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Abstract—The performance of the generalized belief propa-
gation algorithm to compute the noiseless capacity and mu-
tual information rates of finite-size two-dimensional and three-
dimensional run-length limited constraints is investigated. In
both cases, the problem is reduced to estimating the partition
function of graphical models with cycles. The partition function
is then estimated using the region-based free energy approxi-
mation technique. For each constraint, a method is proposed
to choose the basic regions and to construct the region graph
which provides the graphical framework to run the generalized
belief propagation algorithm. Simulation results for the noiseless
capacity of different constraints as a function of the size of
the channel are reported. In the cases that tight lower and
upper bounds on the Shannon capacity exist, convergence to the
Shannon capacity is discussed. For noisy constrained channels,
simulation results are reported for mutual information rates as
a function of signal-to-noise ratio.

Index Terms—Generalized belief propagation algorithm, run-
length limited constraints, partition function, factor graphs,
region graphs, noiseless capacity, Shannon capacity, mutual
information rate.

I. INTRODUCTION

Run-length limited (RLL) constraints are widely used in
magnetic and optical recording systems. Such constraints
reduce the effect of inter-symbol interference and help in
timing control. In track-oriented storage systems constraints
are defined in one dimension.

We say a binary one-dimensional (1-D) sequence satisfies
the (d, k)-RLL constraint if the runs of 0’s have length at most
k and the runs of 0’s between successive 1’s have length at
least d. We suppose that 0 ≤ d < k ≤ ∞.

The Shannon capacity of a 1-D (d, k)-RLL constraint is
defined as

C
(d,k)
1D

4
= lim

m→∞

log2 Z(m)

m
, (1)
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where Z(m) denotes the number of binary 1-D sequences of
length m that satisfy the (d, k)-RLL constraint, see [1], [2].

With the rise in demand for larger storage in smaller
size and with recent developments in page-oriented storage
systems, such as holographic data storage, two-dimensional
(2-D) constraints have become more of interest [3]. In these
systems, data is organized on a surface and constraints are
defined in two dimensions.

A 2-D binary array satisfies the (d1, k1, d2, k2)-RLL con-
straint if it satisfies a (d1, k1)-RLL constraint horizontally and
a (d2, k2)-RLL constraint vertically. If a 2-D binary array
satisfies a 1-D (d, k)-RLL constraint both horizontally and
vertically, we simply say that it satisfies a 2-D (d, k)-RLL
constraint.

Example: 2-D (2,∞)-RLL constraint:

The 2-D (2,∞)-RLL constraint is satisfied in the following
2-D binary array segment. In words, in every row and every
column of the array there are at least two 0’s between succes-
sive 1’s; but the runs of 0’s can be of any length (however,
1’s can be diagonally adjacent).

. . . 0100100001001000100000100010 . . .

. . . 1000010000100010000100000100 . . .

. . . 0001000010000001000000010001 . . .

. . . 0100100100010000001000100000 . . .

The Shannon capacity of a 2-D (d1, k1, d2, k2)-RLL con-
straint is defined as

C
(d1,k1,d2,k2)
2D

4
= lim

m,n→∞

log2 Z(m,n)

mn
, (2)

where Z(m,n) denotes the number of 2-D binary arrays of
size m× n that satisfy the (d1, k1, d2, k2)-RLL constraint.

Similarly, the Shannon capacity can be defined for higher
dimensional constrained channels. For example, the Shannon
capacity in three dimensions C(d1,k1,d2,k2,d3,k3)

3D depends on
Z(m,n, q), the number of three-dimensional (3-D) binary
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arrays of size m× n× q that satisfy a (d1, k1, d2, k2, d3, k3)-
RLL constraint.

The noiseless capacity of a constrained channel is an impor-
tant quantity that provides an upper bound to the information
rate of any encoder that maps arbitrary binary input into binary
data that satisfies a given constraint. There are a number of
techniques to compute the 1-D Shannon capacity (for example
combinatorial or algebraic approaches) [1]. In contrast to the
1-D capacity, except for a few cases, exact values of two
and higher dimensional (positive) Shannon capacities are not
known, see [4]–[9].

For noisy 1-D constrained channels, simulation-based tech-
niques proposed in [16], [17] can be used to compute mutual
information rates. However, computing mutual information
rates of noisy 2-D RLL constraints has been an unsolved
problem.

In this paper, the goal is to apply the generalized belief
propagation (GBP) algorithm [10] for the above-mentioned
problems, namely, to compute an estimate of the capacity of
noiseless 2-D and 3-D RLL constrained channels and mutual
information rates of noisy 2-D constrained channels. For both
problems GBP turns out to yield very good approximate
results.

Preliminary versions of the material of this paper have
appeared in [11] and [12]. In [11], we applied GBP to compute
the noiseless capacity of 2-D and 3-D RLL constrained chan-
nels. In [12], GBP was applied to compute mutual information
rates of a 2-D (1,∞)-RLL constrained channel with relatively
small size and only at high signal-to-noise ratio (SNR). In this
paper, we show that both problems reduce to estimating the
partition function of graphical models with cycles. We then
apply GBP to both problems and consider new constraints
and larger sizes of grid.

Our main motivations for this research were the successful
application of GBP for information rates of 2-D finite-state
channels with memory in [13], Kikuchi approximation for
decoding of LDPC codes and partial-response channels in [14],
and tree-based Gibbs sampling for the noiseless capacity and
information rates of 2-D constrained channels in [12], [15].

The outline of the paper is as follows. In Section II, we
consider the problem of computing the partition function and
discuss how this problem is related to computing the noiseless
capacity and information rates of constrained channels. Region
graphs, GBP, and region-based free energy are outlined in
Section III. Section IV discusses the capacity of noiseless 2-D
constraints. Numerical values and simulation results for the

capacity of noiseless 2-D and 3-D RLL constraints are reported
in Section IV-A. In Section V, we apply GBP to compute
mutual information rates of noisy 2-D RLL constraints and
report numerical experiments for mutual information rates in
Section V-A.

II. PROBLEM SET-UP

Consider a 2-D channel of size N = m × m with a set
of X = {X1, X2, . . . , XN} random variables. Let xi denote
a realization of Xi and let x denote {x1, x2, . . . , xN}. We
assume that each Xi takes values in a finite set Xi. Also let
X be the Cartesian product X 4

= X1 ×X2 × . . .×XN .

In constrained channels, not all sequences of symbols from
the channel alphabet X are admissible. Let SX ⊂ X be the set
of admissible input sequences. We define the indicator function

f(x) 4
=

{
1, x ∈ SX

0, x /∈ SX
(3)

The partition function Z is defined as

Z
4
=
∑
x∈X

f(x). (4)

With the above definitions, Z = |SX| is the number of
sequences that satisfy a given constraint. Therefore, computing
the capacity of constrained channels as expressed in (2), is
closely related to computing the partition function as in (4).

Also note that with the above definitions

p(x) =
f(x)
Z

(5)

is a probability mass function on X .

For a noisy 2-D channel, let X be the input and
Y = {Y1, Y2, . . . , YN} be the output of the channel. The
mutual information rate is

1

N
I(X;Y) =

1

N

(
H(Y)−H(Y|X)

)
. (6)

Let us suppose that H(Y|X) is analytically available. In
this case, the problem of estimating the mutual information
rate reduces to estimating the entropy of the channel output,
which is

H(Y) = −E
[
log p(Y)

]
. (7)

As in [16], we can approximate the expectation in (7) by
drawing L samples y(1), y(2), . . . , y(L) according to p(y) and
use the empirical average as

H(Y) ≈ − 1

L

L∑
`=1

log(p(y(`))). (8)
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Therefore, the problem of estimating the mutual information
rate reduces to computing p(y(`)) for ` = 1, 2, . . . , L.

We will compute p(y(`)) based on

p(y(`)) =
∑
x∈X

p(x)p(y(`)|x), (9)

which for a fixed y(`) has also the form (4) and therefore
requires the computation of a partition function.

RLL constraints impose restrictions on the values of vari-
ables that can be verified locally. For example, in a 2-D (1,∞)-
RLL constraint no two (horizontally or vertically) adjacent
variables can both have the value 1. The indicator function of
this constraint factors into a product of kernels of the form

κa(xi, xj) =

{
0, if xi = xj = 1

1, else,
(10)

with one such kernel for each adjacent pair (xi, xj).

The factorization with kernels as in (10) can be represented
with a graphical model. In this paper, we focus on graphical
models defined in terms of Forney factor graphs. Fig. 1 shows
the Forney factor graph of a 2-D (1,∞)-RLL constraint where
the boxes labeled “=” are equality constraints [19]. (Fig. 1
may also be viewed as a factor graph as in [18] where the
boxes labeled “=” are the variable nodes).

In general, we suppose that the indicator function f(x) of
an RLL constraint factors into a product of non-negative local
kernels each having some subset of x as arguments; i.e.

f(x) =
∏
a

fa(xa), (11)

where xa is a subset of x and each kernel fa(xa) has elements
of xa as arguments.

In this case, the partition function in (4) can be written as

Z =
∑
x∈X

∏
a

fa(xa). (12)

If the factorization in (11) yields a cycle-free factor graph
(with not too many states), the sum in (12), or equivalently the
sum in (4), can be computed efficiently by the sum-product
message passing algorithm [18]. However, for the examples
we study in this paper, like the Forney factor graph of a 2-D
(1,∞)-RLL constraint in Fig. 1, factor graphs contain (many
short) cycles. In such cases computing Z requires a sum with
an exponential number of terms and therefore we are interested
in applying approximate methods.

Due to the presence of many short cycles in the factor graph
representation of 2-D and 3-D RLL constraints, loopy belief
propagation often fails to converge. As a result, we apply GBP

= = = =

= = = =

= = = =

= = = =

Fig. 1. Forney factor graph for a 2-D (1,∞)-RLL constraint.

to estimate Z, which then leads to estimating the noiseless
capacity and mutual information rates of RLL constraints.

III. GBP AND THE REGION GRAPH METHOD

In statistical physics, Z defined in (4) is known as the
partition function and the Helmholtz free energy is defined
as

FH
4
= − ln(Z). (13)

The partition function and the Helmholtz free energy are
important quantities in statistical physics since they carry
information about all thermodynamic properties of a system.

A number of techniques have been developed in statistical
physics to approximate the free energy. The method that
we apply in this paper is known as the region-based free
energy approximation, in particular we use the cluster variation
method to select a valid set of regions and counting numbers,
see [10] and [20] for more details.

We start by introducing the region graph representation of
our problem. Such a region graph will provide a graphical
framework for GBP algorithm. For each RLL constraint, the
size of the basic region is chosen based on the constraint
parameters. For a 2-D (d1, k1, d2, k2)-RLL constraint with
finite k1 and k2, the width and the height of the basic region
is chosen as

WR = k1 + 1

HR = k2 + 1,

and for the infinite case, the size is chosen as

WR = d1 + 1

HR = d2 + 1.
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Fig. 2. Basic region of size 2× 2 for a 2-D (1,∞)-RLL constraint.

Such a choice for the basic regions seems plausible since
the validity of a given array can be determined by verifying
the constraints in each region and sliding the basic regions
along the rows and along the columns of the array. For a
2-D (1,∞)-RLL constraint, Fig. 2 shows the basic regions
and Fig. 3 shows the region graph and the counting numbers
associated with each region.

After forming the region graph using the cluster variation
method, we perform GBP on this graph by sending messages
between the regions while performing exact computations
inside each region.

We will need the region-based free energy to estimate the
number of arrays that satisfy a given constraint. Therefore,
we operate GBP on the corresponding region graph until
convergence and use the obtained region beliefs {bR(xR)}
to compute the region-based free energy F̂H (as an estimate
of FH ). The region-based free energy F̂H can then be used to
estimate the partition function Z using (13). We compute F̂H

as

F̂H = min
{bR}

FR({bR(xR)})

=
∑
R∈R

cR
∑
xR

bR(xR)
(
ln bR(xR)− ln

∏
a∈AR

fa(xa)
)

(14)

Here R denotes the set of all regions, cR is the counting
number, xR stands for the set of variables in region R, and
AR is the set of factors in region R. See Fig. 3.

IV. CAPACITY OF NOISELESS 2-D RLL CONSTRAINTS

For a 2-D RLL constrained channel of width m and of size
N = m×m, we run GBP on the corresponding region graph
to compute F̂H and an estimate of Z. We can then compute

C(m,m) =
log2 Z(m,m)

m×m
, (15)

fAfCfDfF
x1x2x4x5

+1

fBfDfEfG
x2x3x5x6

+1

fF fHfIfL
x4x5x7x8
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x5x6x8x9
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−1H
HHH

HHHHj

J
J
JĴ
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Fig. 3. The region graph for Forney factor graph in Fig. 2.

where Z(m,m) denotes the number of 2-D binary arrays of
size m×m that satisfy the constraint.

In our numerical experiments in Section IV-A, for different
RLL constraints we show convergence of C(m,m) to the
Shannon capacity as m increases.

For example, let us consider a 2-D (1,∞)-RLL constraint
with corresponding Forney factor graph in Fig. 1. For this
constraint, we chose basic regions with size 2× 2 in a sliding
window manner over the factor graph, see Fig. 2. Starting from
such basic regions, we applied the cluster variation method on
the factor graph in Fig. 2 to obtain the corresponding region
graph depicted in Fig. 3. The counting numbers {cR} are
shown next to each region.

A. Numerical Experiments

Here we present the numerical results of applying GBP to
estimate the finite-sized noiseless capacity of RLL constraints.

Tight lower and upper bounds were given for the Shannon
capacity of a 2-D (1,∞)-RLL constraint in [4]. The bounds
were further improved in [22] and [23], now known to nine
decimal digits.

0.5878911617... ≤ C(1,∞)
2D ≤ 0.5878911618... (16)

For this constraint, Fig. 4 shows C(m,m) defined in (15)
versus the channel width m over the interval [2, 300]. The
estimation was performed using the parent-to-child and two-
way GBP algorithms. The two algorithms give almost identical
results. The horizontal line in Fig. 4 shows the Shannon
capacity for this channel in (16). For a channel of width 300,
the estimated noiseless capacity is about 0.5884.
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Fig. 4. Estimated capacity (in bits per symbol) vs. channel width m for
a 2-D (1,∞)-RLL constraint. The horizontal dotted line shows the Shannon
capacity for this channel as in (16).
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Fig. 5. Estimated capacities (in bits per symbol) vs. channel width m for a
class of 2-D (1,∞, d,∞)-RLL constraints with d = (1, 2, 3, 4).

Shown in Fig. 5 are plots of C(m,m) for 2-D (1,∞, d,∞)-
RLL constraints with d = (1, 2, 3, 4) from top to bot-
tom, versus the channel width m over the interval [2, 200].
Fig. 6 shows the plots of C(m,m) for 2-D (1,∞, 2, 4)-
RLL and (1,∞, 2, 3)-RLL constraints versus m over the
interval [4, 200]. From our simulation results, for a chan-
nel of width 200 the estimated noiseless capacities for 2-D
(1,∞, d,∞)-RLL constraints with d = (2, 3, 4) are about
(0.4994, 0.4346, 0.3864) and the estimated noiseless capaci-
ties for 2-D (1,∞, 2, 4)-RLL and (1,∞, 2, 3)-RLL are about
(0.3106, 0.2109). To the best of our knowledge, no theoretical
upper or lower bounds exist for these constraints. All plots
are obtained using the parent-to-child algorithm. Note that
2-D (1,∞, 1,∞)-RLL plot in Fig. 5 is the same as the plot
in Fig. 4.

Also shown in Fig. 7 is the plot of C(m,m) for a 2-D
(2,∞)-RLL constraint versus m over the interval [3, 400]. For
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Fig. 6. Estimated capacity (in bits per symbol) vs. channel width m for a
2-D (1,∞, 2, 4)-RLL and (1,∞, 2, 3)-RLL constraints.
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Fig. 7. Estimated capacity (in bits per symbol) vs. channel width m for a
2-D (2,∞)-RLL constraint.
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Fig. 8. Estimated capacity (in bits per symbol) vs. channel width m for
a 3-D (1,∞)-RLL constraint. The horizontal dotted lines show upper and
lower bounds on the Shannon capacity for this channel as in (18).

a channel of width 400, the estimated noiseless capacity is
about 0.4462. Best known lower and upper bounds for the
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Shannon capacity of a 2-D (2,∞)-RLL constraint are given
in [8] and [9] respectively, as

0.4453 ≤ C(2,∞)
2D ≤ 0.4457 (17)

Our proposed method can be generalized to compute the
noiseless capacity of 3-D and higher dimensional RLL con-
straints. For a 3-D (1,∞)-RLL constraint the following lower
and upper bounds were introduced in [23]

0.5225017418... ≤ C(1,∞)
3D ≤ 0.5268808478... (18)

Fig. 8 shows the noiseless capacity estimates of a 3-
D (1,∞)-RLL constraint, obtained using the parent-to-child
algorithm, versus the channel width m. The horizontal dotted
lines show the upper and lower bounds for the Shannon
capacity. For a channel of width m = 40 the GBP estimated
capacity is about 0.5267 which falls within these bounds.

Simulation results and numerical values for the noiseless
capacity of many other 2-D RLL constraints are reported
in [21].

B. Bounds for the Shannon Capacity

For any finite m, it is possible to compute lower and upper
bounds on the Shannon (infinite-size) capacity using C(m,m)

the capacity of a 2-D RLL constrained channel of width m.
For example, consider a 2-D (1,∞)-RLL constraint with

local kernels as in (10). From tiling the whole plane with
m×m squares, it is clear that C(m,m) is an upper bound for
the Shannon capacity C(1,∞)

2D . On the other hand, by tiling the
plane with m ×m squares separated by all-zero guard rows
and all-zero guard columns, we obtain ( m

m+1 )
2C(m,m) ≤

C
(1,∞)
2D .
From Fig. 4, the estimated capacity at m = 300 is about

C(300, 300) = 0.5884, we thus obtain the following lower
and upper bounds for the Shannon capacity

0.5844 ≤ C(1,∞)
2D ≤ 0.5884.

Note that although GBP performs remarkably well for 2-
D constrained channels, it is an approximate algorithm which
yields approximations to the lower and upper bounds to the
Shannon capacity. However in order to achieve a desired
precision, the bounds could provide a criterion for choosing
the value of m.

V. INFORMATION RATES OF NOISY 2-D RLL
CONSTRAINTS

As explained in Section II, the problem of computing mutual
information rates reduces to computing the output probability.

=
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x1 =
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y2
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y3

x3 =
ZZ
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=
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ZZ

=
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ZZ

=
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ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

=
ZZ

ZZ

Fig. 9. Extension of Fig. 1 to a Forney factor graph of p(x, y) with p(y|x)
as in (22).

Therefore, the remaining tasks are

1) Drawing input samples x(1), x(2), . . . , x(L) from SX ac-
cording to p(x) and therefrom creating output samples
y(1), y(2), . . . , y(L).

2) Computing p(y(`)) for each ` = 1, 2, . . . , L.

We will compute p(y(`)) based on

p(y(`)) =
∑
x∈SX

p(x)p(y(`)|x), (19)

where p(x) is a probability mass function on SX.

Let us assume uniform distribution over the admissible
channel input configurations. Therefore we have

p(x) = |SX|−1 (20)

= 2−NC2D , (21)

we also assume the channel is memoryless and p(y|x)
factors as

p(y|x) =
N∏
i=1

p(yi|xi). (22)

For such a noisy 2-D constrained channel, the corresponding
Forney factor graph, as an extension of Fig. 1, is shown in
Fig. 9.

Using (21) and (22), we can rewrite (19) as

p(y(`)) = 2−NC2D

∑
x∈SX

N∏
i=1

p(y
(`)
i |xi), (23)

= 2−NC2DZ(y(`)), (24)

where Z(y(`)) has the same form as the sum in (12).

The input samples x(1), x(2), . . . , x(L) are generated as fol-
lows. We run GBP on Fig. 3 until convergence to compute
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the region beliefs {bR(xR)} at each region R. The region be-
liefs are GBP approximations to the corresponding marginals
{pR(xR)}. In our numerical experiments, each sample x(`) is
then generated piecewise sequentially according to the beliefs
bR(xR) in basic regions. For example, in the region graph
of Fig. 3, after computing bR(x1, x2, x4, x5), sample x1 is
drawn according to bR(x1), sample x2 is drawn according to
bR(x2|x1), etc. The input samples x(1), x(2), . . . , x(L) are then
used to create output y(1), y(2), . . . , y(L) using (22).

The beliefs are directly proportional to the factor nodes
involved in each region, which guarantees that the samples
are drawn from SX. Moreover, since beliefs are good approx-
imations to the marginal probabilities, one expects that the
samples are drawn from a distribution close to p(x), see [10].

In order to compute Z(y(`)), as in Section III, we start from
the factor graph in Fig. 9 to build the region graph representing
the problem and run GBP on this region graph. Finally, the
estimated p(y(1)), p(y(2)), . . . , p(y(L)) are used to compute an
estimate of H(Y) as in (8).

A. Numerical Experiments

In our numerical experiments we consider (1,∞)-RLL and
(2,∞)-RLL constrained channels with size N = 30× 30 and
input alphabet X = {−1,+1}N .

Noise is assumed to be i.i.d. zero mean Gaussian with
variance σ2 and independent of the input. We thus have

H(Y|X) =
N

2
log(2πeσ2), (25)

and p(y|x) in (22) has kernels of the form

p(yi|xi) =
1√
2πσ2

exp

(
− 1

2σ2

(
yi − xi

)2)
. (26)

SNR is defined as

SNR 4
= 10 log10

1

σ2
(27)

Shown in Fig. 10 is the estimated information rate vs. SNR
over the interval [−10, 10] dB for a noisy 2-D (1,∞)-RLL
constraint. The horizontal dotted line shows the estimated
noiseless capacity which can be read from Fig. 4 and is about
0.5943 for this size of channel.

Illustrated in Fig. 11 is the estimated information rate
vs. SNR over the interval [−10, 10] dB for a noisy 2-D
(2,∞)-RLL channel. The horizontal dotted line shows the
estimated noiseless capacity which can be read from Fig. 7
and is about 0.4552 for this size of channel.

The simulation results were obtained by averaging over
L = 1000 realizations of the channel output.
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Fig. 11. Estimated information rate (in bits per symbol) vs. SNR (in dB) for
a 30×30 channel with a (2,∞)-RLL constraint and additive white Gaussian
noise.

Simulation results and numerical values for mutual infor-
mation rates of many other 2-D RLL constraints are reported
in [21].

VI. CONCLUDING REMARKS

We proposed a GBP-based method to estimate the noiseless
capacity and mutual information rates of RLL constraints in
two and three dimensions. For noiseless RLL constraints, the
method was applied to estimate the finite-size capacity of
different constraints and to show convergence to the Shannon
capacity as the size of the channel increases. In particular,
the proposed method can be used to estimate the noiseless
capacity of RLL constraints in the cases that the capacity is
not known to a useful accuracy. The method was also applied
to estimate mutual information rates of noisy RLL constraints
with additive white Gaussian noise and with a uniform distri-
bution over the admissible input configurations. Our simulation



8

results show mutual information rates of different constraints
as a function of SNR.
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