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Fast and Scalable Global Convergence in
Single-Optimum Decentralized Coordination

Problems
Luis R. Izquierdo, Segismundo S. Izquierdo, and Javier Rodrı́guez.

Abstract— Over the past few years, the scientific com-
munity has been studying the usefulness of evolutionary
game theory to solve distributed control problems. In this
paper we analyze a simple version of the Best Experi-
enced Payoff (BEP) algorithm, a revision protocol recently
proposed in the evolutionary game theory literature. This
revision protocol is simple, completely decentralized and
has minimum information requirements. Here we prove that
adding some noise to this protocol can lead to efficient
results in single-optimum coordination problems in little
time, even in large populations of agents. We also test the
algorithm under a wide range of different conditions using
computer simulation. In particular, we consider different
numbers of agents and of strategies, and we analyze the
robustness of the algorithm to different updating schemes
(e.g. synchronous vs asynchronous) and to different types
of interaction networks (e.g. ring, preferential attachment,
small world and complete). In all cases, using the noisy
version of BEP, the agents quickly approach a small neigh-
borhood of the optimal state from every initial condition,
and spend most of the time in that neighborhood.

Index Terms— Best Experienced Payoff, Decentralized
Algorithms, Distributed Control, Evolutionary Dynamics,
Evolutionary Game Theory, Large Population Double Limit,
Small Noise Limit.

I. INTRODUCTION

NOWADAYS there are many engineering systems that
are difficult to control due to the large number of

components that constitute them, the non-linear interdependen-
cies that exist between them, and their distributed autonomy
[1]. Examples include communication networks, transportation
systems, wind farms, electrical networks, teams of autonomous
vehicles, wireless sensor networks, and urban drainage sys-
tems.
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The control of these large-scale distributed systems requires
the design of individual decision rules (i.e. one for each of
the system components) that guarantee the achievement of a
common goal in a dynamic and highly uncertain environment.
In this context, traditional control theory is usually not par-
ticularly useful, since in this type of distributed architecture
there is no central entity with access and authority over all
components of the system [2]. In fact, communication between
components is often limited (e.g. due to economic and/or
technological issues) and sometimes even simply unfeasible
due to design requirements (e.g. due to privacy and/or stealth
issues – as in military operations).

Over the past few years, the scientific community has
realized the usefulness of evolutionary game theory to solve
this kind of distributed control problems [3]. Evolutionary
Game Theory (EGT) studies the interactions between au-
tonomous agents who have only partial information about their
environment and occasionally revise their strategies with the
aim of improving their payoff. The two main components of
EGT models are a population game and a revision protocol.
The population game describes the payoffs that agents receive,
given their individual strategy and the other agents’ strategies.
The revision protocol dictates when and how agents revise
their strategies. A population game and a revision protocol
together define an evolutionary game dynamic, which is a de-
scription of how the distribution of strategies in the population
evolves over time [4].

Thus, the application of EGT to distributed control problems
basically consists in finding a population game and a revision
protocol such that the induced dynamics lead to the achieve-
ment of the overall objective pursued at the system level; all
this considering the fact that individual agents may not have
access to all the information needed to know the state of the
system.

Following this approach, several promising results have
been obtained in recent years. One of the most remarkable
achievements has been the development of algorithms that
allow to formalize numerous problems that often appear in
engineering (e.g. dynamic resource allocation problems and
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routing problems) as potential games [5]–[7],1 since there
are numerous revision protocols that ensure convergence to
a Nash equilibrium in this type of games [4], [8]. However,
even though this line of work has already produced several
important results, it currently presents three notable limitations
that are indicated below.

The first limitation is that the Nash equilibria achieved may
be highly inefficient from the point of view of the overall
objective to be achieved at the system level [9]. The second
limitation is that most of the results are valid only for potential
games, but there are numerous problems in engineering that
cannot be formalized as a potential game [10]. An example
with these characteristics is the distributed control of wind
farms with the objective of maximizing total energy produc-
tion. Currently we lack precise engineering knowledge of the
aerodynamic interactions that occur between the turbines, so
it is not possible to know the effect of modifying the variables
of a single turbine on the total energy production [11]. And
the third limitation is that the most promising algorithms
proposed up to date (e.g. [10]) scale very badly with the
number of components, requiring extremely long times to
reach their asymptotic behavior even for moderate numbers
of components.

Here we study the Best Experienced Payoff (BEP) protocol
[12], [13], which presents three characteristics that address
each of the limitations outlined above: it converges to very
efficient states (not necessarily Nash equilibria) in several
games that have inefficient Nash equilibria, it has minimum
information requirements (agents only need access to the
action they played and the payoff they received),2 and its speed
of convergence is very high. Its main drawback is the limited
scope of games for which convergence to the optimum is
guaranteed (as opposed to e.g. the general algorithm proposed
by Marden et al. [10]).3 Specifically, this paper shows that
the BEP protocol with some noise can be used as a scalable
decentralized algorithm to quickly reach the optimal outcome
in a large class of coordination problems.

The paper is structured as follows. Section II presents a
motivating example. In Section III, we specify the problem
we are dealing with and define single-optimum coordination
(SOC) games. In Section IV we present the general BEP
algorithm and propose a noisy version called nBEPA1. Sec-
tion V is devoted to the formal analysis of the nBEPA1
dynamics in SOC games. It includes several propositions that
together characterize the transient and asymptotic dynamics
of the nBEPA1 protocol in SOC games. In Section VI we
present various simulation experiments aimed at exploring

1Potential games are games that admit a potential function, which is a
scalar function that contains all the payoff information that is relevant to study
the game. In particular, in potential games, the change in any player’s payoff
from a unilateral deviation equals the change in potential. This means that
profitable strategy revisions increase the value of the potential function [4,
chapter 3].

2This means that the algorithm is payoff-based [10], completely uncou-
pled [14], [15], radically uncoupled [16] and local [17].

3Notably, the notion of “convergence” in our paper is different from
[10]. We focus on the large population double limit – where convergence
is guaranteed in finite time – while results in [10] refer to the small noise
limit, where convergence time is not bounded. This is explained in detail in
Section V.

(a) Replicator Dynamics (b) BEP mean dynamics

Fig. 1: Phase portraits of the coordination game with payoff
matrix (1), with n = 3 strategies. The simplex on the left (a)
shows the replicator dynamics, and the simplex on the right
(b) shows the BEP mean dynamics (solving ties at random).

the dependence of the nBEPA1 dynamics on the number of
agents, the number of strategies, the level of noise, and the
way agents are scheduled to revise their strategies. We also
study the nBEPA1 dynamics on networks, where agents can
interact only with a small subset of the population. Lastly, we
summarize our main conclusions in Section VII. All figures
and simulation experiments in this paper can be replicated
using open-source software that can be downloaded using the
links provided in Appendix I.

II. A MOTIVATING EXAMPLE

As an illustration, consider the following problem: A set of
drones sent to a hostile environment must choose a channel
to communicate from among n possible ones. Two drones can
communicate if and only if they both use the same channel,
and there is no risk of any channel becoming saturated by the
drones. However, the efficiency of each channel is different, it
is not possible to know which channel is optimal a priori,
and it is possible that the optimal channel is different at
different times (i.e. stochastic game). In this setting, the best
outcome would be one where, at any moment, every drone is
using the optimal channel. This situation could be modeled as
a symmetric two-player (single-optimum coordination) game
with the following payoff matrix:

1 0 0 ... 0
0 2 0 ... 0

0 0
. . .

...
...

... n− 1 0
0 0 ... 0 n

 (1)

This game has n pure Nash equilibria (and several mixed
ones), but only one is optimal (i.e. both players choose
channel n). Fig. 1 shows the phase map of this game with
n = 3 strategies, placed in a population context, a) under the
replicator dynamics (Figure 1a) and b) the mean dynamics
when agents use the BEP revision protocol (Figure 1b).

In this problem, most of the dynamics studied in the EGT
literature (e.g. Replicator, Smith, Brown-von Neumann-Nash,
best-response, and imitate-the-better-realization [18], [19]) [4]
and most algorithms used for coordination problems in the
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Multi-Agent Systems literature (e.g. HCR [17], EM [17],
WSLpS [20] and Majority Action [21]) converge to one or
another of the n pure Nash equilibria, depending on initial
conditions, with all Nash equilibria having a sizable basin
of attraction (as in Figure 1a).4 Consequently, using these
dynamics, there is a high probability of ending up in an
inefficient state, especially if the optimal channel changes in
time.

However, if agents use the BEP protocol – breaking ties
at random –, the agents will be able to coordinate on the
optimal communication channel starting from nearly all initial
conditions. In fact, coordination of the entire population on the
optimal channel is an almost globally asymptotically stable
state of the BEP mean dynamics [13, prop. 5.11], which is
reached from every state except for the (n − 1) inefficient
pure states where the whole population is coordinated on a
suboptimal channel. This suggests that, if there is some small
variability or noise in the decision protocol (or we add it
by design), agents will be able to quickly coordinate on the
optimal channel from any initial condition, even if the optimal
channel changes at some point.

III. THE POPULATION GAME

We assume that there is a population of N agents that
may engage in a 2-player symmetric game GPC = {S,A},
where S = {1, ..., n} is the set of pure strategies and A is
the payoff matrix, with elements aij satisfying the following
payoff conditions:

Payoff Conditions 3.1: There is a strategy s ∈ S such that
the following two conditions hold:
• ass > maxi 6=s aij ∀j ∈ S.
• asj ≥ maxi 6=s min(aij , ais) ∀j 6= s. �

We use superscript PC in GPC to emphasize that GPC is a
game that satisfies Payoff Conditions 3.1. The first condition
states that there is an optimal strategy s in the sense that payoff
ass is greater than any payoff that can be obtained with any
of the other strategies. In particular, the first condition implies
that, in a population context, the optimal monomorphic state is
the one where every agent is choosing strategy s. The second
condition is satisfied if strategy s is weakly dominant in an
auxiliary game in which, for each of the other strategies i 6= s,
payoff aij is replaced with min(aij , ais).

A particularly relevant family of games that satisfy both
conditions is the set of Single-Optimum Coordination (SOC)
games. We define SOC games as 2-player symmetric games
where there is a unique maximum payoff ass that is obtained
if both players choose the same strategy s, and players using
different strategies obtain the same payoff b < ass.

a11 b b ... b
b a22 b ... b

b b
. . . . . .

...
...

...
. . . . . . b

b b ... b ann


4Noisy dynamics with sufficiently large levels of noise will have only

one global attractor, but this global attractor may well be far from the optimal
outcome (e.g. see [4, Example 6.2.2, pp. 191-3] and [22] for logit dynamics).

The game with payoff matrix (1) is a SOC game. In the
Economics literature, SOC games have been used extensively
to study the evolution of social norms (see e.g. [23]–[26]) and
the diffusion of technological innovations (see e.g. [22], [27],
[28]). In such settings, agents must choose whether to keep
using a status-quo norm or technology, or adopt a superior
innovation. SOC games also appear naturally in engineering
contexts where a set of devices are required to coordinate on
an optimal action, such as swarm robotics and wireless sensor
networks (see e.g. [20]).

IV. THE BEST EXPERIENCED PAYOFF PROTOCOL

The Best Experienced Payoff (BEP) protocol is based on
the so-called “procedurally rational agents”, initially proposed
by Osborne and Rubinstein [29] and analyzed for the first time
in an evolutionary context by Sethi [30].

In accordance with the EGT literature, here we assume that
there is a population of N agents who can revise their strategy
occasionally and independently, one agent at a time. We define
one unit of time as the lapse of time over which each agent
expects to receive one revision opportunity. Thus, the expected
number of revisions per time unit in the population is N .

Under the general BEP revision protocol, the revising agent
tests a subset of its available strategies by trying out each
of them a predetermined number of times [12], [13]. In this
paper we use the simplest version of the BEP protocol, i.e.,
the version where revising agents consider all their strategies
and they try each of them only once. Crucially, every time
the revising agent tries one strategy, she draws a new random
agent to play with, following a uniform distribution; thus,
each strategy trial is conducted with a potentially different
co-player, and every agent is equally likely to be selected.
Once each of the candidate strategies has been tried against
one opponent, the revising agent chooses the strategy that
provided the greatest payoff in the test, resolving the possible
ties at random. The version of BEP that we use in this paper
– where revising agents test all their strategies, each against
one new random agent, and break ties uniformly at random –
is henceforth called BEPA1.5,6

In some games GPC that we study in this paper, the BEPA1
algorithm has several absorbing states that are inefficient. An
example would be the state where the whole population is
using strategy 1 (or strategy 2) in the SOC game with payoff
matrix (1) and n = 3. This is undesirable, especially in
stochastic games, because the population will be unable to
adapt to changing conditions, such as a shift in the optimal
channel in SOC game (1).

Nonetheless, this drawback can be easily overcome by
adding some probability of experimentation (or noise) to the
algorithm so that, with a small probability ε, revising agents
adopt any of the n possible strategies with equal probability
– and with probability (1 − ε) they select the new strategy
following the BEPA1 protocol. This noisy generalization of

5Recent papers that analyze the BEP dynamics in other contexts include
[31] in repeated games, [32] in the Prisoner’s Dilemma with several trials,
and [33] in the Centipede game testing two strategies only.

6In general, the results in this paper do not apply to versions of BEP
where not all the strategies are tested [13].
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Fig. 2: Phase portrait showing the mean dynamics of the
nBEPA1ε=10−4

in the single-optimum coordination game with
payoff matrix (1), with n = 3 strategies.

BEPA1 is called nBEPA1, and it is the main object of study
in this paper.

Fig. 2 shows the mean dynamic of the nBEPA1ε=10−4

protocol in the SOC game with payoff matrix (1), with n = 3
strategies. The introduction of noise implies that the algorithm
has no absorbing states anymore and its mean dynamic has a
unique globally asymptotically stable state where most of the
population – i.e. more than 99.9% of the agents – are coordi-
nated on the optimal strategy. This means that if the optimal
channel changes, the population will quickly coordinate on the
new optimal strategy.

V. ANALYTICAL RESULTS

A. Notation
A population state x is characterized by the fraction xi of

agents using strategy i ∈ S. Thus, the set of population states
is the simplex in Rn, i.e. ∆S = {x ∈ Rn+ :

∑
i∈S xi = 1}.

We use ei to denote the monomorphic (or pure) state where
all agents use strategy i, i.e., the state x such that xi = 1
and xj = 0 for all j 6= i. Recall that in every game GPC (i.e.
2-player symmetric game satisfying Payoff Conditions 3.1)
played in a population context, there is a unique optimal pure
state es where every agent is choosing strategy s.

B. The nBEPA1 dynamics as a Markov chain
Defining the population state x by the fraction of agents

that are using each strategy, the dynamics induced by the
nBEPA1 protocol can be usefully seen as a Markov chain
{XN,ε

t } whose finite set of states is the grid ∆NS =
{x ∈ ∆S : Nx ∈ Zn}.

In the following sections we study the transient and the
asymptotic behavior of the Markov chain {XN,ε

t } induced
by the nBEPA1 protocol. Following [34], we assume that at
discrete times t = 0, 1

N ,
2
N , ... exactly one individual chosen

at random is given the opportunity to change strategy, but this
assumption may be relaxed.7 Thus, each individual agent is
expected to revise its strategy exactly once over one unit of
time, which we call a tick.

7Alternatively, we can assume that each agent has a rate 1 “Poisson clock”
that sets her revision times, with all clocks being statistically independent.

C. Transient behavior: the mean dynamic
In this section we derive and analyze the mean dynamic

of the nBEPA1 stochastic process, which is a set of differ-
ential equations that approximate the transient dynamics of
the Markov chain remarkably well, especially for finite time
horizons and large populations [4, chapter 10].

To derive the mean dynamic, we need to introduce some
notation first. Assume for now that there is no noise. Let a
battery of tests conducted by a revising agent be the process
of testing each of her available strategies and assigning to
each strategy the corresponding experienced payoff. (Recall
that each strategy is tested with a new randomly drawn co-
player.)

Let Φi be the probability with which strategy i is selected
in a battery of tests. Strategy i is selected if it is the only
strategy that obtains the greatest experienced payoff in the
battery of tests or, if there are more strategies with the same
greatest experienced payoff, if it is selected (uniformly at
random) among this set of best-performing strategies. If, when
tested, strategy i meets an agent using strategy j, strategy i
obtains payoff aij . The conditional probability that payoff πk
obtained by strategy k 6= i is lower than payoff aij (obtained
by strategy i) is P (πk < aij) =

∑
m:akm<aij

xm. And the
conditional probability that strategy k 6= i obtains the same
payoff as strategy i is P (πk = aij) =

∑
m:akm=aij

xm.
For each payoff aij that strategy i may obtain, let Θi(aij)

be the set of strategies other than i that may obtain the same
payoff aij , i.e.:

Θi(aij) = {k ∈ (S \ i) : akm = aij for some m ∈ S}.
Let P(Θi(aij)) be the power set of Θi(aij), i.e., the set

of subsets of strategies other than i that may obtain the same
payoff aij as strategy i (when it meets a j-strategist), including
the empty set. The probability Φi is then:

Φi =
∑
j

xj

 ∑
θ∈P(Θi(aij))

1

#θ + 1(∏
k∈θ

P (πk = aij)

) ∏
k/∈θ,k 6=i

P (πk < aij)

 (2)

where #θ is the cardinality of subset θ. The term xj in (2)
is the probability that strategy i obtains payoff aij . The term
in square brackets is the conditional probability that each of
the other strategies obtains either a lower payoff, or the same
payoff as strategy i and strategy i is the one selected from the
set of best-performing strategies.

Introducing now noise in the process, the nBEPA1 mean
dynamic equations can be expressed as:

ẋi = (1− ε)Φi +
ε

n
− xi (3)

The outflow (negative) term −xi in (3) corresponds to
agents who are currently using strategy i (whose proportion
is xi) and revise their strategy, potentially adopting another
strategy. The inflow (positive) terms correspond to the revising
agents who adopt strategy i. Specifically, the inflow is the
probability that noise plays no role in the revision (1 − ε)
multiplied by the probability with which the revising agent
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adopts strategy i in the absence of noise Φi, plus the proba-
bility with which strategy i is selected under uniform random
noise ( εn ).

As an example, the inflow of the nBEPA1 stochastic process
without noise in SOC games with payoff matrix (1) reads:

Φi = xi

n∏
j=i+1

(1− xj) +
1

n

n∏
j=1

(1− xj)

The first inflow term xi
∏n
j=i+1(1−xj) corresponds to the

probability that a revising agent, when testing strategy i, meets
another agent using strategy i too (obtaining payoff i), and
when testing any strategy j > i, it meets an agent using any
strategy other than j (obtaining a payoff of 0). The second
inflow term 1

n

∏n
j=1(1−xj) corresponds to the probability that

a revising agent, when testing each strategy j, meets an agent
using any strategy other than j, so all strategies obtain the
same payoff (0) in the test, and are chosen with probability 1

n .
The following proposition states that, in any SOC game,

nearly all trajectories of the BEPA1 mean dynamics converge
to the optimal state es, i.e., the state where xs = 1.

Proposition 5.1: The optimal state es is an almost global
attractor of the BEPA1 mean dynamics ((3) with ε = 0) in any
SOC game. This state es attracts all trajectories except possibly
those starting at the other monomorphic states in which all
players use the same strategy.

Proof: In any SOC game, we have:

ẋs ≥ xs +
1

n

n∏
i=1

(1− xi)− xs =
1

n

n∏
i=1

(1− xi)

The inflow term xs corresponds to the probability that a
revising agent, when testing strategy s, meets another agent
using strategy s too, obtaining the highest possible payoff. The
inflow term 1

n

∏n
i=1(1−xi) corresponds to the probability that

a revising agent, when testing each strategy i, meets an agent
using any other strategy j 6= i, so all strategies obtain the
same payoff (b) and are chosen with probability 1

n . For SOC
games with aii < b for some i, the inflow would include more
terms. The growth rate for xs is then strictly positive except
possibly at states ei where xi = 1, proving the result.

Proposition 5.2 below shows that, if the noise level is low,
all trajectories of the nBEPA1 mean dynamic (3) in any game
GPC converge to a small neighborhood around the optimal
pure state es, i.e., there is a small neighborhood around es
that is globally asymptotically stable. Fig. 3 illustrates this
result in the SOC game with payoff matrix (1), with n = 3
strategies.

Proposition 5.2: For any positive δ < 1, there is a threshold
noise level εδ > 0 such that, for all positive noise levels ε < εδ ,
all trajectories of the dynamics (3) in any game GPC converge
to the set Oδ(es) ≡ {x ∈ ∆S : xs ≥ 1− δ}.

Proof: We will show that the function Lδ : ∆S →
[0, 1 − δ] defined by Lδ(x) = max(0, 1 − δ − xs) is a strict
Lyapunov function for the set Oδ(es), proving the result. It
is easy to check that L−1

δ (0) = Oδ(es), and, for xs < 1− δ,
L̇δ(x) = −ẋs. If xs < 1−δ, then there is some strategy j 6= s
with xj >

δ
n . This implies that Φs ≥ xs + 1

n
δ
n ( δnxs)

n−1,
where the term xs is the probability that a revising agent, when

(a) ε = 10−1 (b) ε = 10−2

Fig. 3: Phase portraits of the SOC game with payoff ma-
trix (1), with n = 3 strategies. The simplex on the left (a)
shows the mean dynamics of the nBEPA1ε=10−1

protocol and
the simplex on the right (b) shows the mean dynamics of the
nBEPA1ε=10−2

protocol.

testing strategy s, meets an s-strategist (so it obtains payoff
ass in that test, and strategy s is selected); the last term is a
lower bound on the inflow from revising agents who, when
testing strategy s meet a j-strategist (obtaining the payoff asj
in the test of strategy s, which happens with a probability
of at least δ

n ) and when testing each of the other n− 1
strategies (generically, strategy i 6= s) do not obtain a greater
payoff because they meet either an s-strategist or a j-strategist
(whichever provides the lower payoff min(aij , ais)), consid-
ering that ∀i 6= s, asj ≥ min(aij , ais) and min( δn , xs) ≥

δ
nxs.

For dynamics (3) we then have

ẋs ≥ (1− ε) 1

n

δ

n

(
δ

n
xs

)n−1

+ ε

(
1

n
− xs

)
≡ λ. (4)

If xs < 1
n , then the last term in the lower bound λ in (4) is

positive and, given that the first term is non-negative, we have
ẋs > 0 and, if xs < 1−δ, then L̇δ(x) < 0. If 1

n ≤ xs < 1−δ,
then limε→0 λ = 1

n
δ
n ( δnxs)

n−1 > 0, which means that there
is an εδ > 0 such that for ε < εδ , we have λ > 0, ẋs > 0 and
L̇δ(x) < 0, completing the proof.

Going back to the actual stochastic process {XN,ε
t } induced

by the nBEPA1 protocol – and considering the relationship
between the stochastic process and its mean dynamic in large
populations [34] –, we have shown that, for large enough
population sizes and moderate noise, in any game GPC , the
stochastic process {XN,ε

t } – starting from any initial state
– will approach a small neighborhood of the optimal pure
state es with probability close to one, and we can make this
neighborhood as small as we like by making the noise (ε > 0)
sufficiently small.

This is an important difference with the (many) dynamics
where several pure states in SOC games can have a sizable
basin of attraction (see Section II). In such dynamics, even
if some (sufficiently low) noise is added, there will still be
different attractors with sizable basins of attraction; i.e., in
SOC games, those dynamics will not converge to the vicinity
of the optimal state from every initial condition. If noise is
increased in those dynamics until there is one single global
attractor, this global attractor may well be far away from the
optimal state. Exactly how far the global attractor will be from
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the optimal state will generally depend on the specific dynamic
employed, on the magnitude of the payoffs and, naturally, on
the level of noise (e.g. see [4, Example 6.2.2, pp. 191-4] for
logit dynamics). This can be easily checked using EvoDyn-3s
software [35].

D. Asymptotic dynamics: the limiting distribution

Having seen that the stochastic process {XN,ε
t } induced by

the nBEPA1 protocol in any game GPC – with N sufficiently
large and ε adequately small – will approach the surroundings
of the optimal pure state es from any initial condition, we turn
our attention to the question of whether the process will stay
in that area for long. To answer this question, we must study
the limiting distribution µN,ε of {XN,ε

t }, when it exists.
In general, the stochastic process induced by nBEPA1 in

the absence of noise (i.e. BEPA1) may have several absorbing
states, so the asymptotic dynamics of this process may well
depend on initial conditions. An example of this situation is
the SOC game with payoff matrix (1): if the process starts at
any of the n pure states, it will stay there forever.

In contrast with the protocol without noise, the nBEPA1
protocol with ε > 0 has full support, so the Markov chain it
induces is irreducible and aperiodic [4, section 11.1.1]. This
means that there is a unique stationary distribution µN,ε, which
describes the infinite horizon behavior of {XN,ε

t } regardless
of initial conditions (i.e. µN,ε is the limiting distribution) and
it also represents the long-run fraction of time that the process
spends in each state (i.e. µN,ε is the occupancy distribution,
or the limiting empirical distribution). This distribution µN,ε

has full support, i.e. fixing N and ε, every state is visited
infinitely often, but the probability mass is often concentrated
on a small set of states. Here we show that, for sufficiently
low levels of noise ε, as the population size N grows, the
limiting distribution µN,ε in any game GPC concentrates all its
probability mass on a small neighborhood around the optimal
pure state es.

Proposition 5.3: In any game GPC played in a population
context, for any positive δ < 1 there is a threshold noise
level εδ > 0 such that for all positive noise levels ε < εδ ,
the probability of the set Oδ(es) ≡ {x ∈ ∆S : xs ≥ 1− δ}
under the stationary distribution µN,ε of the nBEPA1 process
{XN

t } tends to 1 as the population size N grows, i.e.,
limN→∞ µN,ε(Oδ(es)) = 1.

Proof: The proof is based on [34, Prop. 4], which
shows that, for large populations, a Markov chain satisfying
some conditions almost surely spends almost all time, in the
long run, at the Birkhoff center of the flow. Benaı̈m and
Weibull [36, Remark 2] show that this result holds under
more general assumptions than those considered in [34],
including our framework. The nBEPA1 protocol defines a
Markov chain {XN,ε

t } whose finite set of states is the grid
∆NS = {x ∈ ∆S : Nx ∈ Zn}. For ε > 0, this Markov chain
is irreducible and aperiodic, and presents a unique stationary
distribution µN,ε. Let FN (x) be the expected increment in the
population state between two consecutive revisions, times the
population size N , when the process is at state x. Considering
the transition probabilities associated to the revision process

(see Section V-C), we have FNi (x) = (1− ε)ΦNi + ε
n − xi,

where, in order to calculate ΦNi , the formula for Φi in
(2) needs to be adjusted. Specifically, for a revising agent
using strategy i in a population of size N , the probability
of meeting a co-player using the same strategy i is Nxi−1

N−1
(instead of xi), and the probability of meeting a co-player
using strategy j 6= i is Nxj

N−1 (instead of xj). It is then
easy to check that the sequence of functions {FN} con-
verges uniformly to the vector field F presented in (3),
i.e., limN→∞maxx∈XN |FN (x)− F (x)| = 0 (see [18] for
a similar case). On the other hand, from Proposition 5.2
we know that for any positive δ < 1 there is a threshold
noise level ε0 > 0 such that for all positive noise levels
ε < ε0 the function Lδ/2 is a strict Lyapunov function
under (3) for the set Oδ/2(es) ≡ {x ∈ ∆S : xs ≥ 1− δ

2}.
This implies that for ε < ε0 the (relatively) open set
O′δ(es) ≡ {x ∈ ∆S : xs > 1− δ} contains the closure of the
set of recurrent points of the noisy mean dynamic (3),
so it contains the Birkhoff center [34] of (3). The re-
sults in [36, Remark 2] and [34, Prop. 4] then imply that
limN→∞ µN,ε(Oδ(es)) = 1.

Proposition 5.3 implies that, in any game GPC played in
a population context, the optimal pure state es is uniquely
stochastically stable in the large population double limit [4,
p. 458] under the nBEPA1 protocol, i.e., for any (relatively)
open set O containing es:

lim
ε→0

lim
N→∞

µN,ε(O) = 1

E. The small noise limit

Interestingly, note that Proposition 5.3 does not imply
anything about the small noise limit limε→0 µ

N,ε or about
the small noise double limit limN→∞ limε→0 µ

N,ε, which do
not generally agree with the large population double limit in
games GPC . To study the small noise limit, it is useful to
start characterizing the set of absorbing states in the process
without noise, i.e., the BEPA1 stochastic process.

Proposition 5.4: In any 2-player symmetric game played in
a population context with more than 2 agents (N > 2), a state
of the Markov chain {XN,0

t } induced by the BEPA1 protocol
(i.e. the nBEPA1ε=0 protocol) is absorbing if and only if all
agents are playing the same pure strategy i ∈ S and strategy
profile (i, i) is a strict Nash equilibrium.

Proof: Let BR(i) be the set of strategies that provide the
maximum possible payoff when meeting an i-strategist, i.e.,
the set of pure best replies to i. At any given population state,
consider an agent using strategy i and let S−i be the set of
strategies played by the other players in the population.

Under the BEPA1 protocol, a revising agent
using strategy i may change its strategy unless
minj∈S−i

aij > maxk 6=i,j∈S−i
akj . This condition implies

that, for every j ∈ S−i, BR(j) = {i}, which is consequently
a necessary condition for every strategy i in the support of
an absorbing state: any strategy i in the support has to be
the unique best reply to each of the other strategies in the
support, and also to itself if there is more than one player
using strategy i.

https://luis-r-izquierdo.github.io/EvoDyn-3s/
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An absorbing state in a population with more than two
agents must be monomorphic, i.e., all agents must play the
same strategy i, because:

· An absorbing state cannot include more than two dif-
ferent strategies in its support. Suppose there are three
different strategies, namely i 6= j 6= k, being played
at an absorbing state. This implies BR(k) = {i} and
BR(k) = {j}, which is a contradiction.

· An absorbing state in a population with more than two
agents cannot have exactly two different strategies in its
support. Suppose that there is an absorbing state at which
two or more players use strategy i and one or more
players use strategy j 6= i. This implies that BR(i) = {i}
and BR(i) = {j}, which is a contradiction.

Consequently, at an absorbing state in a population with
more than two agents, all agents must play the same strategy i
such that BR(i) = {i}, i.e., such that the strategy profile (i, i)
is a strict Nash equilibrium of the two-player stage game. It
is easy to check that states satisfying this necessary condition
are indeed absorbing, so the condition is both necessary and
sufficient.

Proposition 5.4, which is valid for any 2-player symmetric
game, establishes an equivalence between absorbing states
of the BEPA1 dynamics and strict Nash equilibria. Proposi-
tion 5.5 below shows that, in SOC games, all absorbing states
of the process without noise retain positive mass in the small
noise limit.

Proposition 5.5: In any SOC game played in a population
context, the set of stochastically stable states in the small
noise limit of the process nBEPA1 is the set of pure states
ei corresponding to strategies i such that (i, i) is a strict Nash
equilibrium, i.e., limε→0 µ

N,ε(x) > 0 if and only if x is a
pure state ei such that strategy profile (i, i) is a strict Nash
equilibrium.

Proof: This proposition can be proved using well-known
results derived by Young [37, Appendix]. Here we use a
more recent and compact version of these results provided
by Sandholm [4, Theorem 12.A.5]. Let q ≥ 1 be the number
of pure states ei in the SOC game such that strategy profile
(i, i) is a strict Nash equilibrium. Let us call these states
strict Nash states. First, note that in the process without noise
nBEPA1ε=0, the q strict Nash states are the only absorbing
states. This can be proved using the same arguments as in
the proof of Proposition 5.4, noting that here we do not need
the population size N to be greater than 2 because, even if
N = 2, in SOC games an absorbing state cannot have exactly
two different strategies in its support. This is so because in
SOC games there cannot be two different strategies i 6= j
such that BR(i) = {j} and BR(j) = {i}. Secondly, note that
in SOC games it is possible to reach at least one of the q strict
Nash (absorbing) states from any state, so there are no other
closed communicating classes. Therefore, these q states are
the only recurrent classes of nBEPA1ε=0, so it is sufficient
to look at the cost of moving between them. Now consider
the process with ε > 0. The cost of a transition from state
a to state b is the minimum number of experimentations (or
noise events) needed to reach state b from state a (see a formal
definition in [4, p. 522]). Note that the cost of moving from

any strict Nash state to any other strict Nash state is exactly
1, since (a) we need one experimentation to abandon the strict
Nash state at the origin, and (b) for every strategy i such that
(i, i) is a strict Nash equilibrium, it is possible to go from any
state with at least one agent using i to the strict Nash state
where every agent is using i via a path of cost equal to 0.8

Therefore, all strict Nash states have a tree rooted on them
with the minimum cost (q− 1). By [4, Theorem 12.A.5], this
implies that the set of stochastically stable states in the small
noise limit is the set of strict Nash states.

We include Proposition 5.5 here to provide a complete
picture of the nBEPA1 dynamics in SOC games but, in our
opinion, the relevance of the small noise limit for engineering
problems is generally low. The small noise limit is relevant
in situations in which the noise level is so small that an
escape from a pure state by way of a single experimentation is
even less likely than a whole journey from the vicinity of the
optimal pure state es to an inefficient pure state – a journey
against the flow of the mean dynamic.

Thus, the dynamics described by the small noise limit
are dynamics where the system spends most of the time at
the pure states, and only rarely there is an experimentation
that may move the stochastic process from one pure state
to another. This often requires infinitesimally small levels of
noise, already for populations with more than a handful of
agents, and – consequently – the waiting times needed to
approach the limiting distribution are typically extremely long.
Moreover, in the type of problem we are considering here
(SOC games), even in the small noise limit, nearly all the
mass is concentrated on the optimal state if the population
has more than a dozen agents.

To illustrate this point, we focus on a 2-strategy SOC
game (1), since in games with two strategies Sandholm [4]
provides analytical formulas for both the stationary distribution
µN,ε [4, section 11.2.1] and the average hitting time of any
state from any other state [4, Example 11.A.5].

Fig. 4 shows the fraction of time that the system spends at
inefficient state e1 for various population sizes N . For N = 10,
the long-run fraction is already below 2%, and this value
decreases exponentially as the size of the population increases.
For N = 50 the fraction is 1.36× 10−11, and for N = 100 it
is 6.62×10−23. Fixing N , these values decrease even more or
stabilize as the noise level decreases, so for lower noise levels
we can only expect similar or even lower time fractions (see
fig. 5).

To make matters worse for the relevance of the small noise
limit, the average hitting time of the inefficient state (in ticks,
or revisions per agent, from initial state x = (0.9, 0.1))9 is
very high already for low population sizes, and it increases
exponentially both as the population size increases (see fig. 4)
and as the noise level decreases (see fig. 5). As an example,
for N = 50, µN=50,ε=10−3

(e1) = 1.36× 10−11 and it takes
on average 7.60 × 1012 revisions per agent to reach the
inefficient state e1 for the first time when departing from state

8This is so because it is possible that every agent who is not using
strategy i revises its strategy and tests all strategies against an i-player, thus
adopting strategy i.

9For N < 10, the initial state is (b0.9Nc/N, 1− b0.9Nc/N).



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

0 20 40 60 80 100
Population size N

n = 2 strategies; noise 𝜖 = 0.001

10-23
10-21
10-19
10-17
10-15
10-13
10-11
10-9
10-7
10-5
10-3
10-1

Fr
ac

tio
n 

of
 ti

m
e

0110+
10+03
10+05
10+07
10+09

1110+

1310+
10+15

1710+

1910+
10+21
10+23

Tick

Time fraction at e1 
Average hitting time

Fig. 4: Long-run fraction of time µN,ε=10−3

(e1) spent at
inefficient state e1 (in orange) and average hitting time of e1

from state x = (0.9, 0.1) (in blue), for the nBEPA1 protocol
in the 2-strategy SOC game with payoff matrix (1), for various
population sizes.
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Fig. 5: Long-run fraction of time µN=50,ε(e1) spent at ineffi-
cient state e1 (in orange) and average hitting time of e1 from
state x = (0.9, 0.1) (in blue), for the nBEPA1 protocol in
the 2-strategy SOC game with payoff matrix (1) played in a
population with N = 50 agents, for various noise levels.

x = (0.9, 0.1).
To sum up, the relevance of the small noise limit in our

problem is very low.

F. How extreme do population sizes and noise levels
need to be?

The analytical results presented above require low levels
of noise and sufficiently large populations. To get an order of
magnitude of how small the noise and how large the population
must be for analytical results to be useful, we analyze SOC
game (1) with n = 2 strategies and ε = 10−3.
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Fig. 6: Long-run fraction of time µN,ε=10−3

(O0.01(e2)) spent
in the neighborhood O0.01(e2) (in orange) and average hitting
time of the same neighborhood from state x = (0.9, 0.1) (in
blue), for the nBEPA1ε=10−3

protocol in the 2-strategy SOC
game with payoff matrix (1), for various population sizes.

Fig. 6 shows the time fraction spent at the neighborhood
O0.01(e2) of the optimal state and the average hitting time
from state x = (0.9, 0.1) to the same neighborhood, for noise
ε = 10−3 and different population sizes N .10

It is remarkable that for populations as small as N = 10
agents, the time fraction µN=10,ε=10−3

(O0.01(e2)) is already
greater than 97%. From then onward, the time fraction never
falls below 93% and the average hitting time decreases
quickly to values around 14 ticks. For any N ≥ 100,
µN,ε=10−3

(O0.01(e2)) > 0.95 and the average hitting time is
less than 14 ticks, i.e. it takes on average less than 14 revisions
per agent to reach the neighborhood O0.01(e2), and the process
spends more than 95% of the time in that neighborhood.

G. Summary of analytical results
Propositions 5.2 and 5.3 together characterize the dynamics

of the nBEPA1 stochastic process {XN,ε
t } in any game GPC

played in a population context, with positive noise level
(ε > 0) and sufficiently large population size N .

They state that, for a large enough population size N and
a low enough noise level ε, starting from any initial state,
the stochastic process {XN,ε

t } will approach a neighborhood
of the optimal pure state es and stay in that neighborhood a
fraction of time as high as desired. Moreover, we can make
this neighborhood as small as we like by making the noise
level ε sufficiently small.

An exploration of the 2-strategy SOC game with payoff
matrix (1) suggests that neither noise levels have to be exces-
sively low nor populations particularly large for the process to

10The sudden changes in the pattern at N = 100, 200, 300... are due to
the fact that at these population sizes, the neighborhood (O0.01(e2)) includes
one more state for the first time. As an example, at N ≤ 99 the only state
in O0.01(e2) is the state where every agent is choosing strategy 2, but at
N = 100, the state where every agent except for one is choosing strategy 2
is also included in O0.01(e2).
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Fig. 7: Time series of the average proportion of agents that are
using the optimal strategy s = 5 in a SOC game (1) with n = 5
strategies, with noise level ε = 10−3, starting from initial
state x = (0.9, 0.1, 0, 0, 0), for different number of agents.
The dots represent the average over 1000 simulation runs and
the line labeled MD shows the solution trajectory of the Mean
Dynamic (3). All standard errors are below 0.01.

quickly reach a small neighborhood around the optimal state
and spend most of the time there.

VI. SIMULATION RESULTS

In this section we conduct several simulation experiments
to gain a deeper understanding about the speed of convergence
of the nBEPA1 process, and on its possible dependence on the
number of agents, the number of strategies, the level of noise
and on the way agents are scheduled to revise their strategies.
We also evaluate the performance of the nBEPA1 algorithm
in different types of networks where agents cannot interact
with all the other agents, but only with a small subset of the
population, i.e. their neighbors in the network.

A. Simulation details

Simulations have been conducted in NetLogo [38], an
open-source modeling environment designed for coding and
running agent-based simulations. All figures and simulation
results reported in this paper can be easily replicated using
open-source software freely available under GNU GPL – see
Appendix I.

Simulations run in discrete time-steps called ticks. Unless
stated otherwise, we use the asynchronous random indepen-
dent updating scheme [39], where in every tick we repeat the
following procedure as many times as agents there are: “Take
one agent at random and give it the opportunity to revise its
strategy.” Thus, the number of revisions that take place in
a simulation equals the number of agents times the number
of ticks, and every agent is expected to receive exactly one
revision opportunity in every tick.

All simulations are conducted on the SOC game with payoff
matrix (1). Nonetheless, note that any transformation of the
payoff matrix that preserves the relative ordering of payoffs
would lead to the same dynamics. Finally, the initial condition
for every simulation is the state where 90% of the population
are using strategy 1 and 10% are using strategy 2.
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Fig. 8: Time series of the average proportion of agents that are
using optimal strategy n in a SOC game (1) with n strategies
played in a population with N = 1000 agents, starting from
an initial state where 90% of agents are using strategy 1 and
10% are using strategy 2, with noise level ε = 10−3. The
dots represent the average over 1000 simulation runs and the
lines labeled MD show the solution trajectory of the Mean
Dynamic (3). All standard errors are below 0.01.

B. Different number of agents
In this section we present simulation results of the

nBEPA1ε=10−3

dynamics for the SOC game with payoff
matrix (1) for different population sizes N . Fig. 7 shows
the results of 1000 simulation runs of the SOC game (1)
with n = 5 strategies (where strategy 5 is the optimal), for
three different population sizes. Fig. 7 shows that the nBEPA1
dynamics approach the optimal state very quickly (in less than
50 ticks), and that the mean dynamic provides a very good
approximation of the transient nBEPA1 dynamics already for
100 agents (and even better for 1000 agents, as one would
expect).11 This also highlights the fact that the time until
convergence (in ticks, or number of revisions per agent) is not
affected significantly by the number of agents (since the mean
dynamic has been derived using the limit as the population size
goes to infinity). As for the long-run behavior, by tick 100,
the average proportion of 5-strategists is already greater than
98% for N = 50, and greater than 99.5% for both N = 100
and N = 1000.

C. Different number of strategies
Fig. 8 shows a similar experiment where we consider

different numbers of strategies n. It is clear that the Mean
Dynamic (MD) provides an outstanding approximation for all
the different numbers of strategies considered here. As one
would expect, the greater the number of strategies, the slower
the convergence towards the (small) neighborhood around the
optimal state. However, it is remarkable that the vicinity of
the optimal state is reached already within 100 ticks even for
games with 15 different strategies.

11For N = 50, in some simulation runs, agents coordinate first on
inefficient pure state e1, and it takes some time to get an experimentation
event that allows the population to escape e1 and coordinate on the optimal
state e5. This explains why the average proportion of optimal strategists across
simulation runs is lower for N = 50 than for larger populations. For smaller
population sizes, this effect is more acute, especially with initial conditions
near or at the boundary.
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Fig. 9: Time series of the average proportion of agents that
are using the optimal strategy s = 5 in a SOC game (1) with
n = 5 strategies played in a population with N = 1000
agents, starting from initial state x = (0.9, 0.1, 0, 0, 0), for
different levels of noise ε. The dots represent the average
over 1000 simulation runs and the lines labeled MD show the
solution trajectory of the corresponding Mean Dynamic (3).
All standard errors are below 0.01.

D. Different levels of noise

In this section we explore the impact of noise. Fig. 9
corresponds to SOC game (1) with n = 5 strategies, for
different levels of noise. As with the other simulation results
in populations with N = 1000 agents, the mean dynamic pro-
vides an outstanding approximation for the transient and long
run dynamics of the stochastic process. For low levels of noise,
i.e. ε ≤ 0.01, the populations quickly approach the vicinity of
the optimal state and spend most of the time around there.
With higher levels of noise, agents experiment quite often –
note that the expected number of experimentations per tick is
Nε – and this increases the probability of miscoordinations.
Still, we can see in fig. 9 that even with ε = 0.05 (i.e. 50 agents
are expected to experiment in every tick), on average more
than 80% of the population are using the optimal strategy.

E. Robustness to different updating schemes

In this section we explore the robustness of our analytical
results to changes in the way agents are scheduled to revise
their strategies. In particular, we considered the following
updating schemes [39]:

· Asynchronous random independent. This is the baseline
scheme, where in every tick we repeat the following
procedure as many times as agents there are: “Take one
agent at random and give it the opportunity to revise its
strategy.”

· Asynchronous random order. In every tick, we give all
agents the opportunity to revise their strategy sequen-
tially in a random order.

· Synchronous. In every tick, all agents revise their strat-
egy at the same time (i.e. synchronously).

Fig. 10 shows that, at least for the SOC game (1) with n = 5
strategies, our results are robust to these different updating
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Fig. 10: Time series of the average proportion of agents that
are using the optimal strategy s = 5 in a SOC game (1)
with n = 5 strategies played in a population of N = 1000
agents, starting from initial state x = (0.9, 0.1, 0, 0, 0), with
noise level ε = 10−3, for different updating schemes. The
dots represent the average over 1000 simulation runs and the
line labeled MD shows the solution trajectory of the Mean
Dynamic (3). All standard errors are below 0.01.

schemes. The synchronous scheme gives results that are in line
with the baseline updating scheme (i.e. asynchronous random
independent), while the asynchronous random order scheme
boosts the speed of convergence to the vicinity of the optimal
state es, at least in the SOC game (1) with n = 5.

F. Robustness to different networks of interaction

Finally, we test the nBEPA1ε=10−3

algorithm in different
types of networks. In particular, we consider the follow-
ing topologies: Ring, Barabási–Albert preferential attachment
[40], Watts-Strogatz small world with different rewiring prob-
abilities and average degrees [41], and Complete (which cor-
responds to the baseline situation). Fig. 11 shows the time
required to enter the set O0.01(es) ≡ {x ∈ ∆S : xs ≥ 0.99}
in SOC game (1) with n = 5 strategies, for different topolo-
gies, including the neighborhood size for each topology as a
percentage of the total number of agents.

It is clear that the time required to approach the vicinity of
the optimal state e5 decreases as the network average degree
(i.e. the average neighborhood size in the network) increases.
This makes intuitive sense – as information flows more quickly
through larger neighborhoods – and has also been observed in
similar contexts with different algorithms (see e.g. [20], [21],
[42]). What is not so obvious is that a neighborhood size of
only 5% seems to be enough to reach the vicinity of e5 as
quickly as in the complete network (which has a neighborhood
size of 100%), regardless of the topology.

For neighborhood sizes lower than 5%, topology does
play a role even when fixing the neighborhood size. This
observation is clear when we compare the Ring topology
and the Preferential Attachment topology, both with average
neighborhood sizes of 0.2%. The Ring topology is much
more regular than the Preferential Attachment and the time
required to reach the vicinity of e5 is significantly higher. The
hypothesis that information flows more slowly through regular
topologies makes intuitive sense and is also borne out in Small
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Fig. 11: Distributions of the time required to enter the set
O0.01(e5) ≡ {x ∈ ∆S : x5 ≥ 0.99} (in ticks) in a SOC
game (1) with n = 5 strategies played in a population of
N = 1000 agents, with noise level ε = 10−3, starting
from an initial state where 90% of agents are using strat-
egy 1 and 10% of agents are using strategy 2, for different
network topologies: R: Ring, PA: Preferential attachment,
SW: Small World with different average degrees (i.e. neigh-
borhood sizes) and rewiring probabilities (i.e. 0, .25, .5, and
1), and Comp: Complete. Each distribution has been compiled
running 1000 simulation runs; a new network was generated
at the beginning of each simulation run.

World networks. In these networks, the rewiring probability
determines how regular the network is. A rewiring probability
of zero produces regular networks and a rewiring probability
of 1 leads to networks similar to Erdős–Rényi random graphs.
In Fig. 11 it is clear that – ceteris paribus – the higher the
rewiring probability, the lower the time required to approach
the vicinity of the optimal state e5.

Finally, it is striking that Small World networks with
rewiring probabilities higher than 0.25 and neighborhood sizes
greater than just 2% reach the vicinity of the optimal state
approximately as quickly as the complete network.

VII. CONCLUSIONS

In this paper we have shown that a noisy version of the
Best Experienced Payoff protocol – named nBEPA1 – can be
used to make large populations of agents quickly coordinate
on the optimal state in Single-Optimum Coordination (SOC)
games. The algorithm is completely decentralized, very fast,
and scalable both in the number of agents and in the number
of strategies.

In terms of methodology, the main value of this paper is
that it provides a complete picture of the nBEPA1 dynamics in
SOC games, including a formal and computational analysis of
both the transient and the asymptotic behavior of the stochastic
process. We also provide formal results on both the large
population double limit and the small noise limit, and discuss
their relevance for engineering problems.

The main limitation of this work is its limited domain of
application. Our main results (i.e. Propositions 5.2 and 5.3)

are valid in games that satisfy the two Payoff Conditions 3.1.
A numerical exploration of the nBEPA1 dynamics in different
games relaxing Payoff Conditions 3.1, and the stability results
in [13], suggest that Payoff Conditions 3.1 cannot be relaxed
to a great extent while preserving global convergence of the
algorithm to the vicinity of the optimal state.

APPENDIX I
SOFTWARE TO REPLICATE ALL FIGURES

AND SIMULATION RESULTS

All software created for this paper is open-source and has
been released under GNU General Public License.

· Figures 1-3 have been created using EvoDyn-3s [35].
· Figures 4-6 have been created using a Mathematica

notebook freely available at https://github.com/luis-r-
izquierdo/nBEPA1.

· Simulation results reported in figures 7-10 can be repli-
cated using a purpose-built NetLogo model freely avail-
able at https://luis-r-izquierdo.github.io/nbepa1-socg/,
or with the more general software ABED-1pop,
using parameter file noisy-bep-all-1-single-optimum-
coordination-game-5s.csv as a baseline.

· Simulation results reported in figure 11 can be replicated
using a purpose-built NetLogo model freely available at
https://luis-r-izquierdo.github.io/nbepa1-socg-nw/.
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