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Abstract—Data collection in massive Internet of Things net-
works requires novel and flexible methods. Unmanned aerial
vehicles (UAVs) are foreseen as a means to collect data rapidly
even in remote areas without static telecommunication infrastruc-
ture. To this direction, UAV-mounted reconfigurable intelligent
surfaces (RISs) aid in reducing the hardware requirements and
signal processing complexity at the UAV side, while increasing
the network’s energy efficiency and reliability. Hence, in this
paper, we propose the utilization of a UAV-mounted RIS for data
collection and study the coverage probability in such networks.
Additionally, we propose a novel medium access control protocol
based on slotted ALOHA and Code Combining to handle the
communication of multiple sensors. To account for the crucial
energy issue in UAVs, we devise an energy model that considers
both the UAV and the RIS weight, as well as the environmental
conditions and the UAV’s velocity. Finally, we characterize the
performance of the proposed data collection scheme by analyzing
the average throughput and the average data per flight, while
providing useful insights for the design of such networks.

Index Terms—Reconfigurable Intelligent Surfaces (RIS), Un-
manned Aerial Vehicles (UAVs), IoT Networking, Code Combin-
ing, Stochastic Geometry, Slotted ALOHA, Energy-awareness

I. INTRODUCTION

As a key enabler of smart cities, Internet of Things (IoT)

networks will play a vital role in city monitoring by sensing

the physical environment through a massive number of sensor

nodes [1]. Hence, it is imperative to extend the current

capabilities of the sixth generation (6G) networks on ultra-

massive IoT [2]. However, there exist two main constraints

that prohibit a wider adoption, namely the maintainability and

timely data collection. Specifically, the deploy-and-forget in-

stallation model should be followed, as maintaining each node

individually is virtually impossible due to their extremely large
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numbers. Hence, energy-efficient communication becomes a

crucial concern, given that the devices have to withstand for

years using a single battery to allow a long-lasting operation

[3]. At the same time, having ultra-low power transmitters

with unknown locations affects the data collection, as the

infrastructure should be excessively dense to guarantee service

for all devices and, thus, impractical. To that end, novel and

flexible methods of data collection should be proposed that

are able to provide connectivity to a large area of randomly-

deployed ultra-low power devices.

A. State-of-the-Art

Unmanned aerial vehicles (UAVs) are envisioned to play

a pivotal role in the data collection for future IoT networks

as they are able to satisfy the requirements for massive

connectivity and increased throughput [4]–[6]. In more detail,

considering their flexibility, UAVs can assist in the data col-

lection from randomly-deployed sensors, while leveraging fa-

vorable characteristics of the established communication links

in UAV-assisted networks. It should be mentioned, though,

that the effective utilization of UAVs depends on their flight

time duration, which is a function of their battery capacity

as well as of the weight that they carry [7]. Specifically,

the energy consumption of UAV-assisted data collection is

crucial, since the UAVs have limited energy which is not only

consumed for the communication process between the sensors

and the access point (AP), but also for their movement [8].

Thus, it becomes of paramount importance to enhance the

communication quality-of-service (QoS) in an energy-efficient

way and utilize the available energy optimally.

Recently, the concept of controllable wireless propagation

through reconfigurable intelligent surfaces (RISs) has been

introduced as a promising solution to significantly enhance the

energy efficiency of future communication networks [9], [10].

In more detail, RISs have been introduced as programmable

meta-surfaces, whose properties can be real-time altered and,

thus, adjust to the network demands [11]. Specifically, by

altering the RISs’ properties, a plethora of electromagnetic

functions such as steering, diffusion, absorption, etc. can be

implemented to the impinging signals, and thus by deploying

RISs across the propagation environment, it is possible to

convert it from an uncontrollable entity to an optimizable

parameter, providing wireless connectivity seamlessly [12],

[13]. Hence, a reliable and energy-efficient way to optimize

the data-collection procedure for future IoT networks is to

http://arxiv.org/abs/2208.06016v1
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combine UAVs with RISs, which can facilitate the signal

beamforming through their reflecting elements and, thus, en-

hance the network’s reliability without increasing the sensors’

transmission power, while keeping the UAV’s power consump-

tion low.

Over the last years, the synergy between UAVs and RISs

has been studied extensively and it has been proven that it

can improve significantly the performance of future wireless

networks in many aspects [14]. In more detail, considering the

RISs’ geometry, which enables the installment onto the facades

of buildings or onto the UAVs, many works have studied the

capabilities of:

• Synergetic UAV-terrestrial RIS (TRIS) networks: In

synergetic UAV-TRIS networks, the RIS is attached to

a fixed position, and has a favorable communication link

with the UAV, offering enhanced QoS [15]. In [16], a syn-

ergetic UAV-TRIS communication system, combining a

UAV with a highly directional antenna aiming at the TRIS

was proposed and it was shown that it can optimize the

network’s reliability and average outage duration, which

is of paramount importance for ultra-reliable and low

latency communications (URLLC). Furthermore, differ-

ent algorithms based on optimization theory or machine

learning, which optimize jointly the UAV’s trajectory and

the TRIS passive beamforming have been proposed and

proved that a synergetic UAV-TRIS network can enhance

significantly the network’s QoS in terms of achievable

rate, secrecy rate, and blocklength [17]–[19]. Finally, in

terms of IoT networking, in [20], a simultaneous wireless

power transfer and information transmission scheme for

IoT devices with support from a synergetic UAV-TRIS

network was investigated, while, in [21], a data collection

framework assisted by a synergetic UAV-TRIS network

has been presented.

• UAV-mounted RIS networks: UAV-mounted RIS net-

works have been recently proposed as an interesting

solution to maintain line-of-sight (LoS) links and enhance

communication performance due to the offered additional

degrees of freedom and flexible deployment. Specifically,

in [22], it was shown that a UAV-mounted RIS can offer

enhanced outage performance whether the UAV-mounted

RIS is moving or not. In addition, in [23], the optimal

UAV-mounted RIS deployment, as well as the optimal

resource allocation to offer maximal reliability for a

URLLC system with respect to the users’ fairness, were

studied. Finally, [24] examined the performance in terms

of reliability and spectral efficiency of a UAV-mounted

RIS-assisted single-user network that co-exists with an

ambient backscattering IoT system and proved that the

deployment of a UAV-mounted RIS can offer enhanced

performance for both systems.

B. Motivation & Contribution

In the aforementioned works, it was shown that the exact

location of the RIS affects the performance, since the RIS

should be deployed in a specific orientation near to the AP or

the ground users to maintain an optimal network performance

[25]. However, in cases where the deployed sensors have

time-variable QoS requirements, flexible deployment of the

RIS that can be provided with the aid of UAVs can increase

the ease of deployment and reduce the corresponding cost.

Therefore, in this case, UAV-mounted RIS networks are a

suitable option, since they are characterized by high deploy-

ment flexibility, 360-degree panoramic full-angle reflection,

and favorable communication links due to the air-to-ground

links’ characteristics.

Most of the existing works show that by increasing the

number of reflecting elements, the performance of the UAV-

based network is enhanced in terms of coverage. It should

be mentioned, though, that the increase of the RIS reflecting

elements comes with the disadvantage of excess UAV weight

and, thus, extra energy consumption leading to a decreased

flight duration. However, to the best of the authors’ knowledge,

a UAV-mounted RIS-based data collection scheme that con-

siders the flight duration has not yet been investigated in the

existing literature. Moreover, to mitigate the communication

performance drop from the decreased RIS size, alternative

ways should be proposed, which will increase the average

collected data. Hence, by taking into account the random-

access nature of IoT data collection, an appropriate medium

access control (MAC) protocol could improve the data col-

lection procedure without using larger RIS or adding extra

communication equipment.

To that end, in this paper, we propose a UAV-mounted RIS-

based scheme for data collection for future IoT networks, and

we analyze its performance in terms of reliability and average

collected data. In more detail, our contribution is the following:

(i) We calculate the coverage probability of randomly-

deployed sensors in a circular cluster using a UAV-

mounted RIS that hovers above them, while considering

imperfect phase estimation for the RIS due to UAV

fluctuations.

(ii) To make our model more realistic and account for the

UAV energy restrictions, we propose an energy model

that considers parameters such as the RIS operation and

weight, the environmental conditions, and the UAV’s

kinematic condition.

(iii) To enhance the data-collection procedure, we propose

a novel MAC-layer protocol that is based on slotted

ALOHA and code combining (CC) and we analyze its

performance in terms of coverage and average through-

put.

(iv) To showcase the importance of the energy model, we

propose a novel metric called average data per flight, that

provides the amount of data that can be collected from a

UAV until it has to return for recharging purposes.

C. Structure

The remaining of the paper is organized as follows. The

system model is described in Section II. The performance

analysis is given in Section III and our results are presented

in Section IV. Finally, Section V concludes the paper.
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II. SYSTEM MODEL

We consider a set of S uniformly-distributed single-antenna

IoT sensors located inside a disk of radius R. Due to the

low-maintenance requirements of such sensors and in order

to expand their lifetime, they are transmitting with ultra-low-

power. Therefore, due to the low transmit power as well as

the density of the propagation environment, we assume that

there is no direct link to serve the communication between

each sensor and the AP. To improve the received power at

the AP, we employ a UAV-mounted RIS that is able to assist

the communication by reflecting the sensor’s transmissions

towards the AP through a line-of-sight (LoS) link. Moreover,

we assume that the UAV hovers at a height h from the disk’s

center and the mounted RIS consists of N reflecting elements.

By taking into account the RIS reflection path, the baseband

equivalent of the received symbol at the AP can be expressed

as

Y =
√

lpGPt

N
∑

i=1

|Hi1||Hi2|e−j(ωi+arg(Hi1)+arg(Hi2))X +W,

(1)

where X is the transmitted signal for which it is assumed that

E[|X |2] = 1 with E[·] and arg(·) denoting expectation and the

argument of a complex number, respectively [12]. Also, Pt

denotes the sensor transmit power, G = GtGr is the product

of the sensor and the AP antenna gains, and Hi1 and Hi2 are

the complex channel coefficients that correspond to the i-th

sensor-RIS and RIS-AP links, respectively. Moreover, W is the

additive white Gaussian noise with zero mean and variance σ2,

ωi is the phase correction term induced by the i-th reflecting

element, and l is the path loss that corresponds to the sensor-

RIS and RIS-AP links, respectively. Specifically, lp can be

modeled as

lp = C0
d20

(d1d2)
n , (2)

where n expresses the path loss exponent, C0 denotes the

product of the path loss of sensor-UAV and UAV-AP links at

the reference distance d0, while d1 and d2 denote the distances

of the sensor-UAV and the UAV-AP links, respectively [26].

Considering the favorable characteristics of UAV communica-

tion links in cases where the UAV hovers in heights that allow

LoS communication, the path-loss exponent can be assumed

to be equal to 2. Furthermore, it is assumed that there is no

fading in the UAV-AP link considering the characteristics of

air-to-air channels as it is assumed that the AP is located

at the top of a building, e.g., UAV charging station, thus

|Hi2| = 1 and arg(Hi2) = 2πri
λ with λ and ri being the

carrier’s frequency wavelength and the distance between the

UAV and the i-th reflecting element, respectively. Considering

that the AP is located at the RIS’s far-field, the distance ri
is approximately equal to d2. Additionally, it is assumed that

|Hi1| is a random variable (RV) following the Nakagami-m

distribution with shape parameter m and spread parameter

Ω, which can describe accurately realistic communication

scenarios characterized by severe or light fading. Finally, due

to UAV fluctuations, each reflecting element does not adjust

Fig. 1. Network topology.

the phase perfectly to cancel the overall phase shift [27]. Thus,

the received signal at the AP can be rewritten as

Y =
√

lpGPtHX +W, (3)

where H =
∑N

i=1|Hi1|e−jφ and φ is an RV following the

Von Mises distribution with concentration parameter κ [27],

[28]. By taking into account the results in [28], 1
N |H | can be

approximated by H̃ , which is an RV following the Nakagami-

m distribution with shape parameter

m̃ =
N Ω̃I0 (κ)

2I0 (κ) + 2I2 (κ)− 4Ω̃I0 (κ)
, (4)

and spread parameter

Ω̃ =

Ç

I1 (κ) Γ
(

m+ 1
2

)
√
Ω

I0 (κ) Γ (m)
√
m

å2

, (5)

where Ip is the modified Bessel function of the first kind and

order p [29].

Therefore, the instantaneous received SNR γr of the pro-

posed system can be expressed as

γr = γtC0GN2

Å

d0

d1d2

ã2

H̃2, (6)

where γt = Pt

σ2 is the transmit SNR and H̃2 is a gamma-

distributed RV with shape parameter k = m̃ and scale

parameter θ = Ω̃
m̃ . Considering that the sensors are distributed

uniformly in a disc, we set Z = d−2
1 H̃2, thus the instantaneous

received SNR can be rewritten as

γr = γtC0GN2Z

Å

d0

d2

ã2

. (7)

A. Slotted ALOHA-based Medium Access model

In the considered system, multiple IoT devices compete to

access a shared AP through the UAV-RIS. Therefore, there

is a need to enforce a methodology that handles access to

the physical transmission medium [30]. We assume that the

packets have fixed lengths and that transmissions are synchro-

nized starting at the beginning of each slot. The slots have a

duration defined by the time required for the transmission of

one packet.

To enhance the performance of the proposed system, we

propose the utilization of code combining (CC) [31]. Specif-

ically, during any time slot, we assume that each device will
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be in any of three states: i) the idle state, when a device

has no packet ready to transmit or if a new packet has just

occurred while the terminal is waiting for the next time slot,

ii) the transmission state, when a device transmits a packet

(successfully or not), and iii) the retransmission state, when a

device waits for retransmission in a future time slot after it has

unsuccessfully tried to transmit a packet. More specifically,

after a failed transmission attempt, the receiver stores the

erroneous decoded frame and sends a NACK message. Once

the frame is retransmitted, the new frame is combined with the

stored one using maximum ratio combining (MRC) and the

receiver tries to decode the combined frame. To maintain an

acceptable latency, the truncated CC is considered, limiting the

number of transmissions for a specific message to a maximum

of L [31]. Therefore, a device can be in the retransmission

state for L − 1 attempts, after which it updates its message

and restarts the transmission process. It should be mentioned

that, in the proposed communication system, it is assumed

that no erroneous transmission of ACK and NACK messages

exists.

B. UAV Energy Model

The lifetime of a UAV-RIS synergetic system depends on

the battery capacity of the UAV Bc at any given moment, as

well as the total power consumption Pt and can be calculated

as

Lt =
Bc

Pt
, (8)

where the total consumed power Pt is given by

Pt = Pthr + Ptx/rx + Pcirc. (9)

Regarding Ptx/rx, it is a flat cost for the battery provided for

the navigational communication of the UAV and can be con-

sidered negligible (≤ 2 Watt) compared to the drag counteract

factor. Moreover, the term Pcirc refers to the consumed power

due to the RIS circuitry that is responsible for its configuration

and finally, the power for the UAV thrust, Pthr, is a prevalent

factor regarding the consumed energy, which includes all the

power that is consumed for hovering, transiting, counteracting

the wind drag, etc. Obviously, it is mainly affected by the

weight and shape of the UAV and the additional carried

components. To provide a more realistic model, we employ

the state-of-the-art MN-505s KV320 motors from T-MOTOR.

Based on the motors’ datasheet [32], the behavior of the

consumed power for thrusting can be reliably characterized

by the following equation:

Pthr = 4W 2 + 86W − 21.2, (10)

where W is given by

W = Uw +Bw +Rw + Sw +Dw, (11)

that includes all of the following weights, i.e., Uw, which is

the weight of the UAV frame, while Bw is the battery’s weight

and Rw is the weight of the RIS given by Rw = NEw, where

Ew is the weight of one reflecting element. Moreover, Sw is

the extra weight added to the motors due to any change in the

speed of the UAV given by

Sw = (Tmax − Uw −Rw)
S

Smax
, (12)

where Tmax is the maximum achievable thrust, S is the average

UAV speed, and Smax is the maximum achievable UAV speed.

Finally, Dw is the extra thrust needed by the motors to

counteract the wind drag and it is given by

Dw =
ρv2aCdARIS

2g
, (13)

where ρ is the air density, g is the gravity acceleration, va
is the average wind velocity, Cd is the drag shape coefficient

given experimentally by pre-calculated tables, and ARIS is the

area of the RIS side that is placed towards the airflow [33].

For the examined scenario, it is assumed that the RIS is placed

in parallel with the ground and has a rectangular shape.

III. PERFORMANCE ANALYSIS

In this section, we extract the analytical derivations that

can be utilized to provide useful insights about the proposed

network’s coverage, as well as the average collected data for as

long as the UAV-mounted RIS hovers in the sky. Specifically,

we calculate four important metrics that characterize the

performance of the considered network, namely i) the coverage

probability of a sensor that is uniformly distributed in a disc,

ii) the coverage probability of the same randomly-deployed

sensor when CC is utilized, iii) the average throughput of the

system when a slotted ALOHA-type medium access control

(MAC) protocol is considered and finally, iv) the average data

per flight, which takes into account the average throughput as

well as the UAV’s battery lifetime, which is affected by the

RIS size and the environmental conditions.

A. Coverage probability of a uniformly-distributed sensor

Considering that the sensor is uniformly distributed inside

a circular area with radius R and the UAV is hovering above

the disk’s center at height h, the distance d1 between the

sensor and the UAV-RIS is an RV. Thus, the cumulative density

function (CDF) of d1 can be calculated through [34] and

expressed as

Fd1
(x) =

x2 − h2

R2
, x ∈

î

h,
√

h2 +R2
ó

. (14)

Next, we provide an approximation of the coverage probability

for the uniformly distributed sensor inside a circular area.

Proposition 1: The coverage probability of a uniformly-

distributed sensor can be approximated as

Pc ≈
θ

R2w

k̂−1
∑

i=0

γ
Ä

i + 1, h
2+R2

θ w
ä

− γ
Ä

i+ 1, h2

θ w
ä

i!
, (15)

where i! is the factorial of i, γ (·) is the lower incomplete

gamma function [35], k̂ is obtained by rounding k, w =
γthrd

2
2

γtd2
0
C0N2 , and γthr is the received SNR threshold value.

Proof: The coverage probability of a uniformly-

distributed sensor can be calculated through the probability of
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the complementary event, i.e., the outage probability. Specifi-

cally, the outage probability can be derived through the CDF

of Z , which is given by

FZ (x) =

∫ ∞

−∞

FH̃2

Å

x

y

ã

fd−2

1
(y)dy, (16)

where FH̃2 =
γ(k, x

θy )
Γ(k) is the CDF of H̃2, Γ (·) is the gamma

function [35], and fd−2

1
is the probability density function

(PDF) of RV d−2
1 , which equals to

fd−2

1
(x) =

1

(xR)2
, x ∈

ï

1

h2 +R2
,
1

R2

ò

. (17)

Using (17), (16) can be rewritten as

FZ (x) =

∫ 1

h2

1

h2+R2

γ
Ä

k, x
θy

ä

Γ (k)

1

(yR)
2 dy. (18)

By approximating k with k̂, the lower incomplete gamma

function is rewritten as

γ

Å

k,
x

θy

ã

≈
Ä

k̂ − 1
ä

!

Ñ

1− e−
x
θy

k̂−1
∑

i=0

xi

(θy)
i
i!

é

. (19)

After some algebraic manipulations, the CDF of Z is derived.

The coverage probability is defined as

Pc = 1− Pr (γr ≤ γthr) = 1− Pr (Z ≤ w) . (20)

Considering (18) and (20), the coverage probability can be

calculated as in (15), which concludes the proof.

B. Coverage Probability with Code Combining

In order to enhance the performance of the proposed system,

CC is utilized, as discussed in Section II-A. Specifically, in

order to maintain an acceptable latency, the truncated CC

is considered, limiting the number of retransmissions to a

maximum of L and, thus, the instantaneous received SNR after

l transmission rounds with CC with l ∈ 1, ..., L is equal to

γl
r = γtC0GN2

Å

d0

d1d2

ã2 l
∑

i=1

H̃2
i , (21)

where H̃i is the channel at the i-th transmission round. It

should be highlighted that the channels H̃i are assumed to be

independent and identically distributed for every retransmis-

sion.

Proposition 2: The coverage probability of the proposed

system, i.e., the complementary event of the outage probability

after l transmission rounds with CC, is equal to

Pc,l =
θ

R2w

lk̂−1
∑

i=0

γ
Ä

i+ 1, h2+R2

θ w
ä

− γ
Ä

i+ 1, h
2

θ w
ä

i!
.

(22)

Proof: The coverage probability at the l-th CC round can

be expressed as

Pc,l = Pr
(

γl
r ≥ γthr

)

= 1− Pr

(

γtGlpN
2

l
∑

i=1

H̃2
i ≤ γthr

)

.

(23)

By invoking the moment matching technique, S2 =
∑l

i=1 H̃
2
i

can be approximated by a gamma-distributed RV with shape

parameter k̂m = E
2[S2]

Var[S2]
and scale parameter θm = Var[S2]

E[S2]
.

Thus, in order to obtain the gamma distribution parameters,

we need to calculate the first moment and the variance of S2,

which are equal to

E[S2] = lE[H̃2] = lΩ̃, (24)

and

Var[S2] = lVar[H̃2] =
lΩ̃2

m̃
. (25)

Thus, after the calculation of k̂m and θm and following a

similar procedure with the proof of Proposition 1, we obtain

(22), which concludes the proof.

C. Average Throughput

At this point, we have investigated the conditions to achieve

a successful decoding without considering that multiple sen-

sors might access simultaneously the shared medium. Thus,

we need to take into account the MAC protocol, as described

in II-A, to calculate the overall performance of the network

by studying the average throughput. This is an important

metric for data collection applications, which defines both the

successful decoding capabilities of the proposed system and

the efficiency of the utilized MAC protocol. Therefore, we

provide the throughput analysis for the proposed IoT network

from which we can gain useful insights into the scalability of

the considered network.

Considering that the derivation of the average throughput

necessitates the calculation of the probability of successful

decoding, which is affected by the utilized MAC protocol, we

need to obtain the coverage probability at every transmission

round.

Theorem 1: The coverage probability at the l-th CC round

is given by (26) at the top of the next page, where k̂b = k̂ and

k̂a = (l − 1) k̂b.
Proof: The probability of successful data reception at

the l-th CC round is equal to the probability where l − 1
transmissions were not adequate for successful decoding but

invoking an extra transmission leads to successful data recep-

tion. Therefore it can be expressed as

Ps,l = Pr
(

γl−1
r ≤ γthr ∩ γl

r ≥ γthr
)

, (27)

which can be rewritten as

Ps,l = Pr

(

wd21 − H̃2
l ≤

l−1
∑

i=1

H̃2
i ≤ wd21

)

. (28)

Considering that H̃2
l and

∑l−1
i=1 H̃

2
i can be approximated as

gamma distributed RVs with shape parameters kb and ka and

scale parameters θa = θb = θ, respectively according to

Proposition 2, by conditioning on d1, the above probability

can be calculated as

Ps,l|d1
=

∫ wd2
1

0

∫ wd2
1

wd2
1
−y

fb(y)fa(x)dxdy

+

∫ ∞

wd2
1

fb(y)dy

∫ wd2
1

0

fa(x)dx,

(29)
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Ps,l =
θ

R2w

k̂b−1
∑

j=1

γ
Ä

j + 1, h
2+R2

θ w
ä

− γ
Ä

j + 1, h
2

θ w
ä

j!
− θ

R2w

k̂a−1
∑

i=1

γ
Ä

i+ 1, h2+R2

θ w
ä

− γ
Ä

i+ 1, h
2

θ w
ä

i!

+
1

Γ(k̂b)θk̂b

k̂a−1
∑

µ=0

1

µ!θµ

µ
∑

ν=0

Ç

µ

ν

å

(−1)
µ−ν

wk̂b+µ

Ä

k̂b + µ− ν
ä

R2

Å

θ

w

ãµ+kb+1 ï

γ

Å

µ+ k̂b + 1,
h2 +R2

θ
w

ã

− γ

Å

µ+ k̂b + 1,
h2

θ
w

ãò

.

(26)

where fv(x) with v ∈ {a, b} is the PDF of the gamma distribu-

tion with shape and scale parameters kv and θv, respectively,

given by

fv(x) =
1

Γ(kv)θv
kv

xkv−1e−
x
θv , ∀x ∈ (0,∞). (30)

After some algebraic manipulations, Ps,l can be derived and

expressed as

Ps,l|d1
=

γ
(

ka,
wd2

1

θ

)

Γ (ka)
−

γ
(

kb,
wd2

1

θ

)

Γ (kb)

+
e−

wd2
1

θ

Γ(k̂b)θk̂b

k̂a−1
∑

µ=0

1

µ!θµ

µ
∑

ν=0

Ç

µ

ν

å

(−1)µ−ν
wk̂b+µ

Ä

k̂b + µ− ν
ä .

(31)

Finally, by taking into consideration the stochastic nature of

d1, we can decondition (31) on d1 using (17) and calculate

the following expression

Ps,l =

∫ 1

h2

1

h2+R2

Ps,l|y (w) fd−2

1
(y) dy. (32)

To this end, substituting (31) into (32), (26) is derived, which

concludes the proof.

Remark 1: For l = 1, the coverage probability at the l-th

CC round Ps,L is equal with the coverage probability Pc.

It is worth mentioning that for the case where CC is utilized,

the number of transmissions can vary from one sensor to

another depending on the channel conditions. Specifically,

if the channel conditions are satisfactory, one transmission

could be sufficient for error-free decoding. In the case of

harsh channel conditions, L CC rounds may be required to

transmit successfully one data packet. Thus, in order to derive

the average throughput for the proposed system, the average

number of transmissions should be calculated.

Proposition 3: The average number of transmissions of an

IoT network with S sensors, which utilizes truncated CC with

L rounds is given by

T̄r =

L−1
∑

i=1

i

i
∑

j=1

î

1− (1− ρ)
S−1
ói−j

(1− ρ)
j(S−1) Ps,j

+ L

[

L−1
∑

i=1

î

1− (1− ρ)
S−1
óL−1−i

(1− ρ)
i(S−1)

(1− Pc,i)

+
î

1− (1− ρ)
S−1
óL−1

]

,

(33)

p where ρ is the access probability of a sensor, i.e., the

probability to activate and transmit its data.

Proof: The mean value of the discrete random variable

Tr is given as

T̄r =

L
∑

i=1

iPr(Tr = i), (34)

where Pr(Tr = i) is the probability to finish the decoding pro-

cedure at the i-th transmission. Specifically, for the first round,

the probability Pr(Tr = 1) is equal to (1 − ρ)S−1Pc, as in

order for the procedure to be terminated at the first round, the

transmitted data must be successfully decoded during the first

transmission, i.e., a collision must not occur and the channel

conditions must allow a successful message delivery. However,

if i ∈ [2, L − 1] we need to take into consideration all the

combinations among the collision events and the channel con-

ditions for each transmission. For instance, the transmitted data

can be successfully decoded in the second round with prob-

ability
î

1− (1− ρ)S−1
ó

(1− ρ)S−1 Pc + (1− ρ)2(S−1) Ps,2,

meaning that two different events should be considered: i) the

investigated sensor had a collision in the previous round, it

transmits the second time without any collision from the other

(S − 1) sensors and its message is successfully decoded, and

ii) the sensor managed to transmit without collision in the first

two rounds, its message was not decoded in the first round,

but it is successfully decoded in the second round. It should

be noticed that in the second event, the coverage probability is

Ps,2, as the receiver has already incomplete information about

the transmitted message because of CC. Finally, in the last

round, by taking into account that the transmission procedure

will be terminated regardless of whether the message will

be decoded or not, the probability Pr(Tr = L) is equal

to the probability of unsuccessful message delivery due to

collisions or unfavorable channel conditions at the previous

to the last transmission round. Thus, by taking into account

all the possible combinations among the collision events and

the channel conditions for unsuccessful message delivery at

the L− 1 round, it stands

Pr(Tr = L) =
L−1
∑

i=1

î

1− (1− ρ)S−1
óL−1−i

(1− ρ)i(S−1)

× (1− Pc,i) +
î

1− (1− ρ)
S−1
óL−1

,

(35)

which concludes the proof.

Remark 2: For the case where CC is not utilized, the average

number of transmissions T̄r = 1.
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After the calculation of the average number of transmis-

sions, we present the system’s average throughput for the

considered scenario in the following proposition.

Proposition 4: The average throughput R̄ of the proposed

system can be calculated as

R̄ =
Blog2 (1 + γthr)

T̄r
Psuc, (36)

where B is the communication system’s bandwidth and Psuc is

the probability of successful data decoding at any transmission

attempt, which can be expressed as

Psuc =

L
∑

i=1

i
∑

j=1

î

1− (1− ρ)
S−1
ói−j

(1− ρ)
j(S−1) Ps,j .

(37)

Proof: The average throughput of a communication sys-

tem is equal to the rate multiplied by the probability of

successful data reception Psuc. Therefore, we need to calculate

(37), which requires the inclusion of all possible combinations

through which the transmitted message can be successfully

decoded, i.e., in the first CC round if there is no collision, or

in the second CC round after an unsuccessful decoding attempt

in the first round, and so forth.

To be more specific, for the first CC round, the proba-

bility of successful reception is given as (1− ρ)
S−1Pc as,

for the procedure to be successful at the first round, the

transmitted data must be successfully decoded during the first

transmission without any collision. Moreover, to calculate the

successful decoding in the second CC round, we consider

that the communication was unsuccessful in the first round

due to collision or unfavorable channel conditions, while

the second round is successful. Therefore, the probability of

successful reception for the second CC round is given as
î

1− (1− ρ)S−1
ó

(1− ρ)S−1Pc + (1− ρ)2(S−1)Ps,2.

Similarly, for the following rounds, we need to take into

consideration all the combinations among the collision events

and the channel conditions for unsuccessful message delivery

in the previous rounds, as well as the successful data reception

at the ongoing round. Hence, by combining the results of each

round, we arrive at the expression in (37). Finally, it should be

noted that the average throughput is divided by T̄r due to the

fact that more than one transmission may be required in order

to successfully decode the sensor’s data, which concludes the

proof.

Remark 3: The probability of successful reception without

CC is given as Psuc = ρ(1− ρ)S−1Pc.

D. Average Data per Flight

Although the throughput analysis is, in most cases, enough

to study the data collection performance, the intrinsic require-

ments of a UAV-based system generate limitations and pa-

rameters that have to be taken into account. More specifically,

the energy requirements of the UAV have to be considered in

order to study reliably the data collection capabilities of the

proposed synergetic UAV-RIS system. In this direction, we

propose the use of a novel metric, namely the average data

per flight, that takes into account the throughput and various

UAV parameters to calculate the amount of data that can be

collected during the UAV lifetime, i.e., the total hovering time

until the UAV has to return for recharging purposes.

Proposition 5: The average data per flight D̄F is given by

D̄F =
BcBlog2 (1 + γthr)

T̄r

[

4W 2 + 86W − 21.2 + Ptx/rx + Pcirc

]Psuc.

(38)

Proof: As discussed in Section II-B, the total consumed

power Pt includes the consumed power caused by thrust for

hovering and counteracting the wind drag, the RIS circuitry

consumption Pcirc, as well as Ptx/rx which is consumed

for aviation purposes. In more detail, Pthr can be reliably

characterized based on realistic equipment as in (10), where

W is the total weight that the UAV is called to lift which is

given in (11). Thus, by using (10) and (11), the average UAV

flight duration is given by

Lt =
Bc

Pt
=

Bc

(4W 2 + 86W − 21.2) + Ptx/rx + Pcirc
(39)

Therefore, by taking into consideration the average throughput

of the proposed system, the average data per flight duration

D̄ can be calculated as

D̄F = R̄Lt, (40)

which concludes the proof.

TABLE I
POWER CONSUMPTION MODEL PARAMETERS

Parameter Notation Value

UAV weight Uw 3.25 kg

RIS Element weight Ew 7.66 × 10−3 kg

Battery weight Bw 1.35 kg

Battery capacity Bc 180 Wh

RIS circuitry consumption Pcirc 0 W

Communication required power Ptx/rx 1 W

Maximum achievable thrust Tmax 17 kg

Maximum UAV speed Smax 62 km/h

Air density ρ 1.225 kg/m3

Air velocity va 2.5 m/s (Light Air)

Drag shape coefficient Cd 1.28@90◦ or 0.005@0◦

RIS Area ARIS N λ2

100
m2

Gravity acceleration g 9.8 m/s2

Motors Tmotor MN505-s KV320

IV. NUMERICAL RESULTS

In this section, the accuracy and validity of the derived

expressions are verified through simulations. Furthermore,

we provide insights related to the network’s coverage, the

performance of the proposed MAC protocol in terms of

average throughput enhancement, as well as the network’s data

collection capabilities. In order to derive the numerical results,

we set the parameters of the power consumption model as
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shown in Table I. It should be mentioned that for the presented

simulation results unless it is stated otherwise, the RIS is

placed below the UAV and parallel to its bottom meaning

that the drag shape coefficient Cd is equal to 0.005. It is

also assumed that the UAV is hovering above the ground

without moving. Furthermore, the existence of light wind is

assumed, which leads to random UAV fluctuations, while the

area of each reflecting element is set equal to λ2

100 . Finally, the

utilized simulation parameters are shown in Table II, where

we assume that both the sensors and the AP are equipped

with omnidirectional antennas and, thus, the gain parameter

G is set equal to 1. It should be highlighted that due to the

existence of light wind, the concentration parameter κ is set

equal to 1, indicating the imperfect phase estimation due to

random UAV fluctuations [27].

TABLE II
SIMULATION RESULTS PARAMETERS

Parameter Notation Value

UAV height h 50 m

Radius R 20 m

Reference distance d0 1 m

Bandwidth B 125 kHz

Transmit SNR γt 95 dB

SNR threshold γthr 0 dB

Antenna Gain G 0 dB

Path Loss @ Reference distance C0 −60 dB

Shape Parameter m 3

Spread Parameter Ω 1

Concentration Parameter κ 1

In Fig. 2, we illustrate the coverage probability Pc for the

case of a uniformly distributed sensor versus the number of

the RIS reflecting elements for three UAV-AP distances. For

all distances, the simulation results validate our theoretical

analysis by providing an exact match. Moreover, we observe

that as the UAV-AP distance increases, the number of the

reflecting elements should be increased to maintain an ultra-

reliable data collection. For instance, as the UAV-AP distance

increases by 100 m, about 100 elements should be added

to provide the same performance. Therefore, by taking into

consideration the distance between the AP and UAV, each

UAV must be equipped with an appropriate RIS to offer a

specific coverage probability. However, for large distances,

where a large number of reflecting elements is needed, the

flight duration significantly decreases and, thus, the data

collection performance deteriorates. Hence, it is of paramount

importance to utilize alternative methods that improve the

reliability performance, without increasing the number of the

reflecting elements and, thus, the RIS weight.

Fig. 3 depicts the effect of utilizing the truncated CC on

the extension of the coverage probability for the case where

the UAV-mounted RIS consists of 400 reflecting elements. As

it can be observed, by invoking the truncated CC technique,

the network’s coverage can be efficiently expanded without

increasing the number of the RIS reflecting elements. In more

200 400 600 800
0

0.2

0.4

0.6

0.8

1

N

P c

d2 = 200 m

d2 = 250 m

d2 = 300 m

Analytical

Fig. 2. Coverage probability versus N for different UAV-AP distances.
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0

0.2

0.4

0.6

0.8

1

d2 (m)

P c
,L

L = 1

L = 2

L = 3

Analytical

Fig. 3. Coverage probability with CC versus d2 for N = 400.

detail, by performing L = 3 transmissions, the proposed

system can offer high-reliability data collection for UAV-AP

distances approximately equal to 300 m while, for the L = 1
case, the system offers reliable data collection for distances

less than or equal to 150m. Thus, the utilization of truncated

CC can improve the network’s coverage and enable reliable

data collection for even greater distances from the AP, without

increasing the number of the RIS reflecting elements, which

can lead to increased RIS weight and, thus, increased power

consumption.

Next, Fig. 4 portrays the average throughput without CC and

for two CC cases, i.e., L = 2 and L = 3. Again, the simulation

results validate the theoretical analysis. Furthermore, it can

be observed that, for N ∈ [300, 500], the utilization of

truncated CC enhances the system’s average throughput and,

thus, the proposed MAC protocol outperforms slotted ALOHA

for the specific reflecting elements range. In addition, it can

be noticed that the average throughput saturates in all cases

when N ≥ 650, as it reaches the maximum achievable rate due

to the offered gain by the RIS. Increasing N further than 650

would not only be unnecessary for the throughput, but it would

also increase the UAV’s power consumption due to the extra

RIS weight. Finally, it should be mentioned that the shape of
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Fig. 4. Average throughput versus N for d2 = 250 m.
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Fig. 5. UAV Lifetime versus N for different UAV speeds.

the CC curves in the N ∈ [300, 500] range is caused by the

fact that each consecutive retransmission leverages information

from the previous one (i.e., due to the utilization of MRC).

In detail, as N decreases, the channel gain deteriorates and,

thus, the proposed MAC protocol enables the sensors to initiate

retransmission attempts to restore the communication.

Regarding the UAV energy model, in Fig. 5, we present

the effects of N on the UAV lifetime, while considering three

UAV speeds: i) hovering (0 km/h), ii) light speed (10 km/h),

and iii) medium speed (20 km/h). It can be observed that,

by increasing N , the battery’s lifetime decreases due to the

higher RIS weight and the corresponding increase in the UAV

effort to lift the extra weight. In addition, the battery’s lifetime

decrease rate declines as the UAV’s speed increases, indicating

that the UAV speed plays a major role in the flight duration.

Nevertheless, it is necessary to combine the UAV lifetime with

the average throughput to characterize comprehensively the

communication performance of our system.

To that end, in Fig. 6, we depict the average data per flight

D̄F , which provides insights into the capabilities of the UAV-

RIS system for the data collection. This figure shows the

average collected data by the AP in kbits until the UAV has to

return for recharging versus N for different UAV-AP distances.
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Fig. 6. D̄F versus N for different UAV-AP distances.
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Fig. 7. D̄F versus N for different radii R and L

As it can be observed, there exists an optimal number of

reflecting elements that maximizes the performance of D̄F .

Furthermore, the optimal RIS size increases as the UAV-

mounted RIS moves away from the AP, indicating that for

every sensor cluster, there exists a unique RIS that optimizes

the data collection procedure. Hence, it is important for the

network designer to adjust the RIS according to the needs and

the distance of the IoT network.

Finally, Fig. 7 illustrates the impact of: i) the CC-based

MAC protocol (L = 3), and ii) the pure slotted ALOHA

protocol (L = 1), on the average data per flight versus N .

The results are given for two different circular areas for the

case where the UAV-AP distance is equal to 200m. As it can

be observed, the utilization of the proposed MAC protocol

can improve the data collection procedure even for RIS with

fewer reflecting elements. In addition, by increasing the radius

R, the utilization of the proposed MAC protocol can reduce

the optimal number of reflecting elements, while it increases

the maximum average data per flight compared with the pure

slotted ALOHA case. Therefore, as the radius R increases, the

optimal RIS size that maximizes D̄F changes, indicating that

for larger circular areas where the sensors are located within,

the UAV-mounted RIS should increase.
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V. CONCLUSIONS

In this paper, we have investigated the data collection

performance of a UAV-RIS synergetic system that serves over

a remote area that has no direct link with the AP. To handle

the communication of multiple sensors, we have proposed

a novel MAC protocol based on slotted ALOHA and Code

Combining. Furthermore, we have devised an energy model

that takes into consideration the UAV and the RIS weight

as well as the UAV’s velocity and environmental conditions.

In our results, we have characterized the performance of our

model by analyzing the average throughput and the average

data per flight, where by analyzing this novel metric, we prove

that there exists a unique number of reflecting elements that

optimizes the data collection procedure for a specific area

which may change depending on the used MAC protocol.

Therefore, we have shown that increasing the number of

reflecting elements, i.e., the RIS size may lead to deteriorated

data collection, which indicates the importance of proper RIS

selection.
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