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On the Role of Network Centrality in the
Controllability of Complex Networks

Nicoletta Bof, Giacomo Baggio, and Sandro Zampieri

Abstract—In recent years complex networks have gained in-
creasing attention in different fields of science and engineering.
The problem of controlling these networks is an interesting and
challenging problem to investigate. In this paper we look at the
controllability problem focusing on the energy needed for the
control. Precisely not only we want to analyze whether a network
can be controlled, but we also want to establish whether the
control can be performed using a limited amount of energy.
We restrict our study to irreducible and (marginally) stable
networks and we find that the leading right and left eigenvectors
of the network matrix play a crucial role in this analysis.
Interestingly, our results suggest the existence of a connection
between controllability and network centrality, a well-known
concept in network science. In case the network is reversible, the
latter connection involves the PageRank, an extensively studied
type of centrality measure. Finally, the proposed results are
applied to examples concerning random graphs.

Index Terms—Complex networks, controllability, network cen-
trality, PageRank.

I. INTRODUCTION

Complex networks are systems composed of a large number
of units which interact among themselves, forming in this
way a behavior which is much richer than the behavior of
the single units [1]. Many systems, which model both natural
processes and engineering structures, can be seen as complex
networks. Among them, one can mention genomic networks
and ecologic networks in biology, social networks in sociology
and economic or financial networks in economics, while in
engineering, electric power grids, transportation networks and
communication networks are some important examples [2].
Therefore many areas of science and technology can take a
great advantage from a deep understanding of this class of
systems.

Consequently, the properties of complex networks have at-
tracted a lot of interest among different scientific communities
in the last years. Controllability is one of these properties, and
it consists in the possibility of steering the state of the network
from any initial value into a final arbitrary one, by fixing
the profile of the state of a subset of nodes, called control
nodes, which are assumed to be directly accessible by the
controller [3]. This property has been analyzed by relating
it to the features of the underlying graph [4]. In particular,
the results on structural controllability theory [5] have been
exploited. This kind of approach aims to establish whether the
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network is controllable and, specifically, which nodes must be
controlled in order to obtain the network controllability.

From [4], several other papers focusing on this type of prob-
lem have been proposed, including [6], [7], [8], [9]. However,
an important aspect is neglected in this line of research. In
fact, one can notice that, even if a control profile able to drive
the network state may exist in principle, this profile may not
be physically implementable due to the energy it requires. This
observation gave rise to another type of approach related to
network controllability, focusing specifically on the evaluation
of a “degree” of controllability of the network. This concept
can be made precise only by introducing a suitable metric
related to the energy needed for the control. The evaluation
of the control energy naturally involves, for linear systems,
the notion of controllability Gramian, which is a symmetric
positive definite matrix in case the network is controllable [3].
The analysis of the controllability Gramian offers different
ways to study the degree of controllability of a network,
depending on which property of this matrix is inspected.
For instance, one can select the minimum eigenvalue of the
controllability Gramian [10], [11], the trace of its inverse [12],
its determinant [13], or its condition number [14].

In this context, different types of problems can be addressed.
For example, one interesting issue consists in the optimal
placement of the control nodes in a way such that the
degree of controllability is maximized [12], [15], [16], [17].
Another engaging problem is to relate the network structure
to the number of control nodes needed to make the network
practically controllable, namely controllable by control profiles
with bounded energy [10], [14], [11], [18], [19], [20].

In this paper, we focus on this second problem. Precisely,
we study in which cases the energy needed for the control
tends to infinity as the number of nodes gets larger and
larger. This can be a way to establish the classes of complex
networks which are practically impossible to control, since
the energy they require for their control can go over any
threshold as the number of nodes increases. This behavior
will depend both on the properties of the network and on
the number of control nodes. As in [11] and [18], we adopt
the minimum eigenvalue of the controllability Gramian as the
measure of the controllability degree. In our analysis we will
restrict to networks with non-negative weight matrices which
are irreducible and (marginally) stable.

This type of analysis has been started in [18], where partial
results have been proposed showing that isotropic networks are
difficult to be controlled, while anisotropic networks are more
controllable. However, only intuitive definitions of isotropic
and anisotropic networks were given there, supported by
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some illustrative examples. Actually, isotropic networks were
described as networks in which there are no global preferential
direction resulting from the network weights. Elaborating this
idea, in the present paper we show that the right and left
eigenvectors associated with the largest eigenvalue of the
network adjacency matrix play an important role to determine
whether the network is difficult to control. The importance of
these eigenvectors is already well-known in network science,
in connection with the concept of centrality, see [2, Section
7.2]. Precisely, we show that when these eigenvectors suggest
that all the nodes have similar centrality degrees, then the
network will be difficult to control.

Paper structure. The present paper is organized as follows.
Section II is devoted to present some preliminary results. In
Section III we state the main result of the paper. Section V
contains some examples of application of the main theorem.
Finally, in Section VI we summarize the contributions of the
paper and we outline a number of possible future research
directions. Most of the proofs of the more technical results
are postponed to the appendix.

Notation. We denote by Rn the set of n dimensional vectors
with real entries. The symbols ek and 1n stand for the k-th
vector of the canonical basis and the n-dimensional vector with
all ones, respectively. Moreover, we denote by Rn×m the set
of n×m matrices with real entries. The symbol In stands for
the n× n identity matrix. Given a matrix A, the symbol Aij
means the (i, j)-th entry of A, while A> and ker(A) mean
the transpose and the kernel of A, respectively. Finally, the
symbol ‖A‖2 denotes the 2-norm of A.

A matrix A ∈ Rn×n is said to be (Schur) stable if ‖At‖2 →
0 as t→∞, while it is said to be (Schur) marginally stable if
‖At‖2 is bounded in t. We denote the i-th component of the
column vector v ∈ Rn as vi. Given two vectors v, w ∈ Rn,
with v ⊥ w, we indicate that v is orthogonal to w in the
standard Euclidean metric, that is v>w = 0. We let diag(v),
v ∈ Rn, denote the n × n diagonal matrix with elements
v1, . . . , vn on the diagonal. Given a positive definite matrix
W ∈ Rn×n, we indicate with ‖x‖W :=

√
x>Wx , x ∈ Rn,

the weighted Euclidean norm (in case W = In we simply
write ‖x‖).

A matrix A is said to be non-negative (positive) if Aij ≥ 0
(Aij > 0) for all i, j = 1, . . . , n. Irreducible and primi-
tive matrices are special subclasses of non-negative matrices.
Specifically, a non-negative matrix A ∈ Rn×n is said to be
irreducible if (In + A)k is positive for some k ∈ N, and
primitive if Ak is positive for some k ∈ N [21, Chapter 8].

Also, we denote by G = (V, E , A) the weighted graph with
vertex (or node) set V = {1, 2, . . . , n}, edge set E ⊆ V×V and
adjacency matrix A ∈ Rn×n satisfying Aij > 0 if (j, i) ∈ E .
For a weighted graph G = (V, E , A) the out-degree of the
node i is equal to

∑
iAij , while the in-degree of the node

i is equal to
∑
j Aij . A graph where the adjacency matrix

has only 0-1 elements will be called unweighted. If A = A>,
the graph is called undirected. In case of undirected graphs,
the in-degrees are equal to the out-degrees and they are called
simply degrees and denoted by the symbol degA(i). In case
the graph is undirected and unweighted, degA(i) corresponds
to the number of edges of the node i.

Finally, given two functions f(x) and g(x), with g(x) non-
zero, we write f(x) = o(g(x)) to mean that

lim
x→∞

f(x)

g(x)
= 0.

Other standard notation is taken from [11].

II. PRELIMINARY FACTS

Given a non-negative matrix A ∈ Rn×n, the following
assumption will be used throughout the paper.

Assumption 1: Matrix A is irreducible and marginally stable.
These conditions on A assure that there exists a unique real

eigenvalue λ1 such that 1 ≥ λ1 ≥ |λi| for all i = 2, . . . , n,
where λi denotes an eigenvalue of A; moreover, there exist
positive left and right eigenvectors related to λ1 [21, Theorem
8.4.4].

One class of matrices which satisfies Assumption 1 are
irreducible column-stochastic (row-stochastic) matrices, i.e.
irreducible matrices whose columns (rows) sum up to 1. This
is an important class which has a large number of applications,
e.g. in the context of distributed optimization and consensus
algorithms [22], [23], [24].

We denote with v and w the right and left eigenvector of
A with respect to λ1 respectively, that is

Av = λ1v, A>w = λ1w. (1)

The vectors v and w are called the right and left leading
eigenvectors of the matrix A. Since v and w are positive, we
can define the following positive vector

π :=
[w1

v1

w2

v2
· · · wn

vn

]>
, (2)

and also the diagonal matrix

Π := diag(π). (3)

The vectors v and w can be normalized in such a way that∑
i πi = 1.
We exploit matrix Π to define an analogous to the time

reversal of an irreducible Markov chain, see e.g. [25, Section
1.6], that is we introduce the following matrix

AR := Π−1A>Π. (4)

This matrix is irreducible and v and w are respectively its right
and left eigenvectors with respect to λ1. We can now define
the matrix

AS := Π1/2AARΠ−1/2,

which is symmetric and positive semidefinite (and therefore
has all real non-negative eigenvalues). Notice that, even if A
and AR are irreducible, AAR (and therefore also AS) may not
be irreducible. Let

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, (5)

be the eigenvalues of AS . The following Lemma, whose proof
is postponed to Appendix A, gives a characterization of the
eigenvalues of AS .
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Lemma 1: The largest eigenvalue of AS is equal to the
square of the largest eigenvalue of A, namely σ1 = λ2

1.1

The next Proposition, whose proof is given in Appendix A,
is instrumental for Section III.

Proposition 1: If y ∈ Rn is such that y>v = 0, then for
any t ≥ 0 it holds

‖(A>)ty‖2Π−1 ≤ σt2‖y‖2Π−1 .

III. THE MAIN RESULT

Suppose that we are given a network represented by the
graph G = (V, E , A), with A ∈ Rn×n satisfying Assumption
12. We consider the following discrete state-space system built
according to the adjacency matrix of the graph:

x(t+ 1) = Ax(t) +BKuK(t),

where x ∈ Rn, BK := [ek1 · · · ekm ] ∈ Rn×m and uK ∈ Rm,
with K := {k1, . . . , km} ⊆ V being the set of control nodes
and m := |K|.

Our aim is to analyze the controllability of the system.
However, we are not totally satisfied with the standard notion
of controllability (from the origin) [3]:

Definition 1 (Controllability): A system is controllable if,
for every state xf ∈ Rn, there exists an input sequence {u(t)}
that steers the initial state x(0) = 0 to xf .

In fact, we would also like to determine whether a control-
lable system is difficult to control, where our idea of difficulty
concerns the amount of energy needed to steer the initial state
to a desired final one. To achieve this goal we introduce the
controllability Gramian of the system, which is defined as

WK,T :=

T−1∑
τ=0

AτBKB
>
K(A>)τ .

It is well known [3] that the system is controllable if and
only ifWK,T is invertible for a big enough T . For controllable
systems, denote by u∗K(·) the unique minimum L2-energy
input which steers the state from the initial value x(0) = 0 to
the final value x(T ) = xf . The energy of u∗K(·) is given by
(see [3])

E(xf , T ) :=

T−1∑
τ=0

‖u∗K(τ)‖2 = x>fW−1
K,Txf .

From this observation it is possible to select a controllability
metric. Indeed, choosing a worst-case analysis, we observe that
the final state requiring the maximum energy is the one parallel
to the eigenvector of WK,T corresponding to its minimum
eigenvalue, which is denoted by λmin(WK,T ). Precisely,

max
‖xf‖=1

E(xf , T ) = λmin(WK,T )−1.

In this way, we can say that a controllable system is dif-
ficult to control if λmin(WK,T )−1 is big, or equivalently if
λmin(WK,T ) is small.

1Indeed this result holds for any irreducible A, independently from its
stability.

2 We recall that irreducibility of A implies that the graph G is connected.

Finding upper bounds for λmin(WK,T ) can be therefore an
instrument for proving that a system, although controllable
in theory, is not controllable in practice due to the energy
requirements. The following Theorem provides a useful bound.

Theorem 1: Let A be a non-negative matrix which satisfies
Assumption 1 and let the non-negative constant σ2 and the
positive vectors v and w be defined as in (5) and in (1),
respectively. If the product AA> is primitive, then

λmin(WK,T ) ≤ maxi{wi/vi}
mini{wi/vi}

σ
n
m
2

σ2
2(1− σ2)

(6)

for all T ∈ N and all sets K with cardinality m.
Proof: Given T̄ ≤ T , the following chain of inequalities

holds:

λmin(WK,T̄ ) = min
‖x‖=1

x>WK,T̄x

= min
‖x‖=1

x>

(
WK,T −

T−1∑
τ=T̄

AτBKB
>
K(A>)τ

)
x

≥ λmin(WK,T ) + min
‖x‖=1

x>

(
−
T−1∑
τ=T̄

AτBKB
>
K(A>)τ

)
x

= λmin(WK,T )− max
‖x‖=1

x>

(
T−1∑
τ=T̄

AτBKB
>
K(A>)τ

)
x.

We obtain in this way

λmin(WK,T ) ≤ λmin(WK,T̄ )

+ max
‖x‖=1

x>

(
T−1∑
τ=T̄

AτBKB
>
K(A>)τ

)
x.

Let us now define

λ̂min(WK,T ) := min
‖x‖=1
x⊥v

x>WK,Tx,

where v is as in equation (1). As before, if T̄ ≤ T , we can
prove that

λ̂min(WK,T ) ≤ λ̂min(WK,T̄ )

+ max
‖x‖=1
x⊥v

x>

(
T∑

τ=T̄

AτBKB
>
K(A>)τ

)
x,

and moreover it holds that λmin(WK,T ) ≤ λ̂min(WK,T ). Tak-
ing T̄ =

⌊
n−2
m

⌋
we have that λ̂min(WK,T̄ ) = 0. Indeed,WK,T̄

coincides with CT̄ ,KC>T̄ ,K, where CT̄ ,K is the controllability
matrix of the system, i.e.

CT̄ ,K :=
[
BK ABK A2BK · · · AT̄−1BK

]
.

Now, if we introduce the matrix C̄T̄ ,K :=
[
CT̄ ,K v

]
then the

rank of C̄t,KC̄>t,K is strictly less than n. This in turn implies
that there exists a x ∈ Rn such that x>C̄t,KC̄>t,Kx = 0 and
hence x is orthogonal to v and is such that x>WK,tx = 0.
From the fact that λ̂min(WK,T̄ ) = 0, we have

λmin(WK,T ) ≤ λ̂min(WK,T )

≤ max
‖x‖=1
x⊥v

x>

(
T−1∑
τ=T̄

AτBKB
>
K(A>)τ

)
x ≤ βT̄ (7)
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where

βT̄ := lim
T→∞

max
‖x‖=1
x⊥v

x>

(
T−1∑
τ=T̄

AτBKB
>
K(A>)τ

)
x.

Our aim is to find a bound for βT̄ . First observe that if we
define α := mini {vi/wi}, due to the particular form of BK,
it holds that

y>BKB
>
Ky ≤ y>y ≤

1

α
y>Π−1y =

1

α
‖y‖2Π−1 .

Using Proposition 1 and letting y = (A>)τx, we obtain

x>AτBKB
>
K(A>)τx ≤ 1

α
‖(A>)τx‖2Π−1 ≤

1

α
στ2‖x‖2Π−1 .

In this way we obtain

βT̄ ≤
1

α
max
‖x‖=1
x⊥v

‖x‖2Π−1 lim
T→∞

T−1∑
τ=T̄

στ2 .

Now, since ‖x‖ = 1, we have that

‖x‖2Π−1 =

n∑
i=1

vi
wi
x2
i

≤ max
i=1,...,n

{
vi
wi

} n∑
i=1

x2
i = max

i=1,...,n

{
vi
wi

}
.

Since A is marginally stable and AA> is primitive, also AS

is primitive (since it has the same sparsity pattern of AA>).
Therefore, it holds that σ2 is strictly less than σ1 = λ2

1 ≤ 1,
and therefore is strictly less than 1. Summing up all previous
considerations, we have

βT̄ ≤
maxi{vi/wi}
mini{vi/wi}

lim
T→∞

T−1∑
τ=T̄

στ2 =
maxi{wi/vi}
mini{wi/vi}

σT̄2
1− σ2

.

Letting T̄ =
⌊
n−2
m

⌋
, inequality (7) yields λmin(WK,T ) ≤ βT̄ .

Since
⌊
n−2
m

⌋
≥ n/m − 2 and σ2 < 1, the statement follows.

Remark 1: Concerning the primitivity condition on AA>,
a simple sufficient condition ensuring this property is A
irreducible and with all its diagonal elements strictly greater
than zero. As a matter of fact, if Aij > 0, then

(AA>)ij = Ai1Aj1 + · · ·+AijAjj︸ ︷︷ ︸
>0

+ · · ·+AinAjn > 0.

This entails that all the elements greater than 0 in A are
greater than 0 also in AA>, therefore AA> is irreducible and
with positive diagonal elements, and thus primitive. This non-
zero diagonal hypothesis is usually met by the networks we
consider, since it implies that every node has its own dynamics.

Remark 2: In case A is stable (and irreducible), the previous
theorem holds true even without requiring the primitivity of
AA>. As a matter of fact, stability implies that λ1 < 1 and it
automatically follows that σ2 ≤ σ1 < 1. It is worth noting that
this version of our result is stronger than what it is proven in
[11, Theorem 3.1], namely that if ‖A‖2 < 1, then the system is
certainly difficult to control. As a matter of fact a stable matrix
does not necessarily have 2-norm less than one. For instance,

for all ε such that 0 < ε < 3−
√

5
2 , the matrix Aε := [ ε 1

ε ε ] is
stable, but ‖Aε‖2 > 1.

Once the system matrix A and the number of controlled
nodes m are fixed, a metric that describes the controllability
degree of the system is

Λ(A,m) := max
K : |K|=m

T∈N

λmin(WK,T ).

Comparing several systems, those with a smaller Λ(A,m) are
more difficult to control, that is they need more energy for
their control. The previous theorem shows that

Λ(A,m) ≤ maxi{wi/vi}
mini{wi/vi}

σ
n
m
2

σ2
2(1− σ2)

. (8)

Now, consider a sequence of systems with matrices An
of increasing dimension n and a number of controlled nodes
m(n) depending on n. In case

Λ(An,m(n))
n→∞−−−−→ 0, (9)

we have that, even if for all n the systems are controllable, for
large n the energy required to control them is so high that the
control is practically impossible3. When the right-hand side
of (8) tends to 0 as n goes to infinity, (9) is verified and so
the systems become practically uncontrollable when n is big.
Therefore, if we want to have a chance that the systems are
practically controllable, we need to fix m(n) in a way that the
right-hand side of (6) does not go to 0 as n increases (even
though, since we have only an upper bound, this fact alone
does not guarantee that the practically controllability can be
in fact achieved).

To avoid that the right-hand side of (8) tends to 0 as n goes
to infinity, we can choose a fast enough growing m(n). The
growth of m(n) will depend on two characteristics of A:

1) On how σ2 depends on n: in some cases, as we will
see in the next section, σ2 stays bounded away from
1, namely there exists a constant ε > 0 independent
of n such that 1 − σ2 ≥ ε, for all n. In other cases,
instead, σ2 tends to 1 as n goes to infinity. In this case
it is important to understand how fast this occurs. The
quantity 1−σ2, called the spectral gap of A, is essential
to study inequality (8) in this case.

2) On how the fraction maxi{wi/vi}
mini{wi/vi} = maxi{πi}

mini{πi} depends
on n: as we will see in the following, in many important
cases this fraction can be evaluated and in some of them
this quantity remains bounded in n.

The way these two sources of dependence on n interact will
determine the growth of m(n). For instance, if σ2 is bounded
away from 1 and maxi{wi/vi}

mini{wi/vi} remains bounded in n, then
practical controllability can be achieved only if the number
of control nodes m(n) grows linearly in n, namely only if a
fixed fraction of the nodes are controlled. For example, this
holds true for symmetric matrices [18]. In fact, in this case,
maxi{vi/wi}
mini{vi/wi} = 1. The following Proposition shows that this
property holds for a more general class of matrices.

3Note that the tightness of bound (6) is not relevant when we consider the
asymptotic behaviour as n tends to infinity.
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Proposition 2: Let v and w be the right and left eigenvector
of A, then

maxi{wi/vi}
mini{wi/vi}

= 1⇐⇒ v ∈ ker(A−A>). (10)

Proof: We have the following chain of equivalences

maxi{wi/vi}
mini{wi/vi}

= 1⇔ v = αw, α ∈ R

⇔ A>v = λ1v

⇔ Av = A>v

⇔ (A−A>)v = 0

⇔ v ∈ ker(A−A>).

The class of matrices satisfying (10) comprises, for instance,
irreducible doubly stochastic matrices, i.e. matrices which are
both column- and row-stochastic.

IV. STOCHASTIC MATRICES, EIGENVECTOR CENTRALITY
AND REVERSIBLE MATRICES

The result of Theorem 1 acquires a nice interpretation when
matrix A is column-stochastic. Applying the theorem to such
matrices, the next Corollary immediately follows:

Corollary 1: If A is an irreducible column-stochastic matrix
such that AA> is primitive, then for all T ∈ N and all sets K
with cardinality m it holds that

λmin(WK,T ) ≤ vmax

vmin

σ
n
m
2

σ2
2(1− σ2)

(11)

with vmax := maxi vi and vmin := mini vi.
As a consequence of the Corollary4, the right eigenvector v,

which also represents the invariant probability of the Markov
chain associated with the stochastic matrix A, plays a role in
the controllability of the system represented by A. Vector v
also measures the (right) eigenvector centrality of the network
associated with A [2, Chapter 7.2]. It holds that, the bigger vi
is, the more relevant or central the node i is in the network,
and therefore the fraction vmax

vmin
can be interpreted as a measure

of heterogeneity in the node centralities.
Exploiting this interpretation of v, we have that a network

where all the nodes have similar centrality has a lower
heterogeneity index vmax

vmin
and, according to Corollary 1, it

will be more difficult to control5. On the other hand, easy
to control networks need to have high heterogeneity in the
nodes centrality.

The evaluation of the heterogeneity index vmax

vmin
is particu-

larly simple if A is reversible. The concept of reversibility for
stochastic matrices is given in [25].

Definition 2 (Reversible matrix): An irreducible stochastic
matrix A ∈ Rn×n satisfying A = AR is called reversible.

Remark 3: It is worth noticing that

4 Note that, with appropriate modifications, the Corollary can be applied
also to row-stochastic matrices.

5Interestingly, there is a connection between having a small heterogeneity
index vmax

vmin
and the concept of wisdom of a network, as defined in [26].

• If the stochastic matrix A is reversible, then A can be
regarded as the transition matrix of an irreducible time-
reversible Markov chain as defined in [25, Section 1.6].

• If A is reversible then it can be symmetrized by a diagonal
transformation. Indeed, from (4) it follows that

S := Π1/2AΠ−1/2

is symmetric, where Π is defined in (3). This in turn im-
plies that all the eigenvalues of A are real, and therefore,
by virtue of the irreducibility of A, they can be ordered
in decreasing order as follows

1 = λ1 > λ2 ≥ · · · ≥ λn ≥ −λ1.

• For a reversible matrix A, we have that AS = S2 and so,
besides having σ1 = λ2

1 as stated in Lemma 1, we also
have that

σ2 = max{λ2
2, λ

2
n}. (12)

It is possible to associate with a given non-negative matrix
C a stochastic matrix which is reversible if C is symmetric.

Precisely, given an irreducible matrix C ∈ Rn×n, we can
obtain a column-stochastic irreducible matrix A as

A := Cdiag(1>nC)−1. (13)

If C = C> then matrix A is reversible6. The latter matrix
represents the transition matrix of the (weighted) random walk
built on the network represented by the original matrix.

Given a generic irreducible matrix C (possibly not symmet-
ric), the right leading eigenvector of A, obtained from C as in
(13), gives the (right) eigenvector centrality of the network
associated with A, but it is also related to the PageRank
[2, Chapter 7.4], which is an important centrality measure
concerning in this case the network associated with C7.

Assuming now that C is also symmetric, interesting analytic
calculations can be carried out. Building A as in (13), its
leading right eigenvector v has the following entries

vi =
Ccol
i

Ctot
, i = 1, . . . , n, (14)

with Ccol
i :=

∑
j Cji and Ctot :=

∑
i,j Cij . Consequently, the

heterogeneity index is simply

vmax

vmin
=

maxi{Ccol
i }

mini{Ccol
i }

. (15)

Since Ccol
i is the degree of the node i in the undirected graph

G = (V, E , C), Formula (14) says that in this case the previ-
ously defined centrality coincides, up to a normalization, with
the so-called “degree centrality” of the network represented
by C [2, Chapter 7.1].

Assume now that C is irreducible and symmetric and let

c := min{Cij | Cij 6= 0},
c := max{Cij | Cij 6= 0}.

6Notice that, even if C is symmetric, A is not necessarily so.
7Indeed for a generic matrix C the PageRank is defined as the right leading

eigenvector of the column-stochastic matrix A = αCdiag(1>nC)−1 + (1−
α)1n1>n , 0 ≤ α ≤ 1. The factor α, introduced to guarantee connectivity of
the network, can be set to 1 since in our case C is irreducible by assumption.
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Moreover, assume that all the diagonal elements of C are zero,
i.e., Cii = 0, for all i. In this case, it turns out that

vmax

vmin
≤ (n− 1)c

c
. (16)

This shows that for reversible matrices obtained starting
from matrices C for which c/c stays bounded, the fraction
vmax/vmin can grow at most linearly in n.

V. EXAMPLES

In this section, we show how the previous reasonings
can be applied to three examples. The first two examples
concern random graph models, while the third one involves a
structured graph. Since these examples will deal with matrices
with zero diagonal, in order to avoid unnecessary technical
complications8, as in [25] we use the concept of lazy version
of a stochastic matrix. Precisely, from a column-stochastic
matrix A, we can define a class of column-stochastic matrices
as follows

Aα := (1− α)A+ αIn , (17)

where 0 < α < 1. Notice that for any α, Aα has the same
leading right eigenvector of A and it is always primitive in
case A is irreducible.

Example 1 (Weighted random walk on a B-A graph):
The Barabási-Albert preferential attachment graph (B-A for
short), denoted in what follows by BA(n, d), with d ≥ 2,
is a well-known and widely studied random graph model [2,
Chapter 14]. Any realization of BA(n, d) is an undirected and
unweighted graph with n nodes and, in its construction, each
newly added node makes d connections with the previously
existing nodes, according to a given rule that describes to
which nodes the new node will be connected to (see [27,
Section 4.1]). An example of a graph constructed using this
model can be found in Figure 1.

Fig. 1. realization of a B-A graph BA(50, 2) (the darker the node, the earlier
it was inserted during the graph construction).

In the following, we study the controllability degree of a
lazy random walk on a weighted version of such a model.

8In particular to avoid the presence of an eigenvalue in −1 and to also
ensures that the product AA> is primitive.

Specifically, given an adjacency matrix Ĉ of a B-A graph
constructed as above, we associate with it a symmetric matrix
C obtained from Ĉ by letting Cij = 0 if Ĉij = 0 and
otherwise letting Cij and Cji equal to a number drawn
uniformly and independently at random in the interval [a, b],
0 < a < b < ∞. Notice that the matrix C defined in such a
way is irreducible since the graph is connected. Using C, we
can obtain matrix A as in (13), and fixing a constant α ∈]0, 1[
we can build matrix Aα as in (17). The latter represents a lazy
weighted random walk on a B-A graph. In order to obtain
information on the controllability degree of the network using
Theorem 1, we need to study the asymptotic behavior of σ2.
Using Cheeger’s inequality, it can be shown that the second
eigenvalue of A, denoted with λ2(A), satisfies

λ2(A) ≤ B

with high probability (w.h.p.) as n→∞ (see Appendix B for
the details), where B ∈]0, 1[ is a constant depending only on
a and b. On the other hand, the n-th eigenvalue λn(A) of A
satisfies

λn(A) ≥ −1.

These two facts imply, by (12), that9

σ2 = max{λ2
2(Aα), λ2

n(Aα)}
≤ max
z∈[−1,B]

{((1− α)z + α)2}

= max{((1− α)B + α)2, (2α− 1)2} < 1. (18)

Thus, w.h.p. as n → ∞, the number σ2 is bounded by a
constant smaller than one, depending only on α, a and b. Now,
since by (16) vmax/vmin ≤ (n− 1)b/a, Corollary 1 yields

Λ(Aα,m) ≤ (n− 1)
b

a

σ
n
m
2

σ2
2(1− σ2)

.

By taking logarithm of both sides in the latter expression and
making further computations we can argue that

log Λ(Aα,m) ≤ k log n− n

m
log(1/σ2), (19)

with k > 0 being a constant depending only on a, b and σ2.
Hence, since σ2 is bounded away from 1 w.h.p. as n → ∞,
the previous inequality allows us to conclude that, if m =
o(n/ log n), then

log Λ(Aα,m)
n→∞−−−−→ −∞ w.h.p.

or equivalently

Λ(Aα,m)
n→∞−−−−→ 0 w.h.p.

This implies that the weighted lazy random walks on almost
all the realizations of B-A graph model are difficult to control
by means of o(n/ log n) driver nodes, as the cardinality of the
network tends to infinity.

Example 2 (Weighted random walk on a E-R graph):
The Erdös-Rényi (E-R for short) graph model, denoted by
ER(n, p), is one of the most celebrated and fundamental
random graph models [2, Chapter 11]. A realization of the

9Note that if λ is an eigenvalue of A, (1 − α)λ + α is an eigenvalue of
Aα.
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E-R graph model is an undirected and unweighted graph
constructed as follows: starting from a graph of n nodes,
we place an undirected and unweighted edge between each
distinct pair of nodes independently and with equal probability
p. It can be shown that [27, Theorem 2.8.1], if p = c log n/n,
c > 1, the realizations of a E-R graph model are connected
w.h.p. as n → ∞. With a partial abuse of language, we will
refer to this subclass of E-R graph model as connected E-R
graphs. Figure 2 shows an example of a connected E-R graph.

Fig. 2. A 100 nodes connected E-R graph.

Using the same procedure described in the previous exam-
ple, we build a symmetric matrix C with non-zero entries in
[a, b] from the adjacency matrix Ĉ of a connected E-R graph.
From the analysis given in [27, Section 6.5] and following the
same lines of Example 1, we can argue that for the weighted
lazy random walk on the graph described by C, the number σ2

is bounded away from 1 w.h.p. as n tends to infinity. Hence,
we are in position to conclude that, by virtue of Corollary 1,
the weighted lazy random walks on almost all connected E-R
graphs are difficult to control w.h.p. as n goes to infinity if
we use m = o(n/ log n) control nodes.

Remark 4: Interestingly, the choice made for the probability
p allows us to make, in this case, further considerations on
the heterogeneity index vmax/vmin. As a matter of fact, for
an unweighted E-R graph with p = c log n/n, it holds that
the maximum and minimum degree (denoted by degmax and
degmin, respectively) satisfy [28, Ex. 3.4]

degmax
n→∞−−−−→ γ log n w.h.p.

degmin
n→∞−−−−→ γ log n w.h.p.

where 0 < γ < γ <∞ depend only on c. Consequently, since
by (15) we have that

vmax

vmin
≤ degmax b

degmin a
,

we can argue that vmax/vmin is w.h.p. upper bounded by a
constant as n → ∞. From this fact we can conclude that a
stronger result holds, namely that this class of systems are
difficult to control w.h.p. as n goes to infinity, even if we use
m = o(n) control nodes.

Remark 5: The symmetry of the matrix C in Formula (13)
is necessary to enable a mathematical proof of the results
proposed in the previous examples. In fact, if C is not sym-
metric, we have no mathematical instruments to estimate σ2

and vmax/vmin. One could wonder how much this condition is
crucial to observe practical uncontrollability of these networks.
To investigate this issue, we carried out some simulations in
which we did not impose symmetry on C. Figure 3 shows that
for B-A random graphs σ2 stays bounded away from 1 and
vmax/vmin grows at most linearly in n, while for E-R random
graphs σ2 stays bounded away from 1 and vmax/vmin stays
bounded. From this one can infer that symmetry seems not to
be a crucial property and that the systems built in this way
remains difficult to be controlled.

Example 3 (Weighted random walk on a cube): Consider the
unweighted graph consisting in the 3-dimensional k-ary array
[30], defined as the Cartesian product of three path graphs of
length k (see Fig. 4). In analogy with the previous examples,
starting from the adjacency matrix Ĉ of this graph, we build
a symmetric matrix C having non-zero entries in [a, b]. Let
A ∈ Rn×n, n := k3, be obtained from C as in the previous
examples and denote by Aα the lazy version of A.

Fig. 4. 3-dimensional 4-ary array: corner nodes are filled in black, while
internal nodes in gray.

By (15), we have that

vmax

vmin
≤ 2b

a

since the maximum degree for the unweighted graph is 6 (for
internal nodes) and the minimum is 3 (for corner nodes). In
order to estimate λ2(A) we exploit again Cheeger’s inequality,
which yields that (see Appendix B)

λ2(A) ≤ 1−Kn−2/3 =: B(n), (20)

where K is a positive constant depending only on a and b.
Now, using (18), it follows that

σ2 = max{λ2
2(Aα), λ2

n(Aα)}
≤ max{((1− α)B(n) + α)2, (2α− 1)2}.

Notice that, for n sufficiently large, it holds that

max{((1−α)B(n) +α)2, (2α− 1)2} = ((1−α)B(n) +α)2.

The latter inequality can be used in (8), obtaining (see Ap-
pendix B for detailed calculations)

log(Λ(Aα,m)) ≤ k0 − k1
n1/3

m
+ k2 log n
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Fig. 3. The asymptotic behaviour of σ2 and vmax/vmin for networks with asymmetric matrix C, α = 1/2 and a = 1/2, b = 4. We start from an undirected
random graph and, we associate with each edge (i, j) of the graph a weight Cij drawn uniformly and independently at random in the interval [a, b]. The
upper figures refer to E-R graphs ER(n, 4 logn/n), while lower figures to B-A graph BA(n, 2). For each n, values are obtained averaging 250 realizations
of each random model. The simulations were performed using Python’s NetworkX library [29].

where k0, k1 and k2 are positive constant values which depend
only on a, b and α. When n tends to infinity we have
that, as long as we use a number m = o(n1/3/ log n) of
control nodes, the system is practically uncontrollable since
log(Λ(Aα,m))→ −∞, and therefore Λ(Aα,m)→ 0.

Remark 6: In a similar way as Example 3, it is possible
to prove that, given d ≥ 3, the d-dimensional k-ary array is

practically uncontrollable with a portion m = o

(
n1− 2

d

logn

)
of

controllers. In case d = 1 or d = 2, our bound is not useful
to determine the controllability degree of the system.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have shown the relevance of the network
centrality for understanding how much energy is needed to
control a dynamical network with adjacency matrix which is
irreducible and (marginally) stable. Precisely, it is shown that
if the matrix describing such a linear dynamical network has
rather uniform node centralities, then it will be difficult to
control.

There are still many open questions that need to be ad-
dressed. One is related to whether or not also the converse
of the result shown in this paper holds true, namely if a
system characterized by nodes with very different centralities
is easy to be controlled. Simulations seem to disprove this
conjecture, since node centrality alone seems not to be enough
for characterizing the network controllability.

Moreover, another interesting aspect concerns if node cen-
tralities could be helpful in selecting control nodes, in case we
want to increase the controllability degree. Indeed, one could
argue that it is more convenient to control the nodes with
largest centralities. Figure 5 contains some results obtained
carrying out some simulations in order to clarify this question.
In these figures it is shown the value of λmin(WK,T ) as
a function of n in three cases: random positioning of the

control nodes, control nodes positioned at the nodes with
largest centrality and control nodes positioned at the nodes
with smallest centrality. Both for E-R and B-A random graphs
something quite unexpected happen. Indeed in both cases
positioning the control nodes at the nodes with smallest
centrality happens to be the best strategy. We are unable to
interpret this counterintuitive behavior10, whose understanding
surely deserves our attention in our future work on this subject.

Another still open question is to prove what it seems quite
intuitive, namely that if we can control a fixed percentage
of the nodes, the energy needed to control the system stays
bounded, or, more formally, if m = an, where a is any number
in ]0, 1[, then Λ(A,m) stays bounded away from zero.

These are only a few questions that need to be better
understood on this subject which, although it has received a
lot of attention in the last years, still remains very challenging
and full of issues that require to be investigated.

APPENDIX A
PROOFS AND ADDITIONAL RESULTS

Proof of Lemma 1: We first note that the positive vector

r := Π1/2v =
[√
v1w1 · · · √vnwn

]>
is such that ASr = λ2

1r, as can be seen by direct computation.
Since AS is a non-negative matrix and r is positive, we can
use [21, Corollary 8.1.30] to conclude that λ2

1 is the spectral
radius of AS . Therefore σ1 = λ2

1.
Proof of Proposition 1: We first prove two instrumental

lemmas.
Lemma 2: If x ∈ Rn is such that x>w = 0, then

‖ARx‖2Π ≤ σ2‖x‖2Π,

where σ2 is the second largest eigenvalue of AS .

10Note that there seems to be a connection with the results found in [4]
concerning which are the most important nodes to control.
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Fig. 5. Plots of the controllability degree λmin(WK,n) for B-A and E-R networks with symmetric matrix C, α = 1/2, a = 1/2, b = 2 and using m = n/3
controllers selected in three different ways. Precisely, the controllers are placed at the nodes with highest PageRank centrality (Highest Centrality Nodes =
HCN), with lowest centrality (Lowest Centrality Nodes = LCN), and at nodes selected at random (Random Nodes = RN). For each n, values are obtained
averaging 500 realizations of each random model.

Proof: First note that

‖ARx‖2Π = x>(AR)>ΠARx = x>Π1/2ASΠ1/2x.

Since x>w = 0, we also have that x>Π1/2 is orthogonal to r,
which is the eigenvector of AS with respect to σ1. Therefore

x>Π1/2ASΠ1/2x ≤ σ2x
>Π1/2Π1/2x = σ2‖x‖2Π

and this ends the proof.
Lemma 3: If y ∈ Rn is such that y>v = 0, then

‖A>y‖2Π−1 ≤ σ2‖y‖2Π−1 .

Proof: Defining x := Π−1y, we have these two facts:

x>w = y>Π−1w = y>v = 0 ,

‖x‖2Π = x>Πx = y>Π−1ΠΠ−1y = ‖y‖2Π−1 .

Moreover

‖ARx‖2Π = x>ΠAΠ−1ΠΠ−1A>Πx

= y>AΠ−1A>y

= ‖A>y‖2Π−1 .

Exploiting the previous lemma we have

‖A>y‖2Π−1 = ‖ARx‖2Π ≤ σ2‖x‖2Π = σ2‖y‖2Π−1 .

and we are done.
Using the lemmas we have just proven, we can finally prove

the proposition as follows. Since y>At−1v = λt−1
1 y>v = 0,

defining x := (A>)t−1y, we have that x>v = 0. Then

‖(A>)ty‖2Π−1 = y>AtΠ−1(A>)ty

= x>AΠ−1A>x

= ‖A>x‖2Π−1

≤ σ2x
>Π−1x

= σ2‖(A>)t−1y‖2Π−1

and applying the same reasoning t times, we obtain

‖(A>)ty‖2Π−1 ≤ σt2‖y‖2Π−1 .

APPENDIX B
DETAILED CALCULATIONS FOR EXAMPLES 1 AND 3

First observe that, due to the Cheeger inequality [27, Section
6.2]

λ2(A) ≤ 1− h2

2
, (21)

where h > 0 is known as the bottleneck ratio or Cheeger
constant of the column-stochastic matrix A. This constant is
defined as

h = min
S⊂V

v(S)≤1/2

Q(S, S̄)

v(S)
, (22)

where S is a subset of V , S̄ is its complement, v(S) :=∑
k∈S vk, and

Q(S, S̄) :=
∑

i∈S,j∈S̄

Ajivi.

Since in our case the column-stochastic matrix A is defined
from a symmetric matrix C as in (13), then

Q(S, S̄) =
1

Ctot

∑
i∈S,j∈S̄

Cji ≥
a

Ctot
e(S, S̄) (23)

where e(S, S̄) denotes the number of edges between S and S̄
in the unweighted graph described by Ĉ. The denominator of
(22) can be treated as follows

v(S) =
∑
k∈S

vk =
∑
k∈S

Ccol
k

Ctot
≤ b

Ctot
vol(S) (24)

where vol(S) is the so-called volume of S in the unweighted
graph and coincides with the total number of edges of the
nodes belonging to S. From the previous inequalities we can
argue that

h ≥ a

b
min
S⊂V

v(S)≤1/2

e(S, S̄)

vol(S)
.

In [27, Section 6.4] it is shown that, for the B-A random
graph, the minimum in the previous formula is lower bounded
by a positive constant w.h.p. as n→∞. This shows that also
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h is lower bounded by a positive constant w.h.p. as n → ∞.
This solves Example 1.

As far as Example 3 is concerned, we still use the Cheeger
bound (21) and the inequalities (23) and (24). Then, since in
this case vol(S) ≤ 6|S|, we can argue that

Q(S, S̄)

v(S)
≥ a

6b

e(S, S̄)

|S|

which implies that

h ≥ a

6b
min
S⊂V
|S|≤n/2

e(S, S̄)

|S|
,

where the minimum of e(S, S̄)/|S| is the so-called isoperi-
metric number of the graph [31, Chapter 3], which in a 3-
dimensional k-ary array is lower bounded by 2/n1/3 [30].
Therefore in this case we have

h ≥ a

3b

1

n1/3
.

Now, by virtue of the Cheeger inequality (21), it holds that

λ2(A) ≤ 1−Kn−2/3 =: B(n),

where K := a2

18b2 is positive.
Concerning the evaluation of Λ(Aα,m), by Corollary 1 and

inequality (8), it follows that

Λ(Aα,m) ≤ 2b

a

B̄(n)
n
m

B̄(n)2
(
1− B̄(n)

) ,
where

B̄(n) := ((1− α)B(n) + α)2 = (1− (1− α)Kn−2/3)2.

Now take logarithm of both sides

log(Λ(Aα,m)) ≤ log
2b

a
+
n

m
log B̄(n)

− 2 log B̄(n)− log(1− B̄(n)).

Using the Taylor’s expansion as n→∞ we get

log B̄(n) = 2 log(1− (1− α)Kn−2/3)

' −2(1− α)Kn−2/3

and

log(1− B̄(n)) = log(2(1− α)Kn−2/3 − (1− α)2K2n−4/3)

' log(2(1− α)Kn−2/3)

= log(2(1− α)K)− 2

3
log n.

Considering finally that −2 log B̄(n) ≤ 4(1 − α)K we can
argue that

log(Λ(Aα,m)) ≤ k0 − k1
n1/3

m
+ k2 log n,

where k0, k1 and k2 are positive constant values which depend
only on a, b and α.
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