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Abstract—Tor is the most popular anonymity network, used by
more than 2 million daily users. Engineering privacy enhancing
tools such as Tor requires extensive experimentation in order to
test attacks, evaluate the effects of changes to the Tor software or
analyze statistical data on the Tor network. Since research should
not be performed on the live Tor network for multiple reasons,
various techniques have been employed for Tor research, includ-
ing small-scale private Tor networks, simulation and emulation.
In this paper, we provide an overview and discussion of existing
techniques and tools used for Tor experimentation by categorizing
techniques and highlighting advantages and limitations of each
tool. The goal of this paper is to provide researchers with the
necessary information for selecting the optimal Tor research tool
depending on their specific requirements and possibilities.

I. INTRODUCTION

Anonymous communication networks (ACNs) are an es-
sential component in online privacy protection, enabling users
to communicate or access information anonymously over the
Internet. Tor [1] with more than 2 million daily users [2],
establishes bi-directional channels that can be used for inter-
active applications with low-latency constraints, such as web
browsing and online chat. The Tor network hides the identity of
users by routing all traffic through circuits consisting of mul-
tiple relays, which are operated by volunteers and distributed
around the world. Tor is designed to ensure that the origin and
the destination of a communication flow remain unlinkable as
long as an attacker is unable to monitor the relays used to
enter and exit the Tor network at the same time [1].

Tor is under active development by the Tor project team
and is supported by an active research community assisting
in the development, testing, and analyzing the Tor network.
Due to the popularity of the Tor network, a variety of people
are developing or doing research on and about Tor. Frequent
research topics include passive and active attacks on user
anonymity, performance improvements and scalability of the
Tor network, for example [3], [4], [S]. Privacy engineering
on Tor requires to investigate the behavior and the impact
of changes to the Tor network. Testing is an important stage
in the system or software development process to make sure
the design parameters are satisfying the design goal and are
feasible and practical in terms of the resources they need. Im-
proving design decisions, such as adjusting system parameters,
is an iterative process which introduces the need of a reliable
testbed.

Live Tor Research. An obvious approach is to employ
the live Tor network for conducting research. Tor is open-
source software which makes it very easy for researchers to
become part of the network - either as users or as part of the
network by running a relay or both. However, research on the
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live Tor network is discouraged since it induces several severe
limitations and potential risks. First, the live Tor network
cannot be employed for research on modified versions of the
Tor software since these changes would have to be deployed
in scale in order to examine their impact. However, software
updates require extensive testing to ensure that updates do
not weaken the anonymity of Tor users Using modified Tor
software on a subset of relays or clients does not produce
results that are representative for a wide-scale deployment of
the modified software. Experimenting on the live Tor network
also raises ethical issues since experiments may influence the
performance and functionality of Tor and may endanger users
in situations where the failure of Tor’s anonymity has severe
consequences. Loesing et al. discuss ethical issues that arise
from collecting statistical data in Tor [6]. In their case study
they attempt to collect data about Tor usage per city as well
as traffic exiting the Tor network per port. While collecting
this information, they discuss that measuring sensitive data can
harm the anonymity of Tor users, in particular if researchers
publish collected data. They name guiding principles which
should be followed whenever measuring statistical data is
necessary including legal requirements, user privacy concerns,
ethical approval, informed consent and community acceptance
[6]. However, these principles render measuring sensitive
statistics impossible for the majority of cases.

Alternatives. Over the last years, several independent
research groups presented different approaches to experiment
with Tor. While each approach attempts to provide accurate
results, some of them focus on specific aspects of the Tor
network. As an example, the Tor Path Simulator (TorPS)
focuses on the path selection algorithm used to construct
circuits [7]. There have also been attempts to provide a
general-purpose simulation or emulation framework for Tor,
in particular Shadow [8] and ExperimenTor [9], but no single
method has proven to be outstanding so far. The existence of
multiple possibilities to experiment with Tor leads to research
results which are based on specific tools and induces the risk
of biased results depending on the choice of the experimen-
tation platform. While each technique might have individual
advantages, they also bring limitations and problems.

Depending on the research question, different aspects of
the experimentation testbed need to be as accurate as possible.
These aspects include the network effects, the Tor network (in
terms of the Tor network structure, the routing approach of
Tor, and security details such as encryption), the number of
users and their behavior, and last but not least the behavior
of the adversary. For example, a research process which aims
at improving Tor’s performance, the testing will depend rather
on the accuracy of performance related factors such as round
trip time, bandwidth, and jitter. On the other hand, when the
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privacy of a system is under investigation and the system
parameters need to be adjusted for better privacy, the accuracy
of other factors such as AS-level distribution is of high interest.

Relevance. Meanwhile, Tor experimentation tools are
mandatory prerequisite concerning privacy research in the
Tor network. Analysis of user privacy, data protection and
anonymity can only be performed in a safe and realistic exper-
iment in a controllable environment resulting in reproducible
results.

Comparing different Tor experimentation tools is challeng-
ing due to the inherent characteristics of Tor as an anonymity
network. Thus, exact statistics on user behavior or traffic
patterns are unavailable as they contribute to the anonymity
protection of Tor users. Loesing et al. state, that measuring
sensitive statistics in the Tor network endanger the anonymity
of Tor users and therefore should follow several guidelines
limiting the scope of measured statistics [6]. Consequently, it
is hard to tell which tool accurately represents the Tor network
since there is no reference model available that could be used
to compare experimentation tools with the live Tor network.
Instead, approaching an evaluation of experimentation tools
requires comparing tools with each other in order to determine
commonalities and differences.

Contributions. Our contribution consists of a detailed
overview of techniques and tools that have been employed for
experimentation with Tor. To do so, we categorize different
techniques and define metrics which can be used to compare
experimentation tools. We then discuss advantages and lim-
itations of each tool using the defined metrics. Finally, we
indicate issues that require future work in this area.

II. BACKGROUND ON TOR

We give here a brief background on Tor; more information
can be found at www.torproject.org and in [1].

To communicate anonymously through Tor, users install
a local application called onion proxy (OP) which handles
connection setup and routing through the Tor network. The
OP first downloads a consensus from a directory server.
Consensuses are generated hourly, and comprise a list of
available Tor nodes, also known as relays or onion routers
(OR), together with their contact details, such as IP address,
and additional information like node bandwidth and various
node flags. The OP then selects three nodes from the most
recent consensus, chosen randomly according to Tor’s routing
policy. The combination of three nodes is called circuit. The
first node is called the entry or guard node, the second node is
the middle node, and the last node is the exit node. While
all routers can potentially act as middle nodes, only some
nodes are flagged as guard or exit nodes. Each node’s operator
decides whether that node should advertise as an exit node;
guard nodes, on the other hand, are flagged as guards based
on superior bandwidth and mean uptime.

At the time of writing (February 2015), Tor consists of
roughly 7000 nodes of which more than 1000 are exit nodes
[2]. In the current Tor design each user is assigned a small
number of guard nodes that are changed every 30-60 days.
Guard flagged nodes were introduced to limit the probability
of an adversarial router being selected as entry node [10].
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A further development in the routing policy is to disallow a
communication to pass through two nodes within the same /16
subnet IP address. (Note that the underlying topology is there-
fore not a complete graph.) Due to performance considerations,
Tor’s routing policy does not select each possible route with
the same probability; preference is given to high-bandwidth
nodes, and the probability that nodes are chosen depends on
the ratios of overall guard and exit node bandwidths as well as
some additional bandwidth weights aiming at balancing the use
of exit and guard flagged nodes. If a node fails to reply within
a certain time period during circuit construction, the circuit is
dropped and the circuit construction is repeated. In addition, to
increase the probability of successful path construction, nodes
are preferred based on the ports that have been used by the
user in the last hour [11].

CollecTor. The current state of the network is published
as consensus by the directory authorities every hour. This
document, also called network status document, contains infor-
mation about all relays currently contributing to the network.
An archive of consensus documents aggregated in monthly
packages is available at CollecTor [12] dating back to late
2007. In addition to the consensus documents, relays publish
server descriptors which contain detailed information for each
individual relay. Server descriptors are updated as parameters
change and are also available on CollecTor in monthly archives
[12]. The combination of consensuses documents and server
descriptors allow for the recreation of the network state at a
given point in time including all information about relays and
their corresponding exit policies, cryptographic keys, software
version, and bandwidth. This information is frequently used in
context of Tor experimentation.

III. TOR EXPERIMENTATION

Tor research has employed a multitude of techniques and
led to the development of numerous tools. In this section,
we will categorize and discuss these techniques and present
available tools accordingly. In particular, we will discuss
advantages and possibilities, but also indicate problems and
limitations.

Categorization. In order to assess different experimenta-
tion techniques, research on the Tor network can be disposed
in six categories: a) analytical / theoretical modeling, b) private
Tor networks, c) distributed overlay network deployments, d)
simulation, and e) emulation. Note that the sixth category is
live Tor research, however drawbacks and limitations of this
approach have already been discussed previously.

Analytical / theoretical modeling is the foundation of every
experiment; an abstract model is applied in almost all Tor
research projects to a certain extent. Few years ago, most Tor
experimentation made use of distributed overlay network ser-
vices like PlanetLab to deploy testing Tor networks. However,
recent research more commonly used simulation or emulation
techniques to experiment with Tor since powerful frameworks
are now available for Tor. Due to this observation, our main
focus is set on simulation and emulation.

In simulation, the approach is to mimic a system in order
to obtain similar results; the underlying functionality though
maybe simplified and very different from the system that it is
simulating. Emulation, on the other hand, tries to mimic the



same functionality to produce similar behavior and results, and
hence is generally not using shortcuts to save resources. We
address differences between simulation and emulation in detail
later in this chapter.

Metrics. In order to be able to make an informed choice for
experimenting tool various criteria are of interest. We address
the following criteria for Shadow, TorPS, and ExperimentTor:
Modeling Tor in terms of

1)  size / number of relays. This is important because a

small network might not capture all the same network
effects that a large network might experience and
when parameters are adjusted for better privacy the
adjustments might not hold for a large network.
routing approach. The routing approach is influencing
directly the achieved anonymity and performance of
the network, hence it should ideally be identical to
Tor’s routing approach;
topology from both a spectral point of view such as
AS-level / geographic distribution, and Tor’s band-
width distribution. This is important because the AS-
level distribution highly influences the anonymity
of Tor [13]. Moreover, Tor’s routing approach is
highly influenced by the bandwidth of nodes. Hence,
the accuracy of this model influences privacy and
performance that the experiment is going to obtain.
network effects such as congestion. This is important
because Tor’s main performance drawback is due to
high congestion [14].
number of Tor users and
usage pattern of Tor users. The number of users
and their usage pattern influence the workload and
congestion of the network which in term influences
performance directly and the privacy indirectly by
influencing routing.
Modeling adversaries. This is important because a
major part of research on Tor is about investigating
active attacks (note that for passive attacks the adver-
sary does not need to be modeled in the experimen-
tation tool) against the anonymity and performance
of Tor.

2)

3)

4)

5)
6)

7)

In addition, we are interested in the following aspects:

8)  Whether the experimentation tool is currently being
maintained, since Tor is constantly updated.
9)  Whether the tool is using unmodified, i.e. original Tor
source code.
10)  Regquired resources, such as the minimum number of

hosts required for experimentation. This influences
the feasibility of the experiments.

Note, that there are certainly more features which could be
applied; however we focus the discussion on features relevant
to performance, security, and feasibility.

A. Analytical Modeling

A valid model of the Tor network is the foundation of
experimentation with Tor since it is required to verify design
choices of the experimentation environment. Jansen et al. ap-
proached modeling the Tor network in [15] in order to obtain a
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model which can be used to run experiments. However the AS-
level distribution and geographic distribution is not taken into
consideration in their modeling. Backes et al. have analyzed
the anonymity of Tor’s path selection by a building tool for
computing anonymity guarantees [16]. However, most research
questions cannot be answered with only a theoretical model of
a system but require at some extent practical experimentation
to verify the model.

B. Private Tor Networks and Chutney

A simple approach other than using the live version of
Tor is setting up a private Tor network on physical or virtual
machines. Using a private clone of Tor allows for full control
and customization of the software, network topology and
data collection. Setup can be assisted by Chutney, a tool for
configuring and launching a testing Tor network [17]. Chutney
generates Tor configuration files for all required components
for the standalone Tor network, including directory authorities,
relays, bridges and clients and deploys them. It can also
be used to monitor the configured network while running
experiments on it. However, running a private Tor network
requires dedicated resources and will therefore be limited
in scale. Even though Chutney can assist in managing the
network, experiments do not scale to a large number of nodes.
In addition, Chutney does not induce traffic, hence a realistic
model of Tor usage is required to accurately simulate network
traffic. Finally, Chutney is still in alpha phase and does not
implement all promised functionality yet [17].

Chutney is for example used by the developers of the
Scalable Network Emulator for Anonymous Communication
(SNEAC). They employ a modified version of Chutney to
setup the emulated Tor network and configure the nodes to
route traffic through the emulator core [18].

C. Testbed Deployments

There are multiple distributed overlay networks available
for research and development. Three of them have been used
for Tor research: PlanetLab, Deter and Emulab.

1) PlanetLab: PlanetLab is a globally distributed overlay
network which allows researchers to run an experiment in a
certain share of the network called slice [19]. According to
their website, PlanetLab consists of 1335 nodes at 645 sites at
the time of writing '. Due to the absence of other suitable tools
for Tor experimentation, PlanetLab has been widely used in the
past for active Tor research. For example, Tang et al. proposed
an improved circuit scheduling algorithm and used a PlanetLab
deployment for its analysis [20]. In another example, Bauer
et al. conducted an experiment on PlanetLab to analyze the
impact of Tor’s routing optimization on user anonymity [21].

However, using PlanetLab for Tor research has several
disadvantages: First, experiments are limited in size to the
available resources of PlanetLab, which in addition have to
be shared with other researchers. Second, researchers cannot
influence the underlying network topology as well as link
parameters such as bandwidth, latency and delays. This leads
to experimental results which are specific for the current state
of the PlanetLab network and hence difficult (if not impossible)

Uhttps://www.planet-lab.org



to reproduce [22]. Modeling specific users seems also to be not
trivial with Planetlab. However, modeling an active adversary
is straight forward for Planetlab.

Akhoondi et al. have proposed an alternative routing al-
gorithm for Tor where the geographic location and the Au-
tonomous System (AS) of each node is taken into consideration
in order to avoid circuitous paths and used PlanetLab for
evaluating their proposed changes to the Tor routing algorithm
[23].

While PlanetLab has often been used for Tor experimenta-
tion some time ago, most experimentation in recent time was
performed using either the Shadow simulator or the emulator
ExperimenTor.

2) Deter: The Cyber Defense Technology Experimen-
tal Research Laboratory (DeterLab) is a network emulation
testbed for cybersecurity experimentation [24], [25]. In contrast
to PlanetLab, researchers can provide a network topology and
run arbitrary applications. In Tor research, Deter has been used
by Chakravarty et al. to demonstrate a traffic analysis attack
on Tor users by injecting bandwidth fluctuations at server side
and observing these fluctuations along the circuit [3]. Similar
to PlanetLab, experiments on Deter are limited to the available
resources and therefore do not scale. Available resources also
have to be shared with other researchers. More information
about Deter can be found on their website 2.

3) Emulab: Another network emulation testbed is Emulab
3. The primary installation is maintained at the University
of Utah [26] and can be used for research free of charge.
Researchers can supply a network topology which is then used
to generate an emulated network. Das et al. used Emulab to
analyze the effects of selective DoS attacks on user anonymity
and presented an algorithm to detect potentially compromised
circuits [27]. However, Emulab induces the same limitations
in terms of scalability and shared resources as Deter and
PlanetLab.

D. Simulation

In simulation, an abstract model of a system is used to
simulate the behavior and events of that system. This requires
a realistic model of the system as precondition on which all
simulation results will depend. Jansen et al. presented a model
of the Tor network in [15]. Simulations usually happen in
virtual time which reduces the amount of resources required
for an experiment since not all components need to run at
the same time. Along with reduced hardware requirements
follows an improved scalability of experiments. In Tor re-
search, simulation is widely used. Various simulators have
been presented, some of them focusing on specific aspects
of the Tor ecosystem, depending on the respective research
topic. However, the most often used tools is Shadow, a general-
purpose network simulator.

1) Shadow: Shadow is a discrete-event simulator based
on the Distributed Virtual Network (DVN) simulator [8].
It is designed to run on a single machine with moderate
hardware requirements and user privileges. To improve per-
formance, Shadow scales down the number of hosts used in

https://www.deter-project.org
3https://www.emulab.net

209

the simulation. Using a consensus and the corresponding server
descriptors as input, Shadow generates a XML file containing
a reduced set of nodes. This XML file is then used as the
simulation blueprint for the virtual network.

The processed shadow host file contains the description
of a downscaled set of Tor nodes which is used during the
simulation. The developers of Shadow provide some exemplary
downscaled networks and also the possibility to generate a
downscaled network from any desired consensus. The process
of downscaling is challenging since it induces the risk of
inaccurately simulating the Tor network. Shadow attempts to
mimic Tor bandwidth distribution in the downscaling but does
not take spectral distribution into consideration. Wacek et al.
have analyzed different routing algorithms proposed for Tor
[28]; for their experimentation they have taken the AS-level
and geographic distribution of Tor also into account. Jansen et
al. [29] have modeled Tor in their work with more accuracy
to represent the Tor network also from a geographical point
of view. However, the Tor model used in their work is not
available online due to it’s large size (25GiB).

All aspects of the simulation can be controlled by the
simulation script. The script defines the execution of the
simulation, i.e. creation of the network, nodes and plug-ins and
to associate parameters like latency, bandwidth and CPU speed.
During the simulation, the scheduler takes care of executing
events from the simulation script and receiving events to be
scheduled from applications and the virtual nodes within the
simulation [8].

Applications can be included in the simulation as Shadow
plugins. A plugin consists of the original application, an appli-
cation wrapper implementing callback functions for the sim-
ulator and a specification of the instance specific application
state. Shadow takes care of swapping in and out the application
specific state before and after the application is executed. Using
this technique, Shadow is able to run multiple instances of the
same application with reduced memory demands. To ensure
proper simulation, Shadow requires the application to run in
a single process and thread as well as being asynchronous,
meaning non-blocking to prevent deadlocks. Specific calls to
external libraries are intercepted by Shadow and redirected to
the simulation framework (using selective function intercep-
tion). This is used to perform operations within the simulation,
for example operations on the virtual network, rather than the
physical network interface of the host machine. Along with
Shadow, Jansen et al. presented Scallion, a Shadow plugin
which consists of the Tor application and an implementation of
the required callback functions [8]. When installing Shadow,
the latest version of Tor is installed and used by the simulator.
Shadow is currently maintained.

However, the scalability of Shadow is limited by the
resources available at a single machine, since it is not possible
in the current implementation to distribute a simulation on
multiple machines. Also, Shadow as a network simulator
makes certain assumptions to reduce the complexity of the
system. For example, Shadow does not perform cryptographic
operations in order to reduce simulation run-time. While
abstraction offers improved scalability, it comes at the cost
of accuracy since it is difficult to verify that the model used
does not disregard certain peculiarities of the system. Finally,
Shadow implements an own virtual socket library which is



used instead of the socket library from the operating system of
the simulation machine. This adds an extra layer of complexity
to the experimentation setup.

Figure 1 presents the correlation between real time and
virtual time for simulations of different sizes. The comparison
is made for simulations running one virtual hour on a machine
with the following processor: Intel(R) Xeon(R) CPU E5-4650
0 @ 2.70GHz. Note that the complexity of the simulation is
shown to be non-linear, in particular for a large simulation
size.

6 simulation run time
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Fig. 1. The figure displays the performance of Shadow for different simulation
sizes. It points out the difference between the real time and virtual time,
where the comparison is made for simulations running one virtual hour. The
virtual time reflects the amount of Tor activity (such as downloads and path
constructions).

2) TorPS: Johnson et al. presented the Tor Path Simulator
(TorPS), which aims to simulate the process of relay selection
for circuit construction [7]. Given one or multiple Tor con-
sensus files and the corresponding server descriptors, TorPS
in a first step converts these into a network state file which
can be used as input to the simulation. TorPS then simulates
the selection of relays for circuit construction based on one
of five predefined user models. Output of the simulation is a
list of circuits, each consisting of three ordered IP addresses.
In addition, TorPS provides an option to run simulation with
a congestion aware algorithm proposed by Wang et al. [14].
TorPS is only intended to provide results for the circuit
construction process. It is therefore suitable for research on
improving or changing the path selection algorithm in Tor,
while it can not be used in experiments where actual user
workload and traffic measurements are required to be part of
the simulation. TorPS models only the usage pattern (used port)
of Tor users for path establishment.

TorPS is written in Python and has no automatic way of
updating to the newest version of tor, however currently it is
maintained to follow the latest path construction algorithm of
Tor.

We ran several simulations on TorPS to measure the
resources that a TorPS simulation requires. A simulation based
on a single consensus simulating 100,000 circuits for a client
which connects to Google (74.125.131.105) took around 4
minutes on a machine with the following processor: Six-
core AMD Opteron (tm) processor 8435 @ 2.60GHz. On the
same processor a simulation where 1,000,000 circuits were
established took 40 minutes.
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3) Changing of the Guards: In 2012, Elahi et al. presented
Changing of the Guards (COGS), a simulation framework
designed for evaluating effects of Tors entry guard selection
on user privacy [5]. COGS utilizes consensus documents and
server descriptors from CollecTor to recreate the Tor network
state at a given point in time. Then, COGS runs a large amount
of path selection simulations while generating log files. These
log files can then be parsed in order to obtain the desired
information.

COGS uses original Tor source code (version 0.2.2.33) and
adds inline commands to mimic Tor guard selection and path
construction. COGS is currently not maintained. There exist
some flaws in COGS mimicking Tor’s exact routing approach.
For example, COGS is ignoring exit nodes 16/ family conflicts.

E. Emulation

Network emulation is another technique to experiment
with Tor. In contrast to simulation, emulators perform all
operations in real time on virtual nodes, aggregating to an
accurate representation of the network. Since all operations
have to be performed simultaneously, this results in extensive
resource requirements. There are two dedicated Tor emulators:
ExperimenTor and SNEAC.

1) ExperimenTor: ExperimenTor is a network emulator
intended to improve Tor research. It is based on the ModelNet
network emulation testbed [30] and was presented by Bauer
et al. in 2011 [9]. ExperimenTor requires at least two physical
or virtual machines: While the emulator core is responsible
for emulating the network, Tor and other applications like
BitTorrent clients run on one or more emulators. and one or
more emulator edges. ExperimenTor uses unmodified Tor soft-
ware and the size of experiments is only limited by available
hardware resources. ExperimenTor generates a downscaled
network representing Tor in term of bandwidth distribution.
The developers have generated a downscaled network with
1,000 nodes using two machines [9].

ExperimenTor also induces a model for Tor clients based on
characteristics by McCoy et al. [31]. In contrast to Shadow, ex-
periments do not include background effects of the Internet like
non-deterministic jitter or packet loss [15]. Various research
projects used ExperimenTor for emulation of the Tor network.
As an example, Wacek et al. used ExperimenTor to analyze
which relay selection technique provides best anonymity and
performance properties [32]. However, ExperimenTor is based
on an outdated version of FreeBSD and is therefore no longer
maintained. ExperimenTor has been replaced during recent
work at the University of Waterloo by SNEAC, the Scalable
Network Emulator for Anonymous Communication.

AlSabah et al. [33] and Moore at al. [34] have used Exper-
imenTor for evaluating their research on Tor. In another work,
AlSabah et al.[35] experiment on the live Tor network and
complement their research using an ExperimenTor emulation.

2) SNEAC: Sukhbir Singh presented the Scalable Network
Emulator for Anonymous Communication (SNEAC) in her
master thesis at the University of Waterloo in 2014 [18]. It
is an emulator dedicated to anonymity networks and based on
modified versions of Mininet and Open vSwitch. SNEAC is
in particular designed for large-scale Tor emulation. Similar to



Metric Shadow

TorPS

ExperimenTor

downscaling, simulation with 500+ re-

1. Size / number of relays lays possible

no downscaling

limited by available resources

not using additional weighting in node

2. Routi ch
outing approac selection

ignoring paths being dropped due to
timeouts

geographic distribution ignored, band-

3. Topol
opology width distribution based on Tor

both same as Tor

geographic distribution of Tor ignored,
bandwidth distribution based on Tor

4. Network effects (e.g. con-

es
gestion) yes

no

yes (simplified)

5. Number of Tor users downscaled

no

downscaled

6. Usage pattern of Tor users 5 usage patterns

5 usage patterns

2 usage patterns

7. Modeling adversaries possible

possible

possible

8. Currently being maintained yes

yes

no

9. Using original Tor code yes

no, Python application

yes

10. Required resources single host, user privileges

single host, user privileges

min. 2 hosts, high resource requirements

TABLE 1.

COMPARING SHADOW, TORPS, AND EXPERIMENTOR USING METRICS RELEVANT TO MEASURING PRIVACY AND PERFORMANCE AND THE

FEASIBILITY OF THE EXPERIMENTS.

ExperimenTor, SNEAC requires at least two physical or virtual
machines: The emulator core is responsible for network emu-
lation and package routing to and from the edge nodes. Either
one or more edge nodes run multiple instances of applications
and communicate with each other using TCP/UDP through the
emulator core. Since SNEAC is emulating all operations in real
time, it has very high hardware requirements. The experiment
presented in [18] made use of eight machines, each having
at least 1 TB of memory, 80 CPU cores and four 40 Gigabit
Ethernet network interfaces with interface bonding. SNEAC
takes care of emulating network communication without the
need to adapt running applications. While this leads to very
high hardware requirements, it guarantees realistic emulation
results since all applications including Tor are running in real
time without modification. The emulator itself does not impose
any limitation on the results of the experiment. Hence, it’s
the responsibility of the researcher to collect and extract the
relevant information during the emulation by measuring rele-
vant parameters. Since SNEAC is rather new, it has not been
used for Tor research other than in [18]. Further advantages
and limitations will arise once SNEAC will be used for Tor
research by the community.

IV. DIscuUSsSION

To choose the most appropriate experimentation tool, it
is important to consider the necessary requirements of the
experiment and the available resources and then find a tool
that matches this trade-off.

Using simulation or emulation is an important differentia-
tion. In simulation, the goal is to create an accurate model of
the system that is about to be simulated. For simplification, the
model might take certain assumptions which - ideally - do not
change the behavior of the system. Simulation usually happens
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in virtual time, which improves the flexibility and reduces
hardware requirements at the cost of an increased simulation
runtime. As an example, Shadow runs as a regular application
without root access. While this accounts for improved usability
and reduces configuration complexity, it requires Shadow to
reimplement major parts of a network stack (e.g. the SOCKS
library) which induces the risk of implementation errors. On
the other hand, emulation techniques are applied to encapsulate
multiple instances in an emulation with as little modifications
as possible. Emulation takes place in real time, meaning that all
entities of the emulated system need to be running at the same
time. Hence, emulation has significantly increased hardware
requirements compared to simulation.

Table III-E1 investigates Shadow, TorPS, and Experimen-
Tor using the metrics defined in Section III. Note that, for
example, while TorPS makes use of different user models for
selecting appropriate exit relays, network effects caused by
user traffic is not taken into consideration. Hence, dropping
circuits caused by timeouts due to congestion is not covered
by the simulation model. In real Tor some nodes may be
rarely connected due to timeouts. Two examples of weaknesses
of Shadow are as follows. In the current version of Shadow
node selection ignores the bandwidth weights that are given
at the end of the consensus to balance off the use of nodes
in different position in the relay. Shadow’s downscaling of
the Tor network is also not ideal, ignoring the geographic
distribution and the AS-level distribution of the Tor network
[28]. The latter is influencing the anonymity of the downscaled
network. However, ExperimenTor on the other hand has worse
scalability than Shadow and TorPS and is also ignoring the
AS-level distribution when it is downscaling Tor. Moreover,
ExperimenTor is based on outdated version of FreeBSD,
currently not maintained nor online available. Note that the
weaknesses indicated in the table are not an exhaustive list.



V. SUMMARY

In this paper, we discussed Tor experimentation tools,
both general-purpose tools like Shadow, ExperimenTor, and
SNEAC and specific-purpose tools like TorPS and COGS.
Before Shadow and ExperimenTor were available, research
would often use deployments on emulation testbeds like Deter,
Emulab or PlanetLab for experimentation. Shadow, TorPS, and
COGS are simulators while ExperimenTor and SNEAC are
emulators. Consequently, hardware requirements of Experi-
menTor and SNEAC are much higher than the requirements of
the simulators. However, they promise more accurate results.
While Shadow and ExperimenTor have been often employed
for Tor experimentation, the use of TorPS and COGS has been
rather limited. SNEAC has not been used so far since it was
just published. Furthermore, we have identified ten metrics that
are relevant to measuring anonymity and performance of Tor
and we compared Shadow, TorPS, and ExperimenTor based on
these metrics.

VI. FUTURE WORK

We intend to compare the testing results from various
experimentation testbeds in terms of accurate representation of
the Tor network. Inspired by [15], it is important to find metrics
that can be verified from samples of the live Tor network.

A systematic approach for comparing these tools is to cre-
ate a simulation blueprint using data from CollecTor [12] and
convert it to the required input format for Shadow, TorPS, and
SNEAC. Finding metrics for comparing the experimentation
results requires more work to be done; some ideas include
the comparison of circuits, e.g., by bandwidth, latency or
relay usage and the position of relays in circuits. Our work
is intended to contribute in standardizing Tor measurements.
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