]. Our approach yields a stable model which can be identified with current sample
sizes.

B. Wiring Diagram
Unlike standard Bayesian network approaches, which attempt to learn a wiring diagram in
addition to statistical parameter estimates, we begin with a defined core signaling network,
thus eliminating the combined problem of insufficient sample size and of hidden
components for determining parameters for our statistical models.

A number of the core pathways of protein-protein interactions have been detailed, especially
those affecting disease, for example in cancer studies [19], [23]. Since these pathways play
critical roles in embryogenesis across many organisms, there is a substantial knowledge base
[10]. For any given system, the core pathways need to be modified in terms of specific cell
types, which is presently best done through review of the literature [14]. In this way a core
signaling network can be created for a system of interest, with the pathways considered
critically linked to transcriptional regulators.

More specifically, studies on mutation in breast cancers have verified driver mutations of
key signaling components in multiple pathways that lead to breast cancer development [13].
Both the RAS-RAF proliferation pathway and the PI3K cell fate pathways have multiple
driver mutations, suggesting these are excellent targets for studies aimed at developing a
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method suitable for identifying targets for therapeutic intervention. With such applications
in mind, we constructed a network based on the core signaling processes in breast cancer.
This network is shown in Figure 1. We then identified a public domain microarray data set
from a breast cancer study that included phenotypic information on receptor status [3]. This
data set was collected using the Affymetrix U133A GeneChip and deposited in
ArrayExpress (TABM158) [17]. We annotated the network in Figure 1 for the targets of the
transcription factors from TRANSFAC Professional v11.4 [15] using our annotation
pipeline, associating Affymetrix probes with Unigene clusters for gene identification [11].
These data will be used to learn the parameters of our Bayesian network and to validate the
learned model by deducing the status of upstream signaling proteins in the form of
probabilities of activation, comparing the estimated activation levels with ground-truth
obtained from the clinical status measurements provided in [17].

C. A Multi-Level Model
Applying Bayesian networks directly to the graph in Figure 1 is not straightforward for
several reasons. First, this ignores an important component of the data acquisition process,
which is that the measured transcript levels are averaged over large ensembles of cells.
Taking this into account in the model induces notable differences compared to what would
correspond to a single cell model. In a proper tissue-level model, each observation arises
from a large group of networks, each representing a cell. Second, the status of the signaling
proteins is not observed. The only observed variables are tissue-level (hence cell-averaged)
gene expression levels. Despite the averaging and hidden variables, we are still able to
predict the receptor status given the observed transcript levels.

Our model is organized on two levels, the first one incorporating cell-dependent variables,
and the second one including factors that are common to large cell assemblies (tissues), but
are subject-dependent. An overview is presented in Figure 2.

At the cell level, we model signaling pathways as Bayesian networks in which the
information is flowing from receptors (which constitute the roots of the networks to which
are added certain cellular conditions, such as hypoxia) to genes. This process is assumed to
be working within each cell, independently of the others. With an additive noise component,
a gene expression measurement is modeled as the logarithm of a linearly increasing function
of total gene-specific RNA abundance summed over a large population of cells. Final
transcript readouts constitute the only observable components in our model.

The parameters of the Bayesian network at the cell level are assumed to be identical within
each subject. This implies that the measurements stem from sums of independent and
identically distributed random variables. Most of these parameters are also assumed to be
identical across subjects, with the exception of the cell receptor activation probabilities.
These probabilities are subject-dependent and assumed to be randomly generated. Putting
things in a generative order, we model the process leading to a micro-array measurement as
the following sequence of operations, performed independently for each subject:

i. Specify the receptor activation probabilities. These are shared by all cells in the
analyzed tissue.

ii. For each cell, let the gene expression be obtained from the state of the terminal
nodes in a Bayesian network that models the signaling pathway.

iii. For each gene, define the total expression to be the sum of the gene expressions
over a large population of cells.

iv. The final expression measurement is modeled as the logarithm of a linearly
increasing function of this total expression with some additive observation noise.
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D. Organization of the Paper
Our paper is organized as follows: In section II, we review previous related work on cell
signaling networks. In section III, we lay out our statistical model in detail, elaborating the
cell, tissue, population and measurement levels. Then, in section IV, we present the learning
algorithm for model identification, with applications and experiments discussed in section
V. Finally, some conclusions are drawn in section VI.

II. Related Work
Bayesian network models have been used in a wide variety of ways. For example, the
relationships between nodes do not need to represent actual physical connections;
consequently, Bayesian networks can model the effects of clinical variables on outcome,
even relying on molecular data as well [4]. This can be viewed as a phenomenological
perspective, where we abstract away the direct molecular causative agents, but retain
predictive relationships between measured variables [5]. Bayesian networks have also been
used to model traditional genetic networks, such as with time series data, where the up-
regulation of a gene is identified as a causative agent for expression of other genes [6].

Other approaches to creating robust models might be attempted. Ordinary differential
equation (ODE) models, such as modeling of ERBB signaling response [1], can capture
great complexity, but they rely on large numbers of poorly determined parameters. This can
limit their provability, since large ranges of parameter values on many components must be
explored to guarantee uniqueness. Alternatively, networks can be reconstructed from limited
measurements of protein state and abundance, such as from flow cytometry [20], or from
prior data on beliefs of connectivity [16]. In these cases, the goal is to construct the
connectivity and flow of the network for a small number of proteins from proteomic
measurements. In contrast to these methods, we wish to estimate changes in signaling on a
larger network. However, we are able to abstract away some of this complexity in favor of
simplifying the model by assigning the same parameters to all similar nodes and assuming
we know the network connectivity. This leads to a provable network capable of determining
the state of individual network components.

Bayesian networks have been used to explore high-throughput biological data and to
reconstruct biological networks. In a seminal paper in the field, Friedman and colleagues
reconstructed transcriptional regulatory networks for yeast based on microarray data [6].
However, attempts to extend this work to mammalian systems did not lead to compelling
results, perhaps due to the greatly increased complexity of transcriptional regulation. More
recently Djebbari and Quackenbush [5] and Ulitsky and Shamir [22] have used Bayesian
networks to integrate protein-protein interaction data and microarray data to improve
inference. However, these recent approaches are not focused on capturing physical
molecular interactions, as we propose here.

III. A Comprehensive Model
A. Individual Cell Model

Interacting signaling pathways of an individual cell are modeled as a Bayesian network over
a pre-determined directed acyclic graph  = (V, E), where V is the set of nodes (or vertices)
and E is the set of oriented edges. The graph used in this paper is depicted in Figure 1. Some
nodes v ∈ V represent a protein which participates in signal transduction, namely a cell
receptor, intermediate signaling protein or transcription factor (TF). Other nodes stand for a
cellular condition, such as DNA damage and Hypoxia, and the terminal nodes (those with no
children) represent genes, the final targets of signal transduction.
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A directed edge (u, v) ∈ E, from u towards v (u, v ∈ V), represents a potential functional
interaction between u and v. Each such edge is labeled with the type of regulation, either
activating (up-regulating) or inhibitory (down-regulating). Let pa(v) = {u: (u, v) ∈ E} denote
the set of v’s parents, i.e. nodes that have an edge towards v. Accordingly, let Av and Iv
denote the disjoint subsets of pa(v) consisting of the parents that activate and inhibit v,
respectively.

We denote by R ⊂ V the set of roots of the network, i.e., the nodes with no parents, which
can be either cell receptors or certain cellular conditions which initiate downstream
signaling. Also, let G ⊂ V stand for the terminal nodes of ; clearly G ∩ R = ∅ (since there
are no isolated nodes). While v will usually denote a generic node, we will use whenever
possible r to denote a receptor node and g to represent a gene.

Each node v ∈ V carries a random variable Xv, which quantifies the signaling activity of
node v in network. We will use small case letters (e.g. xv) for realizations of random
variables, and we will write XB to indicate the set of random variables {Xv, v ∈ B}. For
example, XG is the set of variables associated with genes. These random variables are
interpreted as follows. For each gene g ∈ G, Xg stands for the expression level of gene g in
the cell, i.e., the amount of transcribed mRNA. All other variables Xv, v ∈ V\G are binary,
and represent the state of signaling at node v, where Xv = 0 means “off” and Xv = 1 means
“on,” interpreted as the presence of signal at site v, ready to propagate down. The stochastic
process XV = {Xv: v ∈ V} is our representation of signaling activity in a single cell, and we
assume the joint distribution is a Bayesian network. Therefore, the probability that the whole
system is in state xV = {xv, v ∈ V} is

Turning to the parametrization of the model, consider first the root nodes r ∈ R; since Xr is
binary, there is one parameter per node, denoted φr = pr(1) = P(Xr = 1). For transitions, for
each v ∈ V, we attribute a function φv: {0, 1}|pa(v)| → [0,1] which quantifies the net effect of
the collection of signals xpa(v) from the parents of v. The extreme values, 0 and 1, correspond
to pure inhibition and pure activation, respectively. More precisely,

• If v is neither a root nor a terminal node,

which completely specifies the transition probability at v. They are “hard wired” in
our model.

• If g ∈ G, the only property of the distribution of mRNA abundance Xg that will be
needed is the conditional expectation given the parent TFs. We then introduce a
scaling coefficient ag > 0 and take

(1)

We can interpret this as follows: transcription is either “on” or “off” with
probability φg(xpa(g)). When it is “on”, the mean is ag and when it is “off” the
abundance is zero.
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A possible choice, if v is not a root, is to take

(2)

It is easy to see that φv is linearly increasing in the difference between the number of active
up-regulating and down-regulating parents of v, which is clearly an over-simplified model of
“transcriptional synergy”, at least in the case of “competing” parents. More complex forms
could be considered which are more faithful to the chemical interactions, perhaps even
accounting for TF binding energies. However, in our particular network, only a relatively
small portion of nodes have competing parents and our choice like (2) has the major
advantage of being parameter-free, allowing one to pre-compute certain quantities which
appear repeatedly during parameter identification. Moreover, simulating the Bayesian
network is significantly more efficient under the assumption of linearity in equation (2) (see
3.5).

B. Tissue Model
At the patient level, the measured abundance of mRNA for each gene on the microarray
originates from a very large ensemble of cells contained in the sample tissue. Let  denote
this ensemble of cells, with size C = | |, and let  be amount of transcribed mRNA for
gene g ∈ G in cell  ∈ . The total abundance is denoted by  = . By the law of large
numbers, assuming the the Bayesian networks for the cells are independent, we have

where ag and φR = {φr: r ∈ R} are the model parameters that affect Xg. In addition, due to
the Markov property of the network,

Writing

(3)

for the expected transcription rate of gene g given the root activation probabilities φR, and
dropping the approximation above, the transcript abundance in the tissue is

(4)

C. Population Level
It is not realistic to assume that the activation rates of the receptors and cellular conditions at
the roots of the network are the same for every subject. Consequently, the final component
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of the model is to consider these rates to be subject-dependent, in fact random variables at

the population level. That is, there is a random variable  for each patient n =
1, …, N. These variables are assumed independent and identically distributed across
patients, for a given tissue type. Each component φr, r ∈ R, independently follows a Beta
prior

with parameters ar and br.

D. Measurement Model
It is well known that the actual measurement process, i.e., the steps leading up to what is
actually recorded for each gene and patient, is complex, and should take into account the
various stages of a microarray experiment including hybridization, scanning, background
correction and normalization. As reported by numerous authors [7], [8], [9], we assume a
linear relationship between scanned intensities of expression and actual RNA abundances. In

particular, after undergoing all these steps, we consider the final log-expression reading ,
obtained for gene g ∈ G and subject n = 1, …, N, to be the logarithm of a linearly increasing

function of the corresponding tissue mRNA abundance , say

(5)

The gain parameter  represents the net factor, that comes between patient n’s actual
molecule count for gene g and its processed probe intensity, before being transformed to
log-scale. It involves the multiplicative measurement noise and accounts for experimental
effects like hybridization efficiency, scanner gain and normalization. On the other hand, the

additive term  stands for the part of the intensity, that does not stem from the
experimented mRNA, but rather effects like unspecific hybridization, detector offset etc.

Analyzing this representation in further detail with individual roles of the aforementioned
steps and taking noise into account (see Appendix A), (5) can be approximated by

(6)

where λg is an offset parameter specific to gene g; and η(g,n) is an i.i.d. realization of the
measurement noise which, in log-scale is assumed to be an additive and zero mean Gaussian
random variable with subject and gene independent variance σ2.

In summary, our overall model, as illustrated in Figure 2, incorporates the entire process
from the Bayesian network modeling of individual cell signaling, to patient-to-patient
differences in receptor activation, to log-expression readouts at the population level. As a
result, the final observation made for gene g for a given patient is modeled as a Gaussian
random variable Yg with conditional mean λg + log ξg (φR), parametrized by the gene-
dependent offset λg and subject-dependent root activation rates φR = {φr: r ∈ R}, and each φr
has a Beta distribution with node-specific parameters ar and br. The level of transcriptional
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regulation ξg(φR) for target g is evaluated using the single-cell Bayesian network model.
Finally, the variance σ2 accounts for the variation in measurement error, which is the same
for all genes.

E. Expected Transcription Rate Function
Recall from equation (3) that for each gene g ∈ G, ξg(φR) represents the cell-level average
transcription rate of g, where we interpret this equation as a conditional expectation given
the root activation rates are fixed to be φR. Let Rg denote the set of roots which are ancestors
of g, so that ξg(φR) only depends on φRg. Since these root variables are binary and
independent,

Consequently,

(7)

It will be important in the following to have a quick access to the value of ξg(φR) for any
given choice of the root activation rates. One possibility is to pre-compute all the
coefficients of the above polynomial expression (i.e., all the E[φg(Xpa(g))|XRg = xRg]), which
are parameter-free, and evaluate the polynomial when needed. This is tractable as long as
2|Rg| remains manageable, which is the case with our network where |Rg| does not exceed 5.
The pre-computation of the conditional expectations has to be done only once. It can be
done exactly for small networks (including, again, our case), or for specific topologies. In
the general case, approximate (and often good) values can be computed using belief
propagation methods, or Monte-Carlo sampling. When |Rg| is too large for this strategy to be
tractable, it is still possible to compute or approximate ξg(φR) for a given φR using belief
propagation each time its value is needed (without pre-computation).

Finally, we notice that the computation of ξg can be done very efficiently when, for each v ∈
V, the function φv depends linearly on the states xpa(v) of the parents. This property is true in
particular in the model proposed in (2). In that case, ξg can be evaluated using dynamic
programming along the network’s top-down hierarchy, thanks to the following proposition,
proved in Appendix B.

Proposition III.1—Suppose that for all v ∈ V,

for some coefficients cv and cuv. Then for all v ∈ V,
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for the coefficients dv and drv determined by the recursions dv = cv + Σu∈pa(v) cuvdu and drv
= Σu∈pa(v) cuvdru.

Thus, in the case of proposition III.1, it suffices to pre-compute coefficients drg for r ∈ R and
g ∈ G to ensure a computation of ξg(φR) in a time which is linear in the number of roots.

IV. Learning Algorithm
Our model has both observed and hidden variables. The observed ones are the gene

expression levels  over N subjects. All other variables are
unobserved. Among these, we are particularly interested in the root activation rates

, which constitute the hidden phenotypic information about the
individuals in the population. The joint density of gene expression values and activation
rates is given by

where θ = {λg, ar, br, σ2: g ∈ G, r ∈ R} is the set of parameters. The conditional densities on
genes are Gaussian,

and the activation rates have standard beta distributions

where, for each root node r ∈ R,  is the beta function. The
objective of learning, i.e., model identification, is to infer θ based on yG, where we assume
each Yg to be conditionally independent of the other expression values YG\{g} given
activation rates φR. The other hidden variables, namely the signaling proteins and
transcription factors, as well as their wiring, appear implicitly in functions ξg(g ∈ G).

The standard method for learning such a latent variable model is the expectation
maximization (EM) algorithm. Briefly, EM provides an improving sequence (θ ̂(t))t≥1 of
parameter estimates by iteratively maximizing the conditional expectation of the complete
data log-likelihood, given i.i.d. incomplete observations. In particular, each iteration t of EM
involves (i) an E-step which requires computing of the missing data posterior, fR|G(ΦR|
yG;θ ̂(t)), in order to evaluate the current objective function
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(8)

and (ii) an M-step, in which one solves for the new parameter estimates

by maximizing the objective function. This procedure is repeated until convergence is
evident.

Evaluating (8) is usually simplified when the likelihood of the complete model (including
both hidden and observed variables) belongs to an exponential family, which is the case
here, since we can write

where 〈·, ·〉 denotes the vector scalar product; Λ and Π are scalar and vector valued
functions of θ; and S(yG, ΦR) is a vector-valued complete data sufficient statistic. Explicit
formulae for Λ, Π and S are provided in Appendix D. The maximum likelihood estimator
can be expressed as a function of the sufficient statistic, in the form

The computation of θ ̂ML(S) with our model is described in Appendix E. Since (8) can be
rewritten as

it follows that the E-step can be reduced to computing the conditional expectation of the
sufficient statistic, namely

(9)

while the M-step is simply given by

(10)

However, due to the marginal beta distribution of ΦR, there is no simple closed form for the
the computation of (9) in the E-step and straightforward EM is intractable here. Instead, we
will consider a stochastic variant, the Stochastic Approximation EM (SAEM) algorithm,
wherein the E-step is approximated with Monte Carlo integration. Under mild conditions
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[4], [12], SAEM converges to (local) maxima of the objective function if the complete data
log-likelihood belongs to a curved exponential family, which is the case in our model.
Basically, SAEM replaces the E-step of conventional EM with a stochastic approximation
running in parallel, involving the simulation of missing data ΦR. In its simple form, the
SAEM algorithm makes an iterative approximation of S(t+1) by defining

(11)

where (γ(t))t≥1 ∈ [0,1] is a decreasing sequence of positive step sizes starting with γ(1) = 1,

and  is a simulated sample of ΦR, drawn conditionally to yG for the current parameter
θ(t). The M-step is then given by

(12)

In principle, in order to ensure the convergence of the SAEM algorithm, one should take

 and .

So the SAEM algorithm replaces computing conditional expectations by sampling from the
conditional distribution which is most of the time much more feasible. Moreover, variants of
this algorithm allow for coupling the iterations with Markov chain Monte-Carlo sampling,
when direct sampling is not feasible or not efficient (which is the case for our model). One

can also use more than one sample  at each step, using a sample average in (11). The
explicit implementation of the variant we have used is described in the next sections, for a
single iteration t.

A. Simulation
Given the current parameter values θ ̂(t) and observed expression data yG, we generate M(t) ≥

1 realizations , (m = 1, …, M(t)) of missing data under their
joint posterior fR|G(·|yG; θ ̂(t)). For this, we use Gibbs sampling algorithm, which sequentially
produces an instance for each φr, from its univariate conditional given the observations and
already sampled current states of other root variables φR\{r}. The resulting sequence

 of realizations will then constitute a Markov chain, whose stationary distribution
is the sought-after posterior fR|G.

For each r ∈ R, let Gr be the set of genes which are descendants of r and let Rr be the set of
root nodes other than r which have a descendant in Gr. It is not hard to show (see Appendix
C) that the conditional density of φr given the rest of the variables (YG, φR\{r}) only involves
quantities indexed from Gr ∪ Rr. Hence, letting fr|GrRr denote this univariate conditional, the

mth realization  of missing root variables for subject n and iteration t of SAEM, is
produced by Gibbs sampling as follows:

i. Set
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ii. Visit the root nodes in some fixed order and, for each r ∈ R, set

This step is made explicit in Appendix C.

B. Stochastic Approximation
We update the sufficient statistic according to

(13)

C. Maximization
We compute θ ̂(t+1) = θ ̂ML (Ŝ(t+1)), the latter function being described in Appendix E. In
summary, the model parameters are efficiently learned by keeping track of complete data
sufficient statistics, which are improved with new realizations of missing data.

D. Root Activation Probabilities

The sequences  that are generated by the SAEM algorithm can also be used to
estimate, subject dependent, expected root activation probabilities given corresponding gene

expression levels. That is, the conditional expectation  can be recursively
approximated by

(14)

which, at SAEM’s convergence is returned as patient n’s phenotype estimate .

V. Experiments with the RAS-RAF Network
In this section we present experiments in learning the network, measuring the stability of
model identification, and estimating the states of the hidden variables, especially the
activation states of the receptors. Our data consist gene expression levels measured for 38
genes and collected from 118 breast cancer patients. The observed genes are listed in Table
I, with their known transcription factors and associated type of regulation. The data set also
contains complete measurements for the ERα status of patients.
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A. Validating Identifiability of Model
Before discussion experiments with real patient data, we first check if the model can be
accurately identified from artificial gene expressions simulated with known parameters.
Given θ, we can generate subject dependent receptor activation rates

 according to their beta priors fR(·|θ); and conditioned on them,

we can sample gene expressions  from fG|R(·|ΦR; θ). Then, we
can evaluate the fit between true parameters θ and their estimates θ ̂ that are learned by
applying the algorithm on simulated observations yG. In particular, since the SAEM
algorithm also returns predictions Φ̂R of receptor activation rates, we can compare those
subject specific estimates with their simulated true counterparts ΦR that are kept hidden
during learning.

For a better analysis, we can conduct the above procedure at different noise levels. Note
that, with simulated phenotypes ΦR, our model assumes the log of expected transcription

rates  as the noise-free signal that determines the subject

dependent variation for each gene g ∈ G. Letting  denote the
corresponding sample average, and given the variance σ2 of measurement noise, the signal
to noise ratio (SNR) measured in dB, is found by

Table II lists a summary of model identification accuracies at different SNR levels. For each

r ∈ R, correlation coefficients between the simulated true vector  and its learned

estimate , are given as an average score over 10 independent experiments per each
choice of SNR, where experiments differ in random selections of true parameters used to
simulate data of sample size N = 100. Clearly the model is accurately identified with
moderately sized learning samples and even with SNR = 0, where the standard deviation in
log ξg (φR) averaged across all genes g ∈ G, i.e. the root mean squared amplitude of the
subject dependent signal is the same as that of noise. In particular, the estimations for the
receptors ERα and EGFR inferred from simulated data are more precise, since they affect
the majority of the genes observed.

B. Estimating Receptor Activity from Real Data
One important way to measure the utility of the model is to estimate the states of the
receptor proteins from the gene expression data. In our model, these states are binary
variables, each sampled independently from a patient-dependent activation rate.
Consequently, it is these rates which are the more natural targets of estimation. For each of
the 118 patients, we are provided with a binary label for the measured phenotypes, either

“ERα-positive” or “ERα-negative”. Our activation rate estimates  are scalars. The
rank-sum test, also known as Mann-Whitney-Wilcoxon test, offers a natural and robust way
to compare predictions, especially by averaging over different parameter initializations. It is
a nonparametric procedure for testing the hypothesis that two independent samples are
identically distributed.

Let ER+, ER− ⊂ {1,2, …, N} be the sub-populations of patients who are ERα-positive and
ERα-negative, respectively. In our case, the null hypothesis H0 is that the activation rates
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from these two sub-populations are identically distributed. Our data are the estimated rates

 and , where |ER+| = N+ = 75 and |ER−| = N− =43.

Figure 3 compares the histograms of estimates  and  (superposed with their non-
parametric density fits for better visualization) obtained with 20 repeated experiments where
each run of the algorithm differs in random parameter initializations. The rank-sum test p-
value (see Appendix F for a description of rank-sum test) averaged over these 20
experiments is found 0.0018 with standard deviation 0.00045. As can be seen in the
separation of histogram modes, the estimates are reproducible and consistent with
phenotypes.

The data set also reproduces the EGFR status for 79 of the 118 patients, again recorded as
EGFR-positive or EGFR-negative, but with only 8 positives. The same rank-sum test
approach to correlate this information and the EGFR rate predicted by the model, failed to
provide a significant p-value, but this would have been very hard to achieve due to limited
power of rank-sum test with such a small number of available EGFR-positive patients.

C. Estimating the States of Other Signaling Proteins
We can also infer the states of the non-receptor hidden components, i.e. signaling proteins

and transcription factors. Having estimated  for each patient n, the subject-specific

expected status  of each network component v ∈ V\G can be directly
evaluated similar to the way in which we computed the ξg’s in equation (7). Letting Rv
denote the root ancestors of v, we get

(15)

where, again, the expectations involved in the sum are parameter-free and can be pre-
computed using proposition III.1. Note that, with that notation, subject n’s expected status

 at a root r ∈ R is the same as the prediction of the corresponding activation rate .

For a node v with only one parent, say u, the above computation simplifies to  (resp.
), since while evaluating the expectation E[Xv|XRv = xRv], (2) will give φv(xu) = P(Xv =

1|Xu = xu) = E[Xv|Xu = xu] = xu (resp. 1 − xu), if u activates (resp. inhibits) v. In other words,
along linear sequences, signaling is assumed to propagate deterministically, where each
node either copies or reverses the status of its single parent. Thus, our model is invariant to
adding/removing components at such pathways, that is, topologies that reduce to the same
collapsed structure, yield the same data likelihood as well as the same predictions for
common nodes.

Figure 4 shows a gray scale heat map (black: low, white: high) of estimates for hidden
components appended to the observed gene expressions, where to avoid redundancy, hidden
nodes with only one parent are excluded, since, as mentioned above, they can be directly
deduced from the ones already shown. Spot (v, n) gives the estimated or observed status of
signaling component v, for patient n. Each row is scaled to a common dynamic range by
subtracting the mean and normalizing with standard deviation. Columns (i.e. patients) are
arranged according to the projection rank of the corresponding gene profile on to the
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direction of largest variation in gene space, namely the first eigenvector of covariance
matrix of observations. Besides demonstrating our ability to estimate subject dependent
status of cell signaling, analysis of this picture is limited since ground truths for hidden
nodes are missing. However it is noteworthy that our inference of hidden nodes aligns with
the first order variation amongst genes.

D. Validating Reproducibility and Sensitivity to Sample Size
In order to assess the method’s generalization power and sensitivity to sample size we used
a ”repeated random sub-sampling validation” procedure, where we repeatedly partitioned
the available gene expression data into two random halves, and checked the fit between
models learned from these two disjoint subsets.

In order to describe this validation study, let B ⊂ {1,…, N} be a sub-population of patients
and let θ ̂(B) denote the model parameters learned from the corresponding expression data

. Then, based on the model with estimated parameters θ ̂(B), let

 denote the predicted receptor activation rates for patient k, who may or
may not be in B.

The expectation involved in  can be evaluated by Monte Carlo integration as discussed
in the simulation step of SAEM, i.e. by Gibbs sampling the model, with parameters θ ̂(B) and

conditional to corresponding observations . Note that, if k ∈ B, in other words if the

queried patient is in the training set, then, as we reported so far,  is already an output of
our learning algorithm, and it is found in the same way by equation (14).

Now, let A and  be two disjoint halves of the experimented population {1,…,N}. To

validate our method, we want to compare, for each n, the estimations  against ,
that are predicted for the same person, but with respective model parameters θ ̂(A) and ,
learned from two disjoint sets of subjects.

Table III shows the reproducibility results, where for each r ∈ R, we give the corresponding
scatter plot of  vs. , for n = 1,…,N, and accumulated over 20 random selections of
A. Averaged over these repeated random sub-sampling experiments, the resulting correlation

coefficient between predicted vectors  and  is used as a measure of fit
between models learned on disjoint patient populations, showing how well the method
generalizes, with even smaller learning samples.

E. Validating Robustness with respect to Realistic Modifications in Network Topology
In Section V.C, we discussed the invariance of statistical inference under structural
perturbations like collapsing or elongating linear pathways. Denoting the original core
topology of Figure 1 by , we now want to examine the robustness of our model with
respect to biologically realistic revisions , which are similar to  but not equivalent in the
previous sense.

As another expert interpretation of the original graph , we consider the modified wiring
diagram  of Figure 5. Note that, compared to ,  lacks few genes that were originally
observed, and several other proteins and connections. Absent components and their
discarded pathways are also shown in light gray for better visualizing the difference.

On the same gene expression data, we ran our algorithm using the revised topology  and
compared the new estimations to their counterparts found with . Figure 5 also quantifies
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the resulting agreement of inference for nodes that are common under both models.
Attached to each v and averaged over 20 independent experiments, we give the correlation

coefficient between subject dependent status estimations  and  based on
respective structures  and , and evaluated according to (15). The significance of
correlations demonstrate the robustness of the model with respect to different wiring
assumptions that agree with biological reality.

VI. Discussion and Conclusion
Cell signaling processes play a central role in the etiology of many diseases, and signaling
proteins provide a logical target for therapeutic intervention with numerous therapeutics
under development [19]. The success of imatinib mesylate (IM, Gleevec) in treating chronic
myelogenous leukemia has greatly increased the hope for targeted therapy, however these
new targeted therapeutics are designed to disrupt a single signaling protein. As studies in
glioblastoma multiforme have demonstrated, each individual tumor has a different specific
set of aberrant signaling proteins [18], [21], making it essential to identify in each individual
which proteins need to be targeted for treatment.

The logical method to identify an aberrant signaling protein is to look for changes in protein
post-translational modifications (PTMs), since most signal propagation takes the form of
phosphorylation changes in proteins or cleavage events changing protein localization and
structure. However, these measurements are presently very limited in vivo. An alternative
approach is to use the mature microarray technology targeted at mRNA transcripts, since
transcriptional changes resulting from activation or suppression of transcriptional regulators
are primary endpoints for many signaling processes. Microarray data coupled to models of
signaling networks provide a potential avenue for identification of individual signaling
protein abnormalities.

We have designed a statistical model for cell signaling, which accounts for cell
heterogeneity, can be robustly learned from available microarray data and supports rigorous
statistical inference. Our effort was mainly invested in laying out a comprehensive
framework to identify and quantify aberrations in signaling. Consequently, we used prior
knowledge and considered a documented core topology (Figure 1) that is particular to our
breast cancer study and available expression data. We followed a multi-level approach to
elaborate the overall generative process starting from hidden phenotypes to final log-
expressions with different statistical interpretations in cell, tissue, population and
measurement levels.

It is worth noting here that, for computational purposes, we constructed our Bayesian
network formulation at the cell level, with parameter-free, linear and generic transition
probabilities as given in equation (2), which, it may be argued, oversimplify the underlying
chemical processes. However, the overall model allows the user to incorporate his/her expert
knowledge and to explain signaling dynamics with more complex, nonlinear choices, which
in turn may enhance the predictive accuracy of the method. In fact, without sacrificing
efficiency, one can assume alternative formulations to (2) that are still linear but favor the
known dominance of one or more competing parents at crossing pathways; or, for instance,
one can differentiate interactions at the signaling level from those at the level of
transcription. To further enrich the model, one can even introduce extra parameters that can
be validated as more protein data becomes available.

Note also that, due to lack of measurements on all hidden variables but ERα, the biological
validation of our model remains currently very limited. On the other hand, ERα ground truth
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usually correlates with the majority of the genes. Thus, if the task were to predict ERα
statuses only, one would argue for simpler Bayesian approaches with performances
comparable to ours. However, this argument should not lessen the utility of our model which
lays out a comprehensive framework to infer on each hidden component. In that regard, our
ERα predictions we report here, should not be interpreted as an achievement, which
otherwise could not be made, but rather a consistency check.

Finally, we have demonstrated model’s identifiability, reproducibility through simulations
and robustness under biologically meaningful revisions of topology. Using real patient data,
we validated its ability to recover receptor status in a breast cancer study. As signaling plays
a central role in the etiology of many diseases, identification of the aberrant proteins driving
signaling errors will provide information for personalized therapeutic intervention. It is
expected that this will improve patient prognosis and reduce undesirable side-effects during
treatment.
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Appendix

A. Measurement Process

As argued in [2], we first assume the additive part  of equation (5) is negligibly small due
to background correction applied by scanner’s imaging software. Secondly, again proposed

by the same authors, we consider a multiplicative decomposition for the gain factor 

(16)

We interpret each component as follows: Combined with the scanner gain, dg represents the
background corrected hybridization efficiency of the probe set assigned to gene g. The
quantity D(n), on the other hand, stands for the normalization constant applied across all
probes of patient n. We take dg to be gene specific and fixed for all subjects, whereas D(n) to
be subject dependent and the same for all genes. We further assume that D(n) is proportional
to the number C(n) of cells contained in subject n’s experimented tissue, since it is usually
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set to the total intensity captured from the corresponding array. Finally, the remaining

variation in  is attributed to a multiplicative error term given as an exponential, whose
argument is modeled i.i.d. for all genes and subjects, and realized as η(g,n) for gene g and
patient n.

Combining equations (4), (5) and (16), we obtain equation (6), i.e. our measurement model
for log expression of gene g and patient n

where, probe specific parameters and the ratio C(n)/D(n), which is constant by assumption,

are absorbed by the final readout offset , that is specific to gene g and
independent of patients. In log scale, measurement noise η becomes additive and described
as a zero mean Gaussian random variable with variance σ2, which is the same for all genes
and subjects.

B. Proof of Proposition 3.1
The result follows from the Markov property of the process and the linearity of the
expectation. If v ∈ R, the claim holds by definition, with dv = 0 and drv = δ(r,v). Otherwise,
suppose the claim holds for all parents of v; then by induction we have

C. Gibbs Sampling
Gibbs sampling in the simulation step of SAEM, visits each root node r ∈ R, repeatedly in a
fixed order, and produces a realization of the corresponding activation rate φr from its
conditional density, given the current instantiations of other root variables and already
observed gene expression levels. Then, it can be shown that, the sequence of simulated root
activation rates, that are consecutively drawn from their univariate conditionals, constitutes a
Markov chain, whose stationary distribution is the joint posterior fR|G of interest.

Using Bayes rule and the Markov property, the conditional density of the activation rate φr
of root r ∈ R, given the realizations (yG, φR\{r}) of remaining variables, can be written as
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where Gr is the set of gene descendants of r, and Rr contains the roots other than r that have
descendants in Gr. Terms ∏r′∈R\{r} fr′(φr′|θ) ∏g∈G\Grfg|R(yg|φR\{r}; θ) that do not involve
anything indexed with r, cancel each other in the second line, yielding the final expression,
which only depends on realizations at nodes Gr ∪ Rr, i.e. the “Markov blanket” of r in G ∪
R (see Figure 6). Thus, we denote φr’s univariate conditional by fr|GrRr(·|yGr, φRr;θ).

Sampling from fr|GrRr is still not straightforward. Among different ways of doing this, we
used factored sampling due to its simple formulation in our case. Since

generating K samples {s(1),…, s(K)} from prior beta density fr(·|θ) and choosing s(i) (i = 1,
…, K), with probability

as the new realization for φr, will approximate a variate from fr|GrRr, as K tends to be large.

Notice that, drawing samples from standard beta priors is straightforward with available
statistical packages, and so is evaluating weights πi. Also, with a reasonable K, one does not
have to wait for Gibbs sampling to mix within every single execution of the simulation step,
since last samples returned from a given iteration of SAEM, are already used to initialize the
chain for the next iteration.

D. Complete Data Log-likelihood
The complete data log-likelihood is

In our case, functions Λ and Π are given by
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with sufficient statistic

(17)

E. Complete Data Maximum Likelihood
We here give the expression of the maximum likelihood estimator θ ̂ML in function of the

sufficient statistic S described in (17). First, let  and  denote the two-
and five-dimensional sub-vectors of the sufficient statistic in (17), corresponding to root r ∈
R and gene g ∈ G, respectively. The corresponding maximum likelihood estimator θ ̂ML is
given as follows:

• For each root r ∈ R, âr and b̂r of the beta prior fr will satisfy

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. A closed-form solution to that
system does not exist, but, similar to standard maximum likelihood parameter
estimation of a beta density, âr and b̂r are found numerically.

• For each gene g ∈ G, the corresponding updated offset parameter is given by

• Finally, the noise variance is obtained by
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F. The Rank-sum Test for Estimating Receptor Status

The rank-sum test is performed by first ranking each sample  in ascending order within
the union of both populations. The test statistic U is the sum of the ranks coming from the
“negative” population . (The choice of which rank sum is immaterial and leads to the
same p-value.) Since both N+ and N− are sufficiently large, U is approximately normal under
H0 with mean

and standard deviation

We expect that the population  to generate smaller activation rates than the population

. Consequently, the alternative hypothesis H1 states that U has a smaller mean than μU

and the corresponding p-value is the left tail area of normal density  determined
by the observation U = u; that is, the probability PH0(U ≤ u) of observing a test statistic U as

small or smaller than the actual rank sum u found for  under the null hypothesis.
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Fig. 1.
Graphical representation of the signaling network of interest. Cell receptors (rounded
squares) are roots along with cellular conditions (hexagons) and sit on top of the network as
initiators of downstream signaling. Signaling proteins (circles) followed by transcription
factors (diamonds) are given in the middle of the hierarchy. Genes (octagons) are leaves of
the network and given at the bottom as final targets of transcription. Types of causal
interaction between components are given with arcs directed from parent to child, arrow and
round heads are used to indicate activation and inhibition, respectively.
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Fig. 2.
Illustration of a microarray experiment. Tissue sample obtained from a test subject is
assumed to contain a large ensemble of cells. Signaling in each cell is modeled by the same
Bayesian network that generates gene specific mRNA independent from other cells given
patient’s phenotypic receptor activation probabilities. mRNA accumulated from all cells is
processed through hybridization, scanning etc. to yield final gene expression readouts,
which constitute the only observable variables. Thus, the overall process motivates our
multi-level approach and the assumption that measured gene expression levels are
proportional to their single cell conditional expectations given patient dependent root
activation probabilities.
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Fig. 3.
Normalized histograms and nonparametric density fits of patient dependent predictions for
ERα activation rates corresponding to ER+ and ER− sub-populations. Histograms are
generated and rank sum test p-values are averaged over 20 independent runs.
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Fig. 4.
Grayscale heat map of patient-specific networks. Each row corresponds to a network
component and each column to a patient. The rows are scaled to a common dynamic range.
The columns are arranged according to the projection rank of the corresponding gene profile
on to the direction of largest variation in gene space. The white stripe separates the observed
log gene expression levels on top from the estimates of the hidden components. Hidden
nodes that have only one parent (the ones that are intermediate proteins along linear
cascades) are excluded to avoid repetition, since their predictions are the same or inverse of
their parent, directly deducible from the ones already shown.
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Fig. 5.
A simpler expert interpretation of the original core topology of Figure 1. Discarded
components and edges are shown in light gray for comparison. Scores at each node indicate
the correlation coefficient between the corresponding status estimates under the original and
modified wirings.
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Fig. 6.
A simple DAG with 5 roots and 5 leaves. Markov Blanket of the white node is the set of
black nodes.
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TABLE I

Observed genes and their parent transcription factors; the type of regulation (activating or inhibiting) is
indicated by the arrows

Gene Parent Transcription Factor(s)

CSF2 NFkB↑ JUN↑

TP63 p53↑

EGR2 Elk1↑

CYP1B1 ERα↓

LHB ERα↑

BHLHB2 Hif1↑

CKB ERα↑

PRL ERα↑

BRCA1 JUN↓

CSN2 STAT5↑

BCL2A1 JUN↑

EPO Hif1↑

CASP1 p53↑

JUNB SMAD4↑

FOS ERβ↓, p53↓, TCF↑

LDHA Hif1↑

PDX1 FOXO1↓

CKM p53↑

PTTG1 p53↓

NQO1 ERβ↑, JUN↑

TSHB JUN↑

ATF3 JUN↑

SCN3B p53↑

SOCS1 STAT5↑

IL8 NFkB↑

IL12B JUN↓, NFkB↑

IL3 JUN↑

VEGFA Hif1↑, ERβ↑

IL4 JUN↑

NPPA JUN↓

CXCL9 NFkB↑

CCNG1 p53↑

GADD45A p53↑

FASN STAT5↓

IL2 JUN↑, NFkB↑

IFNB1 JUN↑, NFkB↑
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Gene Parent Transcription Factor(s)

CDK4 Myc↑

PMAIP1 p53↑
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