
Newcastle University e-prints

Date deposited: 25th March 2013

Version of file: Author final

Peer Review Status: Peer reviewed

Citation for item:

Clarke D, Ezhilchelvan P. FORTRESS: Adding Intrusion-Resilience to Primary-Backup Server

Systems. In: 31st IEEE Symposium on Reliable Distributed Systems (SRDS). 2012, Irvine, California,

USA: IEEE Press.

Further information on publisher website:

http://ieeexplore.ieee.org

Publisher’s copyright statement:

“© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.”

The definitive version of this article is available at:

http://dx.doi.org/10.1109/SRDS.2012.32

Always use the definitive version when citing.

Use Policy:

The full-text may be used and/or reproduced and given to third parties in any format or medium,

without prior permission or charge, for personal research or study, educational, or not for profit

purposes provided that:

 A full bibliographic reference is made to the original source

 A link is made to the metadata record in Newcastle E-prints

 The full text is not changed in any way.

The full-text must not be sold in any format or medium without the formal permission of the

copyright holders.

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.

NE1 7RU. Tel. 0191 222 6000

javascript:ViewPublication(190006);
javascript:ViewPublication(190006);
http://ieeexplore.ieee.org/
http://dx.doi.org/10.1109/SRDS.2012.32

FORTRESS: Adding Intrusion-Resilience To
Primary-Backup Server Systems

Dylan Clarke
School of Computing Science

Newcastle University, UK
Email: dylan.clarke@ncl.ac.uk

Paul Ezhilchelvan
School of Computing Science

Newcastle University, UK
Email: paul.ezhilchelvan@ncl.ac.uk

Abstract—Primary-backup replication enables arbitrary ser-
vices, which need not be built as deterministic state machines, to
be reliable against server crashes. Further, when the primary
does not crash, the performance can be close to that of an
un-replicated, 1-server system and is arguably far better than
what state machine replication can offer. These advantages have
made primary-backup replication a widely used technique in
commercial provisioning of services, even though the technique
assumes that residual software bugs in a server system can
lead only to crashes and cannot result in state corruption. This
assumption cannot hold against an attacker intent on exploiting
vulnerabilities and corrupting the service state when attacks lead
to intrusions. This paper presents a system, called FORTRESS,
which can encapsulate a primary-backup system and safeguard
it from being intruded. At its core, FORTRESS applies proactive
obfuscation techniques in a manner appropriate to primary-
backup replication and deploys proxy servers for additional
defence. Gain in intrusion resilience is shown to be substantial
when assessed through analytical evaluations and simulations
for a range of attacker scenarios. Further, by implementing
two web-based applications, the average performance drop is
demonstrated to be in the order of tens of milliseconds even
when obfuscation intervals are as small as tens of seconds.

I. INTRODUCTION

Literature on fault-tolerance reports two prominent ways of
replicating a service. State machine replication [16] (SMR, for
short) and primary-backup replication [10] (PB, for short). In
SMR, all replicated servers execute every client request and
clients accept identical responses from a majority of servers as
the correct response. So long as faulty servers are a minority,
their failures are masked and hence failure detection and fault
replacement can be second order concerns in SMR.

SMR however imposes a requirement [16] that all replicas
reach an identical state after processing any given client
request. Hence, (i) they must reach consensus [7] on the order
in which they process client requests and, (ii) all sources of
non-determinism in the software must be removed or their
manifestations be handled during run-time. Request ordering
adds a constant run-time overhead; enforcing deterministic
execution needs to address two major problems [6], [11]:
being highly architecture-specific, it requires a comprehensive
understanding of the instruction set being executed and the
sources of external events; secondly, it results in an unaccept-
able overhead when applied in multi-processor systems where
shared-memory communication between processors must be
accurately tracked and propagated.

In PB replication, one of the replicated servers is designated
as the primary and the other(s) as backup(s); client requests are
processed only by the primary which continually sends state
updates to backups; if the primary ever crashes, a backup takes
over as the new primary. (See Chapter 8 of [10] for details.)

When the primary is operative, PB performance can be close
to that of a 1-server system and the shortfall is due only to the
primary having to reliably state-update the backups [9]. Recent
investigations [6] affirm that this shortfall can be minimized
considerably by performing updates asynchronously without
compromising correctness when the primary crashes.

Furthermore, unlike in SMR, PB replication does not require
that a service be built as a deterministic state machine. This
removes the burden of having to remove or handle sources of
non-determinism, in particular, when the service is composed
using a legacy software or evolves over its lifetime. These
advantages have made PB replication a useful and widely-
used technique in a variety of application contexts, including
real-time [22] and mission-critical contexts [6].

With the proliferation of web-accessed services, attacks by
malicious users remain a growing threat to service reliability.
An attacker seeks to exploit a vulnerability in software. When
an attack succeeds, an intrusion occurs and the intruded server
crashes or, in the worst case, operates under the attacker’s
control. Modern service software is so complex and evolving
that removing all vulnerabilities and maintaining vulnerability-
freeness are near impossible. This situation has led to the
intrusion tolerance approach which regards that intrusions can
occur despite the preventive measures in place and seeks to
maintain reliability even if a few replicas are intruded.

Due to its masking ability, SMR readily progresses into
being intrusion-tolerant, provided that the replicas are built
to be intrusion-independent: an exploit that succeeds on one
replica cannot intrude others. Most intrusion-tolerant systems
use SMR, e.g., [3], [4], [12], [17], [19]. PB replication, on the
other hand, can tolerate only crash failures and the replicated
system, in its entirety, fails or, even worse, gets compromised
if an intrusion corrupts primary state or enables the attacker
to control primary execution, respectively.

In practice, PB systems assume (often implicitly) that the
measures put in place prevent attacks from gaining intrusions
or block intrusions from corrupting service state. This paper
aims to strengthen this assumption by making a PB system

resilient to those attacks and intrusions against which conven-
tional preventive measures may not be effective.

An obvious, intrusion-tolerance approach is to swiftly detect
and isolate the intruded primary and then initiate a take over
as though the primary had "crashed". It poses two obstacles.
Perfect and swift detection of intrusions still remains an elusive
goal [14]; even if it were feasible, intrusion-independence
requires that backups cannot be exact replicas of the primary
which complicates the normal-mode, state-update process.

Here, we pursue a different approach that does not warrant
perfect intrusion detection or even any structural changes to an
existing PB system, yet adds intrusion-resilience capabilities
to a significant degree in return for a very small performance
drop. Presenting this approach and demonstrating the end re-
sults are our main contributions. To the best of our knowledge,
this is the first approach to address the problem of making an
existing PB system resilient to intrusions when conventional
measures cannot prevent an intrusion from corrupting primary
state, and to do so without requiring prompt and perfect
detection of intrusions.

At the heart of our approach are the recent developments
in program obfuscation [15] which make it difficult for an
attacker to exploit a common class of vulnerabilities, even if
the attacker knows that such a vulnerability is present in a
server system; the attacker’s difficulty is upheld over time,
when obfuscation is repeated periodically. These techniques,
collectively called proactive obfuscation [13], are suitably
adapted to preserve the useful features of a PB system.

The paper presents, in Section 2, a class of vulnerabili-
ties found quite commonly in distributed systems, proactive
obfuscation, and the techniques that can be used to circum-
vent obfuscation. Section 3 presents the architecture of the
FORTRESS system. Section 4 analyzes the improvement in
intrusion resilience achieved through the use of FORTRESS.
Section 5 experimentally evaluates the performance overhead
caused by FORTRESS. Finally, section 6 concludes the paper.

II. BACKGROUND

First, we discuss UCIT vulnerabilities that can be exploited
to inject and execute an arbitrary piece of code on target
systems. Then we examine proactive obfuscation and, finally,
discuss distributed attacks and the implications these attacks
have on our modeling of intrusion attempts.

A. UCIT Vulnerabilities
Unauthorized Control Information Tampering vulnerabili-

ties (UCIT vulnerabilities) were first categorised in [5]. They
are vulnerabilities, such as unchecked buffers, that make it
possible for maliciously crafted messages to overflow control
structures such as the stack or the heap. This allows an attacker
to inject his own malicious code into a target system and
change control information so that his code gets executed.

Exploitation of these vulnerabilities to cause an injected
piece of code to be executed requires the attacker to have
a considerable knowledge of the internal layout and details of
the target system. This can be achieved, as noted in [5], by
running a local system with identical hardware and software.

B. Proactive Obfuscation

Proactive obfuscation combines two techniques: program
obfuscation and periodic re-obfuscation. An obfuscator (see
[2], [13], [15]) takes two inputs, a program P and a secret key
k and outputs a program P’ that is semantically equivalent to
P. A vulnerability in P is also present in P’; it cannot however
be exploited without knowing k if P’ is used (in stead of P).

Program obfuscation is essentially randomization of exe-
cutables obtained through a variety of techniques, such as ad-
dress space layout randomization (ASLR) [21] and instruction
set randomization (ISR) [8], or a combination of them. The
number of keys available while using a given technique is
implementation- and system-dependent but is typically quite
large; say, for ASLR, it can be up to 216 for 32 bit systems
and between 232 and 240 for 64 bit systems. Since k is chosen
from a large space, the probability of guessing it out-right is
negligible, e.g., less than 0.1% if the key space is 210.

Program obfuscation within an SMR system works as fol-
lows. All server replicas have obfuscated executables obtained
from a common software P, but each replica is obfuscated
with a distinct, randomly selected key. Consequently, if the
SMR system is designed to tolerate at most f, f > 1 intruded
replicas, then at least (f+1) of the keys used must be known to
the attacker for exploiting a vulnerability in P. Thus, given that
the key selection process is securely carried out, the amount of
work required of an attacker to compromise the SMR system
is (f + 1) times the work needed to intrude a single replica.

Even though the key-space is large, an attacker can deduce
the keys used within an SMR system over time by launching
a series of derandomization attacks (discussed in § II-C).
To spoil this advantage that an attacker has, replicas are
periodically shut down, rebooted, randomized with a different,
newly selected k, and initialized with the correct service state.
Thus, if an attacker manages to deduce the key used in a
replica, then that advantage is erased once that replica is re-
obfuscated with a different key. The re-obfuscation period is
referred to as unit time-step or migration interval.

We will make three important observations on the re-
obfuscation process. First, it involves several activities, all
of which must be carried out in a secure manner. Secondly,
a given key may be selected for use, through the random
selection process, several times over the system lifetime.
However, each selection allows it to be used continuously for
only one unit time-step; at the end of that time-step, a used
key emigrates out of the SMR system and does not become
eligible for selection until another key is chosen. Finally, since
the number of replicas deployed within practical SMR systems
is considerably smaller than the key-space, forbidding the
emigrating keys from being candidates for just one selection
would still leave a large enough space to select from.

The infrastructure mechanisms needed for supporting proac-
tive obfuscation make use of several trusted components and
are detailed in [13]. Two trial implementations in [13] show
that proactive obfuscation is a practical technique. Similar
infrastructure has also been implemented by [3], [4], [19]

without an explicit use of program obfuscation.
Finally, we note that all replicas of an SMR system need

not be re-obfuscated at the same time after a unit time-step;
they can be, and are in [13], re-obfuscated at different timing
instances while ensuring that at least (2f + 1) replicas are
servicing client requests at any given time. Thus, periodic re-
obfuscation can be done without affecting SMR performance.
This feature cannot be preserved in a primary-backup system
as only the primary is doing the computation.

C. Derandomization Attacks

The rationale behind the randomization techniques, such as
ASLR and ISR, is that if the attacker builds his exploit using
a key that is different from the one used on a given replica,
he cannot inject his malicious code at the correct location
within that replica’s address space (when ASLR is used) nor
can he build his code with correctly randomized instructions
(when ISR is used). Consequently, the attack merely causes
the replica to crash but can never lead to an intrusion.

Note that an attacker choosing a wrong key for his exploit
causes a replica to crash; conversely, if he learns that his attack
has caused a replica to crash, he can deduce that the key he
chose for his exploit is not the same as the one used in that
replica. This aspect and the fact that the key space is publicly
known form the basis for derandomization attacks in [18]
and [20] which deduce the key used in a reasonable number
of trials, when ASLR and ISR are used respectively. The
derandomization process pursued in [18], [20] is basically one
of elimination: choose a key to construct an exploit, eliminate
it from the search space if the target is observed to crash, and
thus continue to narrow down the search space until the key
chosen leads to the injected code being executed. (In [20], the
right key needs to be discovered in parts.)

Though the experiments of [18] and [20] were directed at
ASLR and ISR, derandomisation attacks could, in principle,
be extended to any form of randomisation, as the underlying
rationale behind any form of program obfuscation is the same.

The following observation by [18] has a profound impli-
cation on the choice of unit time-step duration for SMR:
the derandomisation attacks of [18] succeeded after a good
number of attempts, even if the target was re-obfuscated every
time after it crashed. So, if re-obfuscation of SMR replicas
is done infrequently, say, to reduce the overhead, an attacker
could manage to have the keys of (at least) (f + 1) replicas
deduced at any given time; in that case, he could have more
than f replicas intruded at the same time. This would violate
the basic SMR assumption; hence, during re-obfuscation, the
re-booted replicas are not guaranteed to be initialized with the
correct service state and, subsequently, the SMR system could
fail, i.e., the system compromise could occur.

Choice of unit time-step duration thus influences the system
lifetime which is defined as the time elapsed between the
deployment of an intrusion-tolerant system and the instance
when the number of simultaneously intruded replicas exceed
the tolerance threshold. Smaller unit time-step durations can

result in longer lifetimes; they do increase the number of re-
obfuscations carried out per hour of lifetime and hence they
can increase the ratio of re-obfuscation overheads to lifetime.

One way to increase the unit time-step duration without
risking a reduction in lifetime is to reduce the possibility
of derandomization attacks leading to simultaneous intrusions
exceeding the tolerance threshold. This can be accomplished
by placing proxy servers between replicas and clients. These
proxies act as intermediaries by forwarding client requests
to replicas and responses to clients. They thus prevent an
attacker from monitoring the response times over direct TCP
connections to the replicas and thereby remove the most direct
way to discover if a guess on the key has caused a crash or
not. (So, proxies are used in FORTRESS - see § III.)

D. Distributed attacks

Distributed attacks involve an attacker using multiple ma-
chines, e.g., by using bot-nets [1], to launch attacks on a target
system (which in our case is a replicated server system). This
means that an attacker will generally be able to launch as
many attacks as he wishes, and hence will be able to attack
every publicly accessible replica or proxy (if used) in the
system at the same rate, regardless of the number of these
replicas/proxies present. That is, the attack rate on publicly
accessible replicas/proxies can be arbitrarily high.

We note that distributed attacks can be divided into two
types, regarding the ultimate purpose they are launched for:
those aiming to attack the availability of a system (denial
of service, DoS, attacks) and those aiming to compromise
service integrity by corrupting the service state and/or breach
confidentiality by gaining access to the information stored
in the system. The techniques considered in this work are
designed specifically against the attacks of the latter type; other
techniques will be required to safeguard against DoS attacks.

When the attacker’s aim is only to breach the integrity or
confidentiality of a target system, it is in his interest not to
flood the system to the point that it shuts down. His goal
would be to keep the system available so that integrity and
confidentiality could be breached by compromising a sufficient
number of replicas.

This means that, even for a distributed attacker, there exists
a finite, upper bound on the number of attacks launched on a
replicated server system in a given period of time. In practice,
this bound is likely to be set either by the number of requests
the system can process, or the number of malicious requests
that can be safely sent without raising suspicion among
system administrators. (Note: attack detection and monitoring
measures do have a significant role to play here in raising
alerts; on the other hand, SMR and FORTRESS do not have
to rely on an intrusion being detected when an undetected
attack leads to an intrusion; While SMR tolerates intrusions,
FORTRESS makes it harder for an attack to cause intrusions.)

Throughout the paper, we assume that a server can be
subject to at most β attacks in any unit time-step. In modeling
terms, existence of β means that the probability of an attacker
deducing the key used in any given replica within the unit

time-step duration is less than 1 if the number of available
keys is larger than β.

III. SYSTEM ARCHITECTURE

The FORTRESS approach involves two key techniques. The
first of these is to introduce a new tier of nodes, which we
call the proxy tier, in front of the server or application tier
in two or three tier systems, respectively. A 3-tier system
comprises web, application, and data tiers, and the latter two
form a single, server tier in a 2-tier system. In what follows,
the tier right next to the proxy tier would be referred to as the
server tier that houses server replicas. Proxy nodes forward the
(signed) client requests to all nodes in the server tier and the
(signed) responses from the primary back to the client. Figure
1 illustrates these flows and, for clarity, only one proxy node
is shown to forward client requests.

The server tier is configured to accept requests only from the
proxy nodes, preventing an attacker from directly communi-
cating with the server nodes, resulting in a series of difficulties
for the attacker as discussed in sub-section II-C (and re-visited
in § IV-C). The proxy tier offers, like ramparts, a defensive
platform against attacks being launched directly on the server
nodes (hence the name FORTRESS).

The second technique used is proactive obfuscation which
is implemented using the infrastructure for proactive obfusca-
tion (IPO) of [13] but adapted for primary-backup systems.
The adaptation requires additional infrastructure components,
namely a name server (NS) and a pool of spare nodes (see Fig-
ure 1), whose roles will be discussed shortly. In FORTRESS,
the nodes of both the proxy and the server tiers are obfuscated
at the start and re-obfuscated periodically thereafter.

As noted earlier (in § II-B), replicas within an SMR system
can be re-obfuscated at distinct timing instances. Pursuing the
same approach for a primary-backup system introduces two
sources of overhead, as we discuss below.

Suppose that the nodes of the primary-backup server tier
are re-obfuscated at distinct instances. Let these nodes be A,
B and C, with A currently acting as the primary. Just before
A’s re-obfuscation is due, say at tA, A must relinquish its
primary role, say, to B. That is, re-obfuscation of A invokes
a fail-over which any primary-backup system must be able
to handle. (In a normal system, fail-over occurs whenever the
primary crashes and handling an obfuscation-induced fail-over
is relatively easier since it is an anticipated event.) B must be
due for its re-obfuscation sometime at or before tA+∆, where
∆ is the unit time-step duration. So, before tA + ∆, B must
transfer the primary role to A or C. Thus, handling at least one
obfuscation-induced fail-over for every ∆ is inevitable. A fail-
over slows down the system responsiveness; so, the number
of fail-overs handled per ∆ must be kept small and is exactly
one in FORTRESS.

Secondly, when, say, A is acting as the primary, it must
continually provide state updates to B and C. (An aspect
of primary-backup replication for crash-tolerance.) Since the
nodes are obfuscated at different instances, their keys would
be different; so, A must marshall the state-updates (to a

Figure 1: FORTRESS Architecture

standard form), and B and C must unmarshall the updates
received to suit their respective randomization. To avoid this
constant, running overhead of marshalling/unmarshalling of
updates (not present in a normal primary-backup system),
FORTRESS makes the following design decisions.

1) all server and proxy nodes are re-obfuscated at the same
timing instance; hence, the start and end times of each
unit time-step are identical for all nodes;

2) all server nodes are re-obfuscated with the same,
randomly-selected key; and

3) each proxy node is re-obfuscated with a distinct,
randomly-selected key (that is not used in any other node
in the system at the same time).

Note that the keys used for a given unit time-step are
not candidates for selecting keys for the next unit time-
step. FORTRESS speeds up the re-obfuscation process by
obfuscating spare nodes as server/proxy nodes during a unit
time-step and replacing the existing ones with the freshly
obfuscated ones at the end of that unit time-step. Thus,
re-obfuscation becomes node replacement and state-transfer
whereby incoming server nodes receive the service state
from the ones being replaced. (This state transfer requires
marshalling and unmarshalling.)

Thus, the IPO performs the periodic replacement of proxy
and server nodes (at the end of each unit time-step), the
shutting down and re-booting of replaced nodes, the updating
of the name server (NS) with the addresses of the new proxies,
the updating of the proxies with addresses of the current server
nodes, and obfuscating spare nodes for the next replacement.
We refer the reader to [13], [19] to see that the IPO could
securely accomplish all of the above. We simply note here that
the IPO of [13], [19] makes use of several trusted components,
synchronized clocks and timely communication links for the
purposes of security and timeliness in its operations.
The Proxy Tier. It consists of nodes running simple proxy
software that can take a client request and pass it to the nodes
in the server tier. Similarly, each proxy can take a response

from the server tier and pass it back to the client that made the
original request. Each node in the proxy tier runs a uniquely
randomized diverse executable. It is publicly accessible, and
hence open to attacks from anyone with an Internet connection.
Throughout this paper we assume that the proxy tier has 3
proxies.
The Server Tier. It hosts a primary-backup system; through-
out this paper, we assume two backups in addition to a
primary. These nodes are identically randomized to reduce
state transfer overhead, as the compromise of the primary
will result in system compromise even when the backups are
not compromised. Nodes in the server tier are not directly
accessible to clients. They only accept requests from nodes in
the proxy tier, update messages from other server nodes where
appropriate, and control messages from the IPO.

A. Replacement and State Transfer

After a set period of time the current proxy and server
tiers will be replaced by nodes from the spare pool using new
diverse executables. This needs to take place in such a way
that the following six requirements must be satisfied:

1. State information is passed from the current server tier to
the new server tier without loss, corruption or the possibility
of an attacker maliciously changing it.

2. All of the new nodes used to replace the server and proxy
tiers are free of malicious intrusions at least until they start
processing client requests.

3. All of the nodes in the new proxy tier know the identities
of all of the nodes in the new server tier.

4. Clients know the identities of all of the nodes in the new
proxy tier.

5. Clients know the public keys required to authenticate the
digital signatures of the new server tier.

6. The overhead of replacement and state transfer in terms
of time duration in which requests are not being processed
should be minimal.

Requirements 1-3 are provided by the IPO. Requirements 4
and 5 are provided by the NS, with the IPO ensuring that the
NS has the correct information to satisfy requirement 5. We
use spare nodes to achieve requirement 6. The exact overhead
is measured in section V.

IV. INTRUSION RESILIENCE IN FORTRESS
A. Modelling Node Intrusion

An attack against a node with a UCIT vulnerability will
succeed when a malicious request sent to the node fulfils two
criteria:

1) The malicious request is appropriately constructed to
exploit that vulnerability if no randomisation is in place.

2) The randomisation key chosen for the malicious request
is the same as the randomisation key used to produce
the diverse executable present on the node.

We assume that the attacker is sufficiently skilled that
all malicious requests fulfil criterion 1, and that the node
is intruded into as soon as the derandomisation attack is
successful. If these assumptions do not hold then the attacker

would not be able to compromise the system at all. This leads
to node intrusion being entirely dependent on meeting criterion
2.

Hence, the probability of a node being intruded during a
given unit time-step is the probability that one of the malicious
requests processed during that unit time-step had the correct
randomization key. This probability depends on the the number
of malicious requests β that can be processed during a unit
time-step and on the total number γ of keys available for
obfuscation.

The presence of these variables leads us to model the
probability of a given node being successfully intruded into
in a given unit time-step as 0 < α ≤ 1. We assume that α
is identical for all nodes that are directly accessible by an
attacker. When a server node is accessible only via proxy
nodes and all proxies are correct, we consider indirect attacks
on servers which will be discussed in Section IV-C. We note
that α is constant when proactive obfuscation is used and is
time dependent when it is not. This time-dependence arises
if an attacker can safely discount some keys an ineffective
simply because they were not effective in an earlier attempt.

In our comparative evaluation we consider a wide range of
α values, in an attempt to cover all likely values. There is of
course the possibility that, for a given combination of system
and attacker, α could be outside the parameters considered.
These outliers represent attackers who are either so powerful
that they manage to achieve β so close to γ that no effective
defence can be provided, or so ineffective that no additinal
defence needs to be provided.

B. System Models

1) PBSO: The PBSO system is a primary-backup system
with start-up only obfuscation. That is, primary and backups
are initially obfuscated and are not re-obfuscated thereafter.
The architecture shown in Figure 1 would therefore consist
only of the server tier and nothing else. PBSO represents the
typical deployment of commercial primary-backup systems.

A primary-backup system is compromised when the primary
is intruded. The primary is the only node processing client
requests, so we model PBSO as one node, with the system
compromise occurring when that node is intruded. Hence, the
probability of system compromise in one unit time-step is
simply the probability of one node being intruded in one unit
time-step.

As no re-obfuscation takes place, the attacker can safely
eliminate some keys as ineffective after every unit time-step,
so the intrusion probability (and hence the system compromise
probability) increases with time. We define the probability of
system compromise in unit time-step i to be αi and set α0 = β

γ
as none of the γ keys would be known to be ineffective before
the first unit time-step.

The ith unit time-step, i ≥ 1, begins with iβ keys having
been found ineffective, and hence the probability of system
compromise during unit time-step i is αi = β

γ−iβ = α0

1−iα0

unless fewer than β keys are left to try during step i, in which
case the probability of compromise is αi = 1.

Hence, the probability αi of system compromise during a
unit time-step is: α0

1−iα0
if 1− iα0 > α0, or 1 otherwise.

2) PBPO: The PBPO system is a primary-backup system
with proactive obfuscation. This involves the primary and
backups being replaced at the end of each unit time-step
in such a way that a new diverse executable is introduced.
For PBPO, the system architecture in Figure 1 would have
everything except the proxy tier.

The probability of system compromise in one unit time-step
is the probability of one node being intruded in one unit time-
step, as with the PBSO system. However, unlike PBSO, every
unit time-step starts with re-obfuscation; so the probability α
of system compromise during any unit time-step is β

γ = α0.
3) FORTRESS: A FORTRESS system is compromised

when either all of the nodes in the proxy tier are intruded
or the primary is intruded. The primary is the only node
processing client requests, and can be directly attacked only
via an intruded proxy. When a proxy is intruded, it can be used
by the attacker to launch attacks directly against the server
nodes. Therefore, the probability of the primary being intruded
into by a direct attack in a unit time step is α if one or more
proxies was already intruded into at the start of that unit time-
step and 0 if no proxies were already intruded into at the start
of that unit time-step

Since the attacker can launch distributed attacks, we assyme
that each proxy can be subject to at most β attacks per unit
time-step without raising alarms. Hence, the probability of a
proxy being intruded into in a unit time-step is taken to be α as
well. In what follows, we consider the probability of primary
intrusion by indirect attacks, i.e. where no proxy is intruded.

C. Indirect Attacks

We define an indirect attack to be an attempt to intrude
into a server with a malicious request launched from a client,
and passed to the server via an unintruded proxy. This is in
contrast to a direct attack, which would involve a malicious
request sent directly from the source of the attack to the target.

At first glance, indirect attacks may appear as likely to
succeed as direct attacks. Proxy servers are merely passing
on the malicious request, and the server is executing it as if it
had been sent directly. However, a closer examination shows
the following impediments to indirect attacks.

Firstly, the proxy may have the same vulnerability as the
server. For example, an overly long URL string sent to a proxy
with the intention of overflowing the buffer in the server it
will be passed to, may instead overflow a buffer in the proxy.
In this case an indirect attack on the server is impossible
and the attacker must instead first use the buffer overflow to
successfully intrude into the proxy.

Secondly, the proxy may have defences against vulnerabil-
ities that prevent it from passing on a malicious request to
the server. For example, if the proxy defends against attacks
involving an overly long URL string by checking the length of
the URL string and refusing or truncating overly long requests,
then an indirect attack on the server will be impossible, as the
original malicious request will never be passed to the server.

Finally, even if the malicious request is successfully passed
to the server, the presence of a proxy may reduce the oppor-
tunity for the attacker to get the feedback needed to detect a
successful attack. Attacks against randomized systems such as
those in [18] typically rely on using many malicious requests
to perform a brute force attack against the randomization key.
Each of these requests contains a very small piece of malicious
code, designed to produce a response from the server that will
be measurably different if the correct randomization key was
chosen than if it was not.

While the presence of a proxy between the attacker and
the server does not generally prevent communication from
the server to the attacker (a compromised server could for
example, use a subliminal channel) it does have the potential
to increase the time required for the attacker to become aware
of whether a specific malicious request has succeeded or failed,
and the length of code needed for the attack.

D. Modelling Indirect Attacks

When modelling the FORTRESS system, we note that there
are two possibilities for system compromise. Either one or
more proxies are compromised, and hence direct attacks are
launched at the primary, or all proxies are correct and hence
only indirect attacks are launched at the primary. So, the
definition of the probability of the primary being compromised
in a given unit time-step becomes:

1) If a proxy node is compromised by the start of the
unit time-step then we allow the attacker to attack the
primary with probability α of compromising it during
this unit time-step. This is a direct attack as it is
generated by the compromised proxy node and sent
directly to the server node.

2) If no proxy node is compromised by the start of the
unit time-step then we allow the attacker to attack the
primary with probability κα of compromising it during
this unit time-step. This is an indirect attack as it is
generated by the client and sent to the server node via
an unintruded proxy node.

We define κ to be the indirect attack coefficient, such that 0 ≤
κ ≤ 1 . This models the extra difficulty present in attacking a
node indirectly. When κ = 0 indirect attacks are not possible
and when κ = 1 they are as effective as direct attacks.

E. Expected Lifetime Evaluation

Now that we have developed models that specify the prob-
ability of system compromise in each unit time-step, we can
use these models to determine the expected lifetime (EL)
until system compromise. We determine the expected life-
times using Markov Chain techniques for PBPO systems and
FORTRESS systems with infinite diversity, Time-dependent
Stochastic Process techniques for PBSO systems, and Monte-
Carlo methods for FORTRESS systems with finite diversity.

1) Finite vs Infinite Diversity: There are two classes of
diversity we consider when comparing systems, finite and
infinite. In both cases the number of executables created is

finite as the size of the randomization key is finite; infinite
diversity is only infinite from the point of view of an attacker.

In the finite class, we assume that once a given executable
is compromised, the attacker will be able to re-compromise
that executable again in a negligible amount of time. The
attacker is assumed to have gained some information from
compromising the executable that allows him to identify it
when it is encountered in the future, and launch a rapid attack
that is guaranteed to compromise the executable.

In the infinite class however, either it is not possible for the
attacker to identify a previously compromised executable, or
to easily re-compromise it. Hence, from the attacker’s point
of view, every executable he encounters is a new one and this
is modelled as if the pool of diverse executables is infinite.

F. Results

All systems were considered across the intrusion probability
range α = 0.00001 to α = 0.1.

We note that the amount of diversity available does not
directly affect the expected lifetime of a primary-backup
system, even when proactive obfuscation is used. This is due
to the fact that the primary-backup system is compromised
as soon as the primary is compromised, so the entire system
becomes compromised at the same time as the first executable
becomes compromised.

The amount of diversity available does indirectly affect the
expected lifetime, as, in practice, smaller α values are only
likely to be available with larger amounts of possible diversity.

We begin by comparing the PBSO system to the PBPO
system. A comparison of the expected lifetimes of these two
systems is shown in Figure 2. This demonstrates that proactive
obfuscation results in almost a 2-fold increase in expected
lifetime for primary-backup systems, a relationship that holds
for all α values considered.

We next consider the FORTRESS system when indirect
attacks are not possible.

A comparison between the PBPO system and the
FORTRESS system with diversity of 216 over the range
α = 0.0001 to α = 0.01 is presented in Figure 3. (In the
bar chart of Figure 3, the expected lifetimes of the PBBO
and FORTRESS systems are shown from left to right in the
stated order.) Figure 3 shows that the FORTRESS system
considerably outperforms the PBPO system for this diversity
level, for all values of α.

A comparison between the PBPO system and the
FORTRESS system when the intrusion probability is fixed
and diversity is allowed to vary is shown in Figure 4.
This shows that the PBPO system slightly outperforms the
FORTRESS system with 23 diversity, and is outperformed by
the FORTRESS system with all other levels of diversity.

We then consider the situation when indirect attacks are
possible. A comparison between the PBPO system and the
FORTRESS system with diversity of 216 as the indirect attack
coefficient varies is presented in Figure 5. This shows that
the FORTRESS system outperforms the PBPO system except

Figure 2: Comparison of PBPO and PBSO as α Varies

Figure 3: Comparison of PBPO and FORTRESS with 216

Diversity as α Varies

when κ is close to 1. We note that, even when κ = 1, the
FORTRESS system outperforms the PBSO system.

V. EVALUATION OF PERFORMANCE OVERHEAD

We considered two types of applications when evaluating
the performance overhead cost. The first of these was a rela-
tively small scale web application allowing clients to request a
service and check on the progress of that service. The second
system considered was a large scale web application using
web server and application server layers for load balancing.

In each case we constructed a PBSO system and a
FORTRESS system and compared the latency and throughput,
and derived an estimate for the upper bound on time taken
for migration in the FORTRESS system from the latencies

Figure 4: Comparison of PBPO and FORTRESS with α =
0.0001 as Diversity Varies

Figure 5: Comparison of PBPO and FORTRESS with α =
0.0001, 216 Diversity as κ Varies

measured. (Since the PBSO system was not replaced there
was no migration overhead).

Latency and throughput metrics were measured for the
FORTRESS system over a range of migration interval val-
ues. We note that migration interval, the time between node
replacements, is the same time interval that was termed the
unit time-step when evaluating expected lifetime until system
compromise.

The overhead metrics are calculated as follows:

Increase in Latency =
ML of FORTRESS - ML of PBSO

ML of PBSO

Decrease in Throughput =
T of PBSO - T of FORTRESS

T of PBSO
where ML and T are mean latency and throughput respec-

tively.

A. Small Scale System

The system consists of a simple Java EE application that
would take requests for jobs to be added and requests for
the status of a current job. These jobs were stored in a
database co-located with the application. This application was
then expanded to enable database updates to be propagated to
backup nodes as a part of the primary-backup system.

1) System Specification: A FORTRESS framework consist-
ing of four components was implemented in Java EE. The first
of these components was an application wrapper to handle
state transfer between incoming and outgoing server nodes.
The second component was a proxy to pass requests and
responses between clients and servers. The third component
was a name server that provided the IP addresses of the current
servers. The fourth component was a controller unit that sent
messages to the other components at appropriate intervals.

2) Testing Strategy: Testing was performed using 21 host
machines on a local area network. The first 20 of these hosts
were used to run 4 sets of 3 servers, 2 sets of 3 proxies, 1
controller unit and 1 name server. The remaining host was
used to run 5 instances of the client code.

Figure 6: Percentage Increase in Latency as Migration Interval
Varies

Figure 7: Percentage Decrease in Throughput as Migration
Interval Varies

Each instance of the client made a series of 100000 requests,
alternating between add job requests and get status requests.
The average latency and throughput were calculated from the
start and end times of the requests sent. The contents of the
requests and responses were stored, along with the contents of
the database on the primary and backups after the last request
was received. We note that each stored job request contained
38 bytes of data, so, as half of the requests sent were add job
requests, the system state being transferred increased linearly
until it was 9.5MB.

This testing was then repeated using one set of three servers
in a primary backup configuration, with the same number of
client instances and requests.

3) Results: The contents of the databases on the active
primary and backup servers were found to be correct after
all tests. The increase in latency and decrease in throughput
as migration interval varies are shown in Figures 6 and 7.

The efficiency measurement shows us that, for a migration
interval of 70 seconds or greater it is possible to achieve a
decrease in throughput of less than 10%, and an increase in
latency of less than 15%. Even a migration interval of 20
seconds results in a decrease in throughput of less than 30%

and an increase in latency of less than 45%.
The implications of these overheads are very much depen-

dent on the way in which the systems to be fortified are used.
For example, in the test system studied, a 40.83% increase of
latency results in latency jumping from 81.8ms to 115.2ms,
an increase of 33.4ms. If a user is making a request of the
system and using that request when it is returned, a 33.4ms
increase in the time to receive it will be unnoticeable. On the
other hand, if another system is making a series of requests,
each depending on the result of the request before, then these
33.4ms delays may add up and cause a performance decrease.

The maximum latency recorded for FORTRESS was 396ms
(recorded when the migration interval was 90 seconds); max-
imum latencies for other migration intervals did not differ by
more than 28ms. The maximum latency recorded for PBSO
was 287ms. The minimum latency recorded for FORTRESS
and PBSO were 49ms and 44ms respectively. Thus, the
time taken for re-obfuscation can be estimated to have never
exceeded 396− 287 < 110ms.

Decrease in throughput is more likely to be a concerning
factor in commercial systems, rather than the small increase
is mean latency or even delays of up to 110ms occurring
during re-obfuscation. The smaller the migration interval, the
more difficult it is for an attacker to gain an intrusion and
the larger the overhead. Thus, a trade-off between overhead
and intrusion resilience is necessary. Further, using hardware
resources powerful enough to allow the system to handle peak
demand with a sufficiently small migration interval helps to
achieve a higher degree of intrusion resilience.

B. Large Scale System

We began by building a simple web application imple-
menting the functionality of an online store. This application
consisted of a web server that received client requests and
forwarded any request for dynamic content to an application
server. The application server then generated the dynamic
content, making use of a database, and returned it to the web
server. The web server added static content and then returned
this to the client. We then replicated this application at the web
and application server levels. The application servers became
the servers in our FORTRESS system, and the web servers
became the proxies. The database was unreplicated.

1) System Specification: Each server node ran two pieces
of software; an Apache Tomcat server that executed the web
application, and an application wrapper that could start and
stop the Tomcat server when it received a message from the
controller unit. A shared database was used by the Tomcat
servers to retrieve product information.

All state transfer was handled through Tomcat’s clustering
functionality. The current primary, current backups and the
replacement nodes for the next unit time-step were all part
of the same cluster. Then, when migration was required, the
primary and backups were stopped, and three new nodes were
brought into the cluster. The cluster was set up in such a way
that processing would always be performed by the primary
unless it was necessary to failover to the first backup.

Figure 8: Percentage Increase in Latency as Migration Interval
Varies

Each proxy node ran two pieces of software; an Apache
HTTP server and a proxy handler that could start and stop the
HTTP server when it received a message from the controller
unit. The HTTP server was configured to pass any requests it
received to the cluster, and return any responses to the client.

The controller unit was implemented as a Java application
which kept a list of the proxy and server nodes that were
available or in use. It periodically instructed the current proxies
and servers to stop, and new proxies and servers to start.

2) Testing Strategy: Testing was performed using 21 host
machines on a local area network, configured in the same way
as in section V-A2.

Server performance was measured for two web pages. The
first of these was a simple JSP page containing text and an
associated session. The second was a product search page from
an online shopping cart, requiring database access to generate
dynamic content. Apache JMeter was used for all tests other
than session handling. JMeter was set to generate 20000
requests from each of 100 clients running simultaneously for
the first page and 20000 requests from each of 50 clients
running simultaneously for the second page.

After each test, the system was allowed to run until 20 mi-
grations had occurred and the session variables were checked
to determine whether system state had been preserved.

3) Results: In both the experiments, session variables were
found to be correct after all migrations. The increase in
latency and decrease in throughput are shown against mi-
gration intervals in Figures 8 and 9. These results show that
encapsulating an online shopping system within FORTRESS
does not necessarily lead to a large performance overhead.

We observe in Figures 8 and 9 that increase in mean latency
and decrease in throughput caused by FORTRESS are less than
25% in large applications when migration intervals are 60s or
mode. Below 60s, mean latency is noticeably increased.

When migration intervals are small, increase in mean la-
tency is due to the fact that a larger percentage of time is
spent in transferring state to newly obfuscated nodes, resulting
in more requests being delayed from being processed due to

Figure 9: Percentage Decrease in Throughput as Migration
Interval Varies

state transfer. One possibility for reducing the mean latency
in a production system is to offset the migration periods of
several different FOTRESSed application servers, and use load
balancing hardware (which is usually present in large scale
distributed systems) to allocate the majority of requests to
nodes that are currently not engaged in state transfer.

We note that small migration periods are only needed when
an attacker must be presented with small windows of time in
which to attempt to compromise application servers. Hence
small migration periods are only needed when presented with
an attacker who has a relatively strong ability to compromise
application servers. These are just the circumstances when it
may be worth the cost of providing additional servers to cope
with the overhead of frequently migrating servers.

VI. CONCLUSION

We have presented FORTRESS, an intrusion-resilient
primary-backup system, that makes use of proactive obfus-
cation and a proxy tier for reducing the effectiveness of
derandomization attacks. The increases in intrusion resilience
provided by this system relative to a normal primary-backup
system have been evaluated and shown to be significant. The
performance overhead of the FORTRESS system has been
evaluated experimentally and found to be reasonably low even
for a large web-based application, such as an online store,
except when intervals of proactive obfuscation become smaller
than a minute.

ACKNOWLEDGMENT

The authors would like to thank the UK EPSRC for funding
this research through Dylan Clarke’s PhD scholarship, and
the School of Computing Science, Newcastle University for
funding Dylan Clarke’s attendance at SRDS 2012 to present
this paper.

REFERENCES

[1] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A
multifaceted approach to understanding the botnet phenomenon. In IMC
’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pages 41–52, New York, NY, USA, 2006. ACM.

[2] Kenneth P. Birman and Fred B. Schneider. The monoculture risk put
into context. IEEE Security and Privacy, 7(1):14–17, 2009.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In OSDI ’99: Proceedings of the third symposium on Operating systems
design and implementation, pages 173–186, Berkeley, CA, USA, 1999.
USENIX Association.

[4] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461,
2002.

[5] Shuo Chen, Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
Security vulnerabilities: From analysis to detection and masking tech-
niques. In Proceedings of the IEEE, pages 407–418, 2006.

[6] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: high availability via
asynchronous virtual machine replication. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI’08, pages 161–174, Berkeley, CA, USA, 2008. USENIX
Association.

[7] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-
possibility of distributed consensus with one faulty process. J. ACM,
32(2):374–382, 1985.

[8] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Coun-
tering code-injection attacks with instruction-set randomization. In Pro-
ceedings of the 10th ACM conference on Computer and communications
security, CCS ’03, pages 272–280, New York, NY, USA, 2003. ACM.

[9] Pramod Koppol, Kedar Namjoshi, Thanos Stathopoulos, and Gordon
Wilfong. The inherent difficulty of timely primary-backup replication.
In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, PODC ’11, pages 349–350, 2011.

[10] Sape Mullender, editor. Distributed systems 2nd Edition. ACM, New
York, NY, USA, 1993.

[11] P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith. Enforcing deter-
minism for the consistent replication of multithreaded corba applications.
In Proceedings of the 18th SRDS, pages 263 –273, 1999.

[12] P. Pal, P. Rubel, M. Atighetchi, F. Webber, W. H. Sanders, M. Seri,
H. Ramasamy, J. Lyons, T. Courtney, A. Agbaria, M. Cukier, J. Gossett,
and I. Keidar. An architecture for adaptive intrusion-tolerant applica-
tions. Software: Practice and Experience, 36(11-12):1331–1354, 2006.

[13] Tom Roeder and Fred B. Schneider. Proactive obfuscation. ACM Trans.
Comput. Syst., 28:4:1–4:54, July 2010.

[14] F. Sabahi and A. Movaghar. Intrusion detection: A survey. In Systems
and Networks Communications, 2008. ICSNC ’08. 3rd International
Conference on, oct. 2008.

[15] F. B. Schneider. Beyond traces and independence. Dependable and
Historic Computing, LNCS, 6875:479–485, 2011.

[16] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[17] Marco Serafini, Peter Bokor, Dan Dobre, Matthias Majuntke, and Neeraj
Suri. Scrooge: Reducing the costs of fast byzantine replication in
presence of unresponsive replicas. Dependable Systems and Networks,
International Conference on, pages 353–362, 2010.

[18] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In CCS ’04: Proceedings of the 11th ACM conference
on Computer and communications security, pages 298–307, New York,
NY, USA, 2004. ACM.

[19] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira
Neves, and Paulo Verissimo. Highly available intrusion-tolerant services
with proactive-reactive recovery. IEEE Transactions on Parallel and
Distributed Systems, 21(4):452–465, 2010.

[20] Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the
feeb? the effectiveness of instruction set randomization. In SSYM’05:
Proceedings of the 14th conference on USENIX Security Symposium,
pages 10–10, Berkeley, CA, USA, 2005. USENIX Association.

[21] PAX team. PAX documentation on ASLR. http://pax.grsecurity.net/docs/
aslr.txt.

[22] Hengming Zou and Farnam Jahanian. A real-time primary-backup
replication service. IEEE Trans. Parallel Distrib. Syst., 10(6):533–548,
June 1999.

	clarke
	clarkft

