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ABSTRACT

We study in this paper the problem of jumper insertion
on general routing (Steiner/spanning) trees with obstacles
for antenna avoidance/fixing at the routing and/or post-
layout stages. We formulate the jumper insertion for an-
tenna avoidance/fixing as a tree-cutting problem and present
the first optimal algorithm for the general tree-cutting prob-
lem. We show that the tree-cutting problem exhibits the
properties of optimal substructures and greedy choices. With
these properties, we present an O((V + D) lg D)-time opti-
mal jumper insertion algorithm that uses the least num-
ber of jumpers to avoid/fix the antenna violations on a
Steiner /spanning tree with V' vertices and D obstacles. Ex-
perimental results show the superior effectiveness and effi-
ciency of our algorithm.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids

General Terms: Algorithms, Performance, Reliability
Keywords: Antenna Effect, Jumper Insertion, Routing

1. INTRODUCTION

As the process technology enters the nanometer era, prod-
uct reliability and manufacturing yield have become major
concerns in VLSI circuit design and manufacturing. The fine
feature size of modern IC technologies is typically achieved
by using plasma-based processes. In nanometer technology,
more stringent process requirements cause some advanced
high-density plasma reactors adopted in the production lines
to achieve fine-line patterns [6]. However, these plasma-
based processes will charge conducting components of a fab-
ricated structure. As a result, the accumulated charges may
affect the quality of IC’s. This is called the antenna effect.
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During metallization, long floating interconnects act as
temporary capacitors and accumulate charges gained from
the energy provided by fabrication steps such as plasma
etching. A random discharge of the floating node due to sub-
sequent process steps could permanently damage transistors
in the IC [8, 11]. For instance, the exposed polysilicon and
metal structures connected to a thin-oxide transistor will
collect charge from the processing environment (e.g., reac-
tive ion etching) and damage the transistor when the dis-
charging current flows through the thin oxide. The mecha-
nism of antenna damage is not fully understood, but there is
experimental evidence indicating when charging occurs and
how it may affect the quality of gate oxide [8, 11]. Charg-
ing occurs when conductor layers not covered by a shielding
layer of oxide are directly exposed to plasma. The amount of
such charging is proportional to this plasma-exposed area.
If conductor layers are connected to a diffusion layer pat-
tern, such charges are discharged to the substrate through
the diffusion; see Figure 1 for an illustration. On the other
hand, if the charged conductor layers are connected only
to the gate oxide, Fowler-Nordheim (F-N) tunneling current
through thin oxide discharges such charges and causes dam-
age to the thin oxide [8]; see Figures 1(b) and (c). As shown
in Figure 1, interconnects are manufactured layer by layer.
Before a conducting path to the diffusion is formed in metal
2 layer pattern etching (see Figure 1(d)), the interconnects
in the poly and metal 1 layers might have accumulated so
many charges that they cause damage on the gate in the
left of Figure 1(c). (Note that there will not be any antenna
violation after a conducting path to the diffusion is formed.)

There are three kinds of solutions to reduce the antenna
effect [1]:

1. Jumper insertion: Break the signal wires with antenna
violations and route them to the highest layers by
jumper insertion. This reduces the charge amount for
violated wires during manufacturing.

2. Embedded protection diode: Add protection diodes on
every input port of a standard cell.

3. Diode insertion after placement and routing: Fix those
wires with antenna violations that have enough rooms
for “under-the-wire” diode insertion.

Comparing the three methods, for Method 2 of embed-
ded protection diode, since these diodes are embedded and
fixed, they consume unnecessary areas when there is no vi-
olation at the connecting wire. For the third method, we
need extra space in the chip to place the diodes. Because
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Figure 1: Antenna effect. (a) An example routing. (b)
Late stage of poly layer pattern etching of Figure (a).
Charge on the left poly pattern is discharged through the
gate while charge on the right poly pattern is discharged
through the diffusion. (c) Late stage of metal 1 layer
pattern etching of Figure (a). Charge on the left metal
1 pattern is discharged through the gate while charge
on the right metal 1 pattern is discharged through the
diffusion. (d) Late stage of metal 2 layer pattern etch-
ing. Charges on all the metal 2 patterns are discharged
through the diffusion.
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the number of diodes needed for fixing antenna violations
grows dramatically as the feature shrinks, it is hard to pre-
serve enough space for diodes in nanometer IC designs. As
a result, jumper insertion becomes one of the most popu-
lar approaches for avoiding/fixing antenna violations. The
function of jumper insertion can be explained using Fig-
ure 2. In Figure 2(a), when the metal 1 layer is manufac-
tured, the gate on the right might be damaged because the
large area of the metal 1 interconnection can accumulate
sufficient charges to damage the gate. However, if we insert
a jumper to route the interconnect on the metal 2 layer as
shown in Figure 2(b), the effective conductor layer becomes
smaller. Therefore, the stored charge is not enough to dam-
age the gate on the right, and thus we can avoid the antenna
violation.

Although jumper insertion is currently a very popular ap-
proach for antenna avoidance/fixing, jumpers induce vias
that will consume silicon areas and reduce circuit perfor-
mance. Therefore, it is desired to fix antenna violations by
using the minimum number of jumpers. The problem of
jumper insertion on a routing tree for antenna avoidance
has attracted much attention in the literature recently. Ho,
Chang, and Chen in [4] propose an O(V lg V')-time bottom-
up approach to insert jumpers in a spanning tree of V ver-
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Figure 2: Jumper insertion. (a) Stage before inserting
a jumper. (b) Stage after inserting a jumper from the
metal 1 layer to the metal 2 layer.

tices for antenna avoidance. The work assumes that each
tree node corresponds to a gate terminal and inserts jumpers
only beside the tree nodes; its optimality holds only for this
special condition of inserting jumpers right beside the nodes
of a spanning tree. There are two recent works that consider
more general cases for jumper insertion on a general rout-
ing tree (could be a spanning or Steiner tree). The recent
work [9] relaxes the constraint of inserting jumpers only be-
side the tree nodes, for which jumpers can be inserted at
an arbitrary position of a tree edge. The work achieves the
same time complexity as [4] for the relaxed problem. As an
example shown in Figure 3, the wire segment is of 1.3Lmaz
long, where Lqz denotes the upper bound for antenna (i.e.,
any wire longer than L,q, will violate the antenna rule). For
this wire segment, the work in [4] needs two jumpers to fix
the antenna violation (see Figure 3(a)) while a single jumper
suffices for the work [9] to fix the violation (see Figure 3(b)).
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Figure 3: Jumper insertion for a wire of 1.3L 4z long. (a)
Two jumpers are needed for fixing the antenna violation
if jumpers can be inserted only beside tree nodes, as
the assumption made in [4]. (b) One jumper suffices to
fix the antenna violation if jumpers can be inserted at an
arbitrary position of the wire segment, as the assumption
made in [9].

Another recent work [12] by Wu, Hu, and Mahapatra ex-
tends the work [4] to handle either a spanning or a Steiner
tree. With the implementation scheme proposed by Kundu
and Misra [7], the work [12] can achieve linear-time com-
plexity for jumper insertion in a Steiner/spanning tree for
antenna avoidance/fixing. To fix the antenna violation of a
sink node (a gate terminal in this paper), the work first re-
moves all subtrees around the node that violate the antenna
rules. After all such subtrees are removed, if the sink still
violates the antenna rule, the work will continually remove
the heaviest branch from the sink until the antenna rules
are satisfied. This approach is optimal only for sink nodes



alone. For the case with two adjacent sink nodes, their
method might not be optimal. As the routing-tree example
shown in Figure 4(a), u1 and ue are two sink nodes, the
number beside each edge denotes the antenna charge weight
(measured by the wire length, the wire area, and/or the wire
perimeter), and the maximum antenna weight that a sink
node can bear is assumed to be 10. For the work in [12],
since we cannot partition the tree into any subtree with the
total weight equal to 10, we will cut the heaviest edge near
the sink node until the antenna rule is satisfied on w; and
uz. Thus, the edge e(u1,u2) = 10 will be removed first, and
the work will insert four jumpers c1, c2, c3, and c4 as shown
in Figure 4(b). Nevertheless, for this case, three jumpers
suffice to solve the antenna violations; see the jumpers ci,
¢2, and c¢3 shown in Figure 4(c).

Figure 4: (a) A routing tree with two sink nodes u; and
uz2. (b) The work in [12] needs jumpers ci,...,cs to solve
the antenna violations. (¢) Our work needs only three
jumpers c1, c2,c3 to satisfy the antenna rule.

For a jumper insertion algorithm to be practical, we shall
work on general routing (Steiner or spanning) trees in which
a tree node represents a gate terminal and a Steiner node
represents a routing junction. We shall also allow a jumper
to be inserted at an arbitrary position of a tree edge. Since
jumper insertion routes a signal wire to the top-most layer,
we must further consider the routing with obstacles in the
active layers—the layers from the current routing layer up to
the top-most layer; typical obstacles include power/ground
nets, pre-routed nets, clock nets, etc. A jumper insertion al-
gorithm that does not work on Steiner trees, allow arbitrary
jumper insertion position, or consider routing obstacles can-
not be practical for real applications.

In this paper, we consider the general case of inserting
jumpers at arbitrary positions of tree edges with obstacles
for antenna avoidance/fixing. (See Table 1 for the features
considered by the recent jumper insertion algorithms.) We
formulate the general jumper insertion for antenna avoid-
ance (applicable at the routing stage) and/or fixing (applica-
ble at the post-layout stage) with obstacles as a tree-cutting
problem on a Stenier/spanning tree and present the first
optimal algorithm for the general tree-cutting problem. We
show that the tree-cutting problem exhibits the properties of

optimal substructures and greedy choices. With these prop-
erties, a greedy algorithm suffices to find an optimal solu-
tion [3]. Based on the theory, we present an O((V +D)lg D)-
time optimal jumper insertion algorithm that uses the min-
imum number of jumpers to fix the antenna violations in a
Steiner /spanning tree with V' vertices and D obstacles. Ex-
perimental results show that our algorithm is very efficient
and effective.

[4] [12] 19] Ours
ISPD’04 | ISPD’05 | DAC’05

Optimal for the No No No Yes
general routing tree?

Consider Steiner trees? No Yes No Yes

Allow arbitrary No Yes Yes Yes
inserting positions?

Consider obstacles? No No No Yes

Table 1: Features of the related jumper insertion works.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the problem of jumper insertion on a rout-
ing (Steiner or spanning) tree with obstacles for antenna
avoidance/fixing. Section 3 presents an optimal algorithm
for the proposed problem. Section 4 proves the optimality
of the algorithm. Section 5 reports the experimental results.
Finally, the conclusions are given in Section 6.

2. PROBLEM DEFINITION

To avoid/fix the antenna violation, we require that the to-
tal effective conductor connecting to a gate be less than or
equal to a threshold, Ly,q.. The threshold could be the wire
length limit, the wire area limit, the wire perimeter limit,
the ratio of antenna strength (length, area, perimeter, etc)
to the gate size, or any model of the strength of antenna
effect caused by conductors. For example, for wire area, we
can simply compute the product of the wire length and the
wire width (size); for the antenna-strength-to-gate-size ra-
tio, we can simply model the antenna strength divided by
the gate size as the edge weight. It will be clear later that the
modeling of the antenna-strength-to-gate-size ratio is still
feasible for uniform gate sizes since our approach processes
gate by gate for the antenna avoidance/fixing. Typically, a
net is modelled as a routing tree, where a node in the tree
denotes a circuit terminal /junction (a gate, a diffusion, or a
junction of interconnects) and an edge denotes the intercon-
nection between two circuit terminals or junctions. Since
the interconnection connecting to a diffusion terminal will
not cause any antenna violation, as explained in Section 1,
we shall focus on those connecting to gate terminals.

Let T = (V = Vg UVn, E) be a Steiner tree. The set Vg
of nodes represents all gate terminals, the set Vi of nodes
represents all Steiner points, the set E of edges denotes the
wires connecting the circuit terminals or junctions, and an
edge weight gives the measure of the wires with the same
unit as Lmaz. Note that a Steiner point denotes a wire junc-
tion, which cannot help discharge the wire. For example, if
Lmaz is a wire length limit, an edge weight denotes the wire
length between two circuit terminals/junctions. If Leq is
a wire area limit, the edge weight denotes the wire area. A
gate will violate the antenna rule if the effective conductor
incident on the gate (i.e., the effective weight—the sum of
the weights of the edges incident on the corresponding node)
is larger than Ly,qz. To reduce the antenna effects on a gate,
we can apply the technique illustrated in Figure 2 by adding
a jumper on a wire connecting to the gate to reduce the ef-
fective conductor. This operation is modelled as adding a



cutting node on the tree edge corresponding to the wire to re-
duce the effective edge weight associated with the gate node.
As aforementioned, jumpers are implemented by vias which
will consume silicon areas and reduce circuit performance.
Therefore, it is desired to fix antenna violations by using
the minimum number of jumpers. In other words, given a
routing tree (V = Vg U Vn, E) and an upper bound on the
antenna Lyq., we intend to add the minimum number of
cutting nodes so that the effective edge weight associated
with each node is smaller than Lyqe.. Let p(u) denote node
w’s parent. Let L(u) denote the sum of the effective edge
weights (wire lengths, wire areas, wire perimeter, strength
ratio, etc) on node u. Let D be the set of obstacles in the ac-
tive layers. (For simplicity, we focus our discussions on the
rectangular obstacles. The jumper insertion algorithm to be
presented in this paper readily applies to the problem with
obstacles of arbitrary shapes, with additional procedures for
obstacle identification.) The projection of the obstacles in
D defines the forbidden regions for the edges and nodes of a
routing tree for jumper insertion. Let F' be the set of the for-
bidden regions. Given a node u (an edge or a tree segment
e) of a routing tree, f(u) = 1 (f(e) = 1) if the node u (the
edge/segment e) falls inside the forbidden regions (u € F);
f(u) =0 (f(e) = 0), otherwise. With the definitions above,
we can formulate the addressed problem as follows:

e Problem JIROA (Jumper Insertion on a Routing tree
with Obstacles for Antenna avoidance/fizing): Given
a routing tree T'= (V = Vg UV, E), an upper bound
Limaz, and a set D of rectangular obstacles, find the
minimum set C of cutting nodes, ¢ # w for any ¢ € C
and v € V, f(c) = 0 for any ¢ € C, so that L(u) <
Lmaz, Yu € Va.

Note that the routing tree in this formulation represents
a net in any layout design stage, e.g., a net to be glob-
ally routed, a net after detailed routing (in the post-layout
stage). Therefore, the JIROA problem is applicable to the
antenna estimation in the global/detailed routing stage and
the antenna violation fixing in the post-layout stage.

3. ALGORITHM FOR FINDING THE

MINIMUM |c|

For the JJROA problem, we present in this section an
O((V+D)lg D)-time optimal algorithm, named BUJIO (Bot-
tom Up Jumper Insertion with Obstacles), for finding the
minimum cutting set C' for a given routing (Steiner or span-
ning) tree T'= (V, E) with V nodes and D obstacles. (Note
that we use V to denote the set or the number of nodes
in a routing tree, which is common in the community of
computer science; its meaning is clear from the context.)
Algorithm BUJIO is summarized in Figure 5. Let I(e) (or
l(u,v)) be the weight (could be the wire length, wire area,
wire perimeter, strength ratio, etc) ) of the edge e = (u,v)
in T. In the BUJIO algorithm, we add the cutting nodes
into the original tree in a bottom-up manner. We first define
a subleaf node and an optimal replacement function r(u,v)
(see Figure 6 for an illustration) as follows:

DEFINITION 1. A subleaf is a node for which all its chil-
dren are leaf nodes, and if any of its children is a gate ter-
minal, the edges between it and its children all have weights
S Lmaa: .

DEFINITION 2. Letu, v be two adjacent nodes with f(v) =
1. Then r(u,v) denotes the cutting node c on edge e = (u,v)
with f(c) = 0 and I(u,c) being the mazimum among every

Algorithm: BUJIO(T, Lyqz, D, C)
Input: T = (V = Vg U VN, E) /* The given tree. */
Lypax /* Upper Bound on antenna */
D /* Set of obstacles. */
C /* Cutting set */
1 Sort the obstacles in D by the z-axes and then y-axes.
2 for each node u € T
3 w(u) =3 te)=1ne incident on u H(€);
4 Contract every edge e incident on w with f(e) = 1;
5 while [Vg| >0
6 for each leaf node u not having been processed
7 Mark w as processed;
8 if u € Vg and l(u, p(u)) + w(w) > Lmax
Let ¢ be the node on the edge e(u, p(u))
with [(u, ¢) = Lymas — w(u);
9 if f(e) =1
10 c1 «— r(u,c);
11 C—CU{car};
12 T(V, E) — T((Ve \ {u}) U (Vx U{e1}),
EN\ {e(u,c1)});
13 else
14 C — CU{c};
15 T(V,E) — T((Ve \ {u}) U (Viv U{c}),
E\A{e(u,c)});
16 for each subleaf node u, € T
Let w1, uz, ..., u, denote all children nodes of u,;
17 totallen — % | (I(up, u;) + w(u;));
18 if u, and all of its children are in Vi
19 w(up) «— w(up) + totallen;
20 T(V,E) «— T(V\U"_ {u;},
EN\ U {e(ui, up)});
21 else if totallen + w(up) < Lmax
22 EqualLess(T, C, up, totallen) ;
23 else
24 More(T, C, up, totallen);

Figure 5: Algorithm BUJIO deals with the leaf nodes
first, and then call Subroutines EqualLess and More to
deal with the subleaf nodes.

obstacle

u

Figure 6: Illustration of the r(u,v) function, where c is
just beside the forbidden region.

node on edge e(u,v). In other words, c is just beside the
forbidden region covering node v.

We derive the BUJIO algorithm based on the following
four steps:

e Step 1 (line 1 of Algorithm BUJIO): Sort the obstacles
in D by the z-axes and then the y-axes.

With this process, we can determine f(u) and f(e) in
O(lg D) time.

e Step 2 (lines 2—4 of Algorithm BUJIO): Compute the
weight of every node.

If a tree node u € V is in a forbidden region, some seg-
ments of the edges incident on u could also be in the
forbidden region. Therefore, we cannot insert jumpers
on these segments, and charges induced from these
segments cannot be removed. Let the weight w(u) =
Zf(e):l/\e incident on u L(€). Obviously, if w(u) > Lmaax
for some node u, the accumulated charges on u are over
the upper bound that w can tolerate. For this case,



we cannot prevent node u from antenna violation by
jumper insertion alone. Otherwise, we can always find
an optimal solution for jumper insertion. For the fea-
sible case of a set of edges incident on a node u, we
can reduce the problem with obstacles into the case
without any obstacle by contracting the tree segments
e1,e2,...,e inside the obstacles to node u and assign-
ing w(u) = Zfil l(e;). See Figure 7 for an illustration.
After this processing, we can insert jumpers just as the
case without any obstacles.

Obstacle

ul u2

ul u2
(a) (b)

Figure 7: An example reduction for Step 2. (a) A routing
tree with a node v in an obstacle (denoted by the shaded
region), where di,ds,...,ds are nodes on the tree edges,
just beside the obstacle. (b) Reducing the tree of (a) by
removing edges e(u,d1),e(u,dz2),...,e(u,ds) and assigning

w(u) = 7y Ue(u, di)).

e Step 3 (lines 6-15 of BUJIO): Handle every leaf node.

In this step, our main goal is to prevent every leaf node
from antenna violation. Obviously, if we have dealt
with a leaf node, we need not consider it any more.
Therefore, line 7 of the BUJIO algorithm marks these
nodes to make sure that every leaf node is processed
only once. If I(u,p(u)) + w(u) < Lmaz, the leaf node
u satisfies the antenna rule. Thus, we need not insert
any cutting nodes. If u € Vi, since u is not a gate
terminal, we need not insert any cutting node, either.
However, if [(u,p(u)) + w(u) > Lmaz and u € Vg, we
must insert at least one cutting node to satisfy that
L(u) < Lmaz. We claim that I(u,¢) = Lmaz — w(u)
(and thus I(c,p(u)) = l(u,p(v)) — Lmaz + w(u)) gives
the best position for inserting the cutting node; see
Figure 8(a) for an illustration. However, if f(c) = 1,
we must find a position not in F'. We claim that ¢; =
r(u, ) is the optimal substitute; see Figure 8(b) for an
illustration. After adding jumper ¢ or ¢; into C, we
cut edge e(u,c) or e(u, c1) from the tree T' (lines 6-15
in BUJIO).

e Step 4 (lines 16-24 of BUJIO): Process every subleaf
node.

In this step, our main goal is to prevent every sub-
leaf node from antenna violation. Moreover, we delete
some nodes and edges to make each subleaf node a
leaf node. (Note that as the edges are chopped off
in tree cutting, the leaf nodes of the remaining tree
might be Steiner or cutting nodes, which may not al-
ways correspond to gate terminals.) First of all, if up
and all its children are in Vv, any of them needs not
satisfy the antenna rule. Therefore, we just combine
up and its children into a new leaf node and modify

u

Cutci=r (u,c) obstacle

;Lmax-w(u) N\ ! ECM - /

Cutc  p(u) u p(u)
(a) (b)

Figure 8: Explanation of lines 6-15 in the BUJIO algo-
rithm. (a) The cutting node c is the optimal one among
the nodes on edge e(u,p(u)). (b) c1 is the optimal substi-
tute of ¢, where ¢ = r(u,c) is just beside the forbidden

region.

its weight as w(up) + totallen (see lines 18-20 in Al-
gorithm BUJIO). Then we classify the subleaf nodes
into two cases by the sum of the weights between the
node and its children and the weights of its children.
Let up be a subleaf node and wu;,V1 < ¢ < k, be its

children. Let totallen = Ele (H(wiy up) + w(ui)).
Case 1: totallen + w(up) < Lmas

We use the EquallLess subroutine to deal with this case.
If up, and its children form an isolated component, they
must satisfy the antenna rule, and thus we are done
with the subroutine. If totallen+w(up)+1(up, p(up)) <
Lmaz, up will not violate the antenna rule. If u, € Vi,
it must be a Steiner node and all the edges between
up and its children contributes to its weight. Thus we
simply combine u,, and its children into a new leaf node
and modify its weight as w(up)+totallen (see lines 4-5
in Subroutine EqualLess). Moreover, if u, or any of its
children is in Vg, it means that the new leaf node u,
satisfies the antenna rule and thus we add w, into Vg.
Otherwise, we let u, be its original type. If totallen +
w(up) +(up, p(up)) > Lmaz, we must add at least one
cutting node ¢ to prevent u, from antenna violation.
We claim that I(c, up) +w(up) +totallen = Lmas gives
the best position for inserting the cutting node; see
Figure 9(a). If f(¢) = 1, however, we must find a
position not in F. We claim that ¢; = 7(up, ¢) is the
optimal substitute; see Figure 9(b) for an illustration.
Therefore, we add ¢ or ¢; into C, and cut u, and all
its children from the original tree 7' (lines 10-17 in
EqualLess).

Case 2: totallen + w(up) > Lmaa

For this case, we apply the More subroutine. We first
introduce the set S = U, {I(e(us, up)) + w(u;)} from
the subleaf node u, and its k children. Then, we ap-
ply the linear-time algorithm SPLIT presented in [7]
to split the set S into two disjoint subsets, S;, and Sj,
where S}, is the higher subset, and S is the lower sub-
set. (To make this paper self-contained, we also give
the SPLIT algorithm in Figure 12.) The two subsets
have three important properties: (1) for any a € S;
and any b € Sp,, we have a < b; (2) ZSES, $ < Lmax;
(3) for any b € Sy, we have 3 g s+ b> Lmas. And
the SPLIT algorithm will return the S; subset. We
claim that ¢; on edge e(u;,up) with I(c;,up) = 0 (and
thus I(ci, ui) = l(up, ui)) and l(e(ui, up)) +w(u;) € Sh,
V1 < i < |Sh| gives the best positions for inserting
the cutting nodes; see Figure 9(c). Therefore, we add
ci,...,¢s,| into C, and cut us, . . ., u|s, | from the orig-
inal tree 7" (lines 1-5 in More). Moreover, we call sub-
routine EqualLess to further reduce u, into a new leaf
node (line 6 in More).
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Figure 9: (a) Illustration of the EqualLess Subroutine.
Here, [(up,u1) + w(ut) + Uup, u2) + w(uz) + wup) + L(up,c) =
Lmaz. (b) Illustration of the EqualLess subroutine with
the cutting node c in a forbidden region. Here, c; is
the optimal substitute of ¢, where c¢i = r(up,c) is just
beside the forbidden region. (c) Illustration of the More
subroutine.

When |Vg| = 0, Algorithm BUJIO terminates and C' gives
a cutting set of the minimum size.

4. PROOF OF THE OPTIMALITY OF ||

Algorithm BUJIO is greedy in nature. To prove that Algo-
rithm BUJIO finds the optimal cutting set (of the minimum
size), therefore, we can show that the JIROA problem ex-
hibits optimal substructure and has the greedy-choice prop-
erty [3]. A problem exhibits optimal substructure if an op-
timal solution to the problem contains within it optimal so-
lutions to the subproblems; a problem has the greedy-choice
property if a globally optimal solution can be arrived at by
making a locally optimal (greedy) choice [3]. Due to the
page limit, we only show the theoretical results and omit
the proofs.

THEOREM 1. The JIROA problem exhibits an optimal sub-
structure.

Now we show that the JIROA problem has the greedy-
choice property, and Algorithm BUJIO finds the best solu-
tion in each step. First, we show that Algorithm BUJIO
has the greedy choice property among all leaf nodes. Then,
we show that BUJIO has greedy choice property among all
subleaf nodes.

LEMMA 1. Lines 6-15 of Algorithm BUJIO finds the best
cutting set of the minimum size so that every leaf node u €
Vi satisfies the antenna rule (i.e., L(u) < Lmag, ¥V leaf nodes
u e VG)‘

We proceed to show that lines 16-21 in BUJIO finds the
best cutting set of the minimum size for each subleaf node
up. In this step, we classify the subleaf nodes into two cases
based on the sum of the weights between u, and its children
u; and u;’s weight records w(u;): Zle (Hup,us) +w(us))+
W(ttp) < Lnaz and S5 (Ut us) + w(u:))+10(tp) > L
Therefore, we show that each case is with the greedy-choice
property, and we find the best cutting set for each case.

LEMMA 2. Subroutine EqualLess finds the best cutting set
of the minimum size so that every subleaf node u, € Vg

Subroutine: EqualLess(T, C, uyp, totallen)

1 if p(up) does not exist

2 return;

3 if totallen + w(up) + (up, p(up)) < Lmax

4 if up € Vi

5 w(up) «— w(up) + totallen;

6 if u, or any of its children is in Vg

7 VN — Vv \{up};

8 Vo «— Vg U {up} and mark u, as unprocessed;

9 T(V,E) « T(V\U_ {u:}, B\ U {e(ui, up)});

10 else

11 Let ¢ be the node on e(up, p(up)) with

I(c,up) +w(up) + totallen = Lmaq;

12 if flo)=1

13 c1 — r(u,c);

14 C—CU{er};

15 T(V, E) <_T(V\(Uf=1{ui})u{cl}\{u;ﬂ}a
B\ U {e(uis up)}\ {e(up, c1)});

16 else

17 C — CU{c};

18 T(V, B) — T(V \ (U {w:}) U e} \ {u, ),
BA UL {e(ui, up)} \ {e(up, ©)});

Figure 10: Compute the case where totallen < Lmaz-

Subroutine: More(T', C, up, totallen)
1S =Uk {l(e(ui, up)) + w(ui)};
2 S, =SPLIT(S, Lmax);
Let ¢; be the nodes between u, and u;
with l(ci,up) =0, I(ci, ui) = l(up, u;) and
{i(e(ui, up)) + w(ui)} € Sp, V1 < i < [Shl;
C—CU{c;} V1<i<|Shl;

S S
T(V, B) — TV \ U2k {ui}, BA U (e(ui, up) s
minuslen < 37 g 83
EqualLess(T, C, up , totallen — minuslen);

D Uk W

Figure 11: Compute the case where totallen > Lymqz.

satisfies the antenna rule (i.e., L(up) < Lmae,V subleaf
nodes up € Vg satisfying Zfil (Hup,us) + w(ug)) +w(up) <
Lyaz, where up = p(u;) ).

LEMMA 3. Subroutine More finds the best cutting set of
the minimum size so that every subleaf node u, € Vg sat-
isfies the antenna rule (i.e., L(up) < Lmaz,V subleaf nodes
up € Vi satisfying % (1(up, us) + w(wi))+w(up) > Linas,
where up = p(us)).

Based on the above theorem and lemmas, we have the
following theorem:

THEOREM 2. Algorithm BUJIO optimally solves the JIROA
problem in O((V + D) lg D) time using O(V') space.

5. EXPERIMENTAL RESULTS

We implemented the BUJIO algorithm in the C++ lan-
guage on a 2.4 GHz Intel Pentium PC with 256 MB memory
under the Windows XP operating system. Since no previ-
ous work in the literature considers jumper insertion on a
routing tree with obstacles, we extended the ISPD-05 work
by Wu et al. [12], the DAC-05 work [9] by Su and Chang,
and the ISPD-04 work [4] by Ho et al. to handle obstacles
and made comparisons with our BUJIO algorithm. For the
jumper insertion algorithms presented at ISPD-05, DAC-
05, and ISPD-04, we just follow their procedures to insert



Subroutine: SPLIT(S, Bound) [7]

1 if|S|=1

2 if 37, cgs < Bound

3 return (;

4 else

5 return S;

6 else

7 Median-find-and-halve(S) and let S}, be
the higher half of S;

8 W =3 .cs and sgs), 5

9 if W = Bound

10 return Sp;

11 else if W < Bound

12 return SPLIT (S}, Bound — W);

13 else (W > Bound)

14 return SPLIT(S \ Sy, W) + Sp;

Figure 12: Return the required subset S; from S.
Median-find-and-halve(S) finds the median m of set S
and partitions S into two subsets S; and S}, where each
element in S; is < m and each element in S; is > m.
Moreover, |Sy| < [S;] < |Sh| + 1.

jumpers. If the position for jumper insertion is in a forbid-
den region (an obstacle), we use the same optimal substi-
tute presented in this paper to insert the jumper. We call
the extended work as ISPD-05e, DAC-05e, and ISPD-04e,
respectively. Moreover, since our BUJIO and the ISPD-05
algorithms are designed for Steiner trees while the DAC-05
and the ISPD-04 ones are for minimum spanning trees, we
generated two sets of different trees based on the same gate
terminals and tested the algorithms on the corresponding
trees.

To conduct the experiment, we first generated gate ter-
minals on grid planes of the dimension 10*pm x 10*um and
randomly placed rectangular obstacles of various sizes on
the planes. Then we constructed minimal Steiner trees and
minimum spanning trees based on the gate terminals.

Two experiments on the effects of varying L,q. and vary-
ing node quantity were conducted. To focus on the evalua-
tion of the existing algorithms, without loss of generality, we
assume that the antenna bound Ly,qs is measured by wire
length. Table 2 shows the number of jumpers required for
fixing all antenna violations for a routing tree with 10000
nodes and 500 obstacles by changing L.,qz from 220 um to
320 pum. Column 1 gives the Ly,q, value, and Columns 2, 3,
5, and 7 list the numbers of jumpers required (#J) for fix-
ing the antenna violations for each Ly,qs for the BUJIO, the
ISPO-05e, the DAC-05e, and the ISPD-04e algorithms, re-
spectively. Columns 4, 6, and 8 give the percentages of addi-
tional jumpers required (More) for the respective ISPD-05e,
the DAC-05e, and the ISPD-04e algorithms over BUJIO to
fix all antenna violations, i.e., More = (#Jumpers of the
algorithm — #Jumpers of BUJIO)/ #Jumpers of BUJIO.

It is not surprising that BUJIO requires fewer jumpers
than the ISPD-05e algorithm. However, their difference is
not very significant for this set of test cases. The reason is
that the ISPD-05e algorithm behaves very similarly to BU-
JIO for this set of test cases. Only when the gate terminals
are adjacent to each other, the ISPO-05e algorithm adds
more jumpers than BUJIO, as the case shown in Section 1.
The case is rare for random designs, and thus the numbers
of jumpers required for the two algorithms are close. Even
though the results of the two algorithms are close, never-
theless, the BUJIO algorithm can always find the optimal
solution while the ISPD-05e cannot; this optimality signifi-
cantly differentiates our BUJIO algorithm from the previous

work. We shall show that BUJIO can significantly outper-
form the ISPD-05e one for some non-random designs.

It is obvious that BUJIO may need much fewer jumpers
than the DAC-05e and the ISPD-04e algorithms. The re-
duction comes from two parts: (1) BUJIO works on Steiner
trees while the DAC-05e and the ISPD-04e algorithms work
on minimum spanning trees. A minimal Steiner tree intrinsi-
cally has smaller wirelength and thus needs fewer jumpers to
fix the antenna violations than those of a minimum spanning
tree. (2) More importantly, BUJIO is much more effective
than the DAC-05e and the ISPD-04e algorithms. As shown
in Table 2, the improvements range from 17% to 57%, much
more than the 10% wirelenth difference between the Steiner
tree (728568 unit long) and the spanning tree (801302 unit
long).

Limae || BUJIO [ ISPD-05¢ [ DAC-05¢ [ ISPD-04e |
(um) [ #J || #J [ More | #J [ More | #J T More |
220 1533 1537 0.3% 1806 17.8% | 2359 | 53.9%
230 1341 1348 0.5% 1607 | 19.8% | 2020 | 50.6%
240 1144 1149 0.4% 1378 20.5% 1742 52.3%
250 961 966 0.5% 1210 | 25.9% 1501 56.2%
260 823 827 0.5% 1050 | 27.6% 1279 | 55.4%
270 706 708 0.3% 919 30.2% 1109 | 57.1%
280 599 601 0.3% 779 30.1% 928 54.9%
290 517 518 0.2% 649 25.5% 767 48.4%
300 434 435 0.2% 562 29.5% 645 48.6%
310 366 366 0.0% 488 33.3% 543 48.4%
320 305 305 0.0% 413 35.4% 458 50.2%

Table 2: Comparisons of the numbers of jumpers re-
quired for BUJIO, ISPD-05¢, DAC-05e, and ISPD-04e
to fix all antenna violations based on a routing tree of
10000 nodes and 500 obstacles.

The previous experiment shows that the ISPD-05e algo-
rithm can achieve comparable performance to our BUJIO.
In order to test the robustness of the ISPD-05e algorithm
(and the DAC-05e and ISPD-04e ones), we constructed a
set of test cases based on that shown in Figure 4. We first
generated a test case of 5000 nodes as usual. After a Steiner
tree and a minimum spanning tree have been constructed,
we selected some gate terminals at the same position in both
trees and modified the selected nodes in the same way. Let
node u in Figure 13(a) be a selected node. We added a sub-
tree rooted at node w as shown in Figure 13(b). The subtree
has similar topology as that of the routing tree shown in Fig-
ure 4. It is clear that BUJIO needs only 4 jumpers for the
subtree as shown in Figure 13(c) while the ISPD-05¢ algo-
rithm needs 5 jumpers as illustrated in Figure 13(d) to fix
the antenna violations. We generated the test cases based
on this expansion method.

For the experiments shown in Table 3, we constructed a
corresponding test case for each L.,.» value based on the
previously mentioned expansion method. The experimental
results show that BUJIO can outperform the ISPD-05e algo-
rithm by an average improvement of about 27%. The results
reveal that the ISPD-05e algorithm is not effective for such
test cases. Similar results can be observed from the experi-
ments shown in Table 4, for which we constructed a corre-
sponding test case for each given number of gate terminals
(number of nodes) based on the aforementioned expansion
method.

Moreover, the DAC-05e algorithm also outperforms the
ISPD-05e one for the two sets of test cases. The reasons are
two-fold: (1) The minimum spanning tree and Steiner tree
are the same for the appended subtrees, and (2) the DAC-
05e algorithm adds only 4 jumpers on each subtree while the



ISPD-05e adds 5 jumpers. As a result, when the number of

the appended subtrees increases, the DAC-05e algorithm re- u
quires much fewer jumpers than the ISPD-05e one. So each 30
of the ISPD-05e and the DAC-05e algorithms have its own Vi
strengths and weaknesses. Each of them might be effective 120
for some cases but perform poorly for other cases. No matter u *
what test case is considered, however, BUJIO always finds @ 100 200 100 ®
the optimal solution. Vo V3 Vs Vs
120 120

‘ Lmas || BUJIO || ISPD-05¢ | DAC-05e | ISPD-0de | Ve V7

(um) [ #J || #J | More | #J [ More | #J [ More | (a) (b)

220 4274 5455 | 27.6% | 4557 | 6.6% 5943 | 39.1%

230 4157 5311 | 27.8% | 4421 6.4% 5762 | 38.6%

240 4056 5174 | 27.6% | 4305 | 6.1% 5604 | 38.2%

250 3972 5061 | 27.4% | 4187 | 5.4% 5455 | 37.3%

260 3889 4951 | 27.3% | 4076 | 4.8% 5299 | 36.3%

270 3814 4844 | 27.0% | 3983 | 4.4% 5157 | 35.2%

280 3728 4738 | 27.1% | 3895 | 4.5% 5028 | 34.9%

290 3657 4637 | 26.8% | 3809 | 4.2% 4915 | 34.4%

300 3605 4541 | 26.0% | 3728 | 3.4% 4796 | 33.0%

310 3542 4467 | 26.1% | 3653 | 3.1% 4695 | 32.6%

320 3489 4401 | 26.1% | 3587 | 2.8% 4593 | 31.6%

Table 3: Comparisons of the numbers of jumpers re-
quired for BUJIO, ISPD-05¢, DAC-05e, and ISPD-04e
for fixing all antenna violations based on 11 test cases
with routing trees of 10000 nodes and 200 obstacles.

| [ BUJIO || ISPD-0be | _ DAG-06e | ISPD-04e |

#node || #J [ #J | More | #J [ More | #J [ More |
10000 4548 5844 28.5% 4881 7.3% 6391 40.5%
20000 7329 9188 25.4% 7634 4.2% 9800 33.7%
30000 10002 12414 24.1% 10246 2.4% 12899 29.0%
40000 12400 15375 24.0% 12647 2.0% 15753 27.0%
50000 15113 18754 24.1% 15283 1.1% 19013 25.8%
60000 17686 22019 24.5% 17877 1.1% 22256 25.8%
70000 20355 25369 24.6% 20487 0.7% 25525 25.4%
80000 23167 28888 24.7% 23217 0.2% 28950 25.0%
90000 25938 32373 24.8% 25985 0.2% 32426 25.0%
100000 28735 35884 24.9% 28741 0.0% 35889 24.9%

Table 4: Comparisons of the numbers of jumpers re-
quired for BUJIO, ISPD-05e¢, DAC-05e, and ISPD-04e
for fixing all antenna violations based on 10 test cases
with routing trees of 200 obstacles each and Lmez =
200pum.

The empirical running time for the four methods are close
to linear. In particular, BUJIO requires only 1.74 sec to find
an optimal solution for a routing tree of 0.1 million nodes,
with Limaee = 200um and 500 obstacles on each plane (while
the ISPD-05e, DAC-05¢e, and ISPD-04e algorithms need 1.74
sec, 1.53 sec, and 1.53 sec, respectively). Therefore, BUJIO
can handle a test case of a very huge number of nodes in
very short running time.

6. CONCLUSION

We have presented an O((V+D) lg D)-time optimal jumper
insertion algorithms for avoiding/fixing antenna violations
on a Steiner/spanning tree of V nodes with D obstacles. It is
the first optimal algorithm for the general tree-cutting prob-
lem. Empirical results have shown that our algorithms ap-
proach linear and obtain solutions of very high quality. Our
work can be applied to any Steiner/spanning trees (could
be a net to be globally routed or a net after detailed rout-
ing) and thus readily be incorporated into a global router
for antenna effect avoidance or a post-layout optimizer for
antenna violation fixing. Future work lies in the integration
of jumper and diode insertion for antenna violation avoid-
ance/fixing.

(d)

Figure 13: (a) A selected node u. (b) The subtree ap-
pended to node u. (c) BUJIO adds 4 jumpers on the
subtree. Here, Loz = 200um. (d) The ISPD-05e algo-
rithm adds 5 jumpers on the subtree.
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